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Abstract

Exact solutions to the Einstein field equations are obtained for a static
configuration consisting of two regions of different energy density. These
regions correspond to two different expectation values of a scalar Higgs
field in the context of a GUT phase transition similar to that of the infla-
tionary scenario. The two regions are separated by a “wall” of negligible
thickness. These solutions constitute the necessary initial conditions to
analyze the time evolution of the system, task which will be explored in
further research.
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1 Introduction

The effort to understand the universe
is one of the very few things that lifts

human life a little above the level of farce,
and gives it some of the grace of tragedy.

Steven Weinberg

Cosmology is probably the oldest of the sciences. Ever since the beginning
of civilized life on this planet, there have always existed men who have devoted
their intellect to understanding the cosmos. A simple glance above during a
clear starry night gives us a clue as to why this is so. Many models —scientific
or otherwise— have been proposed in order to bring about order to this area,
but it was not until the advent of Einstein’s General Relativity, that we actu-
ally possessed a working theory to predict and examine the macroscopic phe-
nomenology of gravity. Ever since many models have been put forward which
attempt to represent the overall structure of the entire universe, concentrating
only on the very large-scale features.

Today the most widely accepted cosmological model is the so-called hot big
bang model, which we will hereafter denominate by the “standard model.” In
the following sections we will introduce the main features of this model and we
will look at its main problems. We will then explore the so-called inflationary
scenario as a possible solution to these problems, concentrating mainly in the
“new” inflationary model, a slight variation of the original work. Finally, we will
motivate the present work within that context.

1.1 The Standard Model

The hot big bang model treats the universe as a perfect fluid (gas) which is both
homogeneous and isotropic. Hence it can be described (in comoving coordin-
ates1) by the Robertson-Walker metric2

d s2 =−d t 2 +R2(t )

(
dr 2

1−kr 2
+ r 2(dθ2 + sin2θdφ2)

)
, (1.1)

where r and R(t ) have been scaled in such a way that k takes on the values
+1,0 or −1, according to whether it describes a closed, flat or open universe,
respectively.

1These are such that events, although in relative motion, have fixed spatial coordinates. This
is analogous to lattice points in a permanently labeled but expanding (or contracting) Cartesian
lattice.

2I have set c = 1 throughout.
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The evolution of R(t ) is determined by the Einstein field equations

d 2R

d t 2
=−4π

3
G(ρ+3p)R , (1.2a)

and

H2 + k

R2
= 8π

3
Gρ , (1.2b)

where p is the fluid’s pressure, ρ is its density and H ≡ 1
R

dR
d t is the Hubble “con-

stant.” It is clear from equation (1.2b) that the condition k = 0 defines a critical

density ρc ≡ 3H2

8πG necessary for our space to be flat. If k = +1, then ρ > ρc and
consequently at some time t , H = 0. That is, there is enough gravitational self-
attraction to stop the universe’s expansion. Conversely, if k = −1, H will ever
vanish. Let us, then, define the quantity Ω ≡ ρ

ρc
and let us rewrite equation

(1.2b) as follows
Ω−1

Ω
= 3k

8πGρR2
. (1.3)

In order to fully describe the dynamics of the system, we need an equation
of state F(p,ρ) = 0 governing our perfect fluid. There are two different cases
worth analyzing. These cases are thought to represent two different stages of
our “post-early” universe. During the early stages of our “post-early” universe,
the temperature (and, hence, the thermal energy) of the fluid was so high that
the thermal excitation prevented the existence of bound states. The particles
were, thus, free. Therefore, the mass density is dominated by the thermal radi-
ation of effectively massless (since the thermal energy is much larger than the
rest mass energy) particles at temperature T, whence

ρ= cT4 , (1.4)

where c is a constant depending on the number of species of effectively mass-
less particles. Hence, we call this era radiation-dominated. Since the expan-
sion is supposed to take place adiabatically (i.e., the system remains in thermal
equilibrium), we obtain a further relation

d

d t
(R(t )T) = 0 . (1.5)

Using these relations as the equations describing our state, we can substi-
tute them into equations (1.2) yielding3

R(t ) = br t
1
2 , (1.6)

3We have approximated these results by setting k = 0 in (1.2b) since we will see that for the
present experimental values of k, it could not have been very far from 0 at that time.
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where br is a constant.
After some time (approximately 105 years), the temperature was low enough

for neutral atoms to form (the time of Hydrogen recombination) and the mass
density was now beginning to be dominated by the matter in the universe.
Assuming that there is no net mass flux through any hypothetical comoving
sphere of radius r R(t ), we are lead to the analogous equation to (1.4) for this
matter-dominated era

d

d t

(
ρR3)= 0 . (1.7)

Assuming that the universe is still expanding adiabatically, we can make use of
equation (1.5) to obtain the following result

R(t ) = bm t
2
3 , (1.8)

where bm is a constant.
Although in the next section we will examine the main problems of the

standard model, it is also important to remark its successes. The standard
model manages to explain the cosmic background radiation, the observed cos-
mological redshift and the primordial abundance of the light elements in good
agreement with experimental data.

1.2 Problems of the Standard Model

With the relations obtained in the last section we are, in principle, equipped to
extrapolate back in time the experimental results we obtain today. We do have
a limit, however. The hot big bang model, and for that matter any (general)
relativistic cosmological model, can only aspire to be valid from some time tP

onwards. The reason being, that for any earlier times quantum-gravitational
effects are expected to dominate, and today a quantum theory of gravity is
nowhere in sight. This time is denominated the Planck era, and it is defined
as the time when the thermal energy of the universe is comparable to the rest

mass energy of a particle having a mass MP ≡ G
1
2 , where G is the gravitational

coupling constant.
This, however, is the least important of the problems facing the standard

model. In this section we will examine the three major problems facing the hot
big bang model: the horizon, flatness, and monopole production problems. It
is precisely the existence of these three problems which motivates the inflation-
ary scenario.

First of all we shall look into the monopole problem. The standard model
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predicts a tremendous overproduction of magnetic monopoles.4 In order to
understand how this happens, we must first mention that in the context of
grand unified theories (GUTs), magnetic monopoles are in fact topologically
stable knots in the expectation value of the Higgs field.5 Assuming that the
Higgs field has a correlation length ξ, the Kibble relation6 gives a rough estimate
of the density of monopoles

nM ≈ 1

ξ3
. (1.9)

When the universe cools below the critical temperature7 Tc ≈ 1014 GeV, it be-
comes (thermodynamically) favorable for the Higgs field expectation value to
align over large distances. However it takes time for these correlations to be
established. Causality alone implies8 that

ξ/ ℓH , (1.10)

where ℓH, the Horizon length, is defined to be the maximum distance a light
pulse could have traveled since the beginning of time, and it is found to be 2t
in the radiation-dominated era. This relation gives us an approximate lower
bound on nM, and allows us to calculate the ratio nM

s , where s is the entropy
density

nM

s
' 10−13 . (1.11)

Assuming an adiabatic expansion and neglecting monopole-antimonopole an-
nihilations,9 we conclude that this ratio should still be approximately the same
today. However this implies that Ω' 3×1011, and this is clearly wrong, since,
among other things, it implies that the age of the universe today has an upper
bound of ≈ 3×104 years. This fact, reinforced by the lack of experimental evid-
ence for the existence of magnetic monopoles makes it necessary to search for
some scenario in which the production of magnetic monopoles is suppressed.

The second problem we will analyze is the so-called horizon problem, which
was originally remarked by Wolfgang Rindler10 as early as 1956. It is known ex-
perimentally11 that there exists a cosmic background radiation of approxim-

4J. P. Preskill, Phys. Rev. Lett. 43, 1365 (1979); Ya. B. Zeldovich and M. Y. Khlopov, Phys. Lett.
79B, 239 (1978).

5The Higgs field, although treated like a scalar, is in fact a multicomponent field that can
easily possess a non-trivial topology.

6T. W. B. Kibble, J. Phys. A9, 1387 (1976).
7This temperature corresponds to the energy below which the strong and electro-weak

forces become distinguishable.
8A. H. Guth and S.-H. Tye, Phys. Rev. Lett. 44, 631, 963 (E); M. B. Einhorn, D. L. Stein, and D.

Toussaint, Phys. Rev. D21, 3295 (1980).
9See Ref. 4; T. Goldman, E. W. Kolb, and D. Toussaint, Phys. Rev. D23, 867 (1981).

10W. Rindler, Mon. Not. R. Astron. Soc. 116, 663 (1956).
11This was discovered by Arno Penzias and Robert Wilson in 1964.

7



ately 2.7◦K. Moreover, it was observed that this background radiation is iso-
tropic to one part in 103. This fact implies that at the time of the emission (or
decoupling) of this radiation (i.e., the time of hydrogen recombination) the uni-
verse was in thermal equilibrium. However, if we extrapolate back in time what
today constitutes the observable universe, we notice that, at the time of the ra-
diation decoupling, it was approximately 90 horizon lengths.12 Furthermore, at
the time of the SU(5) phase transition, approximately 10−35 seconds after the
big bang, the size of the region that must be assumed to be at thermal equilib-
rium is on the order of 1083 horizon lengths.13 Therefore the standard model
assumes as its initial conditions a thermal equilibrium over many causally dis-
connected regions. One must, thus, assume that whatever forces caused this
equilibrium were capable of violating causality.

Last, let us look at the flatness problem, which was first pointed out by
Robert Dicke and James Peebles in 1979.14 The experimental determination
of Ω gives us range of possible values. Today we feel we have enough evidence
to support the fact that

0.1 ≤ Ω ≤ 2 . (1.12)

Therefore we cannot conclude experimentally the ultimate fate of the universe.
It is interesting to notice that these values closely sandwich the value Ω = 1.
This is especially worrisome when we realize that this precise value is a point of
unstable equilibrium within the context of the standard model. Furthermore,
the only time scale which appears in the equations of a radiation-dominated
universe is the Planck time, M−1

P ≈ 5×10−44 seconds. A typical closed universe
will reach its maximum size on the order of this time scale, whereas a typical
open universe will evolve to a value of ρ≪ ρc . Therefore for a universe to have
evolved for ≈ 1010 years to a value of Ω ≈ 1, it had to be very close to 1 in the
past. Particularly, at T = 1 MeV, Ω had to be equal to 1 to one part in 1015; and
at the time of the GUT phase transition, when T ≈ 1014 GeV, Ω had to equal 1 to
one part in 1049! This very fine-tuning of parameters must be input as an initial
condition to the model.

Given that the horizon and flatness problems depend purely on the initial
conditions, it could be thought that, in principle, a working quantum theory of
gravity could solve them. However we will see in the next section that the infla-
tionary scenario manages to solve these two problems and also the monopole
production problem using only well established physical processes, while at the

12A. H. Guth, in Asymptotic Realms of Physics: Essays in Honor of Francis E. Low, edited by
A. H. Guth, R. L. Jaffe, and K. Huang (MIT Press, Cambridge, 1983).

13See Ref. 15
14R. H. Dicke and P. J. E. Peebles, in General Relativity: An Einstein Centenary Survey, edited

by S. W. Hawking and W. Israel, (Cambridge University Press, Cambridge, England, 1979).
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same time providing the necessary initial conditions for the standard model to
retain its initial successes.

1.3 The Inflationary Scenario

Under a modest title, the inflationary universe made its debut in January 1981.15

Created by Alan Guth, a particle theorist, the inflationary model of the universe
managed to blend cosmology with recent advances in particle physics, espe-
cially in the area of unified gauge theories. Given that these theories are of
paramount importance to the inflationary scenario I will briefly review them
below.

1.3.1 Grand Unified Theories: an Overview

A grand unified theory is symmetric under some simple (i.e., containing no in-
variant subgroups) gauge group G which is a valid symmetry at the highest en-
ergies. As the energy is lowered the theory undergoes a series of “spontaneous”
symmetry breakings into successive subgroups, the last two being the group
describing the Weinberg-Salam unification, and the group responsible for the
unification of QCD and electromagnetism. In order to understand this process
better we shall describe what is meant by spontaneous symmetry breaking.

Consider a theory invariant under some gauge group16 G . The vacuum
(lowest energy) state of the system described by this theory might not be mani-
festly invariant under G . We then say that the symmetry of the theory is spon-
taneously broken. A particularly illustrative example is the field theory consist-
ing of a self-interacting (ϕ4) massive complex scalar field coupled to a vector
meson field. The theory is invariant under U(1). When we consider the va-
cuum state, several cases arise. In one of these cases, the vacuum state does
not correspond to ϕ= 0, but lies on a ring |ϕ| =ϕo . Expanding the Lagrangian
density around the new minimum destroys the gauge invariance of the theory,
and, moreover, the vector field gains a mass term. This is known as the Higgs
mechanism and these scalar fields are known as the Higgs fields. An analogous,
but slightly more complicated, Higgs field17 breaks the GUT symmetry.

15A. H. Guth, Phys. Rev. D23, 347 (1981); For a general review about the inflationary scenario
much along the same lines as this overview, see A. H. Guth, The New Inflationary Universe, in
Proceedings of the XI Texas Symposium on Relativistic Astrophysics (Austin, Texas, December
13-17, 1982), published by the New York Academy of Sciences.

16For a review see, for example, E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973).
17Hereafter I will denote by Higgs field the linear combination of all the Higgs fields that break

the underlying symmetry.
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The simplest working GUT (and the one upon which the current inflation-
ary scenario is based18) was proposed by Howard Georgi and Sheldon Glashow
in 1974 and has SU(5) as the unifying gauge group.19 At energies > 1014 GeV,
the coupling constants for the strong, electromagnetic and weak interactions
are all equal.20 Hence we say that the forces are unified. For lower energies, the
SU(5) symmetry breaks spontaneously into SU(3)× SU(2)×U(1) through the
workings of the Higgs field. Further down in the energy scale, the latter sym-
metry breaks into SU(3)×Uem(1) at ≈ 102 GeV. In the inflationary context we
will only be dealing with the first symmetry breaking.

There are two important predictions of GUTs worth mentioning. First is the
equality of the magnitude of the charges of the electron and the proton, which
can only be achieved in the Weinberg-Salam model by a very fine tuning of the
parameters. The second important prediction is the value of sin2θW , where
θW , the Weinberg angle, is a measure of the relative strengths of the weak and
electromagnetic interactions.

There are three consequences of GUTs that are crucial to cosmology. The
first is the existence of a phase transition at a critical temperature correspond-
ing to the unification energy, which exists because the non-zero expectation
value of the Higgs field is destroyed by thermal fluctuations.21

The second consequence concerns magnetic monopoles. Any GUT based
on a simple gauge group which eventually breaks to SU(3)×Uem(1) will neces-
sarily22 contain magnetic monopoles of the t’Hooft-Polyakov type,23 which are,
as mentioned above, topologically stable knots in the expectation value of the
Higgs field. These monopoles have masses on the order of 1016 GeV.

The third consequence is the non-conservation of baryon number. Minimal

18At this point it is convenient to remark that although the inflationary scenario is depend-
ent for most calculations on the underlying unified theory, it contains an essence all of its own.
Thus, even when SU(5) will be referred as the particle theory upon which the inflationary scen-
ario was originally based, it is crucial to recognize that this scenario is not committed to any one
GUT in particular, but that it comprises a play-ground for particle theories in general. In this
sense the inflationary scenario can be thought of as a test or experiment for particle theories,
having at its disposition a most powerful accelerator: our very own early universe.

19H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1874).
20H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); T. J. Goldman and

D. A. Ross, Phys. Lett. 84B, 208 (1979); Nuc. Phys. B171, 273 (1980).
21D. A. Kirzhnits and A. D. Linde, Phys. Lett. 42B, 471 (1972); S. Weinberg, Phys. Rev. D9, 3357

(1974); L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974); for a review, see A. D. Linde, Rep.
Prog. Phys. 42, 389 (1979).

22See for example the following reviews: P. Goddard and D. I. Olive, Rep. Prog. Phys. 41, 1357
(1978); S. Coleman, The Magnetic Monopole Fifty Year Later , in the Proc. of the International
School of Subnuclear Physics, Ettore Majorana, Erice 1981, ed.

23G. t’Hooft, Nucl. Phys. B79, 276 (1974); A. M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 20, 430
(1974) [JETP Lett. 20, 194 (1974)].
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SU(5) predicts a proton lifetime of the order of 1030 to 1033 years. This implies
that the initial baryon number of the universe may be taken to be zero, and that
the baryon number of the observable universe today may have been generated
dynamically.24

1.3.2 The Inflationary Universe

The inflationary scenario makes no assumptions as to the homogeneity and
isotropy of the early universe. The only starting assumption of the inflationary
scenario is that it is hot (T > 1014 GeV) in at least some places, and that at least
some of the regions are expanding rapidly enough so that they will cool to the
critical temperature Tc before gravitational effects reverse the expansion. In
these hot regions, thermal equilibrium would imply 〈ϕ〉 = 0, where 〈ϕ〉 denotes
the expectation value of ϕ. However this is not the case, since the universe has
not had time to thermalize.25 Consequently, a further assumption is needed,
namely that there exist regions of high energy density with 〈ϕ〉 ≈ 0, and that
some of these regions lose energy with ϕ being trapped in the false vacuum.
By false vacuum we will refer to the field configuration ϕ = 0. The term false
vacuum is traditionally reserved for configurations that are classically stable.
Historically, however, the original inflationary universe consisted of such a re-
gion, where the Higgs field was trapped and from where it escaped through
quantum tunneling, thus forming bubbles of the new phase. In the “new” infla-
tionary universe,26 the potential is now different, so that what we call the false
vacuum is nothing but a barely unstable configuration. Figure 1 compares the
two potentials. The new potential obeys the Coleman-E. Weinberg condition27

∂2V

∂ϕ2

∣∣∣
ϕ=0

= ∂3V

∂ϕ3

∣∣∣
ϕ=0

= 0 . (1.13)

These regions will cool to Tc and, moreover, nucleation rate calculations28

indicate that they will supercool below Tc . The energy density ρ will approach
ρo ≡ V(ϕ= 0). Since this false vacuum is Lorentz-invariant, the energy-momentum
tensor must then have the form

Tµν = ρo gµν . (1.14)

24For a review, see M. Yoshimura, in Grand Unified Theories and Related Topics: Proceed-
ings of the 4th Kyoto Summer Institute, eds. M. Konuma and T. Maskawa (World Scientific,
Singapore, 1981).

25G. Steigman, Proceedings of the Europhysics Study Conference: Unification of the Funda-
mental Interactions II, Erice 6-14 October, 1981.

26A. D. Linde, Phys. Lett. 108B, 389 (1982); A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48,
1220 (1982).

27S. Coleman and E. J. Weinberg, Phys. Rev. D7, 1888 (1973).
28M. Sher, Phys. Rev. D24, 1699 (1981).
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Using our Robertson-Walker metric with k = 0, we obtain

R(t ) = eχt , (1.15)

where

χ=
√

8
3πGρo . (1.16)

(For our parameters, χ≈ 1010 GeV.) This is nothing but de Sitter space. However
the Robertson-Walker metric assumes homogeneity and isotropy, which are
not assumptions in the inflationary scenario. If we, however, consider perturb-
ations about this metric, we find that their behavior is governed by a “cosmo-
logical no-hair theorem,” which states that whenever the energy-momentum
tensor is given by (1.14), then any locally measurable perturbation about the
de Sitter space will be damped exponentially on the time scale of χ−1. The the-
orem seems to hold in the context of linearized perturbation theory,29 and it
is conjectured to hold even for large perturbations.30 Thus, a smooth de Sitter
metric arises naturally, without any need to fine-tune the initial conditions.

As the space continues to supercool and exponentially expand, the energy
density is fixed at ρo . Thus, the total matter energy is increasing. The infla-
tionary model indicates that the false vacuum is the source of essentially all the
matter, energy, and entropy in the observed universe.

This, at a first glance, seems to violate our notions of conservation of en-
ergy. However we can explain this by looking into the conservation law for our
energy-momentum tensor, which is imposed by the Einstein field equations. In
the case of matter (a perfect fluid) and a Robertson-Walker metric, the conser-
vation law reduces to

d

d t

(
R3ρ

)=−p
d

d t

(
R3) . (1.17)

Consequently, if the false vacuum has a large negative pressure, p = −ρo ;
equation (1.18) is satisfied identically, with the energy of the expanding gas in-
creasing due to the negative pressure. If the space were asymptotically Minkowskian
it would be possible to define a conserved total energy (matter plus gravita-
tional). However, in a Robertson-Walker metric, this is only possible, perhaps,
in the case that the total energy vanishes.

This is not as bad as it seems. The conserved quantities of the observed uni-
verse are either 0, or very large, the latter being the case of the baryon number

29J. A. Frieman and C. M. Will, Ap. J. 259, 437 (1982); J. D. Barrow, in Proceedings of the
Nuffield Workshop on The Very Early Universe, eds. G. W. Gibbons, S. W. Hawking, and S. T.
C. Siklos (Cambridge University Press, Cambridge, England); W. Boucher and G. W. Gibbons
ibid.; P. Ginsparg and M. J. Perry, Semiclassical Perdurance of De Sitter Space, Harvard preprint
HUTP-82/1035 (1982).

30G. W. Gibbons and S. W. Hawking. Phys. Rev. D15, 2738 (1977); S. W. Hawking and I. G.
Moss, Phys. Lett. 110B, 35 (1982).
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and the matter energy. However, as we saw earlier, GUTs predict the noncon-
servation of baryon number. This seems to imply that the observed universe is
entirely devoid of conserved quantities. Therefore it is very tempting to believe
that the universe began from nothing,31 or almost nothing. In fact, using the
inflationary mechanism, it is possible to “create” the entire observed universe
starting with a total matter energy of about ten kilograms.

Within the region of space which is supercooling onto a de Sitter space, the
Higgs field will undergo fluctuations of thermal and/or quantum character. At
some point these fluctuations will become large enough, as to allow us to de-
scribe their evolution in a classical fashion. The size and shape of these fluctu-
ation regions are presumably irregular,32, but presumably homogeneous on a
length scale of order χ−1.33

The Higgs field then “rolls” down the potential of Figure 1b, obeying the
classical equation of motion

∂2ϕ

∂t 2
+ 3

R

dR

d t

∂ϕ

∂t
=−∂V

∂ϕ
. (1.18)

If the initial fluctuation is small, the the Coleman-E. Weinberg condition will
imply that the rolling begins very slowly. As long as ϕ ≈ 0 the energy density ρ

remains close to ρo , and the exponential expansion continues. The exponential
expansion takes place on a time scale χ−1 which is short compared to the time
it takes for the field to roll down the potential. For the inflationary scenario to
work, we require that the length scale of homogeneity be stretched from χ−1 to
about 10cm before the Higgs field rolls off the plateau. This corresponds to an
expansion factor of 1025.

When the Higgs field reaches the steep part of the potential, it falls quickly
to the bottom and oscillates about the minimum. This motion occurs much
more rapidly than the initial expansion. The oscillations of the Higgs field are
quickly damped by the couplings to the other fields, and the energy is rapidly
thermalized.34 The oscillations of the Higgs field correspond to coherent states
of Higgs particles, whereas the damping corresponds to the decay into other
species. The release of energy ( i.e., the latent heat of the phase transition) raises
the temperature to ≈ 1014 GeV.

31A. Vilenkin, Phys. Lett. 117B, 25 (1982); The Birth of Inflationary Universes, Tufts University
preprint (1982).

32A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
33This length scale is on the order of 10−11 proton diameters; the entire observed will evolve

from a region at most this size.
34A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982);

L. F. Abbott, E. Farhi, and M. B. Wise, Phys. Lett. 117B, 29 (1982); A. D. Dolgov and A. D. Linde,
Phys. Lett. 116B, 329 (1982).
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From here on the standard scenario ensues, including the production of a
net baryon number.

1.3.3 Solutions to the Cosmological Problems

We shall now see how the inflationary scenario overcomes the problems facing
the standard model. Let us first look at the monopole problem. Since the Higgs
field is correlated throughout the initial fluctuation region, and the exponential
expansion increases the Higgs correlation length ξ so that it is greater than 1010

light- years, the Kibble relation is totally ineffective. This mechanism will pro-
duce at most one monopole.35 The horizon problem is clearly avoided in this
scenario, since the entire universe evolves from a fluctuation region that was
causally connected. The exponential expansion causes this very small region
to encompass the whole observed universe.

The flatness problem is avoided by the dynamics of the exponential expan-
sion of the fluctuation region. As the Higgs field begins to roll very slowly down
the potential, the evolution of the metric is governed by the energy density ρo .
Assuming that the fluctuation region can be described locally by a Robertson-
Walker metric, then the scale factor evolves according to (1.2b)

H2 = 8π

3
Gρo − k

R2
. (1.19)

As the field rolls down the plateau, the first term of the right hand side of (1.19)
is almost constant. While the second term is decreased by at least a factor 1050,
thus the initial conditions necessary for the standard model in order to predict
today’s observed values for Ω. The inflationary model further predicts, that the
value of Ω today is extraordinarily close to 1.

1.3.4 Problems of the Inflationary Scenario

Not everything is perfect with the inflationary scenario, however. There is still
one main problem, namely that of the calculation of density fluctuations. It is
evident that the universe is not entirely homogeneous, given that we exist. At
small scales, the universe is not homogeneous, and these small-scale inhomo-
geneities should be explained by density fluctuations arising from quantum
fluctuations in the Higgs field. In the current model of the inflationary universe
the density fluctuations of the universe are mis-predicted by approximately five
orders of magnitude. This is known as the smoothness problem, and it plagues
the standard model also.

35Experimental data can account for at most one monopole also.
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This is not an inherent problem of the inflationary scenario, since it de-
pends on the underlying particle theory. As we had pointed out above, inflation
depends on the underlying GUT for most calculations, but it is not committed
to any one in particular. So there is still hope that a GUT36 will be found that
solves the smoothness problem, while retaining all the other successes of the
inflationary scenario.

1.4 Motivation

The current work stems from this last problem. The research on the inflation-
ary scenario with homogeneous initial conditions has been extensive in the last
couple of years. However, still we do not have a good understanding of what
happens when the initial conditions are not homogeneous. And this is what
probably occurred in the early universe. Nevertheless, the problem is by far
non-trivial, so we must start by analyzing the simpler cases, those of spherical
and planar symmetry. In this thesis we analyze the plane-symmetric configur-
ation.

1.4.1 Definition of problem

We propose to investigate a region of space which is locally endowed of planar
symmetry. We are considering a region of false vacuum embedded in a much
larger region of true vacuum. The system is, by construction, symmetric about
the origin, so that will only speak of one half of the space, while it is implicit
that the same behavior is expected in the other half. The two regions are sep-
arated by a wall whose thickness we will allow to vanish in order to simplify
the initial calculations. In one region the energy density of the Higgs field is ρo ,
corresponding to the false vacuum, while in the other region, the energy dens-
ity vanishes, corresponding to the true vacuum. We will solve for a physically
sensical solution that will serve as an initial configuration for further research
on the time evolution of the system.

2 The action principle

This problem can be treated classically, and as is the case with classical field
theories we must, first of all, set up a suitable action functional, varying which
we hope to obtain the corresponding “equations of motion.” In our case we
have two independent field variables which are, however, coupled. We have

36In fact, some supersymmetric theories do predict this correctly, but they have other prob-
lems.

15



a scalar Higgs field whose dynamics will affect and be affected by the gravita-
tional field, i.e., the dynamics of the (metric) tensor field.

Although the system is coupled, we can separate our action functional into
two separate actions: one of them being independent of the scalar field vari-
able. Consequently

A =AH +AG, (2.1)

where the subscripts H , G refer to the Higgs and gravitational fields respect-
ively.

The action functional for the Higgs field is written as usual in terms of the
Lagrangian density37

AH =
∫

L
p

g d 4x , (2.2)

where g =−Det (gµν) and it is included in order to make the integral (i.e., the ac-
tion functional) a world invariant. The Lagrangian density for our scalar Higgs
field is the usual for a real scalar field 38

L =−1
2 ∂

µϕ∂µϕ−V(ϕ) . (2.3)

In the case of the gravitational field we set the usual Hilbert action given by

AG =− 1

16πG

∫
R
p

g d 4x , (2.4)

where R is the curvature scalar obtained by contracting the Ricci tensor and G
is Newton’s gravitational constant.

In order to obtain the field equations we must vary the action functional
with respect to the corresponding independent field variables and impose the
condition that the variation vanish. In the case of the scalar Higgs field, the only
action functional which depends on ϕ is AH. Therefore,

δAH =
∫

d 4x
p

g

(
δL

δϕ
δϕ+ δL

δ∂µϕ
δ(∂µϕ)

)
= 0 , (2.5)

where the δ...
δ... denote functional derivatives. Using equation (2.3) the variation

becomes

δAH =−
∫

d 4x
p

g

(
∂V

∂ϕ
δϕ+∂µϕδ(∂µϕ)

)
= 0 . (2.6)

37A note on notation: ∂µ ≡ ∂
∂xµ where xµ = (t , x). In our convention the Minkowski metric

η≡ di ag (−1,1,1,1) and hence xµ = (−t , x).
38A repeated pair of covariant (down) and contravariant (up) indices implies summation over

all possible values of that index. In this case we sum from 0 to 3.
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Integrating the second term by parts and making use of the trivial identity

δ(∂µϕ) ≡ ∂µ(δϕ) (2.7)

we obtain

δAH =
∫

d 4x
p

g

(
1p
g
∂µ

(p
g∂µϕ

)− ∂V

∂ϕ

)
δϕ= 0 , (2.8)

where we have used the fact that there exists a conserved current in order
to make our “surface” term vanish.

Since δAH = 0 for any variation δϕ , the fundamental lemma of the calculus
of variations implies that

Dµ∂
µϕ− ∂V

∂ϕ
= 0 . (2.9)

where Dµ ≡ ∂µ + 1
2∂µ ln g , is the covariant derivative operator acting on a

contravariant vector. Rewriting this in terms of the curved-space D’Alembertian,
we obtain the equation of motion for our scalar Higgs field

�ϕ= ∂V

∂ϕ
. (2.10)

In order to obtain the gravitational field equations we impose that the ac-
tion be stationary with respect to the variation of the metric tensor. Now both
action functionals will have to be varied. The variation of AG will produce after
lengthy algebra

δA = 1

16πG

∫
d 4x

p
g

(
Rµν− 1

2 gµνR
)
δgµν +δAH = 0 . (2.11)

Following Weinberg39 we define the energy-momentum tensor Tµν as the
functional derivative of AH with respect to the (metric) tensor field. Consequently

δAH = 1
2

∫
d 4x

p
g Tµνδgµν . (2.12)

Substituting equation (2.12) into (2.11) and multiplying by 16πG yields

δA =
∫

d 4x
p

g
(
Rµν− 1

2 gµνR+8πGTµν
)
δgµν = 0 . (2.13)

Again this must be true for any δgµν , and hence the fundamental lemma of
the calculus of variations implies

Rµν− 1
2 gµνR =−8πGTµν , (2.14)

39S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972) p.360.
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which are the Einstein Field Equations written in their fully covariant form.
We still have to calculate the energy-momentum tensor for our system. Us-

ing equation (2.12) we arrive at the following expression for Tµν :

Tµν = 2p
g

δ

δgµν

(p
g L

)
. (2.15)

Using the chain rule and the following identity

δ ln
p

g

δgµν
= 1

2 gµν , (2.16)

equation (2.15) becomes

Tµν = gµνL +2
δL

δgµν
. (2.17)

Since the only term in the Lagrangian density which depends on the metric
tensor is the “kinetic” term, the derivative can be easily evaluated. Using the
following identity

δg ρσ

δgµν
=−g ρµgσν , (2.18)

the energy-momentum tensor is found to be

Tµν = ∂µϕ∂νϕ− gµν
(1

2∂ρϕ∂ρϕ+V(ϕ)
)

. (2.19)

For our purposes it will be more convenient to rewrite equation (2.14). Let
us take the trace of both sides of the equation. This yields the following relation
between the curvature scalar R and the trace of the energy-momentum tensor
T:

R = 8πGT . (2.20)

Substituting for R in equation (2.14) and rearranging terms, we obtain

Rµν =−8πG
(
Tµν− 1

2 gµνT
)

. (2.21)

Finally we define Tµν ≡ Tµν− 1
2 gµνT and our field equations take their final

form
Rµν =−8πGTµν . (2.22)
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3 Symmetry considerations

The Einstein field equations are generally ten independent non-linear partial
differential equations. It is only by imposing certain symmetries that we can
reduce the number of equations — although, generally, not their non-linear
character. These symmetry requirements constitute the initial Ansatz and gen-
erally define the problem. In our case we define our symmetry as planar and by
that we mean that our field variables should be invariant under the following
set of transformations

1. Translations in the y-axis,

2. Translations in the z-axis,

3. Rotations in the y-z plane.

This Ansatz will restrict the form and functional dependence of our inde-
pendent field variables. This set of symmetry transformations form a 3-parameter
Lie group of isometries —since they leave the metric invariant— known as the
Euclidean group in two dimensions , E (2). The three parameters of this group
correspond to the three quantities needed to specify the magnitude of the trans-
formations. It can be shown that there is a direct and natural relationship between
the group of isometries and the inherent (i.e., coordinate-independent) sym-
metries of the space.

Imagine we take a point in our space and we operate on it successively with
any single one infinitesimal transformation. The locus of this point will de-
scribe a curve which is continuous since the group is. If we repeat this proced-
ure with other points in the space we will obtain a set of paths congruent to
each other —a congruence of curves. If the space is symmetric with respect to
that particular transformation then any field defined in that space will be un-
changed as we move it along any one of the congruences. The precise mathem-
atical construct which tells us how a given field changes as it is dragged along
such congruence is called the Lie derivative and it is taken with respect to the
vector defining the congruence. In the case of a symmetry transformation the
Lie derivative vanishes. In that case the vector defining the congruence is called
a Killing vector, and the restriction that the Lie derivative vanishes is called
Killing’s equation. Naturally the vectors defining the congruence are nothing
but the generators of the Lie group, i.e., the infinitesimal isometries.

These are found to be
{

e y ,ez , yez − ze y
}
. Using a coordinate (i.e., commut-

ing) basis we can express these generators as
{
∂y ,∂z , y∂z − z∂y

}
. These can be

seen to satisfy the following commutation relations

[ξ1,ξ2] = 0 , [ξ1,ξ3] = ξ2 , [ξ3,ξ2] = ξ1 , (3.1)
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where the {ξn} ≡ {
∂y ,∂z , y∂z − z∂y

}
.

Imposing the E (2) symmetry and recognizing the Killing vectors of our space
as the above generators, we can obtain the most general form of our field vari-
ables by direct application of Killing’s equation.

In the case of the scalar Higgs field, Killing’s equation is very simple since the
Lie derivative of a scalar field reduces to the directional derivative of the field
along the congruence defined by our Killing vectors. Symbolically this reduces
to

∂yϕ= ∂zϕ= 0 . (3.2)

This implies that ϕ is independent of y and z , i.e., ϕ=ϕ(x, t ).
In the case of the metric tensor the Lie derivative is more complicated and

it is defined by
Lξn

gµν ≡ ξσn∂σgµν+ gµσ∂νξ
σ
n + gσν∂µξ

σ
n . (3.3)

Imposing that this vanish we find the following functional dependencies

∂y gµν = ∂z gµν = 0 , (3.4)

and the following restrictions on the general form of the metric

gzz = g y y , (3.5)

and
gzµ = 0 ∀µ ̸= z , g yµ = 0 ∀µ ̸= y . (3.6)

Therefore, our metric is independent of y and z and our line element has
the following general form

d s2 = g t t d t 2 + gxxd x2 +2gxt d x d t + g y y
(

d y2 +d z2 )
. (3.7)

However since gµν is symmetric we can always diagonalize the x-t submatrix
by redefining x and t accordingly. Therefore, the final form of our most general
plane-symmetric line element will be

d s2 =−A(x, t )d t 2 +B(x, t )d x2 +C(x, t )
(

d y2 +d z2 )
. (3.8)

where A,B,C are the unknown functions for our metric.
With these results we can proceed to solve the field equations. However,

before doing so, two remarks are in order.
In the first place, since the Ricci tensor is constructed fully from the metric

tensor, it obeys Killing’s equation. Therefore we conclude that we will only have
at most four independent components of the Ricci tensor Rxx ,Rt t ,Ry y and,
possibly, Rxt since we must recall that the procedure by which we obtained a

20



diagonal metric was a redefinition of the coordinates and not by direct applic-
ation of Killing’s equations.

Finally, according to the generalization of Birkhoff’s theorem 40 spaces ad-
mitting a 3-parameter group of isometries have an additional Killing vector (i.e.,
admit a 4-parameter group), provided that the energy-momentum tensor sat-
isfies certain conditions. Furthermore, in the case that Tµν does not depend on
time —which is true in both our boundary conditions— the space has a fourth
Killing vector which is time-like. Therefore it is possible to find a coordinate
system in which the metric is static, i.e., independent of the time coordinate.

40See for example, Hubert Goenner, Comm. math. Phys. 16, 34-47 (1970).
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4 The field equations

In the last section we found the functional dependence of our field variables.
We shall now construct the field equations explicitly taking our symmetry An-
satz into consideration.

4.1 Scalar Field

The equation of motion of the scalar Higgs field was found in section 2 and is
given by equation (2.10). Since ϕ=ϕ(x, t ), equation (2.10) reduces to

(
∂x + 1

2∂x ln g
)(

g xx ∂ϕ

∂x

)
+ (

∂t + 1
2∂t ln g

)(
g t t ∂ϕ

∂t

)
=−∂V

∂ϕ
. (4.1)

and since our metric is diagonal, i.e., gµµ = 1
gµµ we can use the general form

of the metric given by (3.8) to rewrite the equation of motion in the following
fashion

1

B

∂2ϕ

∂x2
− 1

A

∂2ϕ

∂t 2
+

(
At

A
− 1

2

∂

∂t
ln

(
ABC2)) 1

A

∂ϕ

∂t
−

(
Bx

B
− 1

2

∂

∂x
ln

(
ABC2)) 1

B

∂ϕ

∂x
=−∂V

∂ϕ
.

(4.2)

4.2 Gravitational Field

We shall find the explicit form of the Einstein field equations taking into ac-
count the symmetries we imposed. In order to calculate the Ricci tensor we
must first compute a series of geometrical objects which comprise the ma-
chinery of General Relativity. Let us define the affine connections of our Rieman-
nian space in the following way

Γλ
µν ≡ 1

2 gλσ
(
∂µgσν+∂νgµσ−∂σgµν

)
. (4.3)

These objects are symmetric under the interchange of its lower indices, but
they are not tensors since they transform in a different manner. From the met-
ric given by equation (3.8) we find the following linearly independent non-
vanishing affine connections

Γt
t t =

At

2A
, Γt

xx = Bt

2A
, Γt

y y = Γt
zz =

Ct

2A
,

Γx
t t =

Ax

2B
, Γx

xx = Bx

2B
, Γx

y y = Γx
zz =−Cx

2B
, (4.4)
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Γt
t x = Ax

2A
, Γx

t x = Bt

2B
, Γy

t y = Γz
t z =

Ct

2C
, Γy

x y = Γz
xz =

Cx

2C
.

Next we define the Riemann curvature tensor, Rκ
µλν

by the following relation

Rκ
µλν ≡−∂λΓκ

µν−Γσ
µνΓ

κ
σλ+∂νΓ

κ
µλ+Γσ

µλΓ
κ
σν . (4.5)

However, we are not interested in the Riemann curvature per se but in its con-
traction: the Ricci tensor, which we define as follows

Rµν ≡ Rρ
µρν =−∂ρΓρ

µν−Γσ
µνΓ

ρ
σρ+∂νΓ

ρ
µρ+Γσ

µρΓ
ρ
σν . (4.6)

Since this tensor is symmetric we find only four independent components which
we list below

Rt t = Bt t

2B
+ Ct t

C
− B2

t

4B2
− C2

t

2C2
− Axx

2B
+ A2

x

4AB
− At Bt

4AB
− At Ct

2AC
− AxCx

2BC
+ AxBx

4B2
, (4.7a)

Rxt = Cxt

C
− Ct Cx

2C2
− AxCt

2AC
− Bt Cx

2BC
, (4.7b)

Rxx = At Bt

4A2
−Bt t

2A
+ B2

t

4AB
−Bt Ct

2AC
+Cxx

C
− C2

x

2C2
+ Axx

2A
− A2

x

4A2
− AxBx

4AB
−BxCx

2BC
, (4.7c)

Ry y = Rzz =−Ct t

2A
+ At Ct

4A2
− Bt Ct

4AB
− BxCx

4B2
+ Cxx

2B
+ AxCx

4AB
. (4.7d)

where fx ≡ ∂ f
∂x , etc.

Having calculated the “geometrical” terms of the Einstein field equations
all we need to do is calculate the explicit form of the energy momentum tensor
Tµν. However, as we mentioned at the end of section 2, it will be more con-
venient to work with Tµν instead which was defined as Tµν− 1

2 gµν T. Taking the
trace of Tµν as given by equation (2.19) we obtain

T =−∂ρϕ∂ρϕ−4V(ϕ) . (4.8)

From this Tµν becomes

Tµν = ∂µϕ∂νϕ+ gµν V(ϕ) . (4.9)

This tensor has four independent components

Tt t =ϕ2
t −AV(ϕ) , (4.10a)

Txt =ϕx ϕt , (4.10b)

Txx =ϕ2
x +BV(ϕ) , (4.10c)
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Ty y =Tzz = C V(ϕ) , (4.10d)

corresponding to the four independent components of the Ricci Tensor.
The field equations are given by equation (2.22) and there are four inde-

pendent equations. Letting κ≡ 8πG , we can write them in the following way

Bt t

2B
+Ct t

C
− B2

t

4B2
− C2

t

2C2
−Axx

2B
+ A2

x

4AB
−At Bt

4AB
−At Ct

2AC
−AxCx

2BC
+AxBx

4B2
=−κ(

ϕ2
t −AV(ϕ)

)
,

(4.11a)
Cxt

C
− Ct Cx

2C2
− AxCt

2AC
− Bt Cx

2BC
=−κϕx ϕt , (4.11b)

At Bt

4A2
−Bt t

2A
+ B2

t

4AB
−Bt Ct

2AC
+Cxx

C
− C2

x

2C2
+Axx

2A
− A2

x

4A2
−AxBx

4AB
−BxCx

2BC
=−κ(

ϕ2
x +BV(ϕ)

)
,

(4.11c)

−Ct t

2A
+ At Ct

4A2
− Bt Ct

4AB
− Bx Cx

4B2
+ Cxx

2B
+ AxCx

4AB
=−κC V(ϕ) . (4.11d)

We can divide these equations into two kinds —those which contain second
time derivatives of the functions (known as dynamical equations since they
provide information about the time evolution of the functions) and those which
do not (known as constraint equations). In our case we have three equations
containing second time derivatives but of only two of the functions, thus we can
form suitable linear combinations of our equations in order to obtain an extra
equation of constraint. In particular we can solve for Bt t and At t from equa-
tions (4.11c) and (4.11d) respectively and substitute these into (4.11a). This way
we obtain two dynamical equations and two equations of constraint. The dy-
namical equations are given by (4.11c) and (4.11d), whereas the equations of
constraint are given by (4.11b) and the following linear combination of equa-
tions (4.11a,c,d)

A

B

(
−2

Cxx

C
+ C2

x

2C2
+ CxBx

CB
−κϕ2

x −2κBV(ϕ)

)
+

(
Bt Ct

BC
+ C2

t

2C2
−κϕ2

t

)
= 0 . (4.12)
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5 Boundary conditions

In this section we will set up the boundary conditions for our problem. In
General Relativity boundary conditions are themselves actually solutions to
the Einstein field equations in which the energy-momentum tensor exhibits
its boundary values. As we discussed in the introduction our boundaries are
the two stationary values of the energy density of the Higgs field, the so called
true, and false, vacua. In order to ease the solution to the dynamical equations
we hope to set up an initial configuration which is static. This is analogous
to the “start from rest” of a Newtonian problem. In general this is not always
possible to achieve, however we mentioned at the end of the third section that
in our case this was possible due to the time-like nature of the fourth Killing
vector of our space, whose existence was guaranteed by the generalization of
Birkhoff’s theorem and the fact that our initial conditions involve a static Tµν.
Consequently, this amounts to setting all the time derivatives to zero and solv-
ing the problem as if ϕ, A,B,C were functions of x alone. We shall now solve
these equations for the two vacua.

5.1 True Vacuum

In this phase the Higgs field is constant and has its minimum expectation value,
i.e., V(ϕ) vanishes. Therefore the field equations remain

−Axx

2B
+ A2

x

4AB
+ AxBx

4B2
− AxCx

2BC
= 0 , (5.1a)

Cxx

C
− C2

x

2C2
+ Axx

2A
− AxBx

4AB
− A2

x

4A2
− Bx Cx

2BC
= 0 , (5.1b)

−BxCx

4B2
+ Cxx

2B
+ AxCx

4AB
= 0 . (5.1c)

In order to solve these equations we multiply (5.1a) and (5.1c) by B
A and B

C
respectively and observe that we can express all terms as logarithmic derivat-
ives of our functions. Equivalently, we let A ≡ e2α , B ≡ e2β and C ≡ e2γ and
rewrite equations (5.1) in terms of the new functions. This results in the follow-
ing equations

αxx +α2
x +2αxγx −αxβx = 0 , (5.2a)

2γxx +2γ2
x +αxx +α2

x −
(
2γx +αx

)
βx = 0 , (5.2b)

γxx +2γ2
x −γxβx +γxαx = 0 . (5.2c)
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We notice that the above equations do not contain a term involving βxx .
Thus the evolution of β along the x-trajectory (the only trajectory in this case)
is not fixed. This stems from the following fact. Consider the metric given by
(3.8) without the time dependence. We can always redefine x → x ′ = ∫ x eβ(τ)dτ

such that the metric looks like

d s2 =−e2α′
d t 2 +d x ′2 +e2γ′ (d y2 +d z2 )

. (5.3)

Thus dropping the primes, we get the same equations (5.2) but with β= 0

αxx +α2
x +2αxγx = 0 , (5.4a)

2γxx +2γ2
x +αxx +α2

x = 0 , (5.4b)

γxx +2γ2
x +γxαx = 0 . (5.4c)

Substituting (5.4c) into (5.4a) we obtain

αxx +α2
x = 2γxx +4γ2

x = 0 . (5.5)

Substituting this into (5.4b) we obtain a differential equation for γ

γxx + 3
2γ

2
x = 0 , (5.6)

which can be easily solved to yield

γ= 1
2 lnk3 + 2

3 ln(x −k2) . (5.7)

Substituting (5.6) into (5.4c) we obtain the following relation between α and
γ

αx + 1
2γx = 0 . (5.8)

This can be easily solved for α

α= 1
2 lnk1 − 1

3 ln(x −k2) . (5.9)

The metric functions A(x) and B(x) are found to be

A(x) = k1

(x −k2)
2
3

, (5.10a)

C(x) = k3(x −k2)
4
3 , (5.10b)

where k1 , k2 and k3 are constants of integration.
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However we can get rid of all the constants by suitably redefining the co-
ordinates, consequently the metric takes the final form

d s2 =− 1

x
2
3

d t 2 +d x2 +x
4
3
(

d y2 +d z2 )
. (5.11)

It is a trivial exercise to show that the equation of constraint (4.12) is satis-
fied by our solutions (5.10a,b).

It is worthwhile to remark several properties of the metric just obtained.
First, it is singular at the origin. This is not just an artificiality induced by our
choice of coordinates, but a physical singularity, given that the Kretschmann in-
variant —a world scalar—, defined as S ≡ RµνκλRµνκλ, is singular at x = 0. Last,
in the asymptotic limit x → ∞, our metric reduces to that of (flat) Minkowski
space.

5.2 False Vacuum

In this phase the expectation value of the Higgs field is at a local stationary point
and thereforeϕx vanishes. However because the expectation value is not a min-
imum the potential does not vanish. In fact, and due to the stationarity of ϕ ,
V(ϕ) = ρo , where ρo is a constant. It is the energy density of this phase and
hence it is positive. The field equations remain

−Axx

2B
+ A2

x

4AB
+ AxBx

4B2
− AxCx

2BC
−Aκρo = 0 , (5.12a)

Cxx

C
− C2

x

2C2
+ Axx

2A
− AxBx

4AB
− A2

x

4A2
− BxCx

2BC
+Bκρo = 0 , (5.12b)

−BxCx

4B2
+ Cxx

2B
+ AxCx

4AB
+Cκρo = 0 . (5.12c)

We now follow the same process as for the previous case and rewriting the
above equations in terms of the logarithmic derivatives, we arrive at the follow-
ing equations

αxx +α2
x +2αxγx −αxβx +κe2βρo = 0 , (5.13a)

2γxx +2γ2
x +αxx +α2

x −
(
2γx +αx

)
βx +κe2βρo = 0 , (5.13b)

γxx +2γ2
x −γxβx +γxαx +κe2βρo = 0 . (5.13c)

Again we can redefine x in order to get rid of β , thus obtaining the following
equations

αxx +α2
x +2αxγx +κρo = 0 , (5.14a)
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2γxx +2γ2
x +αxx +α2

x +κρo = 0 , (5.14b)

γxx +2γ2
x +γxαx +κρo = 0 . (5.14c)

Substituting (5.14a) and (5.14c) into (5.14b) we obtain the following differ-
ential equation involving γ

γxx + 3
2γ

2
x + 1

2κρo = 0 . (5.15)

Let ξ≡ 3
2γ then we can rewrite (5.15) as

ξxx +ξ2
x + 3

4κρo = 0 . (5.16)

Now we notice that ξxx +ξ2
x = e−ξ d 2

d x2 eξ and letting λ2 ≡ 3
4κρo we arrive at

d 2

d x2
eξ+λ2eξ = 0 . (5.17)

Letting Ξ≡ eξ we find that

Ξxx =−λ2Ξ . (5.18)

This is solved trivially, yielding

Ξ= k3 sinλ (x +k1) . (5.19)

From this we obtain ξ and consequently γ

γ= 2
3 ln(k3 sinλ(x +k1)) . (5.20)

Substituting (5.16) into (5.14c) we obtain the following equation for α

αx = γxx

γx
+γx . (5.21)

Substituting (5.20) into (5.21) we found α to be

α= 1
2 lnk2 + ln(cosλ(x +k1))− 1

3 ln(sinλ(x +k1)) . (5.22)

The metric functions remain

A(x) = k4
cos2λ(x +k1)

sin
2
3 λ(x +k1)

, (5.23a)
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C(x) = k5 sin
4
3 λ(x +k1) , (5.23b)

where λ ≡
√

3
4κρo and the {ki } are constants of integration. We can get rid of

these constants, however, by suitably redefining our coordinates. Hence we
can rewrite our line element as follows P

d s2 =−cos2λx

(
λ

sinλx

) 2
3

d t 2 +d x2 +
(

sinλx

λ

) 4
3 (

d y2 +d z2 )
. (5.24)

It can be easily verified that the equation of constraint (4.12) is satisfied by
our functions.

It is interesting to notice that in the limit as ρo → 0 (hence λ→ 0 also) the
metric can be expanded around that point and taking terms up to O(x), our
line element reduces to

d s2 =− 1

x
2
3

d t 2 +d x2 +x
4
3
(

d y2 +d z2 )
, (5.25)

which is precisely the line element obtained for the true vacuum region.
Nevertheless, a complication arises. We recall that the initial configuration

is symmetric about the origin, by construction. In our case, it is clear that our
metric is, indeed, symmetric about the origin, but it possesses a physical singu-
larity at the point x = 0. We would like to get rid of this problem by redefining
(i.e., translating) x such that the symmetric point is now non-singular. In or-
der to do this we must first look at the shape of our metric functions. Because
of symmetry, we would like the derivative of our metric functions to be zero at
the point of symmetry. Clearly from (5.23) (having set k1 = 0) this would only
occur at λx = nπ

2 , where n is an integer. However, the Kretschmann invariant S,
defined in the previous section, is found to be

S = 64λ4

27

(
1+2sin4λx

sin4λx

)
. (5.26)

Clearly, it is singular at λx = nπ. Therefore, we conclude that in order to
preserve symmetry and, at the same, avoid any singularities in our region of
false vacuum, we must translate x by π

2λ , and we must restrict our region of
false vacuum to a slab41 of width < π

λ . Translating x in this fashion merely
switches sines and cosines in (5.24), since d x is not affected by translations.

41Exactly how small this region is can be seen by noticing that λ is proportional to
p
ρo , where

ρo is the energy density of the false vacuum state of the Higgs field. By dimensional analysis we
find that the energy density is proportional to M4, where M is the unification energy. In the
SU(5) GUT, this energy is on the order of 1014 GeV, and therefore the size of our slab, being
inversely proportional to λ, is on the order of 10−42cm.
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Consequently, the final form for the metric on the region of false vacuum be-
comes after some rescaling of the coordinates

d s2 =−cos−
2
3 λx

(
sinλx

λ

)2

d t 2 +d x2 +cos
4
3 λx

(
d y2 +d z2 )

. (5.27)
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6 Junction of the two spaces

Having found the static solutions for both the false vacuum and the true va-
cuum regions, we must join the two spaces in order to be able to investigate the
time evolution of our system. As can be seen in Figure 2, there exists a region
between the true and false vacuum in which the energy density decreases from
the initial value V(ϕ) = ρo to the final value V(ϕ) = 0.

In this region we are free to unite the metrics in any way that we can, given
that our goal is to examine any solvable model for such a symmetric configura-

tion, and that there is no physically “correct” ∂ϕ
∂x or V(ϕ).

Toward this goal it will be useful to perform a transformation of coordinates
on our original metrics (5.11) and (5.27). Consider first the metric for the true

vacuum region given by (5.11). Defining ξ≡ x
2
3 we can rewrite the metric in the

following fashion

d s2
TV =−1

ξ
d t 2 +ξdξ2 +ξ2 (

d y2 +d z2 )
. (6.1)

Similarly, consider the metric given by (5.27) for the false vacuum region.

Letting ξ≡ cos
2
3 λx we can then rewrite (5.27) in the following way

d s2
FV =−1−ξ3

λ2ξ
d t 2 +

9
4ξ

λ2(1−ξ3)
dξ2 +ξ2 (

d y2 +d z2 )
. (6.2)

Now, we can re-scale ξ such that ξ → χ = ( 3
2λ )

2
3 ξ. This way and after some

redefinitions of what we mean by t , y and z, we can write the metric as follows

d s2
FV =−1− ( 2λ

3 )2χ3

χ
d t 2 + χ

1− ( 2λ
3 )2χ3

dχ2 +χ2 (
d y2 +d z2 )

. (6.3)

Rewriting λ2 as 3
4κρo we can rewrite the metric in its final form

d s2
FV =−1− κρo

3 χ3

χ
d t 2 + χ

1− κρo
3 χ3

dχ2 +χ2 (
d y2 +d z2 )

. (6.4)

One obvious advantage that springs from this coordinate transformation is
the fact that the transition from (6.4) to (6.1) as ρo → 0 is made manifest. It
must be remarked that this coordinate transformation maps our entire mani-
fold onto a much smaller area. The metric given by (6.4) is seen to be singular

at χ= ( 3
κρo

)
1
3 . However, computing the Kretschmann invariant yields the result

that the only physical singularity of this metric occurs at x = 0. This seems to
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violate our initial requirement for regularity and symmetry at the origin,42 but
it must be remarked that what was the origin in our previous case is not the

origin now. Our metric is now symmetric about the point χ = ( 3
κρo

)
1
3 , and this

does not violate our initial requirement since the singularity previously found
has just been seen to be an artifice of our choice of coordinates.

However, gxx and g t t change sign at this coordinate singularity. This is a
baffling result which will be explored in further research in the near future.
However, for the moment we will have to content ourselves with a very small
region of false vacuum.

From these new expressions for the metrics stems an interesting fact. We
notice that the functions corresponding to the A(x, t ) and B(x, t ) of (3.8) in (6.4-
5) satisfy the following relation AB = 1. We also observe that the function cor-
responding to C(x, t ) remains the same in both regions, i.e. C(x, t ) = x2. Should
this last function remain invariant in the interface, the analysis is tremendously
simplified. The question is, thus, whether we have enough residual gauge free-
dom to impose such a constraint. The Einstein field equations generally con-
tain certain gauge invariance analogous to the Maxwell equations in classical
electrodynamics. We have ten independent equations —since the Ricci tensor
is a 4-dimensional symmetric tensor— and ten unknown functions: the ten
independent components of the metric —another 4-dimensional symmetric
tensor. However there are four differential equations, known as the Bianchi
identities , which offer four more equations to our system. Thus we have the
freedom to impose four conditions on our coordinates. In our case, however,
due to the symmetries we imposed as our initial Ansatz these numbers are not
the same; although we do have certain gauge invariance. In the following sec-
tion we shall investigate the possibility of choosing a gauge such that C(x, t ) re-
mains invariant in all regions. A preliminary remark is in order nonetheless. We
chose our most general plane-symmetric metric of the form (3.8). Here we had
three unknown functions, since that was as far as Killing’s equation (and our
diagonalization of the x-t submatrix) took us. However it must be remarked
that by restricting our attention to the x-t part of the metric we can reduce
−A(x, t )d t 2 +B(x, t )d x2 to D(x, t )(d x2 −d t 2 ) since every 2-dimensional space
is conformally flat —the Weyl (conformal) tensor can be shown to vanish for
dimensions less than three. So in general, we only need two out of the three
functions. Of course, by not restricting our choice of gauge in the beginning we
were able to obtain simpler field equations and we have the hope of being able
to impose C(x, t ) = x2.

42See the end of section 5.
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6.1 Gauge Invariance

Recall the most general form of our metric, as given by (3.8)

d s2 =−A(x, t )d t 2 +B(x, t )d x2 +C(x, t )
(

d y2 +d z2 )
. (6.5)

We are interested in finding out the possibility of choosing a gauge (i.e.
transforming our coordinates) in such a way that our metric looks like

d s2 =−A′(x ′, t ′)d t ′2 +B′(x ′, t ′)d x ′2 +x ′2 (
d y2 +d z2 )

. (6.6)

We will to accomplish this in two steps. First we will perform the following
transformations

x 7→ x ′ =
√

C(x, t ) ,

and
t 7→ t ′ = T(x, t ) .

This clearly is always possible. The transformed metric will generally look
as follows

d s2 =−A′(x ′, t ′)d t ′2 +B′(x ′, t ′)d x ′2 +2D(x ′, t ′)d x ′d t ′+x ′2 (
d y2 +d z2 )

. (6.7)

The question remains whether we can get rid of the cross term by redefining
only t ′, since we are already satisfied with the definition of x ′. Mathematically,
we need a transformation

t ′ 7→ τ= τ(x ′, t ′)

such that the cross term disappears. Let us define τ by

dτ= f (x ′, t ′)
[
A′(x ′, t ′)d t ′−D(x ′, t ′)d x ′] , (6.8)

where f (x ′, t ′) is chosen such that dτ is a perfect differential. That is,

f (x ′, t ′)A′(x ′, t ′) = ∂τ

∂t ′
, − f (x ′, t ′)D(x ′, t ′) = ∂τ

∂x ′ . (6.9)

Clearly, this choice of τ and f will diagonalize the metric. The condition
(6.9) on f can be expressed as a partial differential equation, using the fact that
partial derivatives commute,

∂

∂x ′
(

f A′)+ ∂

∂t ′
(

f D
)= 0 . (6.10)

This equation can always be solved, if only like an initial value problem. 43

Consequently, we have shown that we do have enough residual gauge invari-
ance to force such a coordinate transformation.

43S. Weinberg, Op. cit. p.336.
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6.2 Generalized Constraint Equation

At the beginning of this section we observed that for the true and false vacuum
regions the metric functions A, B satisfied a curious relationship, namely AB =
1. Of course we don’t expect this relationship to hold in the interface, however it
seems very likely that they could satisfy a relationship of the sort AB = f , where
f is a calculable function which has values of 1 in both our regions of interest.
We shall attempt to solve for f and for the functions A, B in the interface region,
where ϕx , V(ϕ) are not specified.

Consider the following line element

d s2 =−Ad t 2 + f

A
d x2 +x2 (

d y2 +d z2 )
. (6.11)

The Einstein field equations are given by (4.11) with vanishing first time de-

rivatives, C = x2 and B = f
A , although this last relation will be left implicit for the

sake of clarity. The resulting equations are

Bt t

2A
− Axx

2A
+ A2

x

4A2
−−Ax

Ax
+ AxBx

4AB
−κBV(ϕ) = 0 , (6.12a)

−Bt t

2A
+ Axx

2A
− A2

x

4A2
− AxBx

4AB
− Bx

Bx
+κ

(
ϕ2

x +BV(ϕ)
)= 0 , (6.12b)

− Bx

2Bx
+ 1

x2
+ Ax

2Ax
+κBV(ϕ) = 0 . (6.12c)

The constraint equation (4.12) now becomes

− 2

x2
+ 2Bx

Bx
−κϕ2

x −2κBV(ϕ) = 0 . (6.13)

We can rewrite (6.13) in the following fashion

dB

d x
−

(
1
2κxϕ2

x +
1

x

)
B = κxV(ϕ(x))B2 . (6.14)

This equation is solved in a straight-forward manner in the naive assump-
tion that ϕ2

x is independent of the metric function B. However we will see in the
“thin wall” limit that this is not the case.

6.3 “Thin wall” limit

In Figure 2 we can distinguish three separate regions. The middle region (re-
gion II) is what constitutes the wall. In general we would be interested in a wall
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of finite thickness, however in order to examine the simpler solutions first, we
would like to let the thickness of the wall vanish.

It is fairly obvious that in the limit δ→ 0, 2δ being the thickness of the wall,
V(ϕ(x)) and ϕ2

x will obtain the abrupt shapes depicted in Figure 3.
A problem arises immediately. At x = xo , ϕx is a Dirac δ-function. However

what appears in our equations is ϕ2
x . This is obviously ill-defined, even inside

an integral. In order to avoid these divergences we will look at this problem
under a different light. Let us consider the mixed energy-momentum tensor
for the Higgs field44

Tµ
ν = ∂µϕ∂νϕ−δ

µ
ν

(1
2∂ρϕ∂

ρϕ+V(ϕ)
)

. (6.15)

Due to the divergenceless of the Einstein tensor, the energy momentum
tensor is locally conserved. This condition can be expressed in a covariant fash-
ion as

DµTµν ≡ 1p
g
∂µ

(p
g Tµν

)+Γν
µρTµρ = 0 , (6.16)

Given that the metric tensor is covariantly divergenceless and hence it com-
mutes with the covariant derivative operation, we can rewrite the conservation
law for the mixed tensor in the following way

DµTµ
ν = 1p

g
∂µ

(p
g Tµ

ν

)−Γ
ρ
µνTµ

ρ = 0 . (6.17)

Let us concentrate in the Tµ
t componenents. The above conservation law can

be expressed in the following way

1p
g
∂µ

(p
g Tµ

t

)−Γ
ρ
µt Tµ

ρ = 0 . (6.18)

Looking at the last term and using (4.3) as the definition of Γρ

µλ
, we obtain

Tµ
ρΓ

ρ
µt = 1

2

[
∂µgλt +∂t gλµ−∂λgµt

]
Tµλ . (6.19)

Since our initial metric is static, the middle term vanishes, and since Tµλ is sym-
metric under the interchange of µλ whereas the factor multiplying it is anti-
symmetric, the whole term is canceled. We can now express our local conser-
vation law as

1p
g
∂µ

(p
g Tµ

t

)= 0 . (6.20)

44The following analysis is due to Alan Guth.
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To make this law global, we merely integrate it over a hypersurface Ω at fixed
time ∫

Ω
d 3x

p
g

[
1p
g
∂µ(

p
g Tµ

t )

]
= 0 . (6.21)

Let us now define Ti
t ≡ Ji . Our integral becomes∫

Ω
d 3x

[
∂t (

p
g Tt

t )−∇· (
p

g J)
]= 0 , (6.22)

and using the divergence theorem we obtain

d

d t

∫
Ω

d 3x
p

g Tt
t −

∫
∂Ω

p
g J ·d 2S = 0 . (6.23)

The second term will vanish for a sufficiently large Ω, since it represents the
flux of energy through its boundary ∂Ω. Thus we conclude that the quantity∫
Ω d 3x

p
g Tt

t is a conserved quantity. From (6.15) we find Tt
t to be

Tt
t =−1

2

1

B
ϕ2

x −V(ϕ) . (6.24)

Since V(ϕ) is finite, the only singular part of this expression is that proportional
to ϕ2

x . Hence we define (
Tt

t

)sing ≡−1
2

1

B
ϕ2

x . (6.25)

Since Tt
t is generally the (Hamiltonian) energy density, we will define the energy

of the “wall” by

Ewall ≡
∫

V
d 3x

p
g (Tt

t )sing . (6.26)

Using (6.6) as our form of the metric, we obtain

Ewall ≡
∫

V
d xd yd z

√
ABx4

(
−1

2

1

B
ϕ2

x

)
. (6.27)

Since nothing depends on y, z we shall perform their integration first, yielding

Ewall ≡ 1
2 S

∫
d x x2

√
A

B
ϕ2

x , (6.28)

where S is the oriented area of the wall. Defining σ to be the surface energy
density of the wall, we will define Ewall to equal

Ewall ≡σSx2
o

√
A(xo) . (6.29)
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For this to hold, it is clear that ϕ2
x must be

ϕ2
x = 2σ

p
Bδ(x −xo) . (6.30)

As we mentioned earlier, ϕ2
x does depend on the metric function and it is

now clear that our solution to the differential equation would have been incor-
rect. We will now proceed to solve the equations correctly.

In the thin wall limit, ϕ2
x and V(ϕ) can be expressed as follows

lim
δ→0

V(ϕ(x)) = ρo(1−θ(x −xo)) (6.31)

lim
δ→0

ϕ2
x = 2σ

p
Bδ(x −xo) . (6.32)

where θ(x −xo) is the unit step function. Hence, equations (6.12) now look like

Bt t

2A
− Axx

2A
+ A2

x

4A2
−−Ax

Ax
+ AxBx

4AB
−κBρo(1−θ(x −xo)) = 0 , (6.33a)

−Bt t

2A
+ Axx

2A
− A2

x

4A2
− AxBx

4AB
− Bx

Bx
+κ

(
2σ

p
Bδ(x −xo)+Bρo(1−θ(x −xo))

)
= 0 ,

(6.33b)

− Bx

2Bx
+ 1

x2
+ Ax

2Ax
+κBρo(1−θ(x −xo)) = 0 . (6.33c)

Adding (6.33a) and (6.33b) we obtain

Ax

A
+ Bx

B
= 2κσx

p
Bδ(x −xo) . (6.34)

Substituting for Ax
A into (6.33c) we obtain

dB

d x
−κσxδ(x −xo)B

3
2 − B

x
= κρo x(1−θ(x −xo))B2 . (6.35)

We shall divide the real line into three regions:

1. 0 ≤ x < xo Region I

2. x = xo Region II

3. x > xo Region III

First we notice that the left hand side of (6.34) is nothing but the logarithmic
derivative of AB and hence of f . And in region I, ϕ2

x = 0. Therefore,

AB = k1 . (6.36)
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We shall set k1 = 1 without lack of generality. In region I, equation (6.35) be-
comes

dB

d x
− B

x
= κρo xB2 . (6.37)

This is nothing but Bernoulli’s equation and it is linearized by a change of vari-
ables Ψ≡ B−1. Thus (6.37) becomes

dΨ

d x
+Ψ

x
=−κρo x . (6.38)

This is solved trivially solved for Ψ and hence for B yielding the expected result

B(x) = x

k2 − κρo
3 x3

, (6.39)

and we shall let k2 = 1. Using this solution and (6.36), the other metric function
becomes

A(x) = 1− κρo
3 x3

x
(6.40)

as expected.
In region III (6.34) yields the same result, namely

AB = k3 . (6.41)

However (6.35) becomes much simpler

dB

d x
− B

x
= 0 , (6.42)

or equivalently
B(x) = k4x . (6.43)

Together, these yield the form of the other metric function

A(x) = k3

k4x
. (6.44)

It now remains to match the two solutions in region II, i.e., at x = xo . We
shall do this by integrating our differential equations (6.34) and (6.35) from xo−
ϵ to xo +ϵ and letting ϵ→ 0.

Consider equation (6.34). It can be rewritten as

d

d x
ln(AB) = 2κσxδ(x −xo)

p
B . (6.45)
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Integrating as prescribed before

lim
ϵ→0

∫ xo+ϵ

xo−ϵ
d

d x
ln(AB)d x = 2κσ lim

ϵ→0

∫ xo+ϵ

xo−ϵ
xδ(x −xo)

p
Bd x . (6.46)

This can be seen to yield

ln(A+B+)
∣∣∣

x=xo

− ln(A−B−)
∣∣∣

x=xo

= 2κσxo

√
B(xo) . (6.47)

where the + and − refer to regions III and I respectively. Using our previous
results (6.39-40) and (6.43-44), we obtain

lnk3 = 2κσxo

√
B(xo) . (6.48)

Integrating (6.35) in a similar fashion we obtain the following

B+
∣∣∣

x=xo

−B−
∣∣∣

x=xo

= κσxoB
3
2 (xo) . (6.49)

Substituting for B

k4xo − xo

1− κρo
3 x3

o

= κσxoB
3
2 (xo) . (6.50)

Solving for B(xo) we obtain

B(xo) = (κσ)
2
3

[
k4(1− κρo

3 x3
o)−1

1− κρo
3 x3

o

] 2
3

. (6.51)

We shall now study the continuity characteristics of our solutions. For B to be
continuous, we require

B−(xo) = B+(xo) = B(xo) ,

or

k4xo = xo

1− κρo
3 x3

o

= (κσ)
2
3

[
k4(1− κρo

3 x3
o)−1

1− κρo
3 x3

o

] 2
3

. (6.52)

Clearly there exists no constant k4 such that these three relationships are sim-
ultaneously satisfied. Consequently, we must deduce that B is not continuous
across the wall.

Let us now examine the continuity characteristics of A. Equation (6.48) in-
dicates that choosing k3 such that

k3 = exp

2xo(σκ)
2
3

[
k4(1− κρo

3 x3
o)−1

1− κρo
3 x3

o

] 1
3

 (6.53)
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could, in principle make A continuous across the wall. However, we would like
our metric to approach Minkowski space for very large x. Thus we would like
AB = 1, or equivalently k3 = 1. We see that if k4 = 1

1− κρo
3 x3

o
, this last condition is

indeed satisfied. However this choice of k4 makes B(xo) = 0 as given by (6.51).
The question arises whether we can let this happen.

We are dividing our 4-dimensional manifold M into two submanifolds of
the same dimensionality, and in doing so we separate them by a 3-dimensional
hypersurface Σ. It is also crucial to notice that the separation causes discon-
tinuities and δ-functions in our energy-momentum tensor. Therefore it would,
in principle, be expected to have discontinuities in the component of the metric
normal to Σ. However, discontinuities in any other component would be phys-
ically inadmissible,45 given that the geometry of Σ must be well defined at all
points. In our case the only other component that could have a discontinuity is
A, since the y-z component of our metric is continuous by construction. Since
our solution presents A continuous, it shows no indication of being physically
inadmissible. Consequently we conclude that we have arrived at a possible set
of initial conditions.

45C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1972)
p.553.
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7 Conclusion

To summarize, we have obtained a valid set of initial conditions which will serve
as a static, initial configuration for an analysis of the time evolution of the sys-
tem. This is precisely the aspect of the problem in which we are eventually in-
terested. It was due to unexpected problems in the setting up of the initial con-
ditions that an analysis of the dynamics could not be presented in this thesis.
The problem is left to be explored further in the near future.
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