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§1 Introduction

W -algebras[1],[2] play an increasing rôle in two-dimensional conformal field the-

ory and in string theory. In the former context it has been shown that they appear

as the symmetry[3] algebras of statistical mechanics systems at criticality; and in

the latter case, their minimal models can be used for the construction of clas-

sical vacua. Furthermore, unexpected relationships have been recently unveiled

between W -algebras and noncritical strings[4] via their matrix model formulation,

where the “string equation” corresponds to generalized KdV flows with specific

boundary conditions[5]. This observation allows one to translate computations of

correlation functions in non-critical string theory to more manageable algebraic

computations in terms of the associated Lax system, without having to appeal di-

rectly to the matrix model formulation. This has a variety of advantages, not the

least of which is that it allows for generalizations—one very important generaliza-

tion being the one to non-critical superstrings, where a direct treatment in terms

of (super)matrix models is lacking[6].

W -superalgebras appear naturally in the context of supersymmetric Toda field

theory[7] as the algebras of conserved currents. In this paper we present a system-

atic treatment of N = 2 W -superalgebras based on the formalism of supersym-

metric KdV hierarchies, which seems especially well suited for the applications to

superstring theory.

The formalism of supersymmetric Lax operators is, however, not as devel-

oped as its bosonic counterpart, where the relationship with W -algebras is well

understood. Classical W -algebras, in fact, first appeared in the context of scalar

Lax operators for the generalized KdV hierarchies[8], where they arise naturally as

their “second hamiltonian structure.” Indeed, the nth order KdV hierarchy (for

n > 2) is hamiltonian with respect to a classical version of Wn, generalizing the

well-known fact[9] that the KdV equation is hamiltonian with respect to a clas-

sical version of the Virasoro algebra. Recently we[10] have defined a hamiltonian

structure in the space of supersymmetric Lax operators yielding a supersymmetric
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version of the Gel’fand-Dickey brackets for the generalized KdV hierarchies. In

this paper we construct reductions of this hamiltonian structure yielding N = 2

W -superalgebras.

In the non-supersymmetric case, several reductions of the second Gel’fand-

Dickey bracket are known to exist. In fact, it follows from the work of Drinfel’d

and Sokolov, that the second Gel’fand-Dickey bracket is the natural hamiltonian

structure for an integrable system of evolution equations associated to the general

linear algebra. Reductions of this bracket are related to some of its subalgebras;

notably the An, Bn, and Cn series. The former series is obtained by demanding

that a particular coefficient in the Lax operator vanish: whereas the latter series

are obtained by imposing that the Lax operator have definite symmetry properties

under a natural involution in the space of (pseudo)differential operators. All these

reductions yield extensions of the Virasoro algebra which are generated by a finite

number of primary fields of conformal weights equal to the exponents of the relevant

Lie algebra. For the An series this is nothing but the Wn algebras of Fateev and

Lykyanov.

In this paper we construct the reduction of the supersymmetric Gel’fand-Dickey

brackets which is analogous to the one yielding Wn in the non-supersymmetric case.

We find that this only makes sense for supersymmetric Lax operators of odd order,

since for even order the constraint is not second-class and thus does not define a

symplectic submanifold. Other reductions analogous to the ones connected to the

Bn and Cn series in the non-supersymmetric case are also possible and yield N = 1

W -superalgebras. This requires different techniques in order to prove the Jacobi

identity of the induced brackets and thus has been left for a separate publication[11].

The plan of this paper is the following. In section 2 we describe the basic

formalism associated to the space of supersymmetric Lax operators and summarize

the results of [10] . In section 3 we work out explicitly the simplest example of our

reductions yielding the N = 2 supervirasoro algebra itself. In section 4 we proceed

to define the general reduction. There we prove that the reduced brackets are
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indeed Poisson brackets and that they define W -superalgebras containing the N =

2 supervirasoro algebra as a subalgebra. Finally section 5 offers some concluding

remarks.

§2 Supersymmetric Lax Operators

In this section we set up the formalism and the notation for the rest of the

paper. It is our purpose to define Poisson brackets in certain spaces of (super)

differential operators. These spaces are infinite-dimensional manifolds and their

rigourous geometric treatment is beyond our scope. Fortunately these spaces can

be endowed with a “formal” geometry which is sufficient for the rigourous treatment

of Poisson brackets and their flows. As usual, this formal geometry consists in the

algebraization of the necessary geometric notions. Therefore we proceed to define

algebraically the ingredients needed to define Poisson structures: functions, vector

fields, and 1-forms.

We will consider the space of differential operators on a (1|1) superspace

with coordinates (x, θ). These operators are polynomials in the supercovariant

derivative D = ∂θ + θ∂ whose coefficients are superfields. The supercovariant

derivative obeys D2 = ∂. A supersymmetric Lax operator has the form L =

Dn + Un−1D
n−1 + · · ·+ U0 and is homogeneous under the usual Z2 grading; that

is, |Ui| ≡ n+ i (mod 2). We will define Poisson brackets on functions of the form:

F [L] =

∫
B

f(U) , (2.1)

where f(U) is a homogeneous (under the Z2 grading) differential polynomial of

the U and
∫
B is defined as follows: if Ui = ui + θvi, and f(U) = a(u, v) +

θb(u, v), then
∫
B f(U) =

∫
b(u, v), where the precise meaning of integration will

depend on the context. It denotes integration over the real line if we take the

ui and vi to be rapidly decreasing functions; integration over one period if we

take them to be periodic functions; or, more abstractly, a linear map annihilating

derivatives so that we can “integrate by parts”. It is worth remarking that whereas

– 4 –



differential polynomials can be multiplied, this does not induce a multiplication on

the functions we are considering. Thus the Poisson brackets will not enjoy the

usual derivation property. This, however, does not affect the formalism.

Vector fields are parametrized by infinitesimal deformations L 7→ L+εA where

A =
∑

AlD
l is a homogeneous differential operator of order at most n − 1. We

denote the space of such operators by Sn. We don’t demand that A have the same

parity as L since we can have either odd or even flows. To such an operator A ∈ Sn

we associate a vector field DA as follows. If F =
∫
B f is a function then

DA F ≡ d

dε
F [L + εA]

∣∣∣∣
ε=0

= (−1)|A|+n

∫
B

n−1∑
k=0

∞∑
i=0

(−1)(|A|+n)iA
[i]
k

∂f

∂U
[i]
k

, (2.2)

with U
[i]
k = DiUk and the same for A

[i]
k . Integrating by parts we can write this as

DA F = (−1)|A|+n

∫
B

n−1∑
k=0

Ak
δf

δUk
, (2.3)

where the Euler variational derivative is given by

δ

δUk
=

∞∑
i=0

(−1)|Uk|i+i(i+1)/2Di ∂

∂U
[i]
k

. (2.4)

Since vector fields are parametrized by Sn, it is natural to think of 1-forms

as parametrized by the dual space to Sn. This turns out to be given by super

pseudo-differential operators[12] (SΨDO’s) with the dual pairing given by the Adler

supertrace to be defined below. We introduce a formal inverse D−1 to D and

define SΨDO’s as formal Laurent series in D−1 whose coefficients are differential

polynomials in the Ui. The multiplication of SΨDO’s is given by the following
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composition law (for any k ∈ Z)

DkΦ =
∞∑
i=0

[
k

k − i

]
(−1)|Φ|(k−i)Φ[i]Dk−i , (2.5)

where the superbinomial coefficients are given by

[
k

k − i

]
=


0 for i < 0 or (k, i) ≡ (0, 1) (mod 2);( [

k
2

]
[
k−i
2

]
)

for i ≥ 0 and (k, i) 6≡ (0, 1) (mod 2).
(2.6)

Given a SΨDO P =
∑

piD
i we define its super-residue as sres P = p−1 and its

(Adler) supertrace as Str P =
∫
B sres P . One can show[12] that the super-residue

of a graded commutator is a perfect derivative so that its supertrace vanishes:

Str [P , Q] = 0, for [P , Q] ≡ P Q − (−1)|P ||Q|QP . This then defines a super-

symmetric bilinear form on SΨDO’s: Str (PQ) = (−1)|P ||Q|Str (QP ). If P is any

SΨDO we define its differential part P+ as the part of P which is polynomial in D

(including free terms) and its “integral” part P− as simply P −P+. It then follows

that Str P±Q± = 0 for any two SΨDO’s.

Let us then define 1-forms as the space S∗n of “integral” SΨDO’s of the form

X =
∑n−1

k=0 D−k−1Xk, whose pairing with a vector field DA, with A =
∑

AkD
k, is

given by

(DA, X) ≡ (−1)|A|+|X|+n+1Str (AX) = (−1)|A|+n

∫
B

n−1∑
k=0

(−1)kAk Xk , (2.7)

which is nondegenerate. The choice of signs has been made to avoid undesirable

signs later on. Given a function F =
∫
B f we define its gradient dF by (DA, dF ) =

DAF whence, comparing with (2.3) , yields

dF =
n−1∑
k=0

(−1)kD−k−1 δf

δUk
. (2.8)

It is familiar from classical mechanics that to every function f one can associate

a hamiltonian vector field ξf in such a way that ξf g = {f , g}. The hamiltonian
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vector field ξf is obtained from df by a tensor Ω mapping 1-forms to vector fields,

so that the Poisson bracket of two functions is given by {f , g} = (Xf , dg) =

(Ω(df), dg), with (, ) being the natural pairing between vector fields and 1-forms.

In local coordinates, Ω coincides with the fundamental Poisson brackets. In other

words, the map Ω carries the same information as the Poisson brackets.

In analogy, we define Poisson brackets on the space of supersymmetric Lax

operators by defining a map J : S∗n → Sn in such a way that the Poisson bracket

of two functions F and G is given by

{F , G} = DJ(dF )G = (DJ(dF ), dG) = (−1)|J |+|F |+|G|+n+1 Str (J(dF )dG) . (2.9)

The map Ω in this case is dF 7→ DJ(dF ); although, because of the rather formal

nature of our geometrical setting, it is the map J that plays the more relevant rôle.

Demanding that the Poisson brackets defined by J obey the correct (anti)symmetry

properties and the Jacobi identity imposes strong restrictions on the allowed maps

J . Maps obeying these conditions are often called “hamiltonian”. A hamiltonian

map J was constructed in [10] via a supersymmetric Miura transformation. We

briefly review this construction.

Let us factorize L = (D −Φn)(D −Φn−1) · · · (D −Φ1). This defines the Ui as

differential polynomials in the Φj . We define the fundamental Poisson brackets of

the Φj as follows. If we let X = (x, θ) and Y = (y, ω), then

{Φi(X) , Φj(Y )} = (−1)iδijDδ(X − Y ) , (2.10)

where δ(X − Y ) = δ(x− y)(θ − ω).

Let F =
∫
B f and G =

∫
B g be two functions with f and g differential polyno-

mials in the Uk. Via the Miura transformation we can think of them as differential

polynomials in the Φj . Their Poisson brackets can then be read off from (2.10) :

{F , G} =

∫
B

n∑
i=1

(−1)i
(

D
δf

δΦi

)
δg

δΦi
. (2.11)
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We must first calculate
δf

δΦi
. The variation of F can be computed in two ways:

δF =

∫
B

n∑
i=1

δΦi
δf

δΦi
=

∫
B

n−1∑
k=0

δUk
δf

δUk
= (−1)|F |+n+1Str (δLdF ) . (2.12)

Defining ∇i ≡ D − Φi, one computes

δL = −
n∑

i=1

∇n · · ·∇i+1δΦi∇i−1 · · ·∇1 . (2.13)

Inserting this into (2.12) one finds after some reordering inside the integrals

δf

δΦi
= (−1)|F |(n+i+1)+i sres (∇i−1 · · ·∇1dF∇n · · ·∇i+1) . (2.14)

Plugging this into (2.11) and after some standard manipulations[13],[10] with

SΨDO’s, one finds

{F , G} = (−1)|F |+|G|+n Str [L(dF L)+dG− (LdF )+LdG] , (2.15)

which is the supersymmetric analog of the second Gel’fand-Dickey bracket[8]. From

this and (2.9) , the map J : S∗n → Sn can be read off

J(X) = (LX)+L− L(XL)+ = L(XL)− − (LX)−L . (2.16)

The fundamental Poisson brackets of the Uk can, in turn, be read off from the map

J as follows.

Suppose we write the fundamental Poisson brackets in the following form

{Ui(X) , Uj(Y )} = Ωij · δ(X − Y ) , (2.17)

where the Ωij are differential operators at the point X. If F =
∫
B

∑
i UiAi,

G =
∫
B

∑
j UjBj are homogeneous linear functions, then their Poisson bracket
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can be computed from (2.17) yielding

{F , G} =
∑
ij

(−1)(|F |+1)(n+i)+i+j

∫
B

AiΩijBj . (2.18)

On the other hand we can compute this from (2.9) . The gradient of F is given

simply by dF =
∑

k(−1)kD−k−1Ak, and similarly for G with Bk replacing Ak.

Since J(dF ) ∈ Sn is linear in dF , it defines differential operators Jij by J(dF ) =∑
ij(−1)|F |(n+i)+n+1(Jij(−1)jAj)D

i. Plugging this into (2.9) one readily obtains

{F , G} = (−1)n
∑
ij

∫
B

(−1)(|F |+n)(i+j)+ij+j+niAiJ
∗
jiBj , (2.19)

where the adjoint K∗ of a homogeneous differential operator K is defined by∫
B (KA)B = (−1)|K||A| ∫

B A(K∗B) for A and B any two homogeneous super-

fields. Comparing (2.19) with (2.18) we get

Ωij = (−1)ij+nJ∗ji = Jij . (2.20)

From (2.15) it follows immediately that the Ωij are at most quadratic in the

Ui. Thus, in terms of the Ui, we obtain associative superalgebras with quadratic

relations. These are the supersymmetric analogues of the W algebras associated

to GL(n) in the Drinfel’d-Sokolov scheme[14]; and thus we tentatively call them

SWGL(n).

Drinfel’d and Sokolov constructed many other classical W algebras as reduc-

tions of WGL(n). In particular, Wn was obtained by imposing that the next to

highest order term in the nth order Lax operator vanish. One can easily compute

that this is a second class constraint so that the space of such Lax operators inherits

a well defined Poisson bracket. In our case we see a sharp distinction between the

even and odd n cases. It is easy to see that if n is even, the constraint Un−1 = 0 is

actually first class; in fact, if and only if n is even, Ωn−1,n−1 vanishes. This means
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that the induced Poisson bracket in the constrained submanifold is not well de-

fined unless we impose an additional constraint that has a nondegenerate Poisson

bracket with Un−1. On the other hand, if n is odd, then the constraint Un−1 = 0

is second class and the induced Poisson bracket is well defined and yields, as we

will see, classical W -superalgebras extending the N = 2 superconformal algebra.

§3 An Explicit Example: from SWGL(3) to N = 2 Supervirasoro.

In this section we compute explicitly the simplest of the series of algebras we

construct: the reduction of SWGL(3) by the constraint U2 = 0. It is easily seen

that {U2(X) , U2(Y )} = −δ′(X−Y ) whence it defines a second-class constraint. It

is customary when faced with second-class constraints to write down immediately

the Dirac bracket. However, since our geometric setting is rather formal, this

procedure is not guaranteed to be consistent. We will, aided by analogy with the

symplectic setting, derive the induced Poisson bracket from first principles. For

this we digress momentarily to review the finite dimensional symplectic case.

Suppose M is a finite-dimensional symplectic manifold and Mo is a submanifold

given by some second-class constraints. Because the constraints are second-class,

the symplectic form Ω on M restricts to a symplectic form on Mo: to evaluate

it on two vector fields on Mo we simply view the vector fields as vector fields on

M tangent to Mo and apply the symplectic form on M . This is possible since on

Mo ⊂ M there is a canonical map embedding the tangent bundle TMo of Mo into

the one of M . On the other hand, in order to write down the Poisson bracket

of two functions on Mo we need to first define their associated hamiltonian vector

fields and this requires knowledge of their gradients. The gradient of a function is a

1-form and, unlike vector fields, there is no canonical way to view 1-forms on Mo as

1-forms on M . In fact, such a choice is equivalent to a choice of complement to TMo

in TM on Mo; in other words, to a choice of normal bundle. Once a complement

is chosen, T ∗Mo ⊂ T ∗M can be identified with those 1-forms annihilating the

normal vectors. In general there is no natural choice for the normal bundle, but

in the symplectic case there is. We define the normal bundle as the symplectic
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complement of TMo. This is to be compared with the riemannian setting. If

we had a metric on M then we could always define the normal bundle as those

tangent vectors on M perpendicular to Mo. In the symplectic case, this only works

if the symplectic form is non-degenerate when restricted to Mo so that there are

no vectors that are both tangent to Mo and symplectically perpendicular to it.

Luckily when Mo is defined by second-class constraints this is the case. Then to

define the Poisson brackets of two functions on Mo, we first extend the functions

to M , we compute their gradients in M and from them their hamiltonian vector

fields. We finally apply the symplectic form to their perpendicular projections. The

resulting object is a function on Mo which can be shown to be independent of the

extension. In symbols, if we write TM = TMo ⊕ TM⊥
o on Mo, and ξ = ξo + ξ⊥ as

the associated decomposition of a vector, then the induced bracket of two functions

f and g on Mo is given by

{f , g}o = Ω(ξf − ξ⊥f , ξg − ξ⊥g ) , (3.1)

where ξf and ξg are, respectively, the hamiltonian vector fields associated to the

extensions of f and g to functions on M . A natural basis for the normal bundle to

Mo is given by the hamiltonian veotor fields associated to the constraints defining

Mo. Computing the above bracket in that basis yields the familiar formula for the

Dirac bracket.

Another equivalent way of defining the 1-forms on Mo is to say that they are the

1-forms on M which get mapped to TMo under the map T ∗M → TM induced by

the symplectic form. This interpretation is better suited for our formal geometric

setting, since we don’t quite have a symplectic form, but rather a map J taking

(formal) 1-forms to (formal) vector fields.

With these words behind us, we now resume the case at hand. Let M denote

the space of supersymmetric Lax operators of order 3 and Mo the submanifold

defined by U2 = 0. If L = D3 + U1D + U0 is a point in Mo, and X = D−1X0 +

D−2X1 + D−3X2 is a 1-form on M, we will see how its coefficients are related so
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that J(X) = (LX)+L−L(XL)+ is a vector tangent to Mo at L. We will see that

demanding that the coefficient of D2 in J(X) vanishes, fixes X2 in terms of X0,

X1, and the Ui. A slightly tedious computation yields

J(X) =(−1)|X|
[
X ′

2 + (X0U1)
′ −X ′′

1 −X ′′′
0

]
D2

+
[
U ′

1X1 − 2U0X1 −X ′′
2 −X ′′′

1 − U0X
′
0

]
D

+ (−1)|X|
[
X ′′′

2 −X
[5]
0 + (U0X1)

′ − (U0X0)
′′ + (U1X0)

′′′

− U1X
′′′
0 + U1X

′
2 + U1(U1X0)

′ − U0X
′′
0

]
. (3.2)

Demanding that the coefficient of D2 vanishes yields X2 = X ′′
0 +X ′

1−U1X0. Notice

that the equation actually involves X ′
2 but that we could solve for X2 without

having to integrate since the whole equation was a perfect derivative. This is

no accident, and we will see that this will always be the case. Whether or not

this is important is not clear since in the rest of the the expression for J(X), X2

only appears through its derivatives, but this may just be an accident of low n.

Substituting for X2 in (3.2) yields after some more algebra

J(X) =
{[
−D4 − U0D + D2U1

]
·X0 −

[
2D3 + 2U0 − U ′

1

]
·X1

}
D

+ (−1)|X| {[−U0D
2 −D2U0

]
·X0 +

[
D4 + U1D

2 + DU0

]
·X1

}
,

(3.3)

which define the operators Jij and, hence, by (2.20) , the operators Ωij appearing

in the fundamental Poisson brackets of the Ui:

Ω00 = U0D
2 + D2U0

Ω01 =−D4 − U1D
2 −DU0

Ω10 =−D4 + D2U1 − U0D (3.4)

Ω11 =− 2D3 − 2U0 + U ′
1 .

Notice that Ω∗
00 = −Ω00, Ω∗

11 = Ω11, and Ω∗
01 = Ω10 as expected from the grading

of the Ui.
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If we now define T ≡ U0 − 1
2U ′

1, J ≡ U1 we find the classical version of the

N = 2 supervirasoro algebra:

{T(X) , T(Y )} =
[

1

2
D5 +

3

2
TD2 +

1

2
T′D + T′′

]
δ(X − Y )

{T(X) , J(Y )} =
[
−JD2 +

1

2
J′D − 1

2
J′′
]
δ(X − Y ) (3.5)

{J(X) , J(Y )} =−
[
2D3 + 2T

]
δ(X − Y ) .

The first equation identifies T as the super energy-momentum tensor, whereas the

second identifies J as an N = 1 superconformal primary of weight 1.

§4 The General Reduction: from SWGL(2k+1) to N = 2 W -superalgebras.

In this section we describe the general reduction of SWGL(2k+1) obtained by

imposing the constraint U2k = 0 on the space M of supersymmetric Lax operators

of the form L = D2k+1 + · · ·. A quick calculation shows that {U2k(X) , U2k(Y )} =

−Dδ(X−Y ). Since the operator−D is formally invertible, the constraint is second-

class and we expect that the constrained submanifold Mo inherits a well-defined

Poisson bracket from M . We will first show that this in indeed the case and that

the resulting fundamental Poisson bracket defines a W -superalgebra extending the

N = 2 supervirasoro algebra.

Let L = D2k+1+U2k−1D
2k−1+· · ·U0 be a point in the constrained submanifold

Mo. We want to define 1-forms on Mo. According to the discussion in the previous

section, we define them as 1-forms on M which get mapped under J to tangent

vectors to Mo at L, i.e. , to differential operators of order at most 2k − 1. Let

X =
∑

D−l−1Xl be a 1-form on M . Under J it gets mapped to the tangent vector

X 7→ J(X) = (LX)+L − L(XL)+, which is, in general, a differential operator of

order at most 2k. X will be a 1-form on Mo if we demand that the coefficient

of J(X) multiplying D2k vanish. The coefficient of J(X) of order 2k is given

by the super-residue of J(X)D−2k−1. Now, using that J(X) is also given by
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L(XL)− − (LX)−L, we find

sres J(X)D−2k−1 = sres
[
L(XL)−D−2k−1 − (LX)−LD−2k−1

]
= sres

[
L(XL)−D−2k−1 − LX(LD−2k−1)+

]
,

where we have used that sres A−B = sres A−B+ = sres AB+ for any two SΨDO’s

A and B. Using further that (LD−2k−1)+ = 1, we find

0 =sres J(X)D−2k−1

= sres
[
L(XL)−D−2k−1 − LX

]
= sres

[
(−1)|X|XL− LX

]
= −sres [L , X], (4.1)

where for the next to last step we have simply noticed that sres L(XL)−D−2k−1 =

sres D2k+1(XL)−D−2k−1 and we have then computed it. Therefore 1-forms on Mo

are 1-forms X on M which satisfy the additional condition that sres [L , X] = 0.

A closer look at this relation shows that this determines X2k in terms of the other

coefficients and of the Ui. Indeed,

0 = sres [L , X]

= sres LD−2k−1X2k + sres [L ,
2k−1∑
l=0

D−l−1Xl]

= −(−1)|X|X ′
2k + sres [L ,

2k−1∑
l=0

D−l−1Xl] ,

whence

X ′
2k = (−1)|X|sres [L ,

2k−1∑
l=0

D−l−1Xl] . (4.2)

Notice that although this is an equation for X ′
2k, we can actually solve for X2k

since the RHS, being the super-residue of a graded commutator, is also a perfect

derivative. Thus in solving for X2k we simply drop the “constant of integration”.
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We now write down the fundamental Poisson brackets induced on Mo from

those of M . Let us write J(X) =
∑

ij(−1)(|X|+1)(i+1)JijXjD
i which defines the

differential operators Jij . Demanding that the top term vanishes becomes a linear

relation
∑

j J2k,jXj = 0, from which it follows that

X2k = −J−1
2k,2k

2k−1∑
j=0

J2k,jXj . (4.3)

Plugging this back into J(X) we find

J(X) =
2k−1∑
i,j=0

(−1)(|X|+1)(i+1)J̃ijXjD
i , (4.4)

with

J̃ij = Jij − Ji,2k J−1
2k,2k J2k,j , (4.5)

which implies that the new fundamental Poisson bracket is none other than the

“näıve” Dirac bracket. In the usual geometric setting the Jacobi identity for the

Dirac bracket is automatic since the Jacobi identity is equivalent to the symplectic

form being closed on Mo and this follows trivially from the fact that the induced

symplectic form on the constrained submanifold is the pull-back of the one on M

via the embedding Mo ↪→ M . In our formal setting, however, we cannot appeal

too much to the geometry unless the necessary geometric facts have been suitably

algebraized and this, although interesting and possible, is beyond the scope of this

paper.

Therefore to prove that the induced bracket does indeed obey the Jacobi iden-

tity we will proceed as in [13] and make sure that the proof in [10] of the analogous

fact for the unconstrained manifold goes through essentially unmodified. Since the

proof invoked the Miura transformation, we need to understand the constraint

U2k = 0 in this context. A simple computation shows that U2k =
∑

i(−1)iΦi.

Thus, in terms of the fundamental fields Φi, the constrained submanifold is a “hy-

perplane”. Our first task is to define the gradient of a function on this hyperplane.
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As before, we define it in such a way that the associated hamiltonian vector field

is tangent to the hyperplane. For this we have to find out what the hamiltonian

vector field of a function looks like. Let F =
∫
B f be any function. We write its

gradient as a 2k +1-tuple dF =
(

δf
δΦi

)
. We also write vector fields as 2k +1-tuples

ξ =
(
ξi
)
, with pairing given by

(ξ, dF ) =

∫
B

∑
i

ξi δf

δΦi
= ξ · F . (4.6)

Now if F =
∫
B f and G =

∫
B g are any two functions, their Poisson bracket is

given by ξF ·G, where ξF is the hamiltonian vector field associated to F . Comparing

(4.6) with (2.11) we read off the coefficients of the hamiltonian vector field ξi
F =

(−1)i
(

δf
δΦi

)′
. We now demand that ξF be tangent to the constrained submanifold;

in other words, that the hamiltonian vector field preserves the constraint. This

translates into

ξF ·
∑

i

(−1)iΦi = 0 ⇒
∑

i

(−1)iξi
F = 0

⇒
∑

i

(
δf

δΦi

)′
= 0 . (4.7)

Observing that the proof in [10] was essentially combinatorial starting from

the expression (2.14) for the gradient of a function, we can appeal to it provided

that (2.14) is consistent with the constraint; that is, provided that it obey (4.7) .

This will provide a constraint on dF which will turn out to be precisely (4.1) . We

proceed to prove this now.

Replacing the supercovariant derivative of δf
δΦi

by the graded commutator

[∇i ,
δf
δΦi

], and using that for any SΨDO P its super-residue can be written as

sres P = (P−∇i)+ = (−1)|P |+1(∇iP−)+ , (4.8)
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we find

∑
i

(
δf

δΦi

)′
=
∑

i

(−1)(|F |+1)i
[
∇i(sres∇i−1 · · ·∇1dF∇n · · ·∇i+1)

− (−1)|F | (sres∇i−1 · · ·∇1dF∇n · · ·∇i+1)∇i

]
=
∑

i

(−1)(|F |+1)i
[
∇i((∇i−1 · · ·∇1dF∇n · · ·∇i+1)−∇i)+

− (∇i(∇i−1 · · ·∇1dF∇n · · ·∇i+1)−)+∇i

]
.

Notice that we can drop the − subscripts because, if we replace them by +, we

could drop the outer + subscripts and the terms cancel pairwise. Dropping the −
subscripts, we find

∑
i

(
δf

δΦi

)′
=
∑

i

(−1)(|F |+1)i
[
∇i(∇i−1 · · ·∇1dF∇n · · ·∇i)+

− (∇i · · ·∇1dF∇n · · ·∇i+1)+∇i

]
=
∑

i

(−1)(|F |+1)i
[
(∇i · · ·∇1dF∇n · · ·∇i+1)−∇i

−∇i(∇i−1 · · ·∇1dF∇n · · ·∇i)−
]

.

Since this is a zeroth order differential operator we can project to its + part for

free and using the expressions above for the super-residue we obtain

∑
i

(
δf

δΦi

)′
=
∑

i

(−1)(|F |+1)i
[
sres∇i · · ·∇1dF∇n · · ·∇i+1

− (−1)|F |+1sres∇i−1 · · ·∇1dF∇n · · ·∇i

]
=(−1)|F |+1sres L dF − sres dF L

=− sres [dF , L] .

Therefore as long as the gradient of a function is defined so that it obeys

sres [dF , L] = 0, the proof in [10] goes through and the reduced supersymmetric

Gel’fand-Dickey brackets obey the Jacobi identity.
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Finally we prove that the fundamental Poisson brackets (4.5) on the con-

strained submanifold contain the N = 2 supervirasoro algebra as a subalgebra.

This is done by computation. After reducing the supersymmetric Lax operator,

the first two fields appearing are U2k−1 and U2k−2 which have weights 1 and 3
2 ,

respectively. It can be shown quite generally that, before reduction, the funda-

mental Poisson brackets of U2k, U2k−1, and U2k−2 close among themselves. It then

follows that after reduction the induced Poisson brackets of U2k−1 and U2k−2 will

still close into them, so that these two fields generate a subalgebra. We will see

that this is (after some field redefinition) the N = 2 supervirasoro subalgebra.

There are two (at least) different ways we could compute the induced fuunda-

mental Poisson brackets of U2k−1 and U2k−2. We could compute the fundamental

Poisson brackets Ωij for i, j = 2k, 2k − 1, 2k − 2 and then use formula (4.5) or,

equivalently, compute the mapping J(X) for X a 1-form on the constrained sub-

manifold, i.e. , after imposing sres [L , X] = 0; or we could compute the brackets

directly via the Miura transformation from the fundamental brackets of the basic

fields Φi after taking into account the reduction to the hyperplane
∑

i(−1)iΦi = 0.

Both ways are, of course, equivalent and equally computationally involved. We

choose to present the former computation since at least it has the advantage of

keeping things manifestly in terms of the Uj ; whereas the Miura calculation would,

at the end of the day, involve recombining the basic fields Φi back into the Uj : a

slightly tedious task.

Thus let L = D2k+1+U2k−1D
2k−1+U2k−2D

2k−2+· · · and let X =
∑

j D−j−1Xj

be a 1-form. Because we are interested in fundamental Poisson brackets involving

only U2k−1 and U2k−2 it suffices to extract the terms in J(X) which depend on

X2k−1 and X2k−2. Part of this dependence will come from imposing sres [L , X] =

0. Computing this we find

sres [L , X] = 0 ⇒ X2k = kX ′
2k−1 + kX ′′

2k−2 −X2k−2U2k−1 + · · · (4.9)

where the · · · stand for terms involving Xj<2k−2. We now compute J(X) and keep
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only those terms involving X2k−1 and X2k−2. After a little algebra one finds

J̃2k−1,2k−1 = −k(k + 1)D3 + U ′
2k−1 − 2U2k−2

J̃2k−2,2k−1 =
1

2
k(k + 1)D4 + U2k−1D

2 + DU2k−2

J̃2k−1,2k−2 = −1

2
k(k + 1)D4 + D2U2k−1 − U2k−2D

J̃2k−2,2k−2 = −U2k−2D
2 −D2U2k−2

from where we can deduce the fundamental Poisson brackets Ω̃ via equation (2.20) .

Defining T ≡ U2k−2 − 1
2U ′

2k−1 and J = U2k−1, we find that they obey

{T(X) , T(Y )} =
[

1

4
k(k + 1)D5 +

3

2
TD2 +

1

2
T′D + T′′

]
δ(X − Y )

{T(X) , J(Y )} =
[
−JD2 +

1

2
J′D − 1

2
J′′
]
δ(X − Y ) (4.10)

{J(X) , J(Y )} =−
[
k(k + 1)D3 + 2T

]
δ(X − Y ) ,

which, once again, is the classical N = 2 supervirasoro algebra. One can check

that for the special case k = 1 we do, in fact, recover equation (3.5) .

§5 Conclusions

In this paper we have obtained an infinite series of N = 2 exteded superal-

gebras by reduction of a recently constructed Poisson structure on the space of

supersymmetric Lax operators of odd order. This reduction is the supersymmetric

analogue of the Drinfel’d-Sokolov reduction of the second Gel’fand-Dickey bracket

which is associated to the An series of classical Lie algebras and which yields the

Wn algebras of Fateev and Lykyanov.

For the Lax operator of order 2k+1, the spectrum of the resulting algebra con-

sists of (N = 1) superfields Uj for j = 0, 1, . . . , 2k−1, of näıve weights k−(j−1)/2.

In particular, U2k−1 and U2k−2 have been shown to generate a N = 2 supervira-

soro algebra. It is then a natural conjecture to expect that each remaining field

Uj for j odd gives rise to an N = 2 superconformal primary field Ũj obtained by
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deforming Uj via the addition of differential polynomials in the Ui>j . Similarly the

remaining Uj with j even give rise to their partners. We have checked this explic-

itly for the simplest example, but we have not proven it in general. Nevertheless,

we have no doubt of the validity of this statement and we hope to return to this

point in a future paper. It should be remarked that the bosonic spectrum of these

algebras does not in general agree with the spectrum of the nonsupersymmetric

Wn algebras. Therefore one does not recover these algebras upon truncation, like

the simple case of SWGL(2) might suggest. It seems plausible—like the reader

can check explicitly for SWGL(3)—that further reductions might yield conformal

algebras with the spectrum of Wn, but these reductions do not seem natural in

this context, since they involve constraining part of the bosonic spectrum as well.

As mentioned in the introduction, this series of algebras has been also obtained

in [7] from the Sl(n + 1|n) Toda field theory, where it appears as the algebra of

conserved quantities. It is a very interesting open question to obtain this algebra

as hamiltonian reduction of the corresponding affine algebra, thus recovering the

connection between Lie superalgebras and W -superalgebras existing in the bosonic

case. Work on this is in progress.
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