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ABSTRACT

We quantize the gauged Wess-Zumino-Novikov-Witten model à la BRST and prove

that the conformal field theory it induces on the physical space is equivalent to

the G/H coset construction of Goddard-Kent-Olive. This extends to general H

the result obtained by Karabali and Schnitzer for H abelian; although our proof

is more direct.
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Introduction

The coset construction of Goddard, Kent, and Olive[1] (GKO) is one of the

most important results in two dimensional conformal quantum field theory (CFT).

It gives a constructive proof of the unitarity of the CFTs corresponding to the

discrete series of representations of c < 1 found by Friedan, Qiu, and Shenker[2].

Is is therefore important to have a field theoretic description of such theories.

In [3] the authors investigated the path integral quantization of a Wess-Zumino-

Novikov-Witten (WZNW) model[4] in which an anomaly free subgroup H of the

original G×G symmetry group had been gauged. The theory which results after

gauge fixing and the introduction of the Faddeev-Popov ghosts turns out to be

conformal with central charge equal to that of the GKO construction of a G/H

coset CFT. However the energy momentum tensor obtained in [3] does not agree

(as an operator) with the one given by the GKO construction. This is, of course,

to be expected since the quantization of the gauged WZNW model contains more

degrees of freedom (e.g. ghosts) than the ones appearing in the GKO construction.

Under these circumstances the best that one can hope is for the difference between

the two energy momentum tensors to be zero acting on physical states. It was

shown in [3] that this is indeed the case when sandwiched between physical states

which are also ghost free. This, of course, is not a proof but it lends validity to

the conjecture given that from our experience with BRST quantization in string

theory we know one can usually find representatives for the physical states which

are ghost free.

Later, in [5] , Karabali and Schnitzer proposed a method of proof based on

the following fact—proven, for example, in [6] —: any unitary representation

of the Virasoro algebra with vanishing central charge and where L0 is bounded

below is necessarily trivial. Since the gauged WZNW and GKO CFTs have the

same conformal central charge, the difference between their energy momentum

tensors has zero central charge. Hence all one has to show is the unitarity of

the physical states; since it follows by construction that L0 is bounded below.
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Therefore, in this context, the proof of the operator equivalence between the two

CFTs boils down to a “no-ghost” theorem. This was proven in [5] for the special

case of H abelian using the quartet mechanism of Kugo and Ojima[7]; and in [8]

using homological methods. The quartet mechanism consists roughly of explicitly

building projectors onto the non-trivial BRST cocycles. This procedure is only

effective when the constraint algebra is abelian so that the BRST operator is linear

in the ghosts. In cases when the constraints arise from a Lie algebra, however, the

resulting BRST operator is none other than the operator which computes the semi-

infinite cohomology of Feigin[9]. For this cohomology theory, Frenkel, Garland, and

Zuckerman[10],[11] have developed some methods, based on homological algebra and

representation theory, which have been used successfully to give the simplest and

most enlightening proofs of the “no-ghost” theorems in string theory[10],[11],[12],[13].

However[8] if one tries to apply these methods to the present case, one runs into

technical difficulties which have only been resolved, interestingly enough, for the

abelian case.

In this paper we follow a more direct approach to prove the equivalence between

the gauged WZNW and GKO CFTs. In particular, we do not need the “no-

ghost” theorem; which is not to say that proving the “no-ghost” theorem is not

an interesting result in its own right. Our method consists of explicitly building

a chain homotopy connecting the difference of the energy momentum tensors with

the zero operator; that is, we construct an operator whose anticommutator with

the BRST operator yields the difference between the energy momentum tensors of

the two CFTs whose equivalence we want to prove. Conceptually, therefore, the

proof is extremely simple; albeit not very enlightening.

In the next section we review the results of Karabali and Schnitzer concerning

the CFT arising from the gauged WZNW model. Then we discuss the BRST

quantization of the gauged WZNW theory, explain the idea behind the equivalence

between the two CFTs, and prove the equivalence of the two CFTs by constructing

the chain homotopy explicitly. We then conclude with some open problems.
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The Gauged WZNW Model as a CFT

We start by describing the CFT obtained from the gauged WZNW model. In

order to minimize the overlap between this paper and [5] we will not rederive the

CFT from the path integral quantization of a gauged WZNW action. This is done

lucidly in [3] and [5] and so we shall take the CFT as our starting point.

The CFT of the gauged WZNW model consists of the following ingredients.

First we have a WZNW CFT with group G and level k. This is described by the

current algebra corresponding to the affine Lie algebra ĝ at level k; where g is the

Lie algebra of G. That is we have a set of currents1 Ja(z) obeying the following

operator product expansion (OPE)

Ja(z)Jb(w) =
kγab

(z − w)2
+

fab
c

z − w
Jc(w) + reg , (1)

where a, b = 1, . . . , dg = dim g are indices in the algebra g and γab is a fixed

invariant symmetric bilinear form on g. Throughout this paper we adopt the

Einstein summation convention. The energy momentum tensor has the Sugawara

form2

T g(z) =
γab

2k + cg
: Ja(z)Jb(z): , (2)

where γab is the inverse of γab. This energy momentum tensor obeys the usual

1 We only consider the holomorphic sector of the CFT. The treatment of the

antiholomorphic sector is completely analogous.

2 By the normal ordered product : A(z)B(z): of two operators A(z) and B(z) we

mean the following:

: A(z)B(z):≡
∮

Cz

dw

2πi

1

w − z
A(w)B(z) ,

where Cz is a positively oriented contour in the complex w plane encircling z.
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OPE

T g(z)T g(w) =
c(g, k)

2(z − w)4
+

2

(z − w)2
T g(w) +

1

z − w
∂T g(w) + reg , (3)

where

c(g, k) ≡ 2kdg

2k + cg
, (4)

and cg is the eigenvalue of the quadratic Casimir operator γabJ
a
0 Jb

0 in the adjoint

representation of g.

The next ingredient is a WZNW CFT with group H ⊂ G and level −(k + ch).

This is defined by a set of currents J̃ i(z) obeying the OPE

J̃ i(z)J̃j(w) =
−(k + ch)γ

ij

(z − w)2
+

f ij
k

z − w
J̃k(w) + reg , (5)

where γij is the restriction of γab to h. The energy momentum tensor again has

the standard Sugawara form

T̃ h(z) =
−γij

2k + ch
γij : J̃

i(z)J̃j(z): , (6)

where γij is the inverse of γij . This energy momentum tensor obeys the usual OPE

T̃ h(z)T̃ h(w) =
c(h,−k − ch)

2(z − w)4
+

2

(z − w)2
T̃ h(w) +

1

z − w
∂T̃ h(w) + reg . (7)

The third ingredient is a set of dh anticommuting free (b, c) systems of spins

(1,0) respectively with OPE given by

bi(z)cj(w) =
δi
j

z − w
+ reg = cj(z)bi(w) . (8)

Their energy momentum tensor has the standard form

T gh(z) = −: bi∂ci: (9)
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and obeys the standard OPE

T gh(z)T gh(w) =
−dh

(z − w)4
+

2

(z − w)2
T gh(w) +

1

z − w
∂T gh(w) + reg . (10)

The final ingredient of the theory is the constraint which couples these three

independent CFTs:

Jtot
i(z) ≡ J i(z) + J̃ i(z) + J i

gh(z) , (11)

with

J i
gh(z) ≡ f ij

k: b
k(z)cj(z): . (12)

The OPEs obeyed by these currents can be easily read from the ones given above

and are given by (5) together with

J i(z)Jj(w) =
kγij

(z − w)2
+

f ij
k

z − w
Jk(w) + reg , (13)

J i
gh(z)Jj

gh(w) =
chγ

ij

(z − w)2
+

f ij
k

z − w
Jk

gh(w) + reg . (14)

Adding the central charges we see that in fact they cancel so that the constraint is

first class. This just reiterates the fact that we gauged an anomaly free subgroup.

Because of this fact we can build a BRST charge and we are guaranteed that it is

square-zero.

BRST Quantization and Proof of Equivalence

We define the BRST operator as the contour integral of the BRST current.

That is,

Q =

∮
C0

dz

2πi
j
BRST

(z) , (15)

where

j
BRST

(z) =: ci(z)[J i(z) + J̃ i(z) +
1

2
J i

gh(z)]: . (16)

Therefore to quantize the holomorphic part of this CFT we merely look for

suitable representations of the relevant operator algebras. In this case this involves
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representations of two affine Lie algebras: ĝ at level k and ĥ at level −(k + ch);

whereas the ghosts—being free fields— are quantized trivially. The physical sub-

space is then defined as the cohomology of the BRST operator at zero ghost num-

ber.

We proceed now to the discussion of the Virasoro algebras appearing in this

construction. The total energy momentum tensor T (z) is given by the sum of three

commuting terms:

T (z) = T g(z) + T̃ h(z) + T gh(z) . (17)

Adding up the central charges we notice that the total central charge is

c =
2kdg

2k + cg
+

2(−k − ch)dh

2(−k − ch) + ch
− 2dh

=
2kdg

2k + cg
−

2kdh

2k + ch
, (18)

which coincides with the central charge of the G/H coset CFT. However the energy

momentum tensor of the coset CFT is not the same as T (z). In fact, it is given by

TGKO(z) = T g(z)− T h(z) , (19)

where

T h(z) =
γij

2k + ch
: J i(z)Jj(z): . (20)

We can therefore split T (z) as a sum of two commuting terms TGKO(z) + T ′(z)

where

T ′(z) = T h(z) + T̃ h(z) + T gh(z) . (21)

Notice that T ′(z) has zero central charge.

Now, the BRST charge can be checked to commute with both TGKO(z) and

T ′(z). Hence they are physical operators; that is, they induce operators in the
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physical space. The conjecture of [5] is that T ′(z) induces the zero operator on

physical states. This is equivalent to showing that there exists an operator Θ(z)

such that

{Q , Θ(z)} = T ′(z) . (22)

Before constructing Θ(z) we will need to know the OPEs between the BRST

current and the other relevant operators or, equivalently, the (anti)commutation

relations of the relevant operators with the BRST operator. One easily finds the

following:

{Q , bi(z)} = Jtot
i(z) ; (23)

[Q , J i(z)] = kγij∂cj(z)− f ij
kcj(z)Jk(z) ; (24)

[Q , J̃ i(z)] = −(k + ch)γ
ij∂cj(z)− f ij

kcj(z)J̃k(z) . (25)

This suffices to prove (22) for

Θ(z) =
γij

2k + ch
bi(z)(Jj(z)− J̃j(z)) , (26)

which explicitly shows that T ′(z) is chain homotopic to zero.

Conclusion

In this paper we have proven the equivalence between the CFT which arises

after gauging an anomaly free subgroup H ⊂ G in a WZNW model and the CFT

which arises out of the coset G/H via the GKO construction. The equivalence

consists in showing that the GKO and gauged WZNW energy momentum ten-

sors coincide on the physical states; when these are defined, as is usual in BRST

quantization, as (a subspace of) the cohomology of the BRST operator.

The actual proof consisted in explicitly constructing a chain homotopy connect-

ing the zero operator and the difference of the energy momentum tensors. As such

the proof is extremely simple conceptually but it lacks the interesting side-effects
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in the method of proof proposed in [5] , which first proves the positive definiteness

of the physical scalar product. This was carried out successfully for the special

case of H abelian in [5] —using the quartet mechanism of [7] —and in [8] —using

the homological methods of [10] and [11] . It is an interesting open problem to

determine the positive definiteness of the physical scalar product for general H. It

is also interesting to relate this work to that of Felder[14] on minimal models, since

these can be obtained via coset constructions[1]. This is currently under study.
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