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§1 Introduction

The study of W -algebras is becoming increasingly relevant in two-dimensional

conformal field theory, string theory, and quantum gravity and a lot of the progress

in the study of both their classical and quantum versions arises from its connections

with the theory of integrable models.

Although quantum W -algebras first made their appearance in the important

paper[1] of A. B. Zamolodchikov on extensions of the conformal symmetry of two-

dimensional statistical mechanics models, classical W -algebras had already ap-

peared as somewhat exotic hamiltonian structures[2] for the generalized KdV hi-

erarchies. In fact, it was Magri[3] who discovered that the KdV hierarchy was

bi-hamiltonian: the second bracket defining a classical version of the Virasoro al-

gebra. The analogous statement of the nth order KdV hierarchy (KdV being n = 2)

involves the so-called Wn algebra as the “second hamiltonian structure”. Efforts to

understand the second hamiltonian structure culminated with the discovery by Ku-

pershmidt and Wilson[4],[5] (based on earlier work for the KdV equation by Adler

and Moser[6]) of the fact that the second hamiltonian structure was induced from

a vastly simpler one via a generalisation of the celebrated Miura transformation

of the KdV theory. This fact proved instrumental in the quantization, by Fateev

and Lykyanov[7], of the Wn algebras, since the Miura transformation basically

gives—at the classical level—a free field realization for the relevant W -algebra.

Further progress in W -algebras came from the seminal work of Drinfel’d and

Sokolov[8] who related these integrable systems to affine algebras and who, fol-

lowing previous work of Reiman and Semenov-Tyan-Shanskĭı[9], proved that the

second hamiltonian structure was induced from the natural hamiltonian structure

in the dual of an affine algebra via symplectic reduction by the Poisson action of

a unipotent subgroup of the correspoding loop group. This result has had a pro-

found importance in the study of W -algebras. On the one hand, it has served to

construct many other classical W -algebras: one associated to roughly each affine

Lie algebra; but also to obtain important information about the quantum alge-
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bras as, for example, the discrete series associated to their minimal models[10].

Part of the work of Drinfel’d and Sokolov consists in the construction of an inte-

grable hierarchy associated to the loop algebra of the general linear algebra out

of which several other hierarchies could be obtained by reduction. In particular,

the nth order KdV hierarchy, is the hierarchy associated to the An series of the

Cartan classification. Other reductions yield hierarchies associated to the Bn and

Cn series, and further reductions yield hierarchies associated to exceptional Lie

algebras like G2. All these hierarchies have their associated W -algebras which ex-

tend the Virasoro algebra by primary fields of dimensions equal to the exponents

of the relevant Lie algebra. Not much is known in the quantum[11] case about

these algebras, except for the B2 and G2 cases which correspond to the unique

extensions of the Virasoro algebra by a primary field of spin 4 (see [12] ,[13] )

and spin 6 (see [14] ), respectively. It should be remarked that those algebras

termed WBn in the physics literature[15],[16],[17] are not the ones associated to Bn

by the Drinfel’d-Sokolov scheme but contain an extra primary field of half-integral

weight. These algebras do seem to be obtainable à la Drinfel’d-Sokolov, but from

Lie superalgebras[18].

The connection between W -superalgebras and integrable systems is, however,

mostly unexplored—most of the research done so far centering itself around the

study of W -superalgebras as extended symmetries in superconformal field theory[19],[20].

Nevertheless, first steps in this direction have been made by the Komaba group[21],

who—via super Toda field theory—has associated W -superalgebras to the Lie su-

peralgebras Sl(n+1|n) and Osp(2n±1|2n); and, more recently, by the authors[22]

who have defined a hamiltonian structure in the space of supersymmetric Lax op-

erators yielding a supersymmetric version of the Gel’fand-Dickey brackets for the

generalized KdV hierarchies. This hamiltonian structure also arises from a much

simpler one via a supersymmetric Miura transformation, a fact proven in [22] . The

W -superalgebras arising in this way are the supersymmetric analogues of the ones

Drinfel’d-Sokolov associated to the general linear algebra which prompts, naturally,

the investigation of its possible reductions. A reduction similar to that yielding Wn
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in the bosonic case has been constructed in [23] via a small modification of the

proof in [22] of the supersymmetric analogue of the Kupershmidt-Wilson theorem.

The resulting algebras turned out to be the extensions of the N = 2 supervirasoro

algebra which the Komaba group had associated to Sl(n + 1|n). In this paper

we investigate further reductions, analogous to the ones yielding the W -algebras

of Drinfel’d-Sokolov associated to the Bn and Cn series. We find that they exist

only for supersymmetric Lax operators of odd order and that they correspond to

the extensions of the N = 1 supervirasoro algebra associated to Osp(2n ± 1|2n)

by the Komaba group. In order to prove that these reductions exist, we make

use of a combinatorial proof of the fact that the structure defined in [22] on the

space of supersymmetric Lax operators is indeed hamiltonian. This proof follows

closely the proof of Gel’fand and Dickey of the hamiltonian nature of the Adler

mapping[2],[24].

This paper is organized as follows. In section 2 we describe the formal geom-

etry of the space of supersymmetric Lax operators and set up the formalism that

will allow us to do differential calculus on it. In section 3 we prove the hamiltonian

nature of the supersymmetric version of the Adler mapping. In section 4 we de-

scribe the symmetric reductions, after introducing the notion of an adjoint in the

space of formal super-pseudo-differential operators. Finally in section 5 we offer

some concluding remarks.

§2 The space of supersymmetric Lax operators

In this section we review the general formalism introduced in [22] (see also [23]

) concerning the differential calculus in the space of supersymmetric Lax operators.

Supersymmetric Lax operators are special differential operators on a (1|1) su-

perspace with coordinates (x, θ). Let F denote the ring of superfields. It is a

supercommutative Z2-graded ring. On F we can define an odd superderivation

D = ∂θ + θ∂, the supercovariant derivative, which obeys D2 = ∂. We define

the ring F [D] of differential operators as polynomials in D with coefficients in
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F . A differential operator L ∈ F [D] is called a supersymmetric Lax opera-

tor (of order n) if it is homogeneous (under the Z2 grading) and has the form

L = Dn + Un−1D
n−1 + · · · + U0. The homogeneity condition simply states that

|Ui| ≡ n + i mod 2. We let Mn denote the space of supersymmetric Lax operators

of order n. When there is no chance for confusion we will simply call it M . This

space can be given the structure of an infinite-dimensional supermanifold, but we

will not need this machinery. It turns out that it is sufficient for our purpose to

endow M with a “formal” geometry, i.e. , an algebraization of the necessary ge-

ometric concepts. Since our ultimate aim is to define Poisson brackets on M , we

need to specify several geometric objects: the class of functions on which we will

define the Poisson brackets, the vector fields and 1-forms, and the map sending a

function to its associated hamiltonian vector field.

We will define Poisson brackets on functions of the form:

F [L] =

∫
B

f(U) , (2.1)

where f(U) is a homogeneous differential polynomial of the U and
∫
B is defined as

follows: if Ui = ui + θvi, and f(U) = a(u, v) + θb(u, v), then
∫
B f(U) =

∫
b(u, v),

where the precise meaning of integration will depend on the context. It denotes

integration over the real line if we take the ui and vi to be rapidly decreasing

functions; integration over one period if we take them to be periodic functions; or,

more abstractly, a linear map annihilating derivatives so that we can “integrate

by parts”, i.e. , denoting by A the differential polynomials in the coefficients of

L,
∫
B is simply the natural surjection A → A/DA. It is worth remarking that

whereas A is a graded supercommutative algebra, DA is not a subalgebra and

hence the multiplication in A does not get induced in the quotient. This means, in

particular, that it will not make sense to demand of our Poisson brackets to satisfy

the usual derivation property. This, fortunately, does not affect the formalism.

The tangent space TLM to M at L is isomorphic to the infinitesimal deforma-

tions of L. These are clearly the differential operators of order at most n−1 whose
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coefficients are in A or, more generally, in F . If A =
∑

AiD
i is one such operator

and if F [L] =
∫
B f is a function, then the vector field DA defined by A is given by

DAF = (−1)|A|+n

∫
B

n−1∑
k=0

Ak
δf

δUk
, (2.2)

where the variational derivative is defined by

δ

δUk
=

∞∑
i=0

(−1)|Uk|i+i(i+1)/2Di ∂

∂U
[i]
k

, (2.3)

with U
[i]
k = DiUk. One can check that DA is well defined.

We expect the cotangent space T ∗
LM to M at L is defined as the dual space of

TLM . To define this we introduce super-pseudo-differential operators (SΨDO’s)[25].

We introduce a formal inverse D−1 to D and define the ring F((D−1)) of SΨDO’s

as formal Laurent series in D−1 where the composition law is given by

DkΦ =
∞∑
i=0

[
k

k − i

]
(−1)|Φ|(k−i)Φ[i]Dk−i , (2.4)

where the superbinomial coefficients are defined by

[
k

k − i

]
≡


0 for i < 0 or (k, i) ≡ (0, 1) (mod 2);( [

k
2

]
[
k−i
2

]
)

for i ≥ 0 and (k, i) 6≡ (0, 1) (mod 2).
. (2.5)

We shall abbreviate the ring of SΨDO’s by S. The space S+ = F [D] of dif-

ferential operators forms a subring, and its complement is given by the subring

S− = F [[D−1]] of formal “integral” operators. We shall indicate by ± subscripts

the projections of a SΨDO to these two complementary subrings, whence accord-

ing to S = S+ ⊕ S−, a SΨDO P breaks up as P+ + P−. Given a SΨDO P =∑
piD

i we define its super-residue as sres P = p−1 and its (Adler) supertrace as
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Str P =
∫
B sres P . It can be shown that the supertrace vanishes on graded com-

mutators: Str [P , Q] = 0, for [P , Q] ≡ P Q − (−1)|P ||Q|QP . This then defines

a supersymmetric bilinear form on SΨDO’s: Str (PQ) = (−1)|P ||Q|Str (QP ). This

bilinear form pairs S+ with S−. In particular, TLM is nondegenerately paired with

S−/D−nS−. In fact, if X =
∑∞

k=0 D−k−1Xk ∈ S− and A =
∑n−1

k=0 AkD
k ∈ S+,

their pairing is given by Str (AX) =
∫
B

∑n−1
k=0(−1)kAk Xk. Therefore we define

T ∗
LM as integral operators X ∈ S− of the form X =

∑n−1
k=0 D−k−1Xk and, with a

little abuse of notation, we also let X denote the 1-form it gives rise to at L. Thus

if X and A are as above, the pairing between the vector field DA and the 1-form

X is given by

(DA, X) ≡ (−1)|A|+|X|+n+1Str (AX) = (−1)|A|+n

∫
B

n−1∑
k=0

(−1)kAk Xk . (2.6)

The strange choice of signs has been made to avoid undesirable signs later on.

Given a function F =
∫
B f we define its gradient dF by (DA, dF ) = DAF whence,

comparing with (2.2) , yields

dF =
n−1∑
k=0

(−1)kD−k−1 δf

δUk
. (2.7)

So that the gradient of a function is a 1-form as expected.

To define Poisson brackets we need a linear map J : T ∗
LM → TLM inducing

a map taking 1-forms to vector fields, so that for any two functions F and G, the

bracket {F , G}, defined by

{F , G} ≡ DJ(dF )G = (DJ(dF ), dG) = (−1)|J |+|F |+|G|+n+1 Str (J(dF )dG) , (2.8)

obeys the appropriate (anti)symmetry properties and the Jacobi identity. Such

maps are often called “hamiltonian”. This map is the formal analogue of the

map taking the gradient of a function to the associated hamiltonian vector field in

classical mechanics.
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In [22] it was shown that the map J : T ∗
LM → TLM given by

J(X) = (LX)+L− L(XL)+ = L(XL)− − (LX)−L (2.9)

is hamiltonian. This was accomplished by showing that J is induced from a much

simpler hamiltonian map in a different set of variables Φi defined by the factoriza-

tion L = (D − Φn)(D − Φn−1) · · · (D − Φ1). In these variables, the hamiltonian

map induced the following fundamental Poisson brackets

{Φi(X), Φj(Y )} = (−1)iδijDδ(X − Y ) (2.10)

where, if X = (x, θ) and Y = (y, ω), then δ (X − Y ) = δ(x−y)(θ−ω). The change

of variables from the Uj to the Φi is called the Miura transformation.

§3 Supersymmetric Gel’fand-Dickey brackets

We now proceed to show, by direct computation, that the map given by (2.9) is

indeed hamiltonian without invoking the Miura transformation. This boils down

to showing that the induced Poisson brackets have the appropriate symmetry prop-

erties and moreover that the Jacobi identities are satisfied.

Let Ω denote the map X 7→ DJ(X) from 1-forms to vector fields induced by

the map J in (2.9) . In analogy with the finite dimensional case it is convenient to

introduce the symplectic form ω defined, on Im Ω, by

ω (Ω(X), Ω(Y )) = (DJ(X), Y ). (3.1)

Notice that in contrast with the usual case in classical mechanics, this 2-form is not

defined for all vector fields since, in general, the map J will not be an isomorphism.
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It follows from the definition of ω that the Poisson brackets are given by

{F , G} = ω (Ω(dF ), Ω(dG)) . (3.2)

It is simple to check that for J(X) = (LX)+L− L(XL)+ this bracket has the

correct symmetry properties. Explicitly,

{F , G} = (−1)|F |+|G|+n+1Str (J(dF )dG)

= (−1)|F |+|G|+n+1Str ((LdF )+LdG− L(dFL)+dG)

= (−1)|F |+|G|+n+1Str
(
(LdF )+(LdG)− − (−1)n(|F |+|G|+n)(dFL)+(dGL)−

)
= (−1)|F |+|G|+n+1Str

(
LdF (LdG)− − (−1)n(|F |+|G|+ndFL(LdG)−

)
= (−1)(n+1)(|F |+|G|+n)+1Str (dF ((LdG)−L− L(dGL)−))

= (−1)(n+1)(|F |+|G|+n)Str (dFJ(dG))

= −(−1)|F |+|G|+n+1(−1)|F ||G|Str (J(dG)dF )

= −(−1)|F ||G|{F , G} .

By analogy with the finite dimensional case, we define dω by

dω
(
DJ(X), DJ(Y ), DJ(Z)

)
=DJ(X)ω

(
DJ(Y ), DJ(Z)

)
− ω

(
[DJ(X) , DJ(Y )], DJ(Z)

)
+ s.c.p. (3.3)

where s.c.p. is a shorthand notation for supercyclic permutation. As we will show

below, closedness of ω, i.e. , dω = 0, is equivalent to the Jacobi identities. But

before proving this, notice that the second term in the RHS of (3.3) is not well-

defined unless Im Ω forms a subalgebra of the vector fields. We now show that this

is indeed the case.

Lemma. For any X and Y ∈ S∗n[
DJ(X), DJ(Y )

]
= DJ([[X,Y ]])

where

[[X,Y ]] ≡ (−1)n|X|D̂J(X)Y + X(LY )− − (XL)+Y − (−1)|X||Y |(X ↔ Y )

with |X| = |X|+ n and D̂A is defined by DA

∫
B f =

∫
B D̂Af .
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Proof: Using that D̂J(X)L = J(X) we can write

[
D̂J(X), D̂J(Y )

]
L = D̂J(X)J(Y )− (−1)|X||Y |(X ↔ Y )

Expanding the RHS of this equation we find

RHS =− (−1)n|X|J
(
D̂J(X)Y

)
+ ((LX)+LY )+ L− (L(XL)+Y )+ L

− (LX)+L(Y L)+ + L(XL)+(Y L)+ − (LX)+(LY )+L + (LX)+L(Y L)+

+ L (X(LY )+L)− L (XL(Y L)+)+ − (−1)|X||Y |(X ↔ Y ) .

The fourth and seventh terms cancel, while the others rearrange to give

RHS = −(−1)n|X|J
(
D̂J(X)Y

)
+ (LX(LY )− − L(XL)+Y )+ L

+ L ((XL)−Y L + X(LY )+L)+ − (−1)|X||Y |(X ↔ Y ) .

Now adding and subtracting L(XLY L)+ +−(−1)|X||Y |(X ↔ Y ) we obtain

RHS = −(−1)n|X|J
(
D̂J(X)Y

)
+ (LX(LY )− − L(XL)+Y )+ L

− L (X(LY )−L− (XL)+Y L)+ − (−1)|X||Y |(X ↔ Y )

= J
(
(−1)n|X|D̂J(X)Y + X(LY )− − (XL)+Y − (−1)|X||Y |(X ↔ Y )

)

We can now prove that the Jacobi identity of the Poisson brackets induced by

J is equivalent to the closedness of ω.

Proposition. For any functions F, G, and H,

dω = −Jacobi (F, G, H) ,

where Jacobi (F, G, H) ≡ {F , {G , H}}+ s.c.p.
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Proof: Because of (3.2) and (3.3)

dω
(
DJ(dF ), DJ(dG), DJ(dH)

)
=DJ(dF ) {G, H} −

(
DJ([[dF,dG]]), dH

)
+ s.c.p.

= {F, {G, H}} −DJ([[dF,dG]])H + s.c.p.

=Jacobi (F, G, H)−
([

DJ(dF ), DJ(dG)

]
H + s.c.p.

)
=Jacobi (F, G, H)−

(
DJ(dF ) {G, H} − (−1)|G||F |DJ(dF ) {G, H}+ s.c.p.

)
=Jacobi (F, G, H)−

(
{F, {G, H}} − (−1)|G||F | {G, {F, H}}+ s.c.p.

)
=Jacobi (F, G, H)− 2 Jacobi (F, G, H)

=− Jacobi (F, G, H)

We now have all the ingredients to prove the main result of this section.

Theorem. For any three vector fields DJ(X), DJ(Y ), and DJ(Z) in Im Ω

dω(DJ(X), DJ(Y ), DJ(Z)) = 0

i.e. , ω is a closed 2-form.

Proof: From the definition of ω and (3.3) , dω(DJ(X), DJ(Y ), DJ(Z)) is given by

(−1)|X|+|Y |+|Z|+n+1Str
[
D̂J(X) (J(Y )Z)− J ([[X, Y ]]) Z + s.c.p.

]
,

which, up to an irrelevant global sign, can be written as

Str
[
(J(X)Y )+ LZ − J(X)(Y L)+Z + (−1)n|X|J

(
D̂J(X)Y

)
Z

+ (−1)|X||Y | ((LY )+J(X)− L(Y J(X))+) Z + (−1)|X||Y |J(Y )D̂J(X)Z

−
(
(−1)n|X|J

(
D̂J(X)Y

)
Z − (−1)|X||Y |J

(
D̂J(Y )X

)
Z + J ([X, Y ]L) Z

)
+ s.c.p.

]
,

(3.4)
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where

[X, Y ]L ≡ X(LY )− − (XL)+Y − (−1)|X||Y |(X ↔ Y )

Now we can show that the terms with D̂’s in (3.4) cancel among themselves

Str
[
(−1)|X||Y |J(Y )D̂J(X)Z − (−1)|X||Y |J

(
D̂J(Y )X

)
Z + s.c.p.

]
= Str

[
(−1)|X||Y |J(Y )D̂J(X)Z − (−1)|X||Y |+(|X|+|Y |)|Z|J(Z)D̂J(Y )X + s.c.p.

]
,

where we have used Str (J(X)Y ) = −(−1)|X||Y |Str (J(Y )X). Writing the super-

cyclic permutations explicitly one sees that the terms cancel pairwise.

Up to a global sign dω
(
DJ(X), DJ(Y ), DJ(Z)

)
can then be written as

Str
[
(J(X)Y )+ LZ − J(X)(Y L)+Z

+ (−1)|Y ||Z| (J(X)Z(LY )+ − J(X)(ZL)−Y )− J ([X,Y ]L) Z + s.c.p.
]

.

Using supercyclicity of the supertrace this equals 2 Str J(X) [Y, Z]L + s.c.p.. We

now show that this is, in fact, zero. Indeed, we find

Str J(X) [Y, Z]L + s.c.p. = Str J(X) (Y (LZ)+ − (Y L)−Z) + s.p.

where s.p. stands for superpermutations. Expanding the RHS we have

Str
[(
−(LX)−L + L(XL)−

)
Y (LZ)+ +

(
−(LX)+L + L(XL)+

)
(Y L)−Z + s.p.

]
The underlined terms cancel out as follows

Str [L(XL)−Y (LZ)+ − (LX)+L(Y L)−Z + s.p.]

= Str
[
(−1)(|X|+|Y |)|Z|(LZ)+L(XL)−Y − (LX)+L(Y L)−Z + s.p.

]
= 0
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because of supercyclicity of the supertrace. Now using the following fact Str AB+C−+

s.c.p. = Str ABC (see below), what is left can be written as

Str
[
(−1)|Z|(|X|+|Y |+n)ZLXLY L− (−1)|X|(|Y |+|Z|)LY LZLX + s.p.

]
= Str

[
LXLY LZ − (−1)|X|(|Y |+|Z|)LY LZLX + s.p.

]
,

which cancels because of supercyclicity.

We finish this section by proving the fact we have just used:

Lemma. For any three SΨDO’s A, B, and C

Str AB+C− + s.c.p. = Str ABC .

Proof:

Str AB+C− + s.c.p. = Str (A+B+C− + A−B+C−) + s.c.p.

= Str (A+B+C + A−BC−) + s.c.p.

=
1

3
Str (2AB+C− + A+B+C + A−BC−) + s.c.p.

=
1

3
Str (2AB+C− + AB+C+ + AB−C−) + s.c.p.

=
1

3
Str (AB+C + ABC−) + s.c.p.

=
1

3
Str (AB+C + AB−C) + s.c.p.

=
1

3
Str ABC + s.c.p. = Str ABC
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§4 Symmetric reduction of the supersymmetric Gel’fand-Dickey

brackets

In this section we investigate the reduction of the supersymmetric Gel’fand-

Dickey bracket induced by demanding that the Lax operator L have a definite

adjointness property. To motivate the definition of the adjoint, let us think of

differential operators as acting on superfields with inner product

(U, V ) =

∫
B

UV . (4.1)

If L ∈ S+ is a homogeneous differential operator, we define its adjoint L∗ by

(LU, V ) = (−1)|L||U |(U,L∗V ), for any homogeneous superfields U, V . The proof of

the following proposition is routine.

Proposition. ∗ extends to an involution in the space S of SΨDO’s which obeys

the following properties:

(1) For all P ∈ S, (P ∗)∗ = P

(2) For all homogeneous P, Q ∈ S, (PQ)∗ = (−1)|P ||Q|Q∗P ∗

(3) If P ∈ S is homogeneous and invertible, (P−1)∗ = (−1)|P |(P ∗)−1.

(4) For all p ∈ Z, (Dp)∗ = (−1)
p(p+1)

2 Dp.

(5) For all P ∈ S, (P±)∗ = (P ∗)±.

(6) For all P ∈ S, sres P ∗ = sres P (in particular, Str P ∗ = Str P ).

Since a supersymmetric Lax operator L is of the form L = Dn + · · ·, its

adjointness property—if it has a definite one—is dictated by the first term. We

shall say that L is “symmetric” if L∗ = (−1)
n(n+1)

2 L. We will show that the

supersymmetric Gel’fand-Dickey bracket in the space M2k+1 of Lax operators of

a given odd order induces a Poisson bracket in the submanifold of symmetric

Lax operators and that the induced fundamental Poisson brackets defines a W -

superalgebra extending the N = 1 supervirasoro algebra.
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We can understand what constraints symmetry imposes on the coefficients of

L in two ways. Via the Miura transformation we see that these constraints are

just linear constraints in the basic fields Φi. To see this let us factorize L =

Dn +
∑

j UjD
j = (D − Φn)(D − Φn−1) · (D − Φ1). Computing its adjoint we

find L∗ = (−1)
n(n+1)

2 (D + Φ1)(D + Φ2) · · · (D − Φn), whence Φj = Φn+1−j . If

n is even this imposes n
2 conditions, whereas if n is odd we get n+1

2 . Thus in

the even case n = 2k, a symmetric Lax operator has the following factorization

L = (D+Φ1) · · · (D+Φk)(D−Φk) · · · (D−Φ1); whereas in the odd case n = 2k+1

the factorization is L = (D + Φ1) · · · (D + Φk)D(D−Φk) · · · (D−Φ1). In terms of

the Uj , the constraints are more complicated and are best exemplified by writing

L in a manifestly symmetric way. In general, a symmetric Lax operator has the

form

L = Dn +
1

2

∑
j∈In

{Vj , Dj} , (4.2)

where {Vj , Dj} = VjD
j + (−1)j(n+j)DjVj is the graded anticommutator and the

sum runs over the index set

In =
{

j ∈ Z
∣∣∣0 ≤ j < n and (−1)

j(j+1)
2 = (−1)

n(n+1)
2

}
. (4.3)

Equation (4.2) manifestly exhibits which of the fields Uj are independent; namely,

n ≡ 0 mod 4: Uj for j ≡ 0, 3 mod 4

n ≡ 1 mod 4: Uj for j ≡ 1, 2 mod 4

n ≡ 2 mod 4: Uj for j ≡ 1, 2 mod 4

n ≡ 3 mod 4: Uj for j ≡ 0, 3 mod 4

Some general facts readily emerge. In the odd n case, there is always an

independent field of weight 3
2 and, moreover, this is the field of smallest weight.

We will see that its Poisson bracket is that of the classical N = 1 supervirasoro

algebra. For even n the situation is radically different: there is never a field of

weight 3
2 but there is always a field of weight 1

2 . But besides the spectrum there
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is a more fundamental difference. Whereas in the odd n case, the constrained

submanifold is symplectic—the matrix of Poisson brackets of the constraints being

non-degenerate—in the even n case, the submanifold is coisotropic—the constraints

being in involution. This is easy to see in the basic fields Φi of the factorized L.

The constraints are given by ϕi = Φi + Φn+i−1 for i = 1, . . . , [n2 ] and, in the odd n

case the extra constraint Φn+1
2

. Using (2.10) one readily computes

{ϕi , ϕj} = (−1)iδij (1− (−1)n) Dδ(X − Y ) , (4.4)

from where the previous observations readily follow. In particular it follows that

the even n reduction collapses the algebra and, thus, from now on we will only

consider the case of odd n = 2k + 1.

Let M denote the space of Lax operators of the form L = D2k+1 + · · ·, and

let Mo denote the submanifold of symmetric operators L∗ = −(−1)kL. As we

have seen this submanifold is symplectic and thus it inherits a well-defined Poisson

bracket from that in M . To describe the bracket we first need to identify the vector

fields and the 1-forms on Mo as subobjects of the corresponding objects in M . The

vector fields of Mo will be parametrized by the deformations of L that remain in

Mo. That is, deformations of a symmetric Lax operator L which keep it symmetric.

These are clearly the differential operators of order at most 2k obeying the same

symmetry property of L. As explained, for example, in [23] , 1-forms on Mo must

be chosen to be those 1-forms on M which are mapped (via the hamiltonian map

J) to vector fields tangent to Mo. In other words, 1-forms on Mo are SΨDO’s

X =
∑

l D
−l−1Xl satisfying that J(X)∗ = −(−1)kJ(X). Computing this we find

J(X)∗ = [(LX)+L− L(XL)+]∗

=(−1)|X|+1
[
L∗(LX)∗+ − (XL)∗+L∗

]
=− [L∗(X∗L∗)+ − (L∗X∗)+L∗]

=(LX∗)+L− L(X∗L)+

=J(X∗) ,

whence X must have the same symmetry properties of L, namely X∗ = −(−1)kX,
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for it to be a 1-form on Mo. It is easy to verify that these 1-forms are non-

degenerately paired with the vector fields tangent to Mo. In fact, since Str (AX) =

Str (A∗X∗) we see that the supertrace pairs up 1-forms and vector fields of the same

symmetry properties. Therefore the Poisson bracket of two functions F =
∫
B f and

G =
∫
B g on Mo is obtained from (2.8) (with J given by (2.9) ) by simply requiring

that dF and dG have the correct symmetry properties: (dF )∗ = −(−1)kdF and

the same for dG.

We now prove that the induced fundamental Poisson brackets on Mo contains

the N = 1 supervirasoro algebra as a subalgebra. We have already seen that

the field of smallest weight is a field V2k−2 of weight 3
2 . We will now show that

the induced fundamental Poisson bracket {V2k−2(X) , V2k−2(Y )}o defines a N =

1 supervirasoro algebra. We find it more convenient to do this via the Miura

transformation and for this we must first find the induced Poisson brackets in terms

of the basic fields Φi. As we saw above the constraints imposed by the symmetry

requirement on L turned out to give linear constraints among the Φi: ϕi = Φi +

Φ2k+2−i for i = 1, . . . , k; and ϕk+1 = Φk+1. We choose as independent fields in the

constraint submanifold the Φi for i = 1, . . . , k. It is an easy computation to find

the induced Poison brackets of these fields

{Φi(X) , Φi(Y )}o =
1

2
(−1)iD δ(X − Y ) . (4.5)

Factorizing L in equation (4.2) as L = (D+Φ1) · · · (D+Φk)D(D−Φk) · · · (D−
Φ1) gives the Vj in terms of the Φi. Their fundamental Poisson brackets can be

easily found in terms of those in (4.5) as follows. Define the Fréchet jacobian Dji

of Vj by Φi as the following differential operator

Dji ≡
δVj

δΦi
=

∞∑
p=0

(−1)p+ p(p+1)
2 Dp ∂Vj

∂Φ
[p]
i

. (4.6)

Then, if we define the differential operators Ωij by

{Vi(X) , Vj(Y )}o = Ωijδ(X − Y ) , (4.7)

– 17 –



where the Ωij are taken at the point X, we find

Ωij =
1

2

k∑
l=1

(−1)i+j+lD∗
il D Djl , (4.8)

where, for convenience, we write D∗
il explicitly

D∗
il =

∞∑
p=0

(−1)pi ∂Vi

∂Φ
[p]
l

Dp . (4.9)

A straight-forward computation yields

V2k−2 =
k∑

j=1

(−1)j
[
ΦjΦ

′
j + (k + 1− j)Φ′′

j

]
, (4.10)

from where the Fréchet jacobian follows:

D2k−2,j = (−1)j
[
(k + 1− j)D2 + ΦjD + Φ′

j

]
. (4.11)

It is now a simple matter to plug this into (4.8) to compute

Ω2k−2,2k−2 =
k(k + 1)

4
D5 +

3

2
V2k−2D

2 +
1

2
V ′

2k−2D + V ′′
2k−2 , (4.12)

whence, if we let T = V2k−2,2k−2 gives rise to a classical version of the N = 1

supervirasoro algebra

{T(X) , T(Y )}o =
[k(k + 1)

4
D5 +

3

2
T(X)D2 +

1

2
T′(X)D + T′′(X)

]
δ(X − Y ) .

(4.13)
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§5 Conclusion

In this paper we have analyzed a particular reduction of a recently constructed

Poisson structure on the space of supersymmetric Lax operators. We have seen

that for the case of Lax operators of odd order this Poisson structure admits a

reduction yielding classical W -superalgebras containing the N = 1 supervirasoro

algebra as a subalgebra. This reduction was obtained by imposing (anti)symmetry

of the Lax operator with respect to a natural involution in the space of (pseudo)

differential operators in a (1|1) superspace. This is the supersymmetric analogue

of the Drinfel’d-Sokolov reductions of the second Gel’fand-Dickey bracket which

were associated to the Bn and Cn series of classical Lie algebras.

The spectrum of the resulting algebras consists of fields Vj for j ∈ I2k+1,

the index set defined by (4.3) , of näıve weights k − (j − 1)/2. In particular,

V2k−2 and has been shown to generate a N = 1 supervirasoro algebra. It is

then a natural conjecture to expect that each remaining field Vj gives rise to a

superconformal primary field Ṽj obtained by deforming Vj via the addition of

differential polynomials in the Vi>j . This can be checked explicitly for the simplest

examples. We have not proven it in general but we have no doubt of its validity.

We hope to return to this point in a future publication.

As mentioned in the introduction, these algebras have been also obtained in

[21] from the Osp(2n±1|2n) Toda field theories, where they appear as the algebra

of conserved quantities. It is an interesting open question to obtain these algebras

as hamiltonian reduction of the corresponding affine algebras. In this fashion

one could recover the connection between Lie superalgebras and W -superalgebras

and, in particular, the discrete series of the latter ones, as was done for the non-

supersymmetric case in [10] following the work of Drinfel’d and Sokolov. Work

on this is in progress.
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