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§1 INTRODUCTION

Let (M, Ω) be a 2n-dimensional symplectic manifold and let G be a con-

nected Lie group acting on M via symplectomorphisms. To each element X

in the Lie algebra g of G we associate a Killing vector field (which we shall

denote by X) on M which is symplectic. To each symplectic vector field there

is associated a closed 1-form on M : i(X) Ω. If this form is also exact then

the vector field is called hamiltonian. If all the Killing vector fields are hamil-

tonian the G-action is called hamiltonian. In this case we can associate to

each vector X ∈ g a hamiltonian function φX such that dφX + i(X) Ω = 0.

Dual to this construction is the moment mapping Φ : M → g∗ defined by

〈Φ(m), X〉 = φX(m), for all m ∈ M . If a certain cohomological obstruction

is overcome the hamiltonian functions {φX} close under Poisson bracket in

the following way:
[
φX , φY

]
= φ[X , Y ]. If this is the case, the moment map

is equivariant: intertwining between the G-actions on M and the coadjoint

action on g∗.

Assume that we have a hamiltonian G-action on M giving rise to an equiv-

ariant moment map and furthermore suppose that 0 ∈ g∗ is a regular value

of the moment map. Denote Φ−1(0) by Mo. Then Mo is a closed imbedded

coisotropic submanifold of M with trivial normal bundle. Let m ∈ Mo. Then

TmMo is a coisotropic subspace of TmM and (TmMo)
⊥ is precisely the sub-

space spanned by the Killing vectors. In particular, the Killing vectors form

an integrable distribution giving rise to a foliation on Mo whose leaves are

just the orbits of the G-action. If the G-action on Mo is free and proper then

the space of orbits inherits the structure of a smooth symplectic manifold. If

i : Mo → M denotes the natural inclusion and π : Mo → Mo/G denotes the

natural projection then the symplectic form Ω̃ on Mo/G is the unique form

on Mo/G such that π∗Ω̃ = i∗Ω. If the G-action on Mo is not free but only lo-

cally free (i.e., the isotropy is discrete) then the space of orbits is a symplectic

orbifold.

The procedure we have just described is a special kind of symplectic reduc-

tion. A more general situation arises in the Dirac theory of constraints. Let

{φi}k
i=1 be a set of first class constraints. That is, the {φi} are smooth func-

tions on M such that the (multiplicative) ideal J ⊂ C∞(M) they generate is a

Poisson subalgebra of C∞(M): [J , J ] ⊂ J . We may assemble them together

into a smooth function Φ : M → Rk. Assuming that 0 ∈ Rk is a regular value

of Φ, the zero set Φ−1(0) ≡ Mo is a (closed imbedded) coisotropic submani-

fold. The null foliation F in this case arises from the integrable distribution

spanned by the hamiltonian vector fields {Xi} associated to the constraints via

i(Xi) Ω + dφi = 0. If the foliation is also a fibration, the space of leaves Mo/F
is a manifold and inherits, as before, a symplectic structure. Notice that if
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the linear span of the constraints closes under Poisson brackets we recover the

case of the g-action.

It is interesting to notice that the reduced symplectic manifold is in either

case a subquotient of M . That is, first we restrict to a submanifold (Mo) and

then we quotient this submanifold by the null foliation. This is to be compared

with homology which is also a subquotient of the chains: first we restrict to

the subspace of the cycles and then we quotient by the boundaries. In this

paper we make this heuristic observation precise by constructing a homology

theory which becomes an algebraic analogue of symplectic reduction.

This homology theory has a relatively long history in the physics liter-

ature and goes under the name of “BRST cohomology.” In this paper we

present this construction in what we think is its natural mathematical setting

emphasizing, on the one hand, the beautiful interplay between the algebraic

and geometric aspects of this formalism; and, on the other hand, its Poisson

algebraic structure.

In the case where the coisotropic submanifold is the zero set of an equiv-

ariant moment mapping and the null foliation is the one generated by a group

action, BRST cohomology goes back to the work of Batalin and Vilkovisky [1]

and, in the context of Yang-Mills theory, to the work of McMullen [2]. This

latter work was later elaborated upon in [3] where the conditions for BRST co-

homology to recover the Poisson algebra of smooth functions of the symplectic

quotient were, however, only vaguely sketched; although we would be surprised

if the precise conditions were not known by the authors. For the more general

case where the coisotropic submanifold is the zero set of some first class con-

straints the study of this formalism (with the Koszul resolution as its center

piece) was initiated in [4], borrowing from the seminal work of Henneaux [5],

and continued in [6]. More recently Stasheff [7] has given a completely alge-

braic description of BRST cohomology in the context of constrained Poisson

algebras. This direction seems to offer a very fruitful perspective in the quan-

tization of systems in which the symplectic reduction cannot be effected due

to the singularities present in the reduced manifold [8].

Since, as described above, symplectic reduction is a geometric subquotient,

in order to construct its homological equivalent, it is first necessary to describe

geometric objects algebraically. Dual to a differentiable manifold M we have

the commutative algebra C∞(M) of its smooth functions, which characterize

it completely. The correspondence is well known and goes roughly as follows.

To every point p ∈ M there corresponds an ideal I(p) of C∞(M) consisting

of those functions vanishing at p. Moreover this ideal is maximal and, with

respect to any topology that makes the evaluation map continuous, it is closed.

It turns out that these are all the maximal closed ideals of C∞(M). Therefore
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there is a set isomorphism between M and the set of maximal closed ideals of
C∞(M), which can be suitably topologized and given a differentiable structure
in such a way that the above isomorphism is actually a diffeomorphism. Sim-
ilarly if i : Mo ↪→ M is a submanifold, it can be described by an ideal I(Mo)
consisting of all smooth functions vanishing at Mo. For a special class of sub-
manifolds this ideal is finitely generated. This corresponds to submanifolds
that can be described as the regular zero locus of a set of smooth functions.
This will be the case of interest in this paper. The role of the submanifold Mo

will be played by the zero locus of a set of regular first class constraints.

An algebraization of symplectic reduction—albeit not a homological one—

was given by Śnyaticki and Weinstein [8] while attempting to set up a formal-
ism to treat the case of singular moment mappings. We briefly review their
formalism. We work in the general case of a set of first class constraints with
regular zero locus Mo. Unless otherwise stated we work with smooth objects.

Any function on M restricts to a function on Mo and, conversely, since Mo

is a closed and embedded submanifold of M , any function on Mo extends to a
function on M . This extension is, of course, not unique but the difference of
two such extensions must always vanish on Mo. Therefore, we have an algebra
isomorphism

C∞(Mo) ∼= C∞(M)/I(Mo) . (1.1)

One can show (see section 2 for an indirect proof) that I(Mo) is precisely the
ideal J generated by the constraints, whence one has the algebra isomorphism

C∞(Mo) ∼= C∞(M)/J . (1.2)

This relates functions on Mo to functions on M . We now relate functions on

M̃ to functions on Mo. A function f on Mo projects to a function on M̃ if
and only if it is constant along the leaves of the null foliation. Let us denote
all elements in C∞(Mo) which are constant on the leaves by C∞(Mo)

F . We
therefore have the algebra isomorphism

C∞(M̃) ∼= C∞(Mo)
F . (1.3)

These two steps can be combined to relate functions on M̃ directly to func-
tions on M and at the same time show that the Poisson structure is inherited.
From (1.2) and (1.3) it follows that functions on M̃ are in bijective correspon-
dence to those functions on M whose restriction to Mo is constant along the
leaves of the null foliation. Put differently and since the leaves are connected,

a function f on M yields a function on M̃ if and only if for all i = 1, . . . , k,
Xi(f) ∈ J which, using the Poisson structure on C∞(M), can be rewritten as
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[φi , f ] ∈ J . Thus we see that the f is in the normalizer N(J) of J in C∞(M).
Therefore, we have the following algebra isomorphism

C∞(M̃) ∼= N(J)/J. (1.4)

Notice that N(J) is naturally a Poisson subalgebra of C∞(M) and J is a Pois-

son ideal of N(J). Therefore, N(J)/J , and thus C∞(M̃), naturally becomes

a Poisson algebra. Alternatively, C∞(M̃) inherits a Poisson structure from

the induced symplectic form Ω̃. Not surprisingly these two structures are the
same. In fact, we have the following

Lemma 1.5. Let f̃ be a function on M̃ induced from a function f on M :
i.e., i∗f = π∗f̃ . Let Xi∗f denote the tangent vector field to Mo such that
i∗Xi∗f = Xf on Mo. Then the hamiltonian vector fields Xf̃ and Xi∗f are

π-related. That is, π∗Xi∗f = Xf̃ .

Proof: Let p ∈ Mo, and Ỹ a tangent vector field on M̃ . Lift Ỹ to a vector

field Y tangent to Mo such that π∗Y = Ỹ . Then

Ω̃π(p)(π∗Xi∗f , Ỹ ) =Ω̃π(p)(π∗Xi∗f , π∗Y )

=(π∗Ω̃)p(Xi∗f , Y )

=(i∗Ω)p(Xi∗f , Y )

=Ωp(Xf , i∗Y )

=− dfp(i∗Y )

=− (di∗f)p(Y )

=− (dπ∗f̃)p(Y )

=− df̃π(p)(Ỹ )

=Ω̃π(p)(Xf̃ , Ỹ ).

The non-degeneracy of Ω̃ concludes the proof. �

This leads to the following

Theorem 1.6. Give C∞(M̃) the Poisson structure it inherits from Ω̃. Then
(1.4) extends to a Poisson algebra isomorphism.

Proof: This follows easily from the lemma. In fact, let f̃ and g̃ be functions

on M̃ and let f and g be functions in N(J) corresponding to them via (1.4):

that is, i∗f = π∗f̃ and i∗g = π∗g̃. Then, for all p ∈ Mo,

π∗(
[
f̃ , g̃

]
)(p) =Ω̃π(p)(Xf̃ , Xg̃)
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=Ω̃π(p)(π∗Xi∗f , π∗Xi∗g)

=(π∗Ω̃)p(Xi∗f , Xi∗g)

=(i∗Ω)p(Xi∗f , Xi∗g)

=Ωp(Xf , Xg)

=i∗([f , g])(p).

Clearly this does not depend on the choice of f and g. Since this is true for

arbitrary f̃ , g̃ ∈ C∞(M̃) the proof is finished. �

The homological construction we discuss in this paper consists of three
steps. The first is to turn (1.2) into an acyclic resolution of C∞(Mo) as a
C∞(M)-module. The second step, which is independent from the first, consists
in a homological description of the isomorphism (1.3). Finally, the third step
combines these two into a cohomology theory (BRST) which describes (in zero
dimension) the isomorphism (1.4). Moreover, this can be done in such a way
that the correspondence between the Poisson structures is manifest.

Thus this paper is organized as follows. In section 2 we study the first step
of the subquotient: the restriction to the subspace. Suppose that i : Mo ↪→ M
is a closed embedded submanifold of codimension k corresponding to the zero
set (assumed regular) of a smooth function Φ : M → Rk. We then define a
Koszul-like complex associated to this embedding, which will provide us with
a free acyclilc resolution of C∞(Mo) as a C∞(M)-module. We give a novel
proof of the acyclicity of this complex, in which we introduce a double complex
analogous to the Čech-de Rham complex introduced by Weil [9] in his proof

of the de Rham theorem. We call it the Čech-Koszul complex. In section 3
we tackle the second step of the subquotient. We define a cohomology theory
associated to the foliation determined by the null distribution of i∗Ω on Mo.
This is a de Rham-like cohomology theory of differential forms (co)tangent to
the leaves of the foliation (vertical forms) relative to the exterior derivative
along the leaves of the foliation (vertical derivative). If the foliation fibers

onto a smooth manifold M̃ the cohomology in zero dimension is naturally

isomorphic to C∞(M̃). We then lift this cohomology theory via the Koszul
resolution obtained in section 2 to a cohomology theory (BRST) in a certain
bigraded complex. The existence of this cohomology theory must be proven
since the vertical derivative does not lift to a differential operator, i.e., its
square is not zero. However its square is chain homotopic to zero (relative to
the Koszul differential) and the acyclicity of the Koszul resolution allows us to
construct the desired differential. In section 4 we place BRST cohomology in
a Poisson setting. In particular we show that the BRST cohomology can be
computed from a differential that is an inner Poisson derivation. In this way,
one can show that its cohomology naturally inherits the structure of a Poisson
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superalgebra. This, in turn, allows us to explicitly prove the isomorphism as
Poisson superalgebras between the BRST cohomology and the cohomology of
the vertical forms. Finally in section 5 we comment on possible generalizations
and on directions for future research.
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§2 THE ČECH-KOSZUL COMPLEX

In this section we describe algebraically the restriction part of symplectic
reduction. The key outcome of this section is a projective resolution of C∞(Mo)
as a C∞(M)-module. Hence we let Mo be the zero locus of k functions {φi}
on M . We will now proceed to construct a differential complex (the Koszul
complex)

· · · −→ K2 −→ K1 −→ C∞(M) −→ 0 , (2.1)

whose homology in positive dimensions is zero and in zero dimension is pre-
cisely C∞(Mo). We shall refer to this fact as the acyclicity of the Koszul
complex. It will play a fundamental rôle in all our constructions.

The Local Koszul Complex

We will first discuss the construction on Rm and later we will globalize to
M . We start with an elementary observation.

Lemma 2.2. Let Rm be given coordinates

(y, x) = (y1, . . . , yk, x1, . . . , xm−k) .

Let f : Rm → R be a smooth function such that f(0, x) = 0. Then there

exist k smooth functions hi : Rm → R such that f =
∑k

i=1 φi hi, where the

φi are the functions defined by φi(y, x) = yi.

Proof: Notice that

f(y, x) =

∫ 1

0
dt

d

dt
f(ty, x)

=

∫ 1

0
dt

k∑
i=1

yi (Di f)(ty, x)
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=
k∑

i=1

yi

∫ 1

0
dt (Di f)(ty, x)

=
k∑

i=1

φi(y, x)

∫ 1

0
dt (Di f)(ty, x) ,

where Di is the ith partial derivative. Defining

hi(y, x)
def
=

∫ 1

0
dt (Di f)(ty, x) (2.3)

the proof is complete. �

Therefore, if we let P ⊂ Rm denote the subspace defined by yi = 0 for all
i, the ideal of C∞(Rm) consisting of functions which vanish on P is precisely
the ideal generated by the functions φi.

Definition 2.4. Let R be a commutative ring with unit. A sequence (φi)
k
i=1

of elements of R is called regular if for all j = 1, . . . , k, φj is not a zero divisor
in R/Ij−1, where Ij is the ideal generated by φ1, . . . , φj and I0 = 0.

Proposition 2.5. Let Rm be given coordinates

(y, x) = (y1, . . . , yk, x1, . . . , xm−k) .

Then the sequence (φi) in C∞(Rm) defined by φi(y, x) = yi is regular.

Proof: First of all notice that φ1 is not identically zero. Next suppose that
(φ1, . . . , φj) is regular. Let Pj denote the hyperplane defined by φ1 = · · · =
φj = 0. Then by Lemma 2.2, C∞(Pj) = C∞(Rm)/Ij . Let [f ]j denote the

class of a f ∈ C∞(Rm) modulo Ij . Then φj+1 gives rise to a function [φj+1]j
in C∞(Pj) which, if we think of Pj as coordinatized by

(yj+1, . . . , yk, x1, . . . , xm−k) ,

turns out to be defined by

[φj+1]j (yj+1, . . . , yk, x1, . . . , xm−k) = yj+1 . (2.6)

This is clearly not identically zero and, therefore, the sequence (φ1 . . . , φj+1)
is regular. By induction we are done. �

We now come to the definition of the Koszul complex [10]. Let R be a
ring and let Φ = (φ1, . . . , φk) be a sequence of elements of R. We define a
complex K(Φ) as follows: K0(Φ) = R and for p > 0, Kp(Φ) is defined to be
the free R module with basis {bi1 ∧ · · · ∧ bip | 0 < i1 < · · · < ip ≤ k}.
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Define a map δK : Kp(Φ) → Kp−1(Φ) by δKbi = φi and extending to all of
K(Φ) as an R-linear antiderivation. That is, δK is identically zero on K0(Φ)
and

δK(bi1 ∧ · · · ∧ bip) =

p∑
j=1

(−1)j−1φij bi1 ∧ · · · ∧ b̂ij ∧ · · · ∧ bip , (2.7)

where âadorning a symbol denotes its omission. It is trivial to verify that
δ2
K = 0, yielding a complex

0 −→ Kk(Φ)
δK−→ Kk−1(Φ) −→ · · · −→ K1(Φ) −→ R −→ 0 , (2.8)

called the Koszul complex.

The following theorem is a classical result in homological algebra whose
proof is completely straight-forward and can be found, for example, in [11].

Theorem 2.9. If (φ1, . . . , φk) is a regular sequence in R then the cohomology
of the Koszul complex is given by

Hp(K(Φ)) ∼=
{

0 for p > 0
R/J for p = 0

, (2.10)

where J is the ideal generated by the φi.

Therefore the complex K(Φ) provides an acyclic resolution (known as the
Koszul resolution) for the R-module R/J . Therefore if R = C∞(Rm) and Φ
is the sequence (φ1, . . . , φk) of Proposition 2.5, the Koszul complex gives an
acyclic resolution of C∞(Rm)/J which by Lemma 2.2 is just C∞(Pk), where
Pk is the subspace defined by φ1 = · · · = φk = 0.

Globalization: The Čech-Koszul Complex

We now globalize this construction. Let M be our original symplectic
manifold and Φ : M → Rk be the function whose components are the first
class constraints constraints, i.e., Φ(m) = (φ1(m), . . . , φk(m)). We assume

that 0 is a regular value of Φ so that Mo
def
= Φ−1(0) is a closed embedded

submanifold of M . Therefore for each point m ∈ Mo there exists an open set
U ∈ M containing m and a chart Ψ : U → Rm such that Φ has components
(φ1, . . . , φk, x

1, . . . , xm−k) and such that the image under Φ of U ∩Mo corre-

sponds exactly to the points (0, . . . , 0︸ ︷︷ ︸
k

, x1, . . . , xm−k). Let U be an open cover

for M consisting of sets like these. Of course, there will be some sets V ∈ U
for which V ∩Mo = ∅.
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To motivate the following construction let’s understand what is involved in
proving, for example, that the ideal J generated by the constraints coincides
with the ideal I(Mo) of smooth functions which vanish on Mo. It is clear that
J ⊂ I(Mo). We want to show the converse. That is, if f is a smooth function
vanishing on Mo then there are smooth functions hi such that f =

∑
i h

i φi.
This is always true locally. That is, restricted to any set U ∈ U such that
U ∩Mo 6= ∅, Lemma 2.2 implies that there will exist functions hi

U ∈ C∞(U)
such that on U

fU =
∑

i

φi h
i
U , (2.11)

where fU denotes the restriction of f to U . If, on the other hand, V ∈ U is such
that V ∩Mo = ∅, then not all of the φi vanish and the statement is also true.
There is a certain ambiguity in the choice of hU

i . In fact, if δK denotes the
Koszul differential we notice that (2.11) can be written as fU = δKhU , where
hU =

∑
i h

i
Ubi is a Koszul 1-cochain on U . Therefore, the ambiguity in hU is

precisely a Koszul 1-cocycle on U , but by Theorem 2.9, the Koszul complex
on U is quasi-acyclic and hence every 1-cocycle is a 1-coboundary. What we
would like to show is that this ambiguity can be exploited to choose the hU

in such a way that hU = hV on all non-empty overlaps U ∩ V . This condition
is precisely the condition for hU to be a Čech 0-cocycle. In order to analyze
this problem it is useful to make use of the machinery of Čech cohomology
with coefficients in a sheaf. For a review of the necessary material we refer
the reader to [12]; and, in particular, to their discussion of the Čech-de Rham
complex.

Let EM denote the sheaf of germs of smooth functions on M and let
K =

⊕
pKp denote the free sheaf of EM -modules which appears in the Koszul

complex: Kp =
∧pV ⊗ EM , where V is the vector space with basis {bi}. Let

Cp(U ;Kq) denote the Čech p-cochains with coefficients in the Koszul subsheaf
Kq. This becomes a double complex under the two differentials

δ̌ : Cp(U ;Kq) → Cp+1(U ;Kq) “Čech”

and

δK : Cp(U ;Kq) → Cp(U ;Kq−1) “Koszul”

which clearly commute, since they are independent. We can therefore define
the complex CKn =

⊕
p−q=n Cp(U ;Kq) and the differential D = δ̌ + (−1)pδK

on Cp(U ;Kq). The total differential has total degree one D : CKn → CKn+1

and moreover obeys D2 = 0. Since the double complex is bounded, i.e., for
each n, CKn is the direct sum of a finite number of Cp(U ;Kq)’s, there are
two spectral sequences converging to the total cohomology. We now proceed
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to compute them. In doing so we will find it convenient to depict our compu-

tations graphically. The original double complex is depicted by the following

diagram:

C0(U ;K2) C1(U ;K2) C2(U ;K2)

C0(U ;K1) C1(U ;K1) C2(U ;K1)

C0(U ;K0) C1(U ;K0) C2(U ;K0)

Upon taking cohomology with respect to the horizontal differential (i.e., Čech

cohomology) and using the fact that the sheaves Kq are fine, being free modules

over the structure sheaf EM , we get

K2(Φ) 0 0

K1(Φ) 0 0

K0(Φ) 0 0

where Kp(Φ) ∼=
∧pV ⊗ C∞(M) are the spaces in the Koszul complex on M .

Taking vertical cohomology yields the Koszul cohomology

H2(K(Φ)) 0 0

H1(K(Φ)) 0 0

H0(K(Φ)) 0 0

Since the next differential in the spectral sequence necessarily maps across

columns it must be identically zero. The same holds for the other differentials

and we see that the spectral sequence degenerates at the E2 term. In particular

the total cohomology is isomorphic to the Koszul cohomology:

Hn
D
∼= Hn(K(Φ)) . (2.12)

To compute the other spectral sequence we first start by taking vertical coho-

mology, i.e., Koszul cohomology. Because of the choice of cover U we can use
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Theorem 2.9 and Lemma 2.2 to deduce that the vertical cohomology is given

by

0 0 0

0 0 0

C0(U ; EM/J ) C1(U ; EM/J ) C2(U ; EM/J )

where EM/J is defined by the exact sheaf sequence

0 → J → EM → EM/J → 0 , (2.13)

where J is the subsheaf of EM consisting of germs of smooth functions belong-

ing to the ideal generated by the φi. Because of our choice of cover, Lemma 2.2

implies that J (U) agrees, for all U ∈ U , with those smooth functions vanishing

on U ∩Mo, and hence we have an isomorphism of sheaves EM/J ∼= EMo
, where

EMo
is the sheaf of germs of smooth functions on Mo. Next we notice that EMo

is a fine sheaf and hence all its Čech cohomology groups vanish except the

zeroth one. Thus the E2 term in this spectral sequence is just

0 0 0

0 0 0

C∞(Mo) 0 0

Again we see that the higher differentials are automatically zero and the spec-

tral sequence collapses. Since both spectral sequences compute the same co-

homology we have the following corollary.

Corollary 2.14. If 0 is a regular value for Φ : M → Rk the Koszul complex
K(Φ) gives an acyclic resolution for C∞(Mo). In other words, the cohomology
of the Koszul complex is given by

Hp(K(Φ)) ∼=
{

0 for p > 0
C∞(Mo) for p = 0

, (2.15)

where Mo
def
= Φ−1(0).
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Together with Theorem 2.9 the above corollary implies the isomorphism
(1.2). On the other hand, Mo being a closed embedded submanifold, we have
the isomorphism (1.1). Hence these two isomorphisms yield, somewhat indi-
rectly, the equality between the ideals I(Mo) and J .

It may appear overkill to use the spectral sequence method to arrive at
Corollary 2.14. In fact it is not necessary and the reader is urged to supply
a proof using the “tic-tac-toe” methods in [12]. This way one gains some
valuable intuition on this complex. In particular, one can show that way that
the sequence Φ is regular in C∞(M) and that J = I(Mo) without having to
first prove Corollary 2.14. Lack of spacetime prevents us from exhibiting both
computations and the spectral sequence computation is decidedly shorter.

§3 BRST COHOMOLOGY

In this section we complete the construction of the algebraic equivalent of
symplectic reduction by first defining a cohomology theory (vertical cohomol-

ogy) that describes the passage of Mo to M̃ and then, in keeping with our
philosophy of not having to work on Mo, we lift it via the Koszul resolution to

a cohomology theory (BRST) which allows us to work with M̃ from objects

defined on M . We shall assume for convenience that the foliation defining M̃

is such that M̃ is a smooth manifold and π : Mo →→ M̃ is a smooth surjection.

In other words, the foliation is actually a fibration Mo
π−→M̃ whose fibers are

the leaves.

Vertical Cohomology

Since M̃ is obtained from Mo by collapsing each leaf of the null foliation

F to a point, a smooth function on M̃ pulls back to a smooth function on Mo

which is constant on each leaf. Conversely, any smooth function on Mo which

is constant on each leaf defines a smooth function on M̃ . Since the leaves are
connected (Frobenius’ theorem) a function is constant on the leaves if and only
if it is locally constant. Since the hamiltonian vector fields {Xi} associated to
the constraints {φi} form a global basis of the tangent space to the leaves, a
function f on Mo is locally constant on the leaves if and only if Xi f = 0 for
all i. In an effort to build a cohomology theory and in analogy to the de Rham
theory, we pick a global basis {ci} for the cotangent space to the leaves such
that they are dual to the {Xi}, i.e., ci(Xj) = δi

j . We then define the vertical

derivative dV on functions as

dV f =
∑

i

(Xif) ci ∀ f ∈ C∞(Mo) . (3.1)

Let ΩV (Mo) denote the exterior algebra generated by the {ci} over C∞(Mo).
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We will refer to them as vertical forms. We can extend dV to a derivation

dV : Ωp
V (Mo) → Ωp+1

V (Mo) (3.2)

by defining

dV ci = −1
2

∑
j,k

fjk
i cj ∧ ck , (3.3)

where the {fij
k} are the functions appearing in the Lie bracket of the hamil-

tonian vector fields associated to the constraints: [Xi , Xj ] =
∑

k fij
k Xk; or,

equivalently, in the Poisson bracket of the constraints themselves: [φi , φj ] =∑
k fij

k φk.

Notice that the choice of {ci} corresponds to a choice of connection on the

fiber bundle Mo
π−→M̃ . Let V denote the subbundle of TMo spanned by the

{Xi}. It can be characterized either as ker π∗ or as TM⊥
o . A connection is

then a choice of complementary subspace H such that TMo = V ⊕ H. It is
clear that a choice of {ci} implies a choice of H since we can define X ∈ H if
and only if ci(X) = 0 for all i. If we let prV denote the projection TMo → V
it is then clear that acting on vertical forms, dV = pr∗V ◦d, where d is the usual
exterior derivative on Mo.

It follows therefore that d2
V = 0. We call its cohomology the vertical

cohomology and we denote it as HV (Mo). As has been shown elsewhere [13],
it can be computed in terms of the de Rham cohomology of the typical fiber

in the fibration Mo
π−→M̃ . In particular, from its definition, we already have

that

H0
V (Mo) ∼= C∞(M̃) . (3.4)

The BRST Complex

However this is not the end of the story since we don’t want to have to
work on Mo but on M . The results of the previous section suggest that we use
the Koszul construction. Notice that ΩV (Mo) is isomorphic to

∧
Rk⊗C∞(Mo)

where Rk has basis {ci}. The Koszul complex gives a resolution for C∞(Mo).

Therefore extending the Koszul differential as the identity on
∧

Rk we get a

resolution for ΩV (Mo). We find it convenient to think of Rk as V∗, whence
the resolution of ΩV (Mo) is given by

· · · −→
∧

V∗ ⊗ V⊗ C∞(M)
1⊗δK−→

∧
V∗ ⊗ C∞(M) −→ 0 . (3.5)

This gives rise to a bigraded complex K =
⊕

c,b Kc,b, where

Kc,b ≡
∧cV∗ ⊗

∧bV⊗ C∞(M) , (3.6)

under the Koszul differential δK : Kc,b → Kc,b−1. The Koszul cohomology of
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this bigraded complex is clearly zero for b > 0, and for b = 0 it is isomorphic
to the vertical forms, where the vertical derivative is defined.

The purpose of the BRST construction is to lift the vertical derivative to
K. That is, to define a differential δ1 on K which commutes with the Koszul
differential, which induces the vertical derivative upon taking Koszul coho-
mology, and which obeys δ2

1 = 0. This would mean that the total differential

D = (−1)cδK + δ1 would obey D2 = 0 acting on K and its cohomology would
be isomorphic to the vertical cohomology. This is possible only in the case of a
group action, i.e., when the linear span of the constraints closes under Poisson
bracket. In general this is not possible and we will be forced to add further
δi’s to D to ensure D2 = 0.

We find it convenient to define δ0 = (−1)cδK on Kb,c. We define δ1 on
functions and {ci} as the vertical derivative1

δ1 f =
∑

i

(Xif) ci

=
∑

i

[φi , f ] ci (3.7)

and

δ1 ci = −1
2

∑
j,k

fjk
i cj ∧ ck . (3.8)

We can then extend it as a derivation to all of
∧

V∗ ⊗C∞(M). Notice that it
trivially anticommutes with δ0 since it stabilizes

∧
V∗⊗C∞(M) where δ0 acts

trivially. We now define it on antighosts in such a way that it commutes with
δ0 everywhere. This does not define it uniquely but a convenient choice is

δ1ei =
∑
j,k

fkj
i ωj ∧ ek . (3.9)

Notice that δ2
1 6= 0 in general, although it does in the case where the

fij
k are constant. However since it anticommutes with δ0 it does induce a

map in δ0 (i.e., Koszul) cohomology which precisely agrees with the vertical
derivative dV , which does obey d2

V = 0. Hence δ2
1 induces the zero map in

Koszul cohomology. This is enough (see algebraic lemma below) to deduce the

existence of a derivation δ2 : Kc,b → Kc+2,b+1 such that δ2
1 + {δ0 , δ2} = 0,

1 Notice that the vertical derivative is defined on Mo and hence has no unique extension
to M . The choice we make is the simplest and the one that, in the case of a group
action, corresponds to the Lie algebra coboundary operator.
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where { , } denotes the anticommutator. This suggests that we define D2 =
δ0 + δ1 + δ2. We see that

D2
2 = δ2

0 ⊕ {δ0 , δ1} ⊕ (δ2
1 + {δ0 , δ2})⊕ {δ1 , δ2} ⊕ δ2

2 , (3.10)

where we have separated it in terms of different bidegree and arranged them
in increasing c-degree. The first three terms are zero but, in general, the other
two will not vanish. The idea behind the BRST construction is to keep defining
higher δi : Kc,b → Kc+i,b+i−1 such that their partial sums Di = δ0+· · ·+δi are
nilpotent up to terms of higher and higher c-degree until eventually D2

k = 0.
The proof of this statement will follow by induction from the acyclicity of the
Koszul complex, but first we need to introduce some notation that will help
us organize the information.

Let us define F pK =
⊕

c≥p

⊕
b Kc,b. Then K = F 0K ⊇ F 1K ⊇ · · ·

is a filtration of K. Let Der K denote the derivations (with respect to the
∧ product) of K. We say that a derivation has bidegree (i, j) if it maps

Kc,b → Kc+i,b+j . Der K is naturally bigraded

Der K =
⊕
i,j

Deri,j K , (3.11)

where Deri,j K consists of derivations of bidegree (i, j). This decomposition
makes Der K into a bigraded Lie superalgebra under the graded commutator:

[· , ·] : Deri,j K ×Derk,l K → Deri+k,j+l K . (3.12)

We define F pDer K =
⊕

i≥p

⊕
j Deri,j K. Then FDer K gives a filtration of

Der K associated to the filtration F K of K.

The remarks immediately following (3.10) imply that D2
2 ∈ F 3Der K.

Moreover, it is trivial to check that
[
δ0 , D2

2

]
∈ F 4Der K. In fact,[

δ0 , D2
2

]
=

[
D2 , D2

2

]
−

[
δ1 , D2

2

]
−

[
δ2 , D2

2

]
(3.13)

where the first term vanishes because of the Jacobi identity and the last two
terms are clearly in F 4Der K. Therefore the part of D2

2 in F 3Der K/F 4Der K
is a δ0-chain map: that is, [δ0 , {δ1 , δ2}] = 0. Since it has non-zero b-degree,
the quasi-acyclicity of the Koszul complex implies that it induces the zero map
in Koszul cohomology. By the following algebraic lemma (see below), there
exists a derivation δ3 of bidegree (3, 2) such that {δ0 , δ3}+{δ1 , δ2} = 0. If we

define D3 =
∑3

i=0 δi, this is equivalent to D2
3 ∈ F 4Der K. But by arguments

identical to the ones above we deduce that
[
δ0 , D2

3

]
∈ F 5 Der K, and so on.

It is not difficult to formalize these arguments into an induction proof of the
following theorem:
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Theorem 3.14. We can define a derivation D =
∑k

i=0 δi on K, where δi

are derivations of bidegree (i, i− 1), such that D2 = 0.

Finally we come to the proof of the algebraic lemma used above.

Lemma 3.15. Let

· · · −→ K2
δ0−→ K1

δ0−→ K0 → 0 (3.16)

denote the Koszul complex where Kb =
⊕

c Kc,b. Let d : Kb → Kb+i, (i ≥ 0)
be a derivation which commutes with δ0 and which induces the zero map
on cohomology. Then there exists a derivation K : Kb → Kb+i+1 such that
d = {δ0 , K}.

Proof: Since C∞(M) is an R-algebra it is, in particular, a vector space. Let
{fα} be a basis for it. Then, since δ0 fα = 0, δ0 d fα = 0. Since d induces
the zero map in cohomology, there exists λα such that d fα = δ0 λα. Define
K fα = λα. Similarly, since δ0 d ci = 0, there exists µi such that d ci = δ0 µi.
Define K ci = µi. Since C∞(M) and the {ci} generate K0, we can extend K
to all of K0 as a derivation and, by construction, in such a way that on K0,
d = {δ0 , K}. Now, δ0 d bi = d δ0 bi. But since δ0 bi ∈ K0, δ0 d bi = δ0 K δ0 bi.
Therefore δ0 (d bi − K δ0 bi) = 0. Since d bi ∈ Ki+1 for some i ≥ 0, the
quasi-acyclicity of the Koszul complex implies that there exists ξi such that
d bi − K δ0 bi = δ0 ξi. Define K bi = ξi. Therefore, d bi = {δ0 , K} bi. We
can now extend K as a derivation to all of K. Since d and {δ0 , K} are both
derivations and they agree on generators, they are equal. �

Defining the total complex K =
⊕

n Kn, where Kn =
⊕

c−b=n Kc,b,

we see that D : Kn → Kn+1. Its cohomology is therefore graded, that is,
HD =

⊕
n Hn

D. Notice that since all terms in D have non-negative filtration
degree with respect to F K, there exists a spectral sequence associated to this
filtration which converges to the cohomology of D. The E1 term is the coho-
mology of the associated graded object GrpK ≡ F pK/F p+1K, with respect to
the induced differential. The induced differential is the part of D of c-degree
0, that is, δ0. Therefore the E1 term is given by

Ec,b
1
∼=

∧cV∗ ⊗Hb(K(Φ)) . (3.17)

That is, Ec,0
1

∼= Ωc
V (Mo) and Ec,b>0

1 = 0.

The E2 term is the cohomology of E1 with respect to the induced differ-
ential d1. Tracking down the definitions we see that d1 is induced by δ1 and

hence it is just the vertical derivative dV . Therefore, Ec,0
2

∼= Hc
V (M0) and

Ec,b>0
2 = 0. Notice, however, that the spectral sequence is degenerate at this

term, since the higher differentials d2, d3, . . . all have b-degree different from
zero. Therefore we have proven the following theorem:
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Theorem 3.18. The BRST cohomology is given by

Hn
D
∼=

{
0 for n < 0
Hn

V (Mo) for n ≥ 0
. (3.19)

In particular, H0
D
∼= C∞(M̃).

There is one important detail that we have left for the end. The construc-
tion of the BRST complex depends on the choice of constraints functions {φi}.
However what determines the dynamics is the constraint submanifold Mo it-
self. One should therefore expect that choosing other constraints {φ′i} defining
the same Mo we would obtain the same cohomology. One could go ahead and
show this directly by proving as in [4] that there is a chain homotopy relating
the BRST complexes constructed from different choices of constraints. How-
ever we have avoided this by first characterizing the BRST cohomology purely
in terms of Mo

2. Hence the answer justifies the construction and shows its
uniqueness.

§4 POISSON STRUCTURE OF BRST COHOMOLOGY

So far in the construction of the BRST complex no use has been made of
the Poisson structure of the smooth functions on M . In this section we remedy
the situation. It turns out that the complex K introduced in the last section is
a Poisson superalgebra and its cohomology can be computed by a differential
which is also an inner Poisson derivation. It will then follow that in cohomology
all constructions based on the Poisson structures will be preserved. So let us
first review the concepts associated to Poisson algebras and then define the
relevant Poisson structures in K and explore its consequences.

Poisson Superalgebras and Poisson Derivations

Recall that a Poisson superalgebra is a Z2-graded vector space P = P0⊕P1

together with two bilinear operations preserving the grading:

P × P → P (multiplication)

(a, b) 7→ ab

and

P × P → P (Poisson bracket)

(a, b) 7→ [a , b]

obeying the following properties

2 The BRST cohomology depends manifestly on Mo and on the foliation F ; but the
foliation is determined by Mo. In fact it is the characteristic (null) foliation of i∗Ω, the
pull-back of the symplectic form via the inclusion i : Mo → M .
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(P1) P is an associative supercommutative superalgebra under multiplica-
tion:

a(bc) = (ab)c

ab = (−1)|a||b| ba ;

(P2) P is a Lie superalgebra under Poisson bracket:

[a , b] = (−1)|a||b| [b , a]

[a , [b , c]] = [[a , b] , c] + (−1)|a||b| [b , [a , c]] ;

(P3) Poisson bracket is a derivation over multiplication:

[a , bc] = [a , b] c + (−1)|a||b| b [a , c] ;

for all a, b, c ∈ P and where |a| equals 0 or 1 according to whether a is
even or odd, respectively.

The algebra C∞(M) of smooth functions of a symplectic manifold (M, Ω)
is clearly an example of a Poisson superalgebra where C∞(M)1 = 0. On the
other hand, if V is a finite dimensional vector space and V∗ its dual, then
the exterior algebra

∧
(V ⊕ V∗) posseses a Poisson superalgebra structure.

The associative multiplication is given by exterior multiplication (∧) and the
Poisson bracket is defined for u, v ∈ V and α, β ∈ V∗ by

[α , v] = 〈α, v〉 [v , w] = 0 = [α , β] , (4.1)

where 〈, 〉 is the dual pairing between V and V∗. We then extend it to all of∧
(V ⊕ V∗) as an odd derivation. In [3] it is shown that this Poisson bracket

is induced from the supercommutator in the Clifford algebra Cl (V⊕V∗) with
respect to the non-degenerate inner product on V ⊕ V∗ induced by the dual
pairing.

To show that K is a Poisson superalgebra we need to discuss tensor prod-
ucts. Given two Poisson superalgebras P and Q, their tensor product P ⊗ Q
can be given the structure of a Poisson superalgebra as follows. For a, b ∈ P
and u, v ∈ Q we define

(a⊗ u)(b⊗ v) = (−1)|u||b| ab⊗ uv (4.2)

[a⊗ u , b⊗ v] = (−1)|u||b| ([a , b]⊗ uv + ab⊗ [u , v]) . (4.3)

The reader is invited to verify that with these definitions (P1)-(P3) are satis-
fied. From this it follows that K = C∞(M) ⊗

∧
(V ⊕ V∗) becomes a Poisson

superalgebra which can, in fact, be interpreted as the algebra of functions of
a smooth symplectic supermanifold. We will not, however, pursue this inter-
pretation in this article.
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Now let P be a Poisson superalgebra which, in addition, is Z-graded, that

is, P =
⊕

n Pn and Pn Pm ⊆ Pm+n and [Pn , Pm] ⊆ Pm+n; and such that the

Z2-grading is the reduction modulo 2 of the Z-grading, that is, P0 =
⊕

n P 2n

and P1 =
⊕

n P 2n+1. We call such an algebra a graded Poisson superalgebra.

Notice that P 0 is an even Poisson subalgebra of P .

For example, letting K = C∞(M) ⊗
∧

(V ⊕ V∗) we can define Kn =⊕
c−b=n Kc,b. This way K becomes a Z-graded Poisson superalgebra. Al-

though the bigrading is preserved by the exterior product, the Poisson bracket

does not preserve it. In fact, the Poisson bracket obeys

[ , ] : Ki,j ×Kk,l → Ki+k,j+l ⊕Ki+k−1,j+l−1 . (4.4)

By a Poisson derivation of degree k we will mean a linear map D : Pn →
Pn+k such that

D(ab) = (Da)b + (−1)k|a| a(Db) (4.5)

D [a , b] = [Da , b] + (−1)k|a| [a , Db] . (4.6)

The map a 7→ [Q , a] for some Q ∈ P k automatically obeys (4.5) and (4.6).

Such Poisson derivations are called inner.

The BRST Differential as a Poisson Derivation

The BRST differential D constructed in the previous section is a derivation

over the exterior product. Nothing in the way it was defined guarantees that

it is a Poisson derivation and, in fact, it need not be so. However one can

show that the δi’s — which were, by far, not unique — can be defined in such

a way that the resulting differential is an inner Poisson derivation. In fact,

what we will show, is the existence of an element Q ∈ K1 such that [Q , ·]
computes the cohomology of the BRST complex. We will show that there

exists Q =
∑

i≥0 Qi, where Qi ∈ Ki+1,i, such that [Q , Q] = 0 and that the

cohomology of the operator [Q , ·] is isomorphic to that of D. This was first

proven by Henneaux in [5] and later in a completely algebraic way by Stasheff

in [7]. Our proof is a simplified version of this latter proof.

From the discussion previous to Theorem 3.18 we know that the only parts

of D which affect its cohomology are δ0, which is the Koszul differential, and

δ1 acting on the Koszul cohomology. Hence we need only make sure that the

Qi we construct realize these differentials. Notice that if Qi ∈ Ki+1,i, [Qi , ·]
has terms of two different bidegrees (i + 1, i) and (i, i − 1). Hence the only

term which can contribute to the Koszul differential is Q0. There is a unique
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element Q0 ∈ K1,0 such that [Q0 , bi] = δ0 bi = φi. This is given by

Q0 =
∑

i

ci φi . (4.7)

Notice that

[Q0 , bi] = δ0 bi = φi (4.8)[
Q0 , ci

]
= δ0 ci = 0 (4.9)

[Q0 , f ] = (δ0 + δ1) f =
∑

i

[φi , f ] ci . (4.10)

There is now a unique Q1 ∈ K2,1 such that
[
Q1 , ci

]
= δ1 ci, namely,

Q1 = −1
2

∑
i,j,k

fij
k ci ∧ cj ∧ bk . (4.11)

If we define R1 = Q0 + Q1 we then have that

[R1 , bi] = (δ0 + δ1) bi (4.12)[
R1 , ci

]
= (δ0 + δ1) ci (4.13)

[R1 , f ] = (δ0 + δ1 + δ2) f . (4.14)

In particular, two things are imposed upon us: δ2 f and δ1 bi; the latter impo-
sition agrees with the choice made in (3.9).

Letting FK denote the filtration of K defined in the previous section,
and using the notation in which, if O ∈ K is an odd element, O2 stands for
1
2 [O , O], the following are satisfied:

R2
1 ∈ F 3K and

[
Q0 , R2

1

]
∈ F 4K . (4.15)

That means that the part of R2
1 which lives in F 3K/F 4K is a δ0-cocycle, since

the (0,−1) part of Q0 is precisely δ0. By the acyclicity of the Koszul complex
it is a coboundary, say, −δ0 Q2 for some Q2 ∈ K3,2. In other words, there
exists Q2 ∈ K3,2 such that if R2 = Q0 + Q1 + Q2, then R2

2 ∈ F 4K. If this is
the case then [

Q0 , R2
2

]
=

[
R2 , R2

2

]
−

[
Q1 , R2

2

]
−

[
Q2 , R2

2

]
. (4.16)

But the first term is zero because of the Jacobi identity and the last two terms
are clearly in F 5K due to the fact that, from (4.4),

[F pK , F qK] ⊆ F p+q−1K . (4.17)

Hence,
[
Q0 , R2

2

]
∈ F 5K, from where we can deduce the existence of Q3 ∈ K4,3

such that R3 = Q0 + Q1 + Q2 + Q3 obeys R2
3 ∈ F 5K, and so on. It is easy to

formalize this into an induction proof of the following theorem:
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Theorem 4.18. There exists Q =
∑

i Qi, where Qi ∈ Ki+1,i such that
[Q , Q] = 0.

Now let D = [Q , ·]. Then D2 = 0 and repeating the proof of Theorem

3.18 we obtain the following.

Theorem 4.19. The cohomology of D is given by

Hn
D
∼=

{
0 for n < 0
Hn

V (Mo) for n ≥ 0
. (4.20)

In particular, H0
D
∼= C∞(M̃).

With this choice of D it is easy to verify that ker D becomes a Poisson

subalgebra of K and im D is a Poisson ideal of ker D. Therefore the coho-

mology space HD = ker D/ im D naturally inherits the structure of a Poisson

superalgebra. Moreover since K is a graded Poisson superalgebra and D is

homogeneous with respect to this grading, the cohomology naturally becomes

a graded Poisson superalgebra. In particular, H0
D is a Poisson subalgebra and,

since H0
D is isomorphic to C∞(M̃), we see that the Poisson brackets get in-

duced. Therefore if we wished to compute the Poisson brackets of two smooth

functions on M̃ we merely need to find suitable BRST cocycles representing

them and compute their Poisson bracket in K.

Explicit Isomorphism with Vertical Cohomology

To illustrate this, we now give the explicit isomorphism as Poisson algebras

between BRST cohomology and the cohomology of vertical differential forms.

Throughout this section, we shall identify the space of vertical differential

forms Ωc
V (Mo) with Hc,0

δ0
where Hδ0

is defined to be the the cohomology of the

differential complex

· · · → Kc,b+1 δ0−→ Kc,b δ0−→ · · · . (4.21)

Furthermore, the vertical derivative dV is the derivative induced by δ1 on Hδ0
.

Proposition 4.22. Let χ : HD(K) → HV (Mo) be defined via

[x] 7→
{

0 for g < 0
[x′0] for g ≥ 0

where [x] ∈ Hg
D(K), xi is the component of x in Kg+i,i for g, i ≥ 0, and x′0,

when thought of as an element in Hδ0
, is identified with the equivalence class

〈x0〉 ∈ Hδ0
. In this case, HV (Mo) can be endowed with the structure of a

Poisson superalgebra such that χ is an isomorphism of Poisson superalgebras.
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Proof: We first check the map is well defined. Consider any y ∈ Kg for g ≥ 0
then we have the decomposition y = y0 + y1 + · · · where yi ∈ Kg+i,i for all
i ≥ 0. In this case, Dy belongs to Kg+1 and the component of Dy in Kg+1,0

is given by δ1 y0 + δ0 y1. Therefore, we see that

χ([Dy]) = [〈δ1 y0 + δ0 y1〉]
= [〈δ1 y0〉]
= [dV 〈y0〉]
=0

and therefore, the map is well-defined.

Before we prove that this map is an isomorphism we shall need the following
result. Let’s decompose the BRST differential as D =

∑r
i=1 δi where δi :

Kc,b → Kc+i,b+i−1. Then the fact that D2 = 0 is equivalent to a string of
identities

p∑
i=1

δiδp−i = 0 , (4.23)

for each p and where δi is conventionally set to zero for i > r + 1.

We now proceed to prove that the map is injective. Consider x ∈ Kg for
g ≥ 0 which decomposes into x = x0+x1+x2+. . . where xi ∈ Kg+i,i such that
χ([x]) = [〈x0〉] = 0. We need to show that in this case, there exists y ∈ Kg−1

such that x = Dy. Decomposing the previous equation, this is equivalent to
asserting that there exists yi ∈ Kg−1+i,i such that for all p ≥ 0,

xp =

p+1∑
i=0

δi yp+1−i. (4.24)

Now, [〈x0〉] = 0 means that 〈x0〉 = dV 〈y0〉 for some y0 ∈ Kg−1,0 or
〈x0 − δ1 y0〉 = 0. Therefore, x0− δ1 y0− δ0 y1 = 0 for some y1 ∈ Kg,1. In other
words,

x0 = δ0 y1 + δ1 y0 (4.25)

for some y0 and y1. This is just (4.24) for p = 0. We now need to show that
yp exists for all p > 1 which satisfies (4.24). We now proceed to show this by

induction. Suppose that there exist yi ∈ Kg−1+i,i for all i = 0, . . . , r which
satisfy (4.24) for all p = 0, . . . , r − 1. In this case, observe that

δ0 (xr −
r+1∑
j=1

δj yr+1−j) =δ0 xr −
r+1∑
j=1

δ0 δj yr+1−j
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=δ0 xr +
r+1∑
j=1

j∑
l=1

δl δj−l yr+1−j using (4.23)

=δ0 xr +
r+1∑
l=1

r+1∑
j=l

δl δj−l yr+1−j

=δ0 xr +
r+1∑
l=1

δl

r+1−l∑
s=0

δs yr+1−s−l

=δ0xr +
r+1∑
l=1

δlxr−l by induction hypothesis

=
r+1∑
l=0

δl xr−l = 0

where we have used the fact that x is a D-cocycle in the last step. Using the
quasiacyclicity of the Koszul complex, this implies that there exists an element
yr+1 ∈ Kg+r,r+1 which satisfies

xr =
r+1∑
j=0

δj yr+1−j .

This completes our induction and, therefore, χ is injective.

Finally we prove that the map is surjective. Consider any [〈y〉] ∈ Hg
V (Mo)

where g ≥ 0. Decomposing y into the sum of yi ∈ Kg+i,i for i ≥ 0, we see that
since y is a Koszul cycle, this implies that each yi is a Koszul cycle. However,
by the quasiacyclicity of the Koszul complex, this implies that yi is a Koszul
boundary for i ≥ 1. Therefore, we see that [〈y〉] = [〈y0〉]. We shall now
construct an x ∈ Kg which decomposes into the sum of xi ∈ Kg+i,i such that
x0 = y0 and x is a D-cocycle. The latter condition is equivalent to imposing
that

p∑
i=0

δi xp−i = 0

for all p ≥ 0. First of all, it is clear that δ0 x0 = 0. We now proceed by
induction. Suppose that there exists x0, . . . , xr such that

p∑
i=0

δi xp−i = 0

for all p = 0, . . . , r. In this case, observe that

δ0

r+1∑
i=1

δi xr+1−i =
r+1∑
i=1

δ0 δi xr+1−i
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= −
r+1∑
i=1

i∑
j=1

δj δi−j xr+1−i using (4.23)

= −
r+1∑
j=1

r+1∑
i=j

δj δi−j xr+1−i

= −
r+1∑
j=1

δj

r+1∑
i=j

δi−j xr+1−i

= −
r+1∑
j=1

δj

r+1−j∑
s=0

δs xr+1−i−j

= 0

where we have used the induction hypothesis in the last step. Once again,
by the quasiacyclicity of the Koszul complex, this means that there exists
xr+1 ∈ Kg+r+1,r+1 such that

r+1∑
i=0

δi xr+1−i = 0.

This complete our induction and, therefore, χ is surjective.

Furthermore, it is clear that χ is an isomorphism of associative algebras
since if x ∈ Kg and y ∈ Kh which decompose into sums of xi ∈ Kg+i,i and
yi ∈ Kh+i,i, respectively, then

χ([x] [y]) =χ([xy])

= [〈(xy)0〉]
= [〈x0y0〉]
= [〈x0〉] [〈y0〉]
=χ([x])χ([y]) .

Finally, we can give HV (Mo) the structure of a Poisson superalgebra by defin-
ing the Poisson bracket on elements x, y ∈ HV (Mo) by

[x , y] = χ(
[
χ−1(x) , χ−1(y)

]
).

�
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The Case of a Group Action

Finally, since the case when the constraints arise from a moment map is of
special interest, it is worth looking at it in some more detail. We will be able
to relate the BRST cohomology with a Lie algebra cohomology group with
coefficients in an infinite dimensional (differential) representation.

So let G be a Lie group and g its Lie algebra and let there be a Poisson
action of G on M giving rise to an equivariant moment map Φ : M → g∗. Let
{bi} be a basis for g and {ci} be the canonical dual basis for g∗. Notice that
the dual of the moment map gives rise to a map g → C∞(M) sending bi 7→ φi,
where φi are the coefficients of the moment map relative to the {ci}:

〈Φ(m), bi〉 = φi(m) , (4.26)

which is precisely the map δK in the Koszul complex. In particular, we can
identify V with g. Since the action is Poisson, the functions {φi} represent the

algebra under the Poisson bracket: [φi , φj ] =
∑

k fij
kφk, where the fij

k are
the structure constants of g in the chosen basis. Let Q = Q0 + Q1 where Q0

and Q1 are given by (4.7) and (4.11), respectively. Since the fij
k are constant

and satisfy the Jacobi identity, [Q , Q] = 0, and hence the extra Qi>1 are not
necessary. Hence

Q =
∑

i

ci φi − 1
2

∑
i,j,k

fij
k cj ∧ ck ∧ bi . (4.27)

Notice that this is precisely the operator found in [1].

We can now make contact with Lie algebra cohomology. The BRST coho-
mology is exactly the cohomology of the vertical derivative which is computed
by the complex C defined by

C∞(Mo)
D−→g∗ ⊗ C∞(Mo)

D−→
∧2

g∗ ⊗ C∞(Mo)
D−→· · · , (4.28)

where D is defined on the generators by

Df =
∑

i

ci ⊗ [φi , f ]

Dci = −1
2

∑
j,k

fij
k cj ∧ ck .

Hence, for the case of a Poisson group action, the classical Lie algebra co-
homology is just the Lie algebra cohomology H(g; C∞(Mo)). Furthermore,
as shown in [13], if the action of G is free and proper, this is isomorphic to

C∞(M̃)⊗HdR(G), where HdR(G) is the real de Rham cohomology of the Lie
group G.
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§5 OUTLOOK AND SOME FURTHER RESULTS

In this paper we have described symplectic reduction from a homologi-

cal point of view. Although the motivation stemmed from perhaps the sim-

plest case of symplectic reduction—namely when M̃ is indeed a symplectic

manifold—the construction goes through even in the singular case. In fact,

perhaps the most encouraging feature of this approach is that it allows one to

treat the singular case at the same level as the non-singular one. In that sense

it accomplishes the same thing as the formalism of [8] with the important

difference that the cohomological description is easier to work with than the

normalizer N(J). This is particularly evident when it comes to the quantiza-

tion problem. In fact, the quantization of the reduced system is no harder than

the quantization of the original system C∞(M), since
∧

(V ⊕ V∗) is straight-

forward to quantize: one merely passes to the Clifford algebra Cl (V⊕ V∗) as

described, for example, in [3].

The quantization of constrained systems is, at least from the point of view

of physics, the area where BRST cohomology plays its most relevant role. But,

although it has been used successfully in many different systems, it is still on

a rather shaky logical basis. In particular, there are no definite results inves-

tigating when the BRST quantization of a symplectic manifold agrees with

the quantization of its symplectic reduction. The formalism described in this

paper opens the possibility of answering this question by exploiting the nat-

ural Poisson structure of BRST cohomology. It is natural to expect that any

quantization scheme that is based purely on the Poisson structure of C∞(M)

can be extended to quantize the BRST cohomology theory. One such method

is geometric quantization. In [14] and [15] we have started to formalize BRST

quantization within this framework. In particular we have shown that, at least

for finite dimensional systems, prequantization and reduction commute. An-

other quantization method that exploits the Poisson structure is the method of

Poisson deformations. It would be interesting to define a BRST quantization

in this way. A most desirable consequence of this approach would be to state

the conditions under which the deformed Poisson brackets before and after re-

duction correspond. Another intriguing aspect of quantum BRST cohomology

lies not so much in quantization but in the intrinsic quantum description of

BRST cohomology in the context of non-commutative differential geometry.

The non-commutative versions of all the ingredients for the construction of

the BRST cohomology exist. Thus the difficult aspects of such a theory would

only lie in its physical interpretation.

It is perhaps worth noticing that the construction in section 2 of a projec-

tive resolution for C∞(Mo) holds provided Mo is Φ−1(0) for 0 a regular value

of a smooth map Φ : M → Rk. In particular, in the case where M is sym-

– 27 –



plectic and the components of Φ correspond to second class constraints, this
gives a resolution for the functions on the symplectic manifold Mo. It would
be very interesting to investigate the possibility of quantizing this resolution,
since it may provide a clue as to the covariant quantization of systems of sec-
ond class constraints without the need to solve for the constraints explicitly as
it is usually the case.

On the mathematical side, there are interesting extensions to the case
which can be investigated such as the case of infinite-dimensional symplectic
manifolds modeled, for instance, on Banach spaces; and to supermanifolds in
the sense of Kostant.

Finally, we comment briefly on the extension to the case where the con-
straints are not regular. In this case the role of the Koszul resolution is played
by the Tate resolution [16]. Roughly speaking one adds chains to the Koszul
complex in order to kill whatever cohomology there is in positive dimension.
A BRST cohomology theory can be constructed in this case along similar lines
to the regular case. This has recently been done in [17]. Choosing constraints
appropriately, it contains the case where Mo has a non-trivial normal bundle
and therefore cannot be described globally as the zero locus of a collection of
smooth functions such that zero is a regular value of this collection.

REFERENCES

[1] I. A. Batalin and G. A. Vilkovisky, Relativistic S Matrix of Dynamical
Systems with Boson and Fermion Constraints, Phys. Lett. 69B (1977)
309.

[2] D. McMullan, Yang-Mills Theory and the Batalain-Fradkin-Vilkovisky
Formalism, J. Math. Phys. 28 (1987) 428.

[3] B. Kostant and S. Sternberg, Symplectic Reduction, BRS Cohomology,
and Infinite Dimensional Clifford Algebras, Ann. of Phys. 176 (1987) 49.

[4] A.D. Browning and D. McMullan, The Batalin, Fradkin, and Vilkovisky
Formalism for Higher Order Theories, J. Math. Phys. 28 (1987) 438.

[5] M. Henneaux, Hamiltonian Form of the Path Integral for Theories with
a Gauge Freedom, Phys. Reports 126 (1985) 1.
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[8] J. Śniatycki and A. Weinstein, Reduction and quantization for singular
moment mappings, Letters in Math. Phys. 7 (1983) 155.

– 28 –
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Mat. France 78 (1950) 65.

[11] S. Lang, Algebra, (Addison–Wesley, 1984).

[12] R. Bott and L. Tu, Differential Forms in Algebraic Topology, (Springer
1982).

[13] J. M. Figueroa-O’Farrill, Topological Characterization of Classical BRST
Cohomology, Comm. Math. Phys. 127 (1990) 181.

[14] J. M. Figueroa-O’Farrill and T. Kimura, Geometric BRST Quantization
I: Prequantization, Comm. Math. Phys. 136 (1991) 209.

[15] J. M. Figueroa-O’Farrill, and T. Kimura, Geometric BRST Quantization,
(Stony Brook Preprint, ITP-SB-89-21).

[16] J. Tate, Homology of Noetherian Rings and Local Rings, Ill. J. Math. 1
(1957) 14.

[17] J.M.L. Fisch, M. Henneaux, J. Stasheff, and C. Teitelboim, Existence,
Uniqueness and Cohomology of the Classical BRST Charge with Ghosts
of Ghosts, Comm. Math. Phys. 120 (1989) 379.

– 29 –


