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§1 Introduction and Motivation

What is a W-primary field? One of the purposes of this introduction is

to try and impress upon the reader the fact that this question is important—

arguably the single most important unsolved question in W-algebras—both

for practical and formal reasons, and also that its answer is intimately linked

with the notion of W-geometry. We also hope to impress upon the reader the

fact that there are immediate and fruitful applications for the answer to this

question: W-covariant CFT, W-bootstrap,... We don’t pretend that direct

construction (at least via the bootstrap) is going to solve the classification

problem for W -algebras, but it is unquestionable that out of the relatively few

cases that have been so constructed, there has come out valuable insight into

the problem and considerable help in forming conjectures.

Here something about other approaches...

To start, let us review the notion of a Virasoro primary field in CFT.

According to the BPZ axioms [1], for every Vir representation Hh—necessarily

of highest weight h—there exists a field φh(z) such that

lim
z→0

φh(z)|0〉 = |h〉 , (1.1)

where |0〉 is the (unique) SL(2, C)-invariant vacuum and |h〉 is the highest-

weight vector of Hh, obeying

L0|h〉 = h|h〉 and Ln>0|h〉 = 0 . (1.2)

In OPE language these conditions translate into1

T (z)φh(w) =
hφh(w)

(z − w)2
+ lower order terms . (1.3)

In particular, the simple pole is not specified by (1.2). Hence the singular

part of the OPE—which contains all the information needed to compute the

correlation functions—is not uniquely determined from representation theory

alone. Let us call any field satisfying (1.3) a preprimary field of weight h.

In other words, representation theory gives us an equivalence class of prepri-

mary fields out of which we must choose by other means an essentially unique

1 Strictly speaking, this assumes that L0 is diagonalizable in the space of fields. As
has been evidenced recently in [2], this is not always possible. But for the present
illustrative purposes this assumption will do.
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representative: the primary field, obeying

T (z)φh(w) =
hφh(w)

(z − w)2
+

∂φh(w)

z − w
+ reg. . (1.4)

This choice can be rationalized by analogy with the transformation properties
of a classical diff(S1) tensor

δεφh = −ε∂φh − h∂εφh , (1.5)

if we require that the energy-momentum tensor be the generator of these trans-
formations; that is, if we require that

δεφh(w) =

∮
Cw

dz

2πi
ε(z)T (z)φh(w) . (1.6)

In other words, the choice (1.4) comes dictated by the geometry of the diff(S1)
transformations.

Given the notion of a primary field, we can then set up the conformal
bootstrap. Let us recall the main points. Given the following initial data: a
family of highest-weight representations {Hh} of the Virasoro algebra and a
corresponding set of primary fields {φh}, the conformal bootstrap sets up to
determine the most general associative algebra obeyed by the local fields. The
local fields are generated by the primary fields {φh} and the energy-momentum
tensor T under the operations of normal ordered products and taking deriva-
tives. In particular, since T is a local field, associativity of the operator product
algebra implies that the operator product is covariant under the Virasoro al-
gebra. This covariance is instrumental in setting up the bootstrap because it
allows us to determine the OPE of any two local fields, from the one of the
primary fields in their respective conformal families. Indeed, let {φi} denote
some indexing of the primary fields where φi has conformal weight hi. The
OPE of two primary fields can then be written as

φi(z)φj(0) =
∑

primaries k

Ck
ijz

hk−hi−hj [φk](z) , (1.7)

where [φk](z) stands for the contribution coming from the conformal family of
φk. We can write this down more explicitly as follows. The correspondence
|h〉 ↔ φh extends to a correspondence between the the Verma module V (h, c)
and the descendent fields of φh. To every vector L−n1 · · ·L−nk |h〉 we associate

the field φ
{n1,...,nk}
h defined by:

φ
{n1,...,nk}
h (w) = L̂−n1 · · · L̂−nkφh(w) , (1.8)

where, if φ is any local field, we define L̂−nφ(w) as the coefficient of (z−w)n−2

in the OPE of T (z) with φ(w). We shall find it convenient to introduce the
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following abbreviation for the basis of the Verma module: if I = {i1, . . . , ik}
is a multi-index of length |I| = k we define L−I |h〉 ≡ L−i1 · · ·L−ik |h〉 and we

will let φI
h denote the corresponding descendent field. In this notation, we can

write

[φk](z) =
∑
N≥0

zN
∑

I
|I|=N

βI
ijkφ

I
k(0) , (1.9)

where βI
ijk are coefficients that can be determined from conformal covariance

by a well-known procedure described in [1] (Appendix B). As described for

example in [3], the general form of the β’s is obtained as follows:

βI
ijk =

∑
J

|J|=|I|

MIJfJ
ijk , (1.10)

whereMIJ are the matrix elements of the inverse of the Shapovalov form of the

Virasoro Verma module V (hk, c) and the f ’s—polynomials in the conformal

weights hi, hj , hk with integer coefficients—can be obtained from the three-

point function 〈φkφ
J
i φj〉 (cf. [3]). This three-point function is calculated from

the primary three-point function 〈φkφiφj〉 via the conformal Ward identities

for which we only need the singular part of the OPE between T and the relevant

fields. If the {φi} were preprimary fields, not necessarily primary, then this

procedure would be unworkable since we would have to know what the effect of

the insertion of the operator L̂−I is in a correlator. Now all these operators can

be written as monomials involving only L̂−1 and L̂−2. By definition, this latter

operator corresponds to the operation of taking normal-ordered product with

T . But we still need to know what L̂−1 corresponds to. Without the geometric

input that says that this is simply the derivative, the conformal Ward identity

would generate more and more unknown correlators which would render a

finite recursive calculation impossible.

This is exactly what happens in the case of W3. In this case, we have

a family of highest-weight representations {Hh,ω} of the W3 algebra. By the

BPZ axioms, there is a local field φh,ω obeying

lim
z→0

φh,ω(z)|0〉 = |h, ω〉 , (1.11)

where |h, ω〉 is a highest-weight vector—that is,

L0|h, ω〉 = h|h, ω〉 and Ln>0|h, ω〉 = 0 ,

W0|h, ω〉 = ω|h, ω〉 and Wn>0|h, ω〉 = 0 .
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These conditions imply that φh,ω is a Virasoro primary field of weight h and,
in addition, that it satisfies the following OPE

W (z)φh,ω(w) =
ωφh,ω(w)

(z − w)3
+ lower order terms , (1.12)

where again we assume that W0 is diagonal. In particular, notice that neither
the second order nor the first order poles are specified. The coefficients of

these poles are, by definition, Ŵ−1φh,ω and Ŵ−2φh,ω. In trying to set up the
bootstrap one would hope that the operator product of any two fields in the
local algebra would be determined in terms of the operator product of the
W3-primary fields. But this requires a knowledge of the analogous coefficients
β or, equivalently, a knowledge of the f ’s. Without the geometric input that

would allow us to derive useful Ward identities for the insertion of Ŵ−1 and

Ŵ−2 in a correlator2, we are unable to compute the f ’s and we are forced to
work in a formalism where W3-covariance is not manifest.

This state of affairs is clearly unsatisfactory. For suppose that we would
be interested in studying extensions of, say, W3. In a W3-covariant formal-
ism we would simply have to consider four-point functions involving only W3-
primary fields when solving the associativity constraints. On the contrary, were
W3-covariance not manifest, we would have to check all correlators involving
Vir-primary fields—an impractical task, since a generic representation of W3

contains an infinite number of Vir primaries. In other words, a manifestly W-
covariant formalism would allow us to treat infinitely-generated extensions of
Vir simply as finite extensions of a W-algebra in much the same way that a CFT
with an infinite number of primaries can be rendered rational by extending the
chiral algebra.

The need to derive Ward identities for Ŵ−1 and Ŵ−2 insertions in cor-
relators, is directly related to the existence of an infinite number of Virasoro
primaries in a generic W3 representation. This can be seen already from (1.12)
above, where a simple counting of the degrees of freedom which can be ac-
counted for by the conformal family of φh reveals that we have new primary
fields appearing at the first and second order poles—the former one being a
linear combination of the two possible Virasoro primaries at that level in the
W3-family of φh. Demanding that these primaries do not appear, imposes con-
straints in the conformal and W-dimensions of the primary as well as, possibly,
on the central charge of the theory. This can also be seen abstractly, but it
will prove convenient to pay some attention to perhaps the simplest CFT with
W3-symmetry: the 3-state Potts model (see, for instance, [4]).

2 Strictly speaking we only need to know what the effect of a Ŵ−1 insertion is, since

Ŵ−2 =
[
Ŵ−1 , L̂−1

]
.
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For the present purposes, the interesting subalgebra of the 3-state Potts
model (at c = 4

5) is the one generated by the identity I together with the
following Vir-primary fields: W , φ 7

5
and φ 2

5
, where the subscripts denote the

conformal weights. Apart from the obvious fusion rules, the algebra obeys

W × φ 7
5

= φ 2
5

W × φ 2
5

= φ 7
5

φ 7
5
× φ 2

5
= φ 2

5
+ W (1.13)

φ 2
5
× φ 2

5
= I + φ 7

5

φ 7
5
× φ 7

5
= I + φ 7

5

In particular, notice that φ 7
5

and φ 2
5

transform as a “doublet”. Later

on in this paper, we will exhibit a natural geometric representation of the
classical algebra w3 which has a structure very similar to this one. Moreover
for the classical representations that we will consider we will be able to take
the tensor product of these representations together. However, tensoring takes
us away from the special values of the dimensions where the infinite tower of
Vir-primaries are absent, and we will see explicitly how these new primaries
appear.

The main motivation for looking at the classical limit of W-algebras is
that in the past they have proven to contain all the essential features that
typify their quantum analogues—chief among them the nonlinearity—while
simplifying many of the calculations. One may be even tempted to think
that, if anything, the quantum algebras obscure the geometry, to be found
already in the very definition of the classical algebras as symmetries on the
space of symbols of differential operators. More recently, in joint work with
S. Stanciu [5], we interpreted classical W-transformations as a particular kind
of canonical transformations in a two-dimensional phase space. It is precisely
this simple set-up that we will use to address the problem of constructing
geometrical representations of the classical W-algebras; that is, to construct
classical W-tensors.

Classical W-algebras can be obtained as a c → ∞ contraction of the op-
erator product algebras appearing in conformal field theories which enjoy W
symmetry. But they are also fascinating objects by themselves because of their
connection to integrable hierarchies [6][7], topological field theories [8][9], and
noncritical string theory with c ≤ 1 [10], to name but a few of their most in-
teresting applications.

This paper is organized as follows. In Section 2 we describe the algebraic
approach to classical W-algebras in terms of an algebraization of the geometry
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on the space of symbols of differential operators in one dimension. In Sec-
tion 3 we discuss the geometric interpretation of classical W-transformations
in terms of deformations of constant “energy” surfaces in a two-dimensional
phase space. We will see that unlike the usual geometric transformations
which are parametrized by a “group”, classical W-transformations seem to be
parametrized by a homogeneous space. Section 4 contains the main results of
the paper. There we look at the simplest classical W3-tensors and we will see
that the structure of the representation is very similar to that of the represen-
tations to be found in the critical 3-state Potts model. We will moreover be
able to construct tensors out of this representation. Finally in Section 5 we
end the paper with some further comments of a more speculative nature about
the picture of W-geometry that seems to emerge from our results.

§2 Algebraic Approach to Classical W-Algebras

Classical W-algebras naturally appear as Poisson brackets structures in
the space of symbols of pseudodifferential operators of the classical type [11].
Here we will circumvent all that machinery by defining our phase space Mn

to be the space of polynomials in the abstract symbol p and taking the form

L = pn +
n∑

j=1

uj(q)p
n−j , (2.1)

with the u’s smooth functions on the circle, and n a positive integer.

From the definition of Mn it is clear that a complete analysis of these Pois-
son structures would require to do analysis in infinite dimensional manifolds,
a difficult and tricky business. Rather than doing so we will try to extract the
main algebraic features of Poisson structures in finite dimensional manifolds
and try to generalize them directly to the infinite dimensional case, shortcut-
ting through delicate analytical issues. We will thus follow Dickey’s approach
[12] both in spirit and in form.

Let us begin by considering a two-dimensional manifold Y, and let us
denote by F the ring of smooth functions on Y. A Poisson bracket {· , ·} on Y
is an antisymmetric map from F ×F to F , turning F into a Lie algebra, and
enjoying the derivation property

{fg , h} = f {g , h}+ {f , h} g, (2.2)

for any f, g, h ∈ F . Because of (2.2) the Poisson bracket is bound to be of the
form

{f , g} = Ωij∂if∂jg, (2.3)

where Ω is an antisymmetric 2× 2 matrix such that its Schouten bracket with
itself is zero, which is tantamount to saying that the bracket defined by Ω fulfills
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the Jacobi identity. From (2.3) we can extract the geometrical objects required
for the definition of the Poisson brackets. Besides the functions on Y, we have
to be able to take gradients and, moreover, we also need a map Ω mapping
gradients into vectors and such that Jacobi identities are obeyed. From now
on we will say that a map is hamiltonian if enjoys these two properties. A
convenient way to encode all this properties is in the framework of symplectic
geometry.

A symplectic manifold is an even dimensional manifold endowed with a
closed nondegenerate two form ω. We can use ω to give a map from gradients
to vector fields as follows

ω(Hf , ·) = −df, (2.4)

or explicitly introducing local coordinates such that ω = 1
2Ωijdxi ∧ dxj , we

have

Hi
f = Ωij∂jf, (2.5)

with ΩijΩjk = δi
k. It is now simple to show that {f , g} = ω(Hf , Hg) defines

consistent Poisson brackets. First of all,

ω(Hf , Hg) = −df(Hg) = Hg · f = Ωij∂if∂jg , (2.6)

which is clearly antisymmetric. Moreover the Jacobi property is tantamount
to the closedness of ω (dω = 0), as can be easily checked by a standard
computation in local coordinates. This property can also be stated, in way
that will be useful for our purposes, by using that the exterior derivative of a
two form can be expressed in a coordinate independent manner as follows

dω(ξ1, ξ2, ξ3) = ξ1 · ω(ξ2, ξ3)− ω([ξ1 , ξ2] , ξ3) + cyclic permutations. (2.7)

Therefore imposing that the RHS of (2.7) is zero for any three vectors becomes
equivalent to the statement that the Jacobi identity is fulfilled.

Now we should come back to our infinite dimensional case and try to apply
a similar algebraic approach to the one described above. To define functions
and vector fields in Mn is a simple task. We are going to define Poisson
brackets on function(al)s of the form

F [L] =

∫
f(ui), (2.8)

where f(ui) are differential polynomials in the u’s, i.e. polynomial in the u’s
and their derivatives. Vector fields are parametrized by infinitesimal defor-
mations L 7→ L + εA where A =

∑n
j=1 ajp

n−j . We denote the space of such
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operators by Rn. To such operator A ∈ Rn we associate a vector field as
follows. If F =

∫
f is a function(al) then

∂AF =
d

dε
F (L + εA)|ε=0

=

∫ n∑
j=1

∞∑
i=0

a
(i)
j

∂f

∂u
(i)
j

.
(2.9)

Integrating by parts we can write this as

∂AF =

∫ n∑
j=1

aj
δf

δuj
, (2.10)

where the Euler variational derivative is given by

δ

δuj
=

∞∑
i=0

(−∂)i
∂

∂u
(i)
j

. (2.11)

Since vector fields are parametrized by Rn, it is natural to think of 1-forms
as parametrized by its dual space R∗

n. This turns out to be given by Laurent
polynomials in p with the dual pairing provided by the Guillemin symplectic

trace [13]. Let us consider the space S of formal Laurent polynomial in p−1,

i.e. S ∈ S if S =
∑∞

j=−k sj(q)p
−j where k is an arbitrary integer. The

(symplectic) trace is given by

Tr S =

∫
res S =

∫
s1. (2.12)

Notice that we can turn S into a Lie algebra by declaring its Lie bracket to
be the Poisson bracket with respect the fundamental Poisson bracket3{p , q} =

1. With this in mind, the trace “appellation controle” is justified by the crucial
property

Tr {T , S} = 0 (2.13)

for T and S arbitrary Laurent polynomials in p−1. This property can be easily
proved as follows. Because of the linearity of the trace we can restrict ourselves,

3 The reader should not confuse this Poisson brackets in the two-dimensional phase space
with coordinates p and q with the ones in Mn which will provide the definition of the
classical W-algebras.
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without loss of generality, to the case in which T and S are monomials of the
form T = apk and S = bpj for k and j arbitrary integers. Then (2.13) reads

Tr
{

apk , bpj
}

= Tr(kab′ − ja′b)pk+j−1

= kδk+j,0

∫
(ab)′ = 0.

(2.14)

We can now define the pairing between a vector ∂A and a one-form X by

X(∂A) = Tr XA. (2.15)

It is clear from this definition that the dual space of Rn is given by polynomials
in p−1 of the form

X =
n∑

j=1

xjp
j−n−1. (2.16)

This lets us define the gradient of a function by

dF (∂A) = ∂AF, (2.17)

which implies that

dF =
n∑

j=1

δF

δuj
pj−n−1. (2.18)

In analogy with the finite dimensional case, we should provide a map from
one forms to vector fields in order to define the Poisson brackets. In order to
do so we still require a little more of machinery. The required map is given by
a suitable modification (in fact, contraction) of the standard Adler map [14],
which reads

J(X) = {L, X}+L− {L, (LX)+}, (2.19)

where the + subindex stands for the projection on the polynomial part, i.e. if

S ∈ S, and is defined as before, then S+ =
∑0

j=−k sj(q)p
−j if k is a positive

integer and zero otherwise. We also define S− = S − S+.

First notice that because of its definition J(X) is a polynomial in p. More-
over if we write (2.19) as

J(X) = −{L, X}−L + {L, (LX)−} (2.20)

it is clear that J(X) is a polynomial of at most order n−1; whence J(X) ∈ Rn

parametrizes a vector field in Mn.
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Let Ω denote the map X 7→ ∂J(X) from 1-forms to vectors fields induced

by (2.19). In analogy with the finite dimensional case, it is convenient to
introduce the symplectic form ω defined, on the image of the map Ω, by

ω(Ω(X), Ω(Y )) = Tr J(X)Y. (2.21)

Notice that, in contrast with the usual case in classical mechanics, this 2-
form is not defined for all vector fields since, in general, the map J will not be
an isomorphism. It follows from the definition of ω that the Poisson brackets
will be given by

{F , G}GD = ω(Ω(dF ), Ω(dG)) = Tr J(dF )dG, (2.22)

where we have introduced the suffix GD (for Gel’fand and Dickey) in order
to avoid confusion with the canonical Poisson brackets in a finite-dimensional
phase space used for the definition of the generalized Adler map.

It is now simple to check that this bracket is indeed antisymmetric. Ex-
plicitly,

{F , G}GD = Tr J(dF )dG

= Tr
(
{L , dF}+ LdG− {L , (LdF )+} dG

)
= Tr

(
−{L , (LdG)−} dF + {L , dG}− dF

)
=− Tr J(dG)dF = −{G , F}GD ,

(2.23)

where we have used Tr A+B+ = Tr A−B− = 0 for all A and B.

By analogy with the finite-dimensional case, we define dω by

dω(∂J(X), ∂J(Y ), ∂J(Z)) =∂J(X)ω(∂J(Y ), ∂J(Z))

− ω(
[
∂J(X) , ∂J(Y )

]
, ∂J(Z)) + c.p.

(2.24)

where c.p. is shorthand for cyclic permutations. But notice that the last term
in (2.24) is not well defined unless ImΩ forms a subalgebra of the vector fields.
In fact, a direct computation shows that for any X and Y ∈ R∗

n[
∂J(X) , ∂J(Y )

]
= ∂J([[X,Y ]]), (2.25)

where

[[X, Y ]] =∂J(X)Y − ∂J(Y )X + + {X , L}− Y + {(LX)− , Y }+

{Y , L}+ X + {(LY )+ , X}
(2.26)

modulo the kernel of J .
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With all of this in mind we can now state the main result of this section,
which, as in the finite dimensional case, is equivalent to the fact that the
brackets defined by (2.22) obey Jacobi identities.

For any three vector fields ∂J(X), ∂J(Y ), and ∂J(Z) in ImΩ

dω(∂J(X), ∂J(Y ), ∂J(Z)) = 0, (2.27)

i.e. ω is a closed 2-form.

This can be checked by a long, straightforward and explicit computation
of the left hand side of (2.24) that we will omit it in here.

We will finish this section by giving a convenient prescription for computing
the fundamental Poisson brackets among the uj ’s in the case that L is of a
polynomial in p of order n. Although the “coordinates” uj are not functions
according to the definition we are using, we can still make sense of their Poisson
bracket.

First notice that the classical Adler map is linear in X. This implies that
J(X) is necessarily of the form

J(X) =
n∑

i,j=1

(Jij ·Xj)p
n−j , (2.28)

where the Jij ’s are certain differential operators acting on the Xj ’s. The
antisymmetry of the Poisson brackets is equivalent to the condition

J†ij = −Jji, (2.29)

where the dagger stands for the standard adjoint operation on differential
operators.

We now chose two linear functionals of the form

lA = Tr AL and lB = Tr BL, (2.30)

with A = a(q)pi−n−1 and B = b(q)pj−n−1. Their gradients are given by

dlA = api−n−1 and dlB = bpj−n−1, (2.31)

which implies

{lA , lB}GD =

∫
(Jij · a)b. (2.32)

It is obvious that we would have obtained the same result if we had declared
our fundamental Poisson brackets among the u’s to be{

ui(q) , uj(q
′)
}

GD
= −Jij · δ(q − q′), (2.33)

and because of the Poisson property the brackets induced by (2.33) on arbitrary
functionals are identical to the ones obtained via (2.22).
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§3 Classical W-Transformations

The natural arena for a geometrical description of w-morphisms, as could
have been guessed from the algebraic results of the previous section, is supplied
by a two dimensional phase space Y. In order to fix ideas we will again consider
Y to be the phase space which configuration space is the circle. If we denote by
q a local coordinate on the circle it is possible to equip Y with local (Darboux)
coordinates (q, p) such that {p , q} = 1.

It is natural to consider in Y the subgroup of diffeomorphisms SDiff(Y) pre-
serving its canonical structure. These particular diffeomorphisms are called
symplectomorphisms, although in 2-dimensions they are also frequently re-
ferred to as area-preserving diffeomorphims because in two dimensions the
canonical symplectic form coincides with the area form. (We remind the reader
that for symplectomorphisms which are polynomial in momentum, we obtain
an algebra isomorphic to w∞ [15].)

In order to define w-morphisms we will need some extra structure on Y,
namely a “Hamiltonian” H(p, q). Let us consider constant the constant energy
surface Z defined by L ≡ H(p, q)− λ = 0, and let us denote by SDiffL(Y) the
subgroup of symplectomorphisms leaving Z invariant. We now can define w-
morphisms subordinated to L by the quotient

SDiff(Y)

SDiffL(Y)
. (3.1)

In what follows we will show that for particular choices of L we recover for
infinitesimal transformations the ones induced by wn, wBn, and wCn, thus
justifying its name. But before getting into more technical matters we would
like to point out that SDiffL(Y) is not a normal subgroup of SDiff(Y), therefore
the quotient given by (3.1) does not define a group but rather an homogeneous
space.

It is clear that any function of the form FL, where F is any smooth
function on Y, vanishes on Z. For generic values of λ the converse is also true
and L generates the ideal IZ of functions vanishing on Z, in the sense that any
function F which vanishes on Z can be written as F = LG for some function
G. Moreover, any function on Z extends to a function on all of Y and the
difference of any two such extensions is a function vanishing on Z. In other
words, there is a one-to-one correspondence between the functions F(Z) on
Z and the quotient F(Y)/IZ. We let π : F(Y) → F(Y)/IZ denote the map
which sends a function on Y to its equivalence class modulo IZ. In the next
section, and for the class of functions we shall consider, we exhibit an explicit
model for this quotient.
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We now investigate the effect of symplectomorphisms on the constant en-

ergy surface Z. We can analyze deformations of Z by looking at how the

function L behaves on Z under symplectomorphisms.

Infinitesimal symplectomorphisms are locally generated by functions on Y.

In fact, given a function S on Y, it gives rise to a vector field δS defined such

that acting on a function F ,

δSF = {S , F} . (3.2)

If S vanishes on Z, then δS is tangent to Z. In fact, such an S can be written

as GL and hence

δSL = {GL , L} = {G , L}L , (3.3)

which vanishes on Z. (Physically this is nothing but energy conservation.)

Therefore infinitesimal symplectomorphisms generated by functions in IZ do

not change Z. In other words, nontrivial deformations of Z induced from

symplectomorphisms are locally generated by F(Y)/IZ. Therefore, on Z, the

function L transforms as

δSL ≡ π({π(S) , L}) . (3.4)

For a specific choice of hamiltonian, we will now see that (3.4) defines infinitesi-

mal w-morphisms associated to the classical W-algebras: gdn and its reduction

wn.

As our function L we choose one of the form L(q, p) = pn+
∑n

i=1 ui(q)p
n−i,

where ui are arbitrary smooth functions on the circle. Under a change of

coordinates (q, p) → (Q,P ),

L(q, p) = (Q′)n

(
Pn +

n∑
i=1

Ui(Q)Pn−i

)
, (3.5)

where Ui and ui are related by

ui(q) = (Q′)iUi(Q) . (3.6)

Since q 7→ Q(q) is a diffeomorphism, Q′ is nowhere vanishing, hence the

submanifold Z which is defined as the zero locus of L in the coordinates

(q, p) is defined, in the coordinates (Q, P ), as the zero locus of the function

Pn +
∑n

i=1 Ui(Q)Pn−i, which has the same form. Thus these constant-energy

surfaces have an invariant geometric meaning.
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In order to have an algebraic handle on the situation, we will work with

symplectomorphisms generated by functions whose dependence on p is polyno-

mial. Under a change of coordinates (q, p) → (Q,P ), polynomials in p go over

to polynomials in P . Let E denote those functions. Notice that L belongs to E .

We let JZ denote the ideal of E generated by L. Since pn = L−
∑n

i=1 ui(q)p
n−i,

we notice that modulo JZ we can always reduce any function in E to one with

at most n − 1 powers of p. In other words, E/JZ is in one-to-one correspon-

dence with the functions of the form
∑n−1

i=0 fi(q)p
i. We now give an explicit

expression for this representative. For this we will have to introduce a formal

inverse of L. Explicitly,

L−1 = p−n
∞∑

k=0

(−1)k

n−1∑
j=0

uj(q)p
j−n

k

. (3.7)

Any element R of E is equivalent modulo JZ to a unique polynomial of

order at most n− 1 given by

πL(R) = R− (RL−1)+L = (RL−1)−L . (3.8)

Notice that whereas L−1 is not defined in Z, in the above formula we only use

the formal inverse defined in (3.7) whose coefficients are well defined in Z. For

a careful treatment of this point we refer the reader to [5].

It is obvious that πL(R) is polynomial in p of order smaller than n and,

moreover, πL(R) − R ∈ JZ. Uniqueness follows because the order of any

function in JZ is equal or bigger than n.

This provides us with a concrete model for the equivalence space E/JZ—

namely the space E<n of functions polynomial in p with order strictly less than

n.

We now have at our disposal all the ingredients to establish the link be-

tween the algebraic w-morphisms alluded to in the introduction and the de-

formation of constant-energy surfaces. To this effect, we compute (3.4) in this

concrete example, where we now make use of our explicit projector πL instead

of π. Since

πL(S) = ((SL−1)−L)+ , (3.9)

it is natural to reparametrize w-morphisms by

X = (SL−1)− mod p−n−1 , (3.10)
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with πL(S) = (XL)+. We can then write (3.4) as follows

δXL ≡ δSL = {(XL)+ , L} − ({(XL)+ , L}L−1)+L

= {(XL)+ , L} −
{
(XL)+L−1 , L

}
+

L

= {(XL)+ , L} − {X , L}+ L , (3.11)

which is the classical limit of the Adler map (2.19) or, equivalently, of the
Gel’fand–Dickey brackets—namely gdn. This establishes the equivalence be-
tween the algebraic and geometric approaches to w-morphisms.

In order to obtain now the classical limit wn of the Wn algebras, we need
to restrict ourselves to functions L of the form

L(q, p) = pn +
n∑

i=2

ui(q)p
n−i . (3.12)

One can always achieve this by a symplectomorphism of the form

p 7→ p− 1

n
u1(q)

q 7→ q ,
(3.13)

which puts the coefficient of pn−1 to zero. Notice moreover that, under coor-
dinate changes induced from diffeomorphisms of the circle, this form of L is
preserved. It then follows that if we restrict ourselves to infinitesimal symplec-
tomorphisms which preserve the constraint, (3.11) define w-morphisms associ-
ated with wn [7].

Finally, if we restrict to functions L which are odd or even under the trans-
formation p 7→ −p, and we again only consider symplectomorphism preserving
such property, (3.11) will induce w-morphisms associated with the wB or wC
series, respectively.

A Simple Example: w3

Consider now, as an example, the function

L(q, p) = p3 + T (q)p + W (q) . (3.14)

The associated classical W-algebra is the w3-algebra:

{T (x) , T (y)}GD = −
[
2T (x)∂ + T ′(x)

]
· δ(x− y) ,

{W (x) , T (y)}GD = −
[
3W (x)∂ + W ′(x)

]
· δ(x− y) , (3.15)

and

{W (x) , W (y)}GD =

[
2

3
T (x)∂T (x)

]
· δ(x− y) .

The algebraic w-morphisms generated by T and W under the above algebra
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are given by the usual formulas

δ
(T )
ε F (y) =

∫
dx ε(x) {T (x) , F (y)}GD , (3.16)

and

δ
(W )
α F (y) =

∫
dx α(x) {W (x) , F (y)}GD . (3.17)

With them we can compute the effect of w-morphisms on the generators them-
selves. We obtain

δ
(T )
ε T = 2Tε′ + T ′ε

δ
(T )
ε W = 3Wε′ + W ′ε

δ
(W )
α T = 2W ′α + 3Wα′

δ
(W )
α W = −2

3(αT )′T .

(3.18)

We now compute the deformation of the constant-energy surface Z defined
by L using the geometric procedure introduced earlier. The most general
infinitesimal symplectomorphism which yields a nontrivial deformation of Z is
generated by functions of the form

πL(S) = αp2 + εp + β . (3.19)

Demanding that the symplectomorphism preserve the form (3.14) of L requires

that β = 2
3αT . We can now compute (3.4) yielding

δSL =
(
δ
(T )
ε T + δ

(W )
α T

)
p + δ

(T )
ε W + δ

(W )
α W , (3.20)

with the variations given by (3.18).

§4 Classical W-Tensors

In the last section we showed how the “adjoint” representation for classical
W-algebras can be given a geometrical interpretation in terms of symplecto-
morphisms on a phase space Y. w-morphisms were interpreted as particular dif-
feomorphisms (the ones induced by the two dimensional symplectomorphisms)
in the space of “constant energy” surfaces defined by hamiltonians of the form
(2.1). It is clear that this infinite dimensional space is into a one to one cor-
respondence with Mn. From all of this the action of symplectomorphisms
on TMn should provide us with the simplest example of geometrical objects
carrying a representation of the algebra of w-morphisms. Let us recall that
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because of equation (3.11) the variation of L under a w-morphism generated
by X ∈ R∗

n is given by

δXL = J(X) = ∂J(X)L,

and this implies that

δXδY − δY δX = δ[[X,Y ]], (4.1)

where [[X, Y ]] is the one given by (2.26).

Vector fields on TMn are parametrized by elements of Rn−1 and their
variation under w-morphisms is given by

δX∂V =
[
∂J(X) , ∂V

]
, (4.2)

or in “components”

δXV = ∂J(X)V − ∂V J(X). (4.3)

It is clear from the above that if V ∈ Rn−1, so does δXV ; whence (4.2) defines
a consistent transformation rule. Moreover

[δX , δY ] ∂V =
[
∂J(X) ,

[
∂J(Y ) , ∂V

]]
−
[
∂J(Y ) ,

[
∂J(X) , ∂V

]]
=
[[

∂J(X) , ∂J(Y )

]
, ∂V

]
= δ[[X,Y ]]∂V

(4.4)

so it carries a representation of w-morphisms as expected. The reader should
notice that this procedure is consistent even when we impose some constraint
in the form of L, as long as we consider symplectomorphisms which preserve
such constraint (they obviously form a subalgebra).

It would be natural from the point of wiew of field theory to restrict our-
selves to vector fields which do not depend on L. If that would be possible, the
“transport” term ∂J(X)V will drop out of the transformation rule. Unfortu-
nately this is not possible. Because of the nature of the transformations, even
if we start with a L independent vector field the classical W transformations
will generate terms depending on the uj ’s. Notice that this is not a peculiarity
of (4.2) but has to be true insofar as we want a representation of the algebra
defined by (4.1). This is due to the fact that the structure constants of the
algebra are themselves L dependent. The next best thing one can do is to
consider vector fields whose dependence on L is only through differential poly-
nomials in the uj ’s. Nevertheless, it is clear that the new nontrivial terms on
the transformation are given by ∂V J(X), so for the time being we will consider
vector fields which are L independent. In this case,

δXV =J(∂V X) + {V , X}+ L + {L , X}+ V−
{V , (LX)+}+ {L , (V X)+} .

(4.5)

(Notice also that because of the algebra relationships we cannot restrict our-
selves to X’s that are L independent either.)
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It is also possible to define a representation in the dual of TMn by imposing

the invariance of the pairing under w-morphisms, i.e. if Q ∈ T ∗Mn then δ∗XQ

is defined trough the condition that for all ∂V ∈ TMn

(δ∗XQ)(∂V ) = Q(δX∂V ). (4.6)

In what follows for the clarity of the exposition we will restrict ourselves to

the case of w3 where explicit calculations are simple to perform and we can get

some further intuition on the subject. Nevertheless the reader should keep in

mind that all of the manipulations that follow can in principle be generalized

to arbitrary gdn or any of its reductions.

First of all let us compute the algebra of w3-morphisms. A straightforward

computation yields [
δ
(T )
ε , δ

(T )
η

]
=δ

(T )
ε′η−εη′[

δ
(T )
ε , δ

(W )
α

]
=δ

(W )
2ε′α−εα′[

δ
(W )
α , δ

(W )
β

]
=δ

(T )
2
3
(αβ′−α′β)

(4.7)

The vector field V in this case has to be of the form

V = v1p + v2.

If we consider v1 and v2 L independent its variation under diffeomorphisms

with parameter ε and a pure w transformation with parameter α can be com-

puted from (4.5) to give

δ
(T )
ε v1 =2ε′v1 + εv′1,

δ
(T )
ε v2 =3ε′v2 + εv′2,

δ
(W )
α v1 =2αv′2 + 3α′v2,

δ
(W )
α v2 =− 2

3
(αv1)

′T − 2

3
(αT )′v1.

(4.8)

At this point will be convenient to relax our pace and give some thought

to some of the subtle points in (4.8). As stated before the transformation

of V involve terms dependent in the uj ’s and its derivatives (in this simple

case it only depends on T and T ′) even when considering field independent

parameters for our transformations.
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Let us now compute using (4.8) the commutator of two pure w transfor-

mations on, for example,v2:

[
δ
(W )
α , δ

(W )
β

]
v2 =

2

3
(β′α− βα′)Tv′2 + 3

(
2

3
(β′α− βα′)T

)′
v2

− 4

3
(β′α− βα′)W ′v1 + 2

(
(β′α− βα′)Wv1

)′
.

(4.9)

The first two terms of the transformation correspond to a standard diffeomor-

phism on v2 with parameter 2
3(β′α − βα′)T as was to be expected from the

w-morphisms algebra, but moreover we are also obtaining terms which are de-

pendent on W ! This should not have come to much of a surprise if we would

have taken a closer look at (4.5), a careful computation of the term J(∂V X)

yields the extra W -dependent terms in the above transformation.

Although perfectly consistent, the transformation rule (4.9) seems to cast

some doubts into the relevance of these representations for conventional field

theory; the argument runs as follows. In field theory, we expect the transforma-

tion rules to be generated via Poisson brackets with the associated conserved

charges. If that would be the case,

δαv2 =

∫
dx {αW , v2} , (4.10)

where we have left the transformation parameter α inside the Poisson bracket

anticipating the case in which the parameter becomes field-dependent. The

Jacobi identities imply that

[
δ
(W )
α , δ

(W )
β

]
v2 =

∫
dx

{
1

3
(β′α− βα′)T 2 , v2

}
, (4.11)

and it is clear that in this case the terms which are dependent on W are

not generated. One may thus be tempted to conclude at this point that the

representation (4.8) cannot be realized field-theoretically.

This opens the question if there is a representation of w3 similar in struc-

ture to (4.8) and generated via Poisson brackets. We have checked using

MathematicaTM [16] that no Poisson brackets exist which reproduce a rep-

resentation of w3 with only two fields. Nevertheless, the similarity of the

“doublet” structure of (4.8) with the representations appearing in the 3-state

Potts model (cf. (1.13)) suggests otherwise. This seems somewhat paradoxical,

for if the OPEs underlying (1.13) were to have a well-defined classical limit,

we would expect them to yield a Poisson bracket.
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The solution of this “paradox” goes through a careful observation of the
structure of the transformations (4.3). For field-independent vectors δXV =
−∂V J(X), the crucial observation is that J(X) can itself be written in terms
of Gel’fand-Dickey brackets (for field-independent X) as follows

J(X) =
n−1∑
ij=0

∫
dx Xj {uj , ui}GD pi. (4.12)

And from here it follows that if we write V =
∑n−1

k=0 vkp
k

δXvk =
n−1∑
j=0

∫
dxXj {uj , vk}GD +

n−1∑
j=0

∫
dxXj {vj , uk}GD . (4.13)

While the first term in (4.13) reproduces the standard transformation rule via
Poisson brackets the second term appears as a novel feature associated to this
kind of representations. With all of this in mind, it is now simple to construct
a field theory, based on a free field realization, which will provide us with an
example that incorporates all these features. Let us introduced two classical
fields φ1 and φ2 which obey the following Poisson algebra

{φ1(x) , φ1(y)} = {φ2(x) , φ2(y)} =
2

3
∂ · δ(x− y), (4.14)

and

{φ1(x) , φ2(y)} = −1

3
∂ · δ(x− y). (4.15)

It is possible to construct a rep. of the w3 using this “Miura” fields by defining

T =φ1φ2 − (φ1 + φ2)
2

W =− φ1φ2(φ1 + φ2)
2.

(4.16)

Notice that after the reduction of setting the term in p2 of L to zero, and
for X of the form X = αp−1 + εp−2 − 1/3αTp−3, J(X) can be written as

J(X) =

∫
dy (ε {T (y) , T (x)}GD + α {W (y) , T (x)}GD) p

+

∫
dy (ε {T (y) , W (x)}GD + α {W (y) , W (x)}GD) .

(4.17)

From this, following the same procedure as in (4.13), we get the transforma-
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tions rules of v1 and v2 in terms of fundamental Poisson brackets.

δεv1 =

∫
dy ε ({T (y) , v1(x)}GD + {v1(y) , T (x)}GD) ,

δεv2 =

∫
dy ε ({T (y) , v2(x)}GD + {v1(y) , W (x)}GD) ,

δαv1 =

∫
dy α ({W (y) , v1(x)}GD + {v2(y) , T (x)}GD) ,

δαv2 =

∫
dy α ({W (y) , v2(x)}GD + {v2(y) , W (x)}GD) .

(4.18)

Of course the above expression is empty of significance unless we define which
are the Poisson brackets of the v’s with the generators of the w3 algebra. This
can be readily done by defining

v1 =φ1 + φ2

v2 =
1

3
(φ1 + φ2)

2 +
2

3
φ1φ2.

(4.19)

It is now a simple computation to check that with this definition (4.18) repro-
duce the w3 transformations given by (4.8).

Tensor Product of Representations

It is now easy to construct tensor product representations of these repre-
sentations. We should extend in the standard way the action of w-morphisms
to TMn ⊗ TMn; that is, if ∂V ⊗ ∂U ∈ TMn ⊗ TMn then

δX(∂V ⊗ ∂U ) = (δX∂V )⊗ ∂U + ∂V ⊗ (δX∂U ). (4.20)

It is now routine to check that (4.20) provides a representation of the algebra
(4.7).

Before immersing ourselves in more generalities let us have a look again to
the simple case of w3. Then (4.20) can be written in “components” as

δε(v2 ⊗ u2) =(εv′2 + 3ε′v2)⊗ u2 + v2 ⊗ (εu′2 + 3ε′u2)

δε(v2 ⊗ u1) =(εv′2 + 3ε′v2)⊗ u1 + v2 ⊗ (εu′1 + 2ε′u1)

δε(v1 ⊗ u2) =(εv′1 + 2ε′v1)⊗ u2 + v1 ⊗ (εu′2 + 3ε′u2)

δε(v1 ⊗ u1) =(εv′1 + 2ε′v1)⊗ u1 + v1 ⊗ (εu′1 + 2ε′u1),

(4.21)

and

δα(v2 ⊗ u2) =− 2

3

(
(αv1)

′T + (αT )′v1

)
⊗ u2 −

2

3
v2 ⊗

(
(αu1)

′T + (αT )′u1

)
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δα(v2 ⊗ u1) =

(
−2

3
(αv1)

′T − 2

3
(αT )′v1

)
⊗ u1 + u2 ⊗

(
2αu′2 + 3α′u2

)
δα(v1 ⊗ u2) =

(
2αv′2 + 3α′v2

)
⊗ u2 + v1 ⊗

(
−2

3
(αu1)

′T − 2

3
(αT )′u1

)
δα(v1 ⊗ u1) =

(
2αv′2 + 3α′v2

)
⊗ u1 + v1 ⊗

(
2αu′2 + 3α′u2

)
, (4.22)

where V = v1p + v2 and U = u1p + u2 are the elements of R1 parametrizing
∂V and ∂U respectively.

We now see one of the crucial differences between the transformation
properties of the tensor product under diffeomorphisms and under pure w-
transformations. Let us fix our attention on the transformation properties of,
say, v1 ⊗ u1. For diffeomorphisms,

δε(v1 ⊗ u1) = 4ε′(v1 ⊗ u1) + ε∂(v1 ⊗ u1) , (4.23)

where we are taking the tensor product to be linear over the functions, and
taking the action of the derivative on the tensor product to be the standard
one: ∂ acts by ∂ ⊗ 1 + 1 ⊗ ∂. We can then confuse v1 ⊗ u1 with the product
v1 ⊗ u1 and write the usual

δε(v1u1) = 4ε′v1u1 + ε(v1u1)
′ . (4.24)

On the other hand, in the case of pure w-transformations it is impossible
to write δα(v1 ⊗ u1) in the form (4.23) with the standard action of ∂ on the
tensor product. Indeed, the naive attempt to write the variation as

(3α′ + 2α∂)(v2 ⊗ u1 + v1 ⊗ u2), (4.25)

produces unwanted terms proportional to v2 ⊗ u′1 and v′1 ⊗ u2. If as before
we want to confuse the tensor product with the product (that is to say, to be
able to work with the components of the tensors), we have to pay the price of
introducing fields of the form v2u

′
1 and v′1u2. In this concrete realization of the

tensor product representation, these fields are obtained from the fundamental
ones, but as an abstract representation of w3 they are indeed new. This was to
be expected since as we mentioned in the introduction the generic representa-
tion of W3 (and hence of its classical limit) breaks up into an infinite number
of different Vir-tensors except for very particular values of the conformal and
W-dimensions and of the central charge.
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§5 Final Comments

We have seen how the geometrical interpretation [5] of classical W-trans-
formations provides us with examples of classical W-tensors. Although far
from providing us with a complete understanding of the subject, these geo-
metric realizations do share many of the interesting (and sometimes puzzling)
properties of the representations of W-algebras appearing in conformal field
theory. In particular, it provides the necessary geometric input to guess that
the classical W-transformations are generated via the Poisson action given by
(4.9). Moreover we have seen that at least for w3 these representations have a
structure similar to those appearing in conformal field theory, e.g., the three-
state Potts model at criticality.

The analogy with the Potts model, however, should be taken with a grain
of salt, since we don’t have at this point a clear grasp of the classical limit
of these representations. The OPEs underlying (1.13) are of course only valid

for c = 4
5 and we have no reason to expect them to survive the classical limit,

which involves running the central charge. Nevertheless, we can ask for the
existence of representations of W3 with the same “doublet” structure. In other
words, we can ask for what values of the free parameters of the theory, can we
have the following fusion rules

W × φh = φh+1 + · · · and W × φh+1 = φh + · · · (5.1)

where the · · · represent contributions that would not be present in the singular
part of the operator product expansion or which come from null fields. Evi-
dently, this says that φh is a W3-primary field of weight (h, 0) and φh+1 is a
Vir-primary of weight h + 1. Conformal covariance alone fixes the first OPE
to be of the form

W (z)φh(w) =
φh+1(w)

(z − w)2
+

µ∂φh+1

z − w
+ lower order terms , (5.2)

where µ = 2
1+h , which says that the Vir primary φh+2 ≡ Ŵ−2 ·φh−µ∂(Ŵ−1 ·φh)

is null. Since it is already a Vir-primary, it is null if and only if it is annihilated

by Ŵ1. A quick calculation gives us the following relation between c and h:
ch + 2c + 8h2 − 18h + 4 = 0. As a check, notice that it is satisfied for (h =
2
5 , c = 4

5). But more importantly, it shows that there are continuous values of
the parameters of the CFT for which W3 has “doublet” representations like
the ones we have found using our geometrical interpretation for classical w3

transformations.
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About W-(super)space

One successful approach to W-geometry would certainly be to define a
W-space in which W-transformations would be naturally realized as moving
the points. W-tensors would be then defined as the natural functions on this
space, which inherit the transformation properties in the usual way. It has
long been realized that the natural candidate for a (chiral) W3-space consists
of an extension of the circle by a new variable of weight 2. The rationale is
that we expect the derivative relative to the new coordinate should commute
with ∂ and the natural such operator is W−2. Nevertheless, the fact that w-
morphisms and w-tensors can be given a geometrical interpretation based on
objects living in a two-dimensional phase space Y seems to suggest that perhaps
this bias should be abandoned. Instead we should perhaps think of Y as the
natural candidate for the W-space with the constrained symplectomorphisms
parametrized by (3.1) as the natural transformations. Comparing with the
familiar case of the (1|1) superspace with coordinates (x, θ), we propose the
following tentative “dictionary”:

(1|1) superspace (x, θ) ↔ W-space (x, p)

θ2 = 0 ↔ L = 0

superderivative ↔ Poisson bracket

superVirasoro transformations ↔ symplectomorphisms

In fact, this conclusion supported by the fact that w∞ transformations can be
given an easy geometric interpretation simply as the Poisson bracket. Indeed,{
ukp

k , ujp
j
}

= [uk , uj ]S pj+k−1 defines the (symmetric) Schouten bracket,
which is the dual of w∞. references to Chris Hull?
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