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ABSTRACT

We apply the techniques developed in a previous paper to the case of the open

bosonic string proving some interesting results. We also comment on the relation

with Kähler algebra. In particular we show that in the case of the open bosonic

string — and hence in the NSR string — there is no positive definite inner product

compatible with the natural Kähler structure.



§1 INTRODUCTION

This paper is in some sense a continuation of a previous paper[1] where we

presented a general method of analyzing the cohomology of the BRST operator

based on the existence of a particular positive definite inner product in the Fock

space. This allowed us to prove a decomposition theorem for the BRST complex

and in particular allowed us to identify the BRST cohomology space — which

by definition is a subquotient — as an honest subspace of the Fock space, thus

identifying a privileged representative of each BRST cohomology class. We called

these representatives harmonic states since they are the zero modes of the BRST

laplacian. In this paper we use this method to obtain some results on the BRST

cohomology of the open bosonic string.

The results are not new in the sense that the BRST cohomology of the open

bosonic string has already been explicitly computed so that these results can be

checked. However, the proofs themselves are new. And moreover the techniques

involved are quite general, transcending the particular theory under study. In fact

some of the proofs carry over mutatis mutandis to the more general case where the

constraints form a Lie algebra with a toral decomposition[2].

In this paper we make repeated use of the vanishing theorem for the BRST

cohomology which was proven in [3] as a corollary of a general theorem valid for

a large class of Lie algebras and representations. In [1] we gave a proof that the

vanishing theorem is necessary for a consistent BRST quantization but so far we

have not been able to prove it directly using the methods advocated there. This,

we think, is the fundamental aim of these methods and such a proof would fill a

large gap in this field.

Our initial goal at the beginning of this investigation was to find such a proof.

In [3] a line of attack was suggested based on the formal analogy — discovered

in [4] — between Kähler algebra and the BRST quantization of the open bosonic

string. A explicit calculation shows, however, that there is no positive definite inner
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product compatible with the natural Kähler structure. We present this result as

well.

This paper is organized as follows. In §2 we review the basic facts of the BRST

quantization of the open bosonic string. We introduce the reduced BRST opera-

tor and prove that its cohomology is intimately related to the cohomology of the

full BRST operator. We also introduce some operators which will be seen to be

the BRST analogues of operators which arise very naturally in Kähler algebra.

In particular we prove — using the vanishing theorem — that the physical states

can be taken to be singlets of the Kähler sl2C algebra. In §3 we make the corre-

spondence between BRST and Kähler algebra after briefly discussing the relevant

background material. We then present the result that there is no positive definite

inner product compatible with the natural Kähler structure. In §4 we prove the

“no-ghost” theorems for the open bosonic and NSR strings. The case of the open

bosonic string was done originally in [5] but we include the relevant calculation

for completeness since it is needed for the NSR string. Finally §5 contains some

concluding remarks.

Throughout this paper, any section or equation number of the form §I.n or

(I.n.m) respectively will refer to the corresponding section or equation number of

[1].

§2 THE OPEN BOSONIC STRING

We follow for the most part the conventions used in [6]. We work in the

conformal gauge and both the spacetime dimension and the value of the intercept

are fixed to their critical values (D = 26 and a = 1) in order to insure nilpotency

of the BRST operator.

The full Fock space of the BRST-quantized open bosonic string is constructed

from three types of oscillators: aµ
n, cn, and bn where n ∈ Z is the mode number

and µ = 0 . . . 25 is the spacetime index. Since aµ
0 is identified with the momentum

of the center of mass of the string we shall call it pµ whenever it is convenient. The
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oscillators satisfy the following canonical (anti)commutation relations:

[aµ
m , aν

n] =sign(m) δm,−nη
µν (2.1)

{bn , cm} =δm,−n . (2.2)

All of the other (anti)commutators are zero. Notice that we are using normalized

oscillators for the string coordinates. This is purely for computational convenience.

It must also be mentioned that our ghost oscillators are not the natural ones but

are unitarily related to them. In our conventions the mode expansion of the ghost

and antighost fields at τ = 0 are the following:

b(σ) = b0 +
∑
m>0

√
m
(
bm eimσ + b−m e−imσ

)
c(σ) = c0 +

∑
m>0

1√
m

(
cm eimσ + c−m e−imσ

)
.

This seemingly unnatural choice of mode expansion turns out to be the natural

one in our context. It will allow us to identify the involution C of §I.3 with ghost

conjugation when acting on ghosts and antighosts. It also makes some of the

calculations easier although it introduces some square roots in our expressions.

We now need to specify the Fock vacuum. Since the ghost zero modes b0 and

c0 (anti)commute with all the other oscillators, we can factor the full Fock space

into F ⊗ Z, where Z is the space upon which the zero modes act and F is the

space upon which all of the other oscillators act. Because the anticommutation

relations satisfied by the ghost zero modes define a Clifford algebra, Z —being an

irreducible complex representation — is a two dimensional complex vector space.

We may exhibit a basis comprised by the states |↑〉 and |↓〉 which satisfy

c0 |↓〉 = |↑〉 b0 |↑〉 = |↓〉 c0 |↑〉 = b0 |↓〉 = 0 . (2.3)

We introduce an inner product in Z via

〈↑|↓〉 = 1 〈↑|↑〉 = 〈↓|↓〉 = 0 , (2.4)
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such that the ghost zero modes are hermitian:

b†0 = b0 c†0 = c0 . (2.5)

This inner product is not positive definite as can be seen by choosing the orthogonal

basis

|±〉 =
1√
2
(|↑〉 ± |↓〉) , (2.6)

which diagonalizes the metric

〈+|+〉 = 1 〈−|−〉 = −1 〈+|−〉 = 0 . (2.7)

A vacuum in F , |k〉, is defined by

cn |k〉 = bn |k〉 = aµ
n |k〉 = 0 ∀n > 0 (2.8)

pµ |k〉 = kµ |k〉 . (2.9)

It satisfies the normalization condition

〈k|k〉 = 1 . (2.10)

Call the Fock space with |k〉 for the vacuum, F(k). The reality conditions on the

classical fields induce the following hermiticity properties on the oscillators

aµ
n
† = aµ

−n b†n = b−n c†n = c−n ∀n 6= 0 (2.11)

and

pµ† = pµ . (2.12)

Equations (2.1)–(2.12) define an inner product on F(k)⊗Z.
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The generators of the Virasoro algebra are given by

L
(a)
m = p · am

√
|m|+ 1

2

∑
n 6=0

√
|m− n| |n| : am−n · an: m 6= 0

L
(a)
0 =

1

2
p2 +

∑
n>0

n a†n · an (2.13)

and

L
(c)
m = m

√
|m|bm c0 +

∑
n 6=0

(m− n)

√
|m+ n|
|n|

: bm+nc−n: , (2.14)

where : : denotes normal ordering with respect to the above vacua. The BRST

operator, Q, is given by the following expression:

Q =
∑
n>0

(
p · an c

†
n + h. c.

)
+
∑
m>0
n>0

√
(m+ n)n

m

(
a†m+n · ancm + h. c.

)

+
1

2

∑
m>0
n>0

√
mn

m+ n

(
c†m+nam · an + h. c.

)

+
1

2

∑
m>0
n>0

(m− n)

√
m+ n

mn

(
b†m+ncmcn + h. c.

)

−
∑
m>0
n>0

(2m+ n)

√
n

(m+ n)m

(
c†m+ncmbn + h. c.

)
. (2.15)

Q is manifestly self-adjoint with respect to the above inner product. The

dependence of Q on the ghost zero modes can be made manifest in the following

way:

Q = Q+ c0H − 2b0T , (2.16)

where Q, H, and T do not contain c0 or b0. The operator Q is the reduced BRST

operator. The oscillator expressions for H and T are

H = L
(a)
0 + L

(c)
0 − 1 =

1

2
p2 + L − 1 , (2.17)
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where

L =
∑
n>0

n
(
a†n · an + c†nbn + b†ncn

)
, (2.18)

and

T =
∑
n>0

c†ncn . (2.19)

H and T can be projected out from Q using the relations

{Q , b0} = H − 1

2
{Q , c0} = T . (2.20)

The nilpotency of Q gives us the relation

Q2 = 2HT (2.21)

and the vanishing of all of the other (anti)commutators between H, T , and Q.

There exists several operators which induce a grading on F . An important one

is the reduced ghost number operator

G =
∑
n>0

(c†nbn − b†ncn) , (2.22)

which is related to the total ghost number operator Gtot via the relation

Gtot = G +
1

2
[c0 , b0] . (2.23)

The ghost number operator induces a grading of the reduced Fock space as follows

F =
⊕
g∈Z

Fg , (2.24)

where ψ ∈ Fg ⇔ G ψ = g ψ. A finer structure reveals itself if we keep track of the

ghost and antighost numbers separately. This allows us to decompose Fg further
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according to the following bigrading

Fg =
⊕

c−b=g

F(b,c) , (2.25)

where F(b,c) consists of states created from the vacuum by operators consisting of

c ghost and b antighost creation operators.

Relative to this bigrading the reduced BRST operator splits as a sum of two

operators

Q = Q′ +Q′′ , (2.26)

defined uniquely by

Q′ : F(b,c) → F(b,c+1) Q′′ : F(b,c) → F(b−1,c) . (2.27)

For reasons that will become obvious when we discuss Kähler algebra we shall refer

to this decomposition of Q as a “holomorphic” split; and Q′ (resp. Q′′) will be

referred to as the “holomorphic” (resp. “antiholomorphic”) piece of the reduced

BRST operator.

Finally, pµ and L are mutually commuting operators which in turn commute

withQ, G, and Gtot allowing us to decompose the full Fock space (and, in particular,

F) as direct sums of finite dimensional subspaces. Unless otherwise stated we shall

always assume that we are in a particular eigenspace of pµ and L.

We now define the self-adjoint involution of §I.3, C, as follows[5]

C |k〉 ⊗ |±〉 = ± |k〉 ⊗ |±〉 (2.28)

Ca0
nC = −a0

n CpµC = pµ Cai
nC = ai

n (∀ i = 1 . . . 25, n 6= 0) (2.29)

CcnC = bn CbnC = cn (∀ n 6= 0) (2.30)

Cc0C = b0 Cb0C = c0 (2.31)

This allows us to define a positive definite inner product, 〈, 〉C , in the full Fock
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space via equation (I.3.1).

Let Q̂ denote the adjoint of the BRST operator with respect to this inner

product. We can make its ghost zero mode dependence manifest, using the fact

that H is still self adjoint, as follows:

Q̂ = Q̂+ b0H − 2c0T̂ , (2.32)

where Q̂, H, and T̂ all commute amongst each other except for

Q̂2 = 2HT̂ . (2.33)

Furthermore, H, T̂ , and Q̂ can be recovered from Q by the relations

T̂ = −1

2
{Q̂ , b0} H = {Q̂ , c0} . (2.34)

The adjoint Q̂ of the reduced BRST operator also has a holomorphic split given

by

Q̂ = Q̂′ + Q̂′′ , (2.35)

where

Q̂′ : F(b,c) → F(b,c−1) Q̂′′ : F(b,c) → F(b+1,c) . (2.36)

As observed in [7], the operators T , T̂ , and G satisfy an sl2C algebra

[T , T̂ ] = G [G , T ] = 2T [G , T̂ ] = −2T̂ . (2.37)

This is to be compared with the similar algebraic structure surfacing in Kähler

algebra about which we will have more to say in the sequel.
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The reduced BRST operator Q and its adjoint Q̂ are nilpotent when restricted

to the subspace kerH. We can restrict ourselves to this subspace with no loss of

generality as we now show. The key point is that b0 is a chain homotopy connecting

H with the zero map, i.e. H = Qb0 + b0Q. Using the fact that H is diagonalizable

we see that if H ψ = E ψ for E 6= 0 and Qψ = 0 then ψ = E−1Qb0 ψ and hence

cohomologous to zero.

On kerH we can see from equations (2.21) and (2.33) that

Q2 = Q̂2 = 0 . (2.38)

This allows us to define differential complexes with respect to Q and Q̂ which we

shall refer to as the reduced BRST complexes.

If we take (2.38) and decompose it according to the bigrading in (2.25) we find

the following two sets of equations

(Q′)2 = 0 (Q′′)2 = 0 {Q′ , Q′′} = 0 , (2.39)

and

(Q̂′)2 = 0 (Q̂′′)2 = 0 {Q̂′ , Q̂′′} = 0 , (2.40)

This allows us in particular to define a family of complexes for the Q′′ operator

analogous to the Dolbeault complexes in complex geometry. A priori there is

no reason to expect any relation between the cohomology of the reduced BRST

operator Q and that of its antiholomorphic piece Q′′, just like in general there

is little relation between the de Rham and Dolbeault cohomologies in a complex

manifold. However if the manifold is compact Kähler there is a theorem due

to Hodge that relates them. The analogous result for the BRST complex was

conjectured in [3]. We show in the next section that unfortunately such a theorem

fails in this case.
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Before we can justify restricting ourselves to the study of the reduced BRST

operator we must make sure we don’t lose any information. In order to see the

relationship between H(Q) and H(Q), let us analyze the action of Q and Q̂ on a

general state Ψ = ψ↑ ⊗ |↑〉 + ψ↓ ⊗ |↓〉 with definite Gtot number. Now, QΨ = 0

holds if and only if

Qψ↑ = 0 Qψ↓ + (−)GTψ↑ = 0 . (2.41)

Similarly, Q̂Ψ = 0 holds if and only if

Q̂ψ↑ + (−)GT̂ψ↓ = 0 Q̂ψ↓ = 0 . (2.42)

Suppose that Ψ has Gtot number g + 1
2 so that ψ↑ has G number g and ψ↓ has G

number g+1. The previous equation shows that if Ψ is Q-harmonic then ψ↑ (resp.

ψ↓) is a Q-cocycle (resp. Q̂-cocycle). Therefore, there exists a map

Φ : Hg+ 1
2 (Q) −→ Hg(Q)⊕Hg+1(Q̂) , (2.43)

defined via the relation

Φ([Ψ]) ≡ (
[
ψ↑
]
,
[
ψ↓
]
) (2.44)

where Ψ is the unique Q-harmonic representative of [Ψ]. Notice that since we have

the relation Hg(Q̂) ' Hg(Q), Φ induces a map Hg+ 1
2 (Q) −→ Hg(Q)

⊕
Hg+1(Q).

We now show that Φ is injective.

Let Φ denote the map in (2.43) thought of as a map from theQ-harmonic states.

We first show that Φ is injective. Let Ψ be the unique harmonic representative of

some class in Hg+ 1
2 (Q). Then Ψ may be written as

Ψ = ψ↑ ⊗ |↑〉+ ψ↓ ⊗ |↓〉 , (2.45)

where ψ↑ and ψ↓ obey equations (2.41) and (2.42). Let Ψ belong to the kernel of

Φ. Injectivity of Φ is equivalent to Ψ being identically zero.
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By the definition of Φ, Ψ lies in the kernel of Φ if and only if ψ↑ lies in imQ
and ψ↓ lies in im Q̂. The non-trivial part of equations (2.41) and (2.42) can then

be written in the following way

D Ψ =

 (−1)GT Q

Q̂ (−1)GT̂


ψ↑

ψ↓

 = 0 . (2.46)

Here D is to be thought of as an endomorphism of imQ⊕ im Q̂. In fact, since D
commutes with the level operator L and with the momentum operator p we can

restrict ourselves to the finite dimensional eigenspaces of these operators. In order

to prove that Ψ must be identically zero it is sufficient to prove that D has zero

kernel.

The idea of the proof is very simple. We let D̂ denote the adjoint map of D.

Because the decomposition in (I.3.7) for the Q complex is orthogonal, D̂ is once

again an endomorphism of imQ⊕ im Q̂ and we may (and will) compose it with D
to obtain the endomorphism D ◦ D̂. Notice that the kernel of D ◦ D̂ is precisely

the kernel of D̂, i.e.

〈Ψ, (D ◦ D̂)Ψ〉C = ‖D̂Ψ‖2 ; (2.47)

and that the dimension of the kernel of D is equal to the dimension of the kernel

of D̂, since the index of an endomorphism in a finite dimensional vector space is

zero. Therefore we are done if we prove that D ◦ D̂ has zero kernel. However this

is remarkably simple since it is a positive operator as we now show.

D̂ is explicitly given by

 (−1)GT̂ Q

Q̂ (−1)GT

 . (2.48)
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And therefore

D ◦ D̂ =

 (−1)GT Q

Q̂ (−1)GT̂


 (−1)GT̂ Q

Q̂ (−1)GT


=

 T T̂ +QQ̂ (−1)G [T , Q]

(−1)G [T̂ , Q̂] Q̂Q+ T̂ T


=

T T̂ +QQ̂ 0

0 Q̂Q+ T̂ T

 , (2.49)

where we have used the fact that (−1)GQ = −Q(−1)G (similarly for Q̂) and that

[T , Q] = [T̂ , Q̂] = 0, which followed from nilpotency of Q.

It is evident from the explicit form of D ◦ D̂ that it is a non-negative operator.

To prove that it is, in fact, positive we calculate its expectation value on some

state Ψ:

〈Ψ, (D ◦ D̂)Ψ〉C = 〈ψ↑, (T T̂ +QQ̂)ψ↑〉C + 〈ψ↓, (Q̂Q+ T̂ T )ψ↓〉C

= ‖T̂ψ↑‖2 + ‖Q̂ψ↑‖2 + ‖Qψ↓‖2 + ‖Tψ↓‖2 . (2.50)

For this to vanish all terms must separately vanish. In particular, this implies that

ψ↑ must belong to the kernel of Q̂. But it already belongs to the image of Q. Since

these two spaces are orthogonal complements of each other we conclude that ψ↑

must be zero. A similar argument holds for ψ↓. This completes the proof.

Now suppose we are given the vanishing theorem for the cohomology of the

reduced BRST operator1

Hg(Q) = 0 ∀g 6= 0 . (2.51)

Then we can conclude that Hg(Q) = 0 unless g = ±1
2 using the injectivity of Φ.

1 In [3] the vanishing theorems for both the full and the reduced BRST complexes

are proven (except for the exceptional case of kµ = 0, where the cohomology
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Furthermore, if Ψ is a Q-cocycle with Gtot number 1
2 then ψ↓ = 0. Similarly, if

Ψ is a Q-cocycle with Gtot number −1
2 then ψ↑ = 0. In the exceptional case that

kµ = 0 an explicit calculation shows that there are 4 extra states, two of which

have ghost number different from zero: at −1 and +1. These two states induce

(via Φ−1) two states in the cohomology of the full BRST operator with total ghost

numbers −3
2 and +3

2 respectively.

As a corollary of the vanishing theorem we can show that Φ is not just injective

but indeed an isomorphism. To prove surjectivity of Φ let (
[
ψ↑
]
,
[
ψ↓
]
) ∈ H(Q)⊕

H(Q̂). Without loss in generality we may choose ψ↑ and ψ↓ harmonic. And because

of the vanishing theorem one of them is identically zero. For definiteness let us

assume that it is ψ↓. The proof for the other case goes through in exactly the same

way, the necessary changes having been made. Surjectivity of Φ is equivalent to the

existence of a state ψ̃↑ Q-cohomologous to ψ↑ and of a state ψ̃↓ Q̂-cohomologous

to zero such that Ψ̃ = ψ̃↑ ⊗ |↑〉 + ψ̃↓ ⊗ |↓〉 is Q-harmonic. That is, surjectivity is

equivalent to the existence of states ξ↑ ∈ im Q̂ and ξ↓ ∈ imQ such that

Ψ̃ = (ψ↑ +Q ξ↑)⊗ |↑〉+ Q̂ ξ↓ ⊗ |↓〉

is Q-harmonic. We now proceed to prove their existence by explicitly constructing

can be computed explicitly). However it is the one for the reduced complex

that was conjectured to be provable using Kähler techniques. We have chosen

to present this proof of the vanishing theorem for the full complex given the

same result for the reduced one because our proof is more in line with the

techniques advocated in [1]. In fact the proof only uses the existence of a

positive definite inner product and hence does not depend on the existence of

a Kähler structure compatible with this inner product, which we later show to

be impossible.
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them. For Ψ̃ to be harmonic the following equations must be satisfied

QΨ̃ =

 Q 0

(−1)G T Q


 ψ̃↑

ψ̃↓

 = 0 (2.52)

Q̂Ψ̃ =

 Q̂ (−1)G T̂

0 Q̂


 ψ̃↑

ψ̃↓

 = 0 , (2.53)

where ψ̃↑ = ψ↑ +Q ξ↑ and ψ̃↓ = Q̂ ξ↓. From (2.52) and (2.53) respectively we get

the following system of equations or ξ↑ and ξ↓:

(−1)G T (ψ↑ +Q ξ↑) +QQ̂ ξ↓ =0 (2.54)

QQ̂ ξ↑ + (−1)G T̂ Q̂ ξ↓ =0 . (2.55)

Since QQ̂ coincides with the BRST laplacian in imQ we may solve for ξ↓ from

(2.54) by means of the Green’s operator G (cf. §I.3)

ξ↓ = −(−1)G GT (ψ↑ +Q ξ↑) . (2.56)

Notice that this only makes sense because T ψ↑ ∈ imQ and this is a direct conse-

quence of the vanishing theorem. If T ψ↑ had a harmonic piece, we would never be

able to solve for ξ↓.

Substituting (2.56) into (2.55) and after some straight-forward algebra we find

the following equation for ξ↑

Q̂Q ξ↑ + T̂ Q̂GT Qξ↑ + T̂ Q̂GT ψ↑ = 0 . (2.57)

Since T and Q commute and using the definition of the Green’s operator we see

that (2.57) becomes

(Q̂Q+ T̂ πim Q̂ T ) ξ↑ = −T̂ Q̂GT ψ↑ , (2.58)

where πim Q̂ is the projector onto the image of Q̂. But notice that the operator

Q̂Q+ T̂ πim Q̂ T is actually positive in im Q̂ and hence it has an inverse. Therefore
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we can solve for ξ↑ and substituting this into (2.56) allows us to solve for both ξ↑

and ξ↓ purely in terms of ψ↑. This concludes the proof that Φ is surjective and

thus an isomorphism.

Another intersting corollary of the vanishing theorem is that we can choose

representatives for each cohomology class in H0(Q) such that they are singlets

of the sl2C algebra of (2.37).2 The finite dimensional representations of sl2C

are extremely well known. They are fully reducible and the irreducible ones are

generated by T acting on a vector of lowest weight annihilated by T̂ . Because T

and T̂ commute with L and pµ, they stabilize their finite dimensional eigenspaces

fully decomposing them into irreducible subspaces.

The idea of the proof is the following. Let [ψ] ∈ H0(Q). Then we will prove

that we can find a state ψ̃ cohomologous to ψ but which is annihilated by T . Then

since it is also annihilated by G it is a singlet. We shall without loss of generality

assume that ψ is in a particular eigenspace of pµ and L.

Let ψ̃ = ψ + Q ξ for some state ξ of ghost number −1. Imposing T ψ̃ = 0

we get T Q ξ = −T ψ. From the fact that T and Q commute and the vanishing

theorem we conclude that T ψ = Q ρ for a unique ρ ∈ im Q̂ and with ghost number

1. Therefore the equation for ξ becomes Q (T ξ + ρ) = 0. Hence all we need to do

is solve the equation T ξ = −ρ ( (mod )kerQ). In fact we can do better and we

can solve the equation exactly.

First of all let us break up ρ into its irreducible components. It is clear that

we can restrict ourselves to each irreducible subspace at a time since T respects

this. Therefore let us assume that ρ consists of exactly one such component. Then

because ρ has ghost number 1 it cannot be annihilated by T̂ , since the kernel of

T̂ consists of lowest weight vectors and these have all non-positive ghost numbers.

By similar reasoning ξ cannot be annihilated by T , and hence by T̂ T . Therefore

2 This was used in [7] as a criterion to gauge away auxiliary fields.
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we can solve for ξ as follows

ξ = −(T̂ T )−1 T̂ ρ , (2.59)

where the inverse of T̂ T exists in im T̂ = (kerT )⊥ = (ker T̂ T )⊥.

Noticing that ρ = G Q̂T ψ, we can write ψ̃ as

ψ̃ =
(
1−Q (T̂ T )−1 T̂ G Q̂T

)
ψ . (2.60)

The above operator turns out, after some straight forward algebra, to be a projec-

tion.

It is worth remarking that in general there is no unique singlet representative

from each cohomology class. We find a counter example in level 1 already. Consider

the state ξ = b†1 |k〉. It is clearly in ker Q̂ since there are no states of ghost number

−2 at level 1. By the vanishing theorem ker Q̂ = im Q̂ and so Q ξ 6= 0. Now

T ξ = c†1 |k〉. which is in the kernel of Q, since at level 1 there are no states of

ghost number 2. Therefore since T and Q commute, T Q ξ = 0. Hence given a

singlet state ψ at level 1, we can always add to it Q ξ and still have a singlet.

A natural question to ask is whether the harmonic states are in fact singlets.

We have verified this up to level 4; although we have been so far unable to prove

that this is true in general. Furthermore the explicit construction suggests that

they are not just singlets but in fact they do not contain any ghost and antighost

oscillators.

We can, however, say something in general about the harmonic states; and that

is that they fall into irreducible representations of the stability algebra of the center

of mass momentum. This is easy to see as follows. In the expression for Q there is

term which is linear in the momentum. If we were to consider the commutator of Q
with the “spin” part of the Lorentz generators we find that it is precisely that linear

term but with the transformed momentum. Hence the subalgebra of the Lorentz
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group which commutes with the reduced (and hence the full) BRST operator is

the stability algebra of the momentum. With Q̂ the situation is similar except

that we now have the time reversed momentum. However a momentum and its

time reversed image share the same stability algebra. We therefore conclude that

the stability algebra of the center of mass momentum commutes with both Q and

Q̂ and thus stabilizes the harmonic states. Finally, since they also commute with

the level operator, the harmonic spectrum at each level breaks up into irreducible

representations of the stability algebra.

We can illustrate these remarks by giving a table of the harmonic states at

the first five levels. We choose convenient center of mass momenta. To obtain

the states corresponding to different momenta one must merely Lorentz rotate the

oscillators as well.

Level Harmonic States Representations

1 Uia
i
−1 |k1〉 , U25 = 0

2 Dija
i
−1a

j
−1 |k2〉

Dij = D(ij) , δ
ijDij = 0

3 Tijka
i
−1a

j
−1a

k
−1 |k3〉

Tijk = T(ijk) , δ
ijTijk = 0

Aija
i
−1a

j
−2 |k3〉 , Aij = A[ij]

4 Cijkl

(
ai
−1a

j
−1a

k
−1a

l
−1 − 2

√
3 δklai

−1a
j
−3

−3δklai
−2a

j
−2

)
|k4〉

Cijkl = C(ijkl) ⊕ ⊕ •

Sijka
i
−1a

j
−1a

k
−2 |k4〉

Sijk = S(ij)k S(ijk) = 0 δijSijk = 0

Several remarks are in order. First the indices i, j, k, l all run from 1 to 25. The

momentum k1 corresponds to the vector (E, 0, . . . , 0, E) and the momenta kn for

n > 1 correspond to the vectors
(√

2(n− 1), 0, . . . , 0
)
. Finally, the representations
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described correspond to SO24 for level 1 and SO25 for all the other levels. Moreover

due to our choice of momenta these groups are embedded naturally in the 26–

dimensional Lorentz group.

§3 THE KÄHLER STRUCTURE

Having discussed in detail the BRST structure of the open bosonic string we

are now ready to make contact with Kähler algebra. Although the relationship

exhibited here is purely algebraic one can show[2] that there is some geometry

behind it. Kähler algebra consists of algebraic relations between objects which

made their mathematical debut as very natural differential operators in the study

of Kähler manifolds. It is convenient therefore to introduce them in their original

guise and later abstract those algebraic properties that are relevant to our case.

We follow the notation of [8], where the reader may find the proofs of all the results

asserted in this section concerning complex geometry.

Let X be a complex manifold. The complexified cotangent bundle T ∗C(X) splits

into two sub-bundles

T ∗C(X) = T ∗(X)1,0 ⊕ T ∗(X)0,1 . (3.1)

This split induces a decomposition of the exterior forms

∧n
T ∗C(X) =

⊕
p+q=n

∧p,q
T ∗C(X) , (3.2)

where ∧p,q
T ∗C(X) =

∧p
T ∗(X)1,0 ⊗

∧q
T ∗(X)0,1 . (3.3)

The smooth sections of these bundles are the complex-valued differential forms

of type (p, q) which we denote by Ep,q(X). The decomposition in (3.2) induces a
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decomposition of the smooth n-forms, En(X) into (p, q)-forms as follows

En(X) =
⊕

p+q=n

Ep,q(X) . (3.4)

The (p, q)-forms are roughly the analogues of the states in F(b,c) which consist

only of ghost and antighost oscillators. In order to include the string coordinates

oscillators in this formalism we must talk about (p, q)-forms with values in a com-

plex vector space, or more generally in a complex vector bundle. To this end

let E −→ X denote a holomorphic vector bundle and let En(E) and Ep,q(E) de-

note respectively the smooth sections of the vector bundles
∧nT ∗C(X) ⊗ E and∧p,qT ∗C(X)⊗ E.

Let d denote the exterior derivative. We can extend it trivially to act on the

E-valued forms as d ⊗ 1. It is still a nilpotent operator and it gives rise to the

following differential complex known as the E-valued de Rham complex

· · · −→ En−1(E)
d−→ En(E)

d−→ En+1(E) −→ · · · (3.5)

Using the decomposition of n-forms into (p, q)-forms we can split the exterior

derivative into the Cauchy-Riemann operators

d = ∂ + ∂̄ , (3.6)

where

∂ : Ep,q(E) −→ Ep+1,q(E) , ∂̄ : Ep,q(E) −→ Ep,q+1(E) . (3.7)

Nilpotency of the exterior deriative implies, in a manner completely analogous to

the argument leading to equations (2.39) or (2.40), that both ∂ and ∂̄ are nilpotent

and that they anticommute. In particular their nilpotency allows us to consider
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a family of complexes for, say, the Cauchy-Riemann operator ∂̄ known as the

Dolbeault complexes

· · · −→ Ep,q−1(E)
∂̄−→ Ep,q(E)

∂̄−→ Ep,q+1(E) −→ · · · (3.8)

Now let X be a compact Kähler manifold. The Kähler form is closed and the

Hermitian metric associated to it is positive definite. Therefore there is an induced

positive definite Hermitian inner product on the (p, q) forms — the Hodge metric

— which allows us to define (formal) adjoints for the Cauchy-Riemann operators.

The Hodge metric is constructed using the Hodge-Serre duality operator. We can

define an operator ? mapping (p, q)-forms to (m − p,m − q)-forms (where m is

the complex dimension of X) which is nothing but the usual Hodge star-operator

associated with a Riemannian metric pre-composed with complex conjugation.

Then the Hodge inner product of two complex-valued forms φ and ψ is

〈φ, ψ〉H =

∫
X
φ ∧ ?(ψ) , (3.9)

where ?(ψ) = ?ψ. Furthermore if E −→ X is a Hermitian holomorphic vector bun-

dle we can extend the inner product to the E-valued forms by essentially tensoring

the two metrics. Let τ : E −→ E∗ denote the conjugate-linear bundle isomorphism

between E and its dual bundle E∗ induced by the Hermitian structure. Then we

can define ?E on an E-valued form ψ ⊗ e by ?E(ψ ⊗ e) = ?(ψ) ⊗ τ(e). Then the

Hodge inner product for E-valued forms can be constructed just as in (3.9) but

with ?E instead of ? and using — before integration — the pointwise evaluation

map E ⊗ E∗ −→ C.

Let ∗ denote hermitian conjugation with respect to this inner product so that

d∗, ∂∗ and ∂̄∗ respectively denote the adjoints of the exterior derivative and the

Cauchy-Riemann operators. The ?E operator is the analogue of the self-adjoint

involution C we introduced in §I.3. The ? operator corresponds to C restricted to

the states that only consist of ghost and antighost oscillators.
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Let us now introduce the operator L defined as exterior product with the

Kähler form. Because the Kähler form is a (1, 1)-form it maps

L : Ep,q(E) −→ Ep+1,q+1(E) , (3.10)

and because the Kähler form is real L is a real operator. Its adjoint L∗ is also a real

operator and corresponds roughly (up to some factors depending on the bidegree

of the form) to interior multiplication with the Kähler form. If we denote by Πp,q

the projection operator onto the (p, q)-forms and Πn the projection operator onto

the n-forms then

[L , L∗] =
2m∑
l=0

(l −m) Πl . (3.11)

The operators L and L∗ correspond to our operators T and T̂ .

There are three kinds of laplacian operators acting on forms on a compact

complex manifold

= ∂ ∂∗ + ∂∗ ∂

= ∂̄ ∂̄∗ + ∂̄∗ ∂̄ (3.12)

4 = d d∗ + d∗ d .

In general they are not related but if the manifold is Kähler then

1

2
4 = = . (3.13)

In the process of proving this result a number of auxiliary relations are obtained

[L , ∂] = [L , ∂̄] = [L∗ , ∂∗] = [L∗ , ∂̄∗] = 0

[L , ∂∗] = i∂̄ [L , ∂̄∗] = −i∂ (3.14)

[L∗ , ∂] = i∂̄∗ [L∗ , ∂̄] = −i∂∗ .
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Letting dc = −i(∂ − ∂̄) we see that

[L , d∗] = dc [L∗ , d] = −d∗c . (3.15)

Furthermore as a corollary we have that all laplacians commute with L, ∂, ∂̄ and

their adjoints.

The equality of the laplacians together with the relation between cohomol-

ogy and harmonic forms allows us to relate the cohomology of the de Rham and

Dolbeault complexes yielding the famous decomposition

Hn
DR(M) ∼=

⊕
p+q=n

Hp,q
∂̄

(M) , (3.16)

Finally consider the bundle K =
∧topT ∗(X)0,1, the conjugate of the canonical

bundle. The smooth sections of K are just the (0,m)-forms where, again, m is the

complex dimension of X and similarly the smooth sections of the bundle K ⊗ E

are nothing but the E-valued (0,m)-forms. If we define

F (b,c) ≡ Ec,m−b(E) , (3.17)

then we see that

∂ : F (b,c) −→ F (b,c+1) ∂̄ : F (b,c) −→ F (b−1,c) . (3.18)

This is to be compared with equation (2.27).

Having reviewed the basic facts of Kähler algebra we are finally ready to make

the correspondence between the objects we have just introduced and those appear-

ing in the BRST complex. The correspondence is obtained by making the following

identifications:
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BRST Kähler Algebra

F(b,c) F (b,c)

Q′ ∂

Q′′ ∂̄

T L
†

C ?E

ˆ ∗

First of all, a comment is in order. The definition in (3.17) only makes sense if

the dimension of the complex manifold is finite; however, under the above dictio-

nary this would correspond to a Fock space generated by a finite number of ghost

and antighost oscillators which is not our case. The definition of F (b,c) can be

given for the case of infinite dimensional manifolds and corresponds to the semi-

infinite forms of [9]. It is in the spirit of clarity that we decided to present the

finite dimensional theory since we are only using it as a heuristic guide. Moreover

in the present work we are only drawing an analogy with the algebraic relations

that will appear between the various operators and not with the spaces on which

they act, although it should be kept in mind that ultimately there is. The fact

that we have presented the finite dimensional theory also accounts for the factors

of powers of
√
−1 that have been omitted in the above table and that would make

the correspondence exact. As it stands the correspondence is to be understood

modulo these factors. For instance, whereas the BRST operator C is an involution,

the Hodge-Serre duality operator ?E is not. This is remedied by redefining it by

a phase which depends on the bidegree of the form. Since the Kähler adjoints are

defined via this operator they too need some phase factors in order to exactly cor-

respond under the above dictionary. We don’t feel that the exact corespondence

is crucial for our purposes and for simplicity we have decided to relax it. The

interested reader can find the exact correspondence in [3]. Also notice that under
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the above dictionary the operator in the right hand side of equation (3.11) does in

fact correspond to the ghost number operator G.

Let us now investigate to what extent the Kähler identities are satisfied. As

can be seen by equation (2.29) the involution C time reverses the string coordinates

except for the center of mass coordinate which is left inert. Since the generators

{L(a)
n } of the Virasoro algebra are bilinear in the string oscillators and invariant

under the full Lorentz group they will be invariant under conjugation by C except

for those terms which are linear in the center of mass momentum. It is therefore

convenient to make the momentum dependence in Q manifest. To this end let us

split Q(p) into

Q(p) = p ·R + Q , (3.19)

which induces a holomorphic split

Q′(p) = p ·R′ + Q′

Q′′(p) = p ·R′′ + Q′′ . (3.20)

These obey the following algebra

(p ·R′)2 = (Q′)2 = {p ·R′ , Q′} = 0 (3.21)

(p ·R′′)2 = (Q′′)2 = {p ·R′′ , Q′′} = 0 (3.22)

{p ·R′ , p ·R′′} = p2 T (3.23)

{Q′ , Q′′} = 2 (L − 1)T (3.24)

{p ·R′ , Q′′} = −{Q′ , p ·R′′} , (3.25)

where L is the level operator defined in (2.18). Of course in kerH there is a

relation between p2 and L, namely p2 + 2(L − 1) = 0. After another straight-

forward oscillator calculation one finds that for the momentum independent piece
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Q we obtain the expected Kähler relations analogoue to those in equation (3.14)

[T̂ , Q′] = Q̂′′ [T̂ , Q′′] = −Q̂′ . (3.26)

but for the momentum dependent piece we are not so lucky. In fact, one obtains

[T̂ , Q′(p)] = Q̂′′(T p) [T̂ , Q′′(p)] = −Q̂′(T p) , (3.27)

where T p denotes the time reversed momentum (T p)µ = (−1)δµ,0pµ.

As a result the holomorphic and antiholomorphic laplacians do not agree. Had

the Kähler relations been true the equality of the laplacians

4′ ≡ Q′ Q̂′ + Q̂′Q′

4′′ ≡ Q′′ Q̂′′ + Q̂′′Q′′ (3.28)

would follow immediately. Indeed,

4′ = {Q′ , Q̂′}

= {Q′ , [Q′′ , T̂ ]} by the K”ahler relations

= {[T̂ , Q′] , Q′′}by Jacobi identity and (2.39)

= {Q̂′′ , Q′′} by the Kähler relations

⇒4′ = 4′′ . (3.29)

This result would allow us to prove a decomposition theorem similar to that in

equation (3.16).

Therefore we see how this positive definite inner product is not Kähler as

exemplified by the equality of the holomorphic and antiholomorphic laplacians.

Had we not time reversed the oscillators corresponding to the vibrational modes

the inner product would have been Kähler but it would not have been positive
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definite and hence our decomposition theorem would not have gone through since

we use positive-definiteness strongly. If on the other hand we would have treated

the center of mass momentum on an equal footing with the other modes of the

string we would have again obtained a Kähler inner product but again it would

not have been positive definite.

These arguments by themselves do not constitute a proof of the non-existence

of a positive-definite Kähler inner product. However a simple proof can be given

that this is indeed the case. This uses the concept[10] of “disjointness,” which is

shown in the appendix to be a sufficient condition to guarantee a decomposition

theorem as in [1]. Two operators A and B are said to be disjoint if and only if

for all vectors ψ the following two conditions hold

AB ψ = 0 ⇒ B ψ = 0

BAψ = 0 ⇒ Aψ = 0 . (3.30)

In particular, if B = A∗, where ∗ denotes adjoint under a positive definite inner

product 〈, 〉, disjointness follows since

AA∗ ψ = 0 ⇒ 〈ψ, AA∗ ψ〉 = 0

⇒ ‖A∗ ψ‖ = 0

⇒ A∗ ψ = 0 by positive-definiteness,

and similarly for the other identity.

Therefore, if there exists a positive-definite Kähler inner product then Q′′ and

Q̃′ ≡ [T̂ , Q′] must be disjoint.3 However an explicit calculation shows that this is

3 We should really have the adjoint of T under the new inner product in the

previous commutator. However T only contains ghost and antighost oscillators

and the inner product is Kähler with ghosts and antighosts alone. Moreover T ,
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not the case. In fact all we must show is that there is something in kerQ′′ ∩ im Q̃′.

A completely straight-forward calculation shows that

Q′′ Q̃′ c†2 |k〉 = 0 but Q̃′ c†2 |k〉 6= 0 . (3.31)

Similarly one can verify that the decomposition analogous to equation (3.16) does

not hold already at level 2.

One may also ask whether the operators Q and Q̃ ≡ [T̂ , Q] could be dis-

joint even though their holomorphic and antiholomorphic parts are not separately

disjoint. In this case an explicit calculation at level 2 shows that

QQ̃
(
k · a†1

)
c†1 |k〉 = 0 whereas Q̃

(
k · a†1

)
c†1 |k〉 6= 0 . (3.32)

§4 “NO-GHOST” THEOREMS

In this section we give proofs of the “no-ghost” theorems for the bosonic and

NSR strings along the lines of §I.5. We assume in all cases that a vanishing theorem

has been proven for the reduced BRST complex. In the case of the bosonic string

this was done in [3] in great generality and in a manner independent of the “no-

ghost” theorem, although several other proofs have appeared, as well as for the NSR

string.[11] However these proofs follow always as byproducts of explicit computation

of the cohomology in terms of DDF states. A direct proof of the vanishing theorem

along the lines of [1] would be desirable, for then the “no-ghost” theorem follows as

a more or less trivial consequence as we will show in this section. We only discuss

open strings because this is sufficient to prove “no-ghost” theorems for the closed

T̂ and G form the Kähler sl2C algebra and therefore any Kähler inner product

must have T̂ as the adjoint of T . Any other Kähler structure would not be the

natural one.
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strings as well. The spectra of the closed strings can be obtained by truncating

the tensor products of the spectra of the open strings. And hence if there are

no negative norm states in the spectra of the open strings there cannot be any

negative norm states in the spectra of the closed strings.

The Open Bosonic String

As we remarked in §I.5 to prove the “no-ghost” theorem all we need to prove

— given the vanishing theorem — is the identity in (I.5.8). We now proceed to

calculate this. As mentioned in §I.5 we compute weighted traces. The reduced

Fock space F is easily seen to have the following structure

F =
25⊗

µ=0

∞⊗
n=1

Sµ
n

∞⊗
n=1

An , (4.1)

where Sµ
n is the one particle Hilbert space corresponding to the oscillator aµ

n
†

and

An is the Hilbert space corresponding to the oscillators {b†n, c†n}. The space Sµ
n is

isomorphic to the polynomial algebra in one variable: aµ
n
†

whereas the space An is

isomorphic to the exterior algebra on two generators: b†n and c†n.

Therefore using the fact that the trace is multiplicative over tensor products

the left hand side of (I.5.8) becomes

TrF (−1)G qL =
25∏

µ=0

∞∏
n=1

TrSµ
n
qnaµ

n
†aµ

n ×
∞∏

n=1

TrAn

[
(−1)c

†
nbn−b†ncn qn(c†nbn+b†ncn)

]

=

[ ∞∏
n=1

( ∞∑
m=0

qnm

)]26

×
∞∏

n=1

(
1− qn − qn + q2n

)
=

∞∏
n=1

(1− qn)−26 · (1− qn)2

=
∞∏

n=1

(1− qn)−24 . (4.2)

– 29 –



As for the right hand side we have

TrF C q
L =

25∏
µ=0

∞∏
n=1

TrSµ
n
C qnaµ

n
†aµ

n ×
∞∏

n=1

TrAn
C qn(c†nbn+b†ncn)

=
25∏

µ=0

∞∏
n=1

∞∑
m=0

(
(−1)δµ,0 qn

)m
×

∞∏
n=1

(
1− q2n

)
=

∞∏
n=1

(1 + qn)−1 · (1− qn)−25 · (1− qn) · (1 + qn)

=
∞∏

n=1

(1− qn)−24 . (4.3)

Therefore the identity in (I.5.8) is satisfied and the “no-ghost” theorem for the

open bosonic string is proven. Notice how this partition function is precisely the

one obtained from the light-cone quantization.

The Neveu-Schwarz Sector of the Open NSR String

We shall be very brief in this and the next subsections. We assume the reader is

familiar with the standard BRST treatment of the NSR string as found for instance

in [6]. We merely list some basic properties in order to clarify the notation.

In the Fock space of the Neveu-Schwarz sector we find the following oscillators:

{aµ
n, b

µ
r , bn, cn, βr, γr}, where n ∈ Z, r ∈ Z + 1

2 , and µ = 0, . . . , 9, where again we

use pµ and aµ
0 interchangingly. These oscillators enjoy the following hermiticity

properties:

aµ
n
† = aµ

−n b†n = b−n c†n = c−n ∀n ∈ Z

bµr
† = bµ−r β†r = β−r γ†r = −γ−r ∀r ∈ Z +

1

2
. (4.4)

They obey the following canonical (anti)commutation relations:

[aµ
n , a

ν
m
†] = ηµνδmn {bn , c†m} = δmn ∀m,n ∈ N
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{bµr , bνs
†} = ηµνδrs [βr , γ

†
s] = δrs ∀ r, s ∈ N− 1

2
{b0 , c0} = 1 , (4.5)

and all other (anti)commutators vanish.

A vacuum |k〉 in the reduced Fock space is defined by

pµ |k〉 = kµ |k〉 aµ
n |k〉 = 0 bn |k〉 = 0 cn |k〉 = 0

bµr |k〉 = 0 βr |k〉 = 0 γr |k〉 = 0 ∀n > 0 , r ≥ 1

2
.

A vacuum in the full Fock space is obtained by tensoring |k〉 with any state in

the representation space for the Clifford algebra defined by the ghost zero modes

{b0, c0}.

The dependence of the BRST operator on the ghost zero modes can be made

manifest by the following decomposition

Q = c0H − 2b0 T +Q , (4.6)

where

T =
∑
n>0

c†ncn −
∑
r≥ 1

2

γ†rγr (4.7)

H =
1

2
p2 + L − 1

2
(4.8)

and Q is the rest. It is convenient to split the level operator L as follows

L = L(a) + L(b) + L(b,c) + L(β,γ) (4.9)

where
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L(a) =
∑
n>0

n a†n · an (4.10)

L(b) =
∑
r≥ 1

2

r b†r · br (4.11)

L(b,c) =
∑
n>0

n
(
b†ncn + c†nbn

)
(4.12)

L(β,γ) =
∑
r≥ 1

2

r
(
β†rγr + γ†rβr

)
. (4.13)

In the Neveu-Schwarz sector of the NSR string the relation between the reduced

and the full Fock spaces is essentially the same as in the bosonic string due to the

absence of zero modes for the fermionic and super-ghost fields. In particular we can

restrict ourselves to kerH without loss of generality and study the cohomology of

the reduced BRST operator Q. Given the vanishing theorem for the cohomology of

Q we can then prove the vanishing theorem for the cohomology of Q and moreover

prove that the cohomology of Q is isomorphic to two copies of the cohomology of

Q.

The reduced Fock space has the following structure

F = F (a) ⊗F (b,c) ⊗F (b) ⊗F (β,γ) (4.14)

where

F (a) =
9⊗

µ=0

∞⊗
n=1

Sµ
n (4.15)

F (b,c) =
∞⊗

n=1

An (4.16)

F (b) =
9⊗

µ=0

∞⊗
r= 1

2

Aµ
r (4.17)

F (β,γ) =
∞⊗

r= 1
2

Sr . (4.18)

The first two terms are just like in the open bosonic string except that D = 10.

Therefore we shall concentrate on the last two terms. Here Aµ
r is the Hilbert space
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of the bµr
†

oscillator and is isomorphic to the exterior algebra on one generator;

and Sr is the Hilbert space of the {β†r , γ†r} oscillators and is isomorphic to the

polynomial algebra in two variables.

The contribution to the left hand side of equation (I.5.8) coming from the first

two terms in the above decomposition of the reduced Fock space can be readily

obtained from the similar computation done in the previous subsection. The result

is
∏∞

n=1 (1− qn)−8. The contribution coming from the Neveu-Schwarz oscillators

can be computed as follows

TrF (b) qL
(b)

=
9∏

µ=0

∞∏
r= 1

2

TrAµ
r
qr bµ

r
†bµ

r

=
∞∏

r= 1
2

(1 + qr)10 ,

whereas the contribution from the super-ghosts is

TrF (β,γ) (−1)G qL
(β,γ)

=
∞∏

r= 1
2

TrSr
(−1)Nγ−Nβ qr(Nγ+Nβ)

=
∞∏

r= 1
2

TrSr
(−qr)Nγ+Nβ

=
∞∏

r= 1
2

∞∑
n,m=0

(−qr)n+m

=
∞∏

r= 1
2

( ∞∑
n=0

(−qr)n
)2

=
∞∏

r= 1
2

(1 + qr)−2 ,

where Nβ (resp. Nγ) is the number operator corresponding to the {βr} (resp.

{γr}) oscillators. Putting everything together we find that

TrF (−1)G qL =
∞∏

n=1

(1− qn)−8 ×
∞∏

r= 1
2

(1 + qr)8 . (4.19)
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In order to compute the right hand side of equation (I.5.8) we must first discuss

the conjugation C. The conjugation on the {aµ
n, bn, cn} oscillators is the same as in

(2.28)–(2.30) but with D = 10. For the other oscillators the conjugation with the

desired properties turns out to be the following

C bµs C = (−1)δµ,0 bµs ∀ s ∈ Z +
1

2
C γr C = βr C βr C = γr

C γ−r C = −β−r C β−r C = −γ−r ∀ r ∈ N− 1

2
. (4.20)

Once again the contribution now to the right hand side of (I.5.8) coming from

the {aµ
n, bn, cn} oscillators can be read from the calculations in the previous sub-

section and yields
∏∞

n=1 (1− qn)−8. The contribution from the Neveu-Schwarz

oscillators is

TrF (b) C qL
(b)

=
9∏

µ=0

∞∏
r= 1

2

TrAµ
r
C qr bµ

r
†bµ

r

=
9∏

µ=0

∞∏
r= 1

2

(
1 + (−1)δµ,0qr

)

=
∞∏

r= 1
2

(1− qr) · (1 + qr)9 .

Finally we compute the contribution coming from the super-ghosts. Notice that

because of the nature of the conjugation C we only pick a contribution to the trace

from states whose β and γ occupation numbers coincide. Therefore

TrF (β,γ) C qL
(β,γ)

=
∞∏

r= 1
2

TrSr
C qr(Nβ+Nγ)

=
∞∏

r= 1
2

∞∑
n=0

q2rn
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=
∞∏

r= 1
2

(
1− q2r

)−1
.

Combining all results we find

TrF C q
L =

∞∏
n=1

(1− qn)−8 ×
∞∏

r= 1
2

(1 + qr)8 , (4.21)

which agrees with (4.19), hence proving the “no-ghost” theorem.

The Ramond Sector of the Open NSR String

Again we shall be brief. In the Ramond sector of the NSR string we find

the following oscillators: {aµ
n, bn, cn, d

µ
n, βn, γn} for all n ∈ Z and µ = 0, . . . , 9 and

where, as usual, we shall confuse aµ
0 with pµ. These oscillators enjoy the hermiticity

properties

aµ
n
† = aµ

−n b†n = b−n c†n = c−n

dµ
n
† = dµ

−n β†n = β−n γ†n = −γ−n ∀n ∈ Z (4.22)

and they obey the following canonical (anti)commutation relations:

[aµ
n , a

ν
m
†] = ηµνδmn {bn , c†m} = δmn

{dµ
m , dν

n
†} = ηµνδmn [βm , γ†n] = δmn ∀m,n ∈ N

{b0 , c0} = 1 [γ0 , β0] = 1 , (4.23)

and all other (anti)commutators vanish.

A vacuum in the reduced Fock space is defined by

pµ |k〉 = kµ |k〉 aµ
n |k〉 = 0 bn |k〉 = 0 cn |k〉 = 0

dµ
n |k〉 = 0 βn |k〉 = 0 γn |k〉 = 0 ∀n > 0 .

To define a vacuum in the full Fock space we must tensor |k〉 with any state in

the Hilbert space of zero modes: {dµ
0 , β0, γ0, b0, c0}. The ghost zero modes {b0, c0}
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define a Clifford algebra on two generators and hence its irreducible representations

are two dimensional. Similarly the zero modes of the Ramond field dµ
0 define a

Clifford algebra with 10 generators and hence its unique irreducible representation

is 32-dimensional. Finally the super-ghost zero modes {β0, γ0} define a Heisenberg

algebra whose unique irreducible representation (the “Schrödinger representation”)

is infinite dimensional. Hence there is an infinite degeneracy in the space of vacua.

This presents some difficulties especially when arguing that the study of the reduced

BRST operator suffices. Some progress was made in [12] but in our opinion the

results presented there are inconclusive and work is presently under way to put

this on a more solid foundation. We will however for the purposes of this paper

accept the results in [12] although what is given in that paper is not a proof but

just a strong indication.

Because of the proliferation of zero modes the decomposition of the BRST

operator analogous to equation (4.6) is more complicated:

Q = c0H − 2b0 T − γ2
0b0 + Q , (4.24)

where

Q = β0K + γ0 F +Q , (4.25)

where

H =
1

2
p2 + L (4.26)

T =
∑
n>0

(
c†ncn − γ†nγn

)
(4.27)

F = F0 +
1

2

∑
n>0

√
n
(
c†nβn − β†ncn

)
+ 2

∑
n>0

√
n
(
γ†nbn − b†nγn

)
(4.28)

K =
3

2

∑
n>0

√
n
(
c†nγn + γ†ncn

)
, (4.29)

and where

F0 = p · d0 +
∑
n>0

√
n
(
a†n · dn + d†n · an

)
. (4.30)
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The level operator L may be further decomposed as

L = L(a) + L(n) + L(b,c) + L(β,γ) (4.31)

where

L(a) =
∑
n>0

n a†n · an (4.32)

L(d) =
∑
n>0

n d†n · dn (4.33)

L(b,c) =
∑
n>0

n
(
b†ncn + c†nbn

)
(4.34)

L(β,γ) =
∑
n>0

n
(
β†nγn + γ†nβn

)
. (4.35)

The nilpotency of the BRST operator Q implies the following identities

Q2 = 0 F 2 = H [F , T ] = K Q2 = 2H T + F K , (4.36)

and all other (anti)commutators vanish. Just as before we can restrict ourselves to

kerH. In this subspace F is nilpotent and hence its cohomology can be studied.

It is shown in [12] that as long as kµ 6= 0 this cohomology is trivial and for a

particular class of vacua we can restrict ourselves to the subspace kerF where Q is

nilpotent. Therefore at least in some sense we can restrict ourselves to the reduced

BRST operator. However it is not clear in this case what the relation between the

two cohomology spaces H(Q) and H(Q) is; although it seems plausible that H(Q)

is just a infinite number of copies of H(Q).

Allowing ourselves to study the cohomology of the reduced BRST operator

and assuming the vanishing theorem for its cohomology one can again prove the

“no-ghost” theorem. The reduced Fock space has the following structure

F = F (a) ⊗F (b,c) ⊗F (d) ⊗F (β,γ) , (4.37)
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where F (a) and F (b,c) are given by (4.15) and (4.16) respectively. As for the rest

F (d) =
9⊗

µ=0

∞⊗
n=1

Aµ
n (4.38)

F (β,γ) =
∞⊗

n=1

Sn . (4.39)

Here Aµ
n is the Hilbert space of the dµ

n
†

oscillator and is isomorphic to the exterior

algebra on one generator; and Sn is the Hilbert space of the {β†n, γ†n} oscillators

and is isomorphic to the polynomial algebra in two variables.

Again the contribution to the Euler characteristic of the complex coming from

the first two terms in the above decomposition of F is
∏∞

n=1 (1− qn)−8. The

Ramond oscillators contribute

TrF (d) qL
(d)

=
9∏

µ=0

∞∏
n=1

TrAµ
n
qn dµ

n
†dµ

n

=
∞∏

n=1

(1 + qn)10 ,

and the contribution from the super-ghosts is

TrF (β,γ) (−1)G qL
(β,γ)

=
∞∏

n=1

TrSn
(−1)Nγ−Nβ qn(Nγ+Nβ)

=
∞∏

n=1

TrSn
(−qn)Nγ+Nβ

=
∞∏

n=1

∞∑
m,p=0

(−qn)m+p

=
∞∏

n=1

( ∞∑
m=0

(−qn)m

)2

=
∞∏

n=1

(1 + qn)−2 ,

where Nβ (resp. Nγ) is the number operator corresponding to the {βn} (resp.
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{γn}) oscillators. Putting everything together we find that

TrF (−1)G qL =
∞∏

n=1

(
1 + qn

1− qn

)8

. (4.40)

In order to compute the signature of the complex we need to discuss the con-

jugation C. This is similar to the one for the Neveu-Schwarz sector (cf. (4.20))

C dµ
m C = (−1)δµ,0 dµ

m ∀m ∈ Z

C γn C = βn C βn C = γn

C γ−n C = −β−n C β−n C = −γ−n ∀n ∈ N . (4.41)

The contribution to the signature of the complex coming from the {aµ
n, bn, cn}

is once again
∏∞

n=1 (1− qn)−8. The Ramond oscillators contribute

TrF (d) C qL
(d)

=
9∏

µ=0

∞∏
n=1

TrAµ
n
C qn dµ

n
†dµ

n

=
9∏

µ=0

∞∏
n=1

(
1 + (−1)δµ,0qn

)
=

∞∏
n=1

(1− qn) · (1 + qn)9 .

Finally we compute the contribution coming from the super-ghosts. Just as in the

Neveu-Schwarz sector we only pick a contribution to the trace from states whose

β and γ occupation numbers coincide. Indeed,

TrF (β,γ) C qL
(β,γ)

=
∞∏

n=1

TrSn
C qn(Nβ+Nγ)

=
∞∏

n=1

∞∑
m=0

q2nm
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=
∞∏

n=1

(
1− q2n

)−1
.

Combining all results we find

TrF C q
L =

∞∏
n=1

(
1 + qn

1− qn

)8

, (4.42)

which agrees with (4.40), hence proving the “no-ghost” theorem.

Finally we remark that the GSO projected NSR string is also free of ghosts.

This is true because modular invariance also forces the GSO projection on the

super-ghost spectrum which goes hand in hand with the GSO projection in the

spectrum of the Neveu-Schwarz and Ramond oscillators. We leave the trivial details

of this calculation as an exercise.

§5 CONCLUSIONS

In this paper we have applied the techniques of [1] to the particular case of

the open bosonic string. It is remarkable that the proofs are so simple. We think

that the importance of these techniques has been established.

Moreover the importance of the vanishing theorem both for consistency of

the BRST quantization, as was proven in [1], and as a powerful tool in proving

interesting technical results can hardly be overemphasized. But as mentioned in the

introduction the fundamental aim of this paper is still unfulfilled. We hope that a

self-contained simple proof of the vanishing theorem using these techniques can be

found, thus providing a sense of completion to this chapter of BRST quantization.
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Appendix A DISJOINTNESS AND DECOMPOSITION

For convenience and since it is in this way that we use the result in §4 we

assume that V is a finite dimensional vector space and d and δ are two nilpotent

endomorphisms. We recall that we said that d and δ are disjoint if and only if

d δ v = 0 ⇒ δ v = 0 ,

δ d v = 0 ⇒ d v = 0 ∀ v ∈ V (A.1)

This is the case, for instance, when d and δ are adjoints of each other with respect

to a positive definite inner product in V. We saw in §3 how in this case there was a

decomposition theorem. In this appendix we show that in fact the weaker condition

of disjointness suffices[10]. If d and δ are disjoint we define the endomorphism

4 ≡ d δ + δ d. Then we have the following:

Theorem. Let d and δ be disjoint and 4 be as above. Then the following hold:

(1) ker4 = ker d ∩ ker δ

(2) V = im d⊕ im δ ⊕ ker4

(3) If Hd denotes the cohomology space ker d/im d, then the canonical projec-

tion π : ker d→ Hd induces an isomorphism π : ker4
∼=−→ Hd.

Proof: (1) It is obvious that ker d ∩ ker δ ⊂ ker4. Now let v ∈ ker4 and let

w = −δ d v = d δ v. Clearly w ∈ ker d ∩ ker δ by nilpotency of d and δ. But by

disjointness, −d δ d v = 0 ⇒ δ d v = 0 ⇒ d v = 0 and δ d δ v = 0 ⇒ d δ v = 0 ⇒
δ v = 0. Hence v ∈ ker d ∩ ker δ as well.
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(2) Let x = d v = δ w then by nilpotency of d, d δ w = 0, which by disjointness

implies that δ w = 0. Thus im d ∩ im δ = O and hence im d + im δ is direct. We

claim that ker 4 ∩(im d ⊕ im δ) = O. In fact let x ∈ ker4. If x ∈ im d ⊕ im δ

it can be written (uniquely) as x = d v + δ w. But by (1), d x = 0 and δ x = 0.

Hence, d δ w = 0 and δ d v = 0 which by disjointnes forces δ w = 0 and d v = 0 and

consequently x = 0. From its definition, im4 ∈ im d⊕ im δ. Hence ker 4+im4
is direct and since V is finite dimensional V = ker 4 ⊕ im4. In particular,

im4 = im d⊕ im δ.

(3) Let v, w ∈ ker4. If π v = π w then v = w+d z, ∃z. But since δ v = δ w = 0

we conclude that δ d z = 0, which by disjointness imlies that d z = 0 and hence

that v = w. Therefore the map π : ker4 → Hd is injective. To prove that it is a

bijection all we need to do is count dimensions. By (1) and (2) and the nilpotency

of d, ker d = ker 4⊕ im d. Therefore dim ker4 = dim ker d − dim im d which is

precisely dim Hd.

Corollary. If Hδ is the cohomology space ker δ/im δ then Hd
∼= Hδ.

Proof: Just replace δ with d in the previous theorem and using (3) we find the

required isomorphisms Hd
∼= ker4 ∼= Hδ.

Moreover if d and δ are disjoint and related by an involution ? ∈ End V in such

a way that δ = ? d ?, then ? gives the isomorphism of the previous corollary since

?4 = 4 ? as can be easily verified.
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