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§1 INTRODUCTION

In [1] Frenkel, Garland and Zuckerman computed the BRST cohomology of the

open bosonic string after identifying it with a particular semi-infinite cohomology

for which they had proven a key vanishing theorem; that is, that the BRST coho-

mology is zero except at zero ghost number. Their vanishing theorem did not just

apply to that particular representation of the Virasoro algebra but to a large class

of graded Lie algebras (including Kac-Moody algebras) and a large class of their

representations. In the present paper we extend their result to the representations

of the super-Virasoro algebras appearing in the NSR string. The theorem admits

some generalization which, lacking the string theoretic relevance of this special

case, will be presented elsewhere. This way we can devote ourselves to the cases

of current physical interest and therefore give a clear presentation of the method

without needless generalizations.

The proof uses the algebraic machinery of spectral sequences. Since this lies

somewhat outside the physicist’s bag of tricks we thought it would be convenient

to devote the next section to take a brief look at this powerful gadget. That

section also serves to clarify the notation and the concepts concerning differential

complexes that we use in this paper. We define the notion of a filtered complex and

quote the main theorem concerning the spectral sequence associated to it. A very

important special case of a filtered complex, and one for which we will find ample

use, is the double complex. We will see that there are two canonical filtrations

associated to a double complex and that the early terms of the spectral sequences

associated to each of the filtrations are very easy to describe in terms of the two

original differentials of the double complex. These theorems form the basis for the

results in this paper. Since they are standard we refer the reader to the appropriate

literature for the proofs.

The rest of the paper is organized as follows. Section 3 discusses in detail

the vanishing theorem for the relative BRST subcomplex of the Neveu-Schwarz

sector of the NSR string. In Section 4 we consider the Ramond sector. This is
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somewhat more complicated because of the existence of the superconformal ghosts’

zero modes. In fact there has not appeared in the literature a unique treatment of

these zero modes and thus we treat them in two different ways. The cohomologies

turn out to be isomorphic although one of them does not admit a grading by ghost

number. Therefore for this case the vanishing theorem does not make sense. In

order to prove the vanishing theorems we use a basic result from the cohomology

theory of Lie superalgebras. We have never seen a published proof of this theorem,

although Fuks[2] hints that it is a straight-forward generalization of the similar

theorem for Lie algebras. We fill in the details in the first appendix for the special

cases we need in this paper.

In section 5 we use spectral sequences again to infer the vanishing theorem for

the full BRST complex. This complex is half-integrally graded and what we show

is that its cohomology is trivial except at ghost number ±1
2 . The spectral sequence

used in this case is the one associated to one of the two canonical filtrations of a

double complex. In section 6 we prove the “no-ghost” theorems for the NSR string

using the vanishing theorems proven earlier. Specifically what we prove is that the

inherited norm on the BRST cohomology of the relative subcomplex (ignoring the

ghosts’ zero modes) is positive definite. This is a straight-forward application of

the method introduced in [1] and discussed in [3] and [4]. We will make constant

use in this section of the contents of [4] to which we refer the reader. To be able to

apply the results of [4] we need to show that we can find a positive-definite inner

product for the Fock space where the BRST operator acts. The second appendix

briefly describes this inner product.

§2 SPECTRAL SEQUENCES

In this section we discuss briefly the basic notions of spectral sequences. For the

proofs of the theorems we quote in this section, the reader is referred to the books

by Lang [5], and Griffiths and Harris [6]. A more unified treatment of spectral

sequences using Massey’s concept of an “exact couple” can be found in the books
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by Bott and Tu [7], and Hilton and Stammbach [8]. A complete treatment with

applications can be found in the book by MacLane [9].

A spectral sequence essentially allows us to approximate the cohomology of a

complex by computing the cohomology of bigger and bigger chunks. By definition

a spectral sequence is a sequence {(Er, dr)}r=0,1,... of differential complexes1 where

Er+1 is the cohomology space of the preceding complex (Er, dr). That is,

Er+1 =
kerdr

imdr
. (2.1)

In many cases of interest one has that for r > R, Er = Er+1 = · · · = E∞. In

this case one says that the spectral sequence converges to E∞ and one writes

(Er) ⇒ E∞.

The following is the typical use to which spectral sequences are put to in

practice. One generally finds oneself in the situation where the cohomology H of

a certain complex is to be computed. Then one shows (usually by very general

arguments) that there exists a spectral sequence converging to H, whose early

(first or second) terms are easily computable. Thus one begins to approximate H.

It may be that after the first or second term the differentials {dr} are identically

zero. Then that term is already isomorphic to the limit term E∞, in which case

the spectral sequence is said to degenerate at the E1 or E2 terms. In that case

we have reduced the computation of H to the computation of the cohomology of

a much simpler complex. We will see an example of this application in Sections 3

and 4.

Sometimes however we are not so lucky and the spectral sequence does not de-

generate early, yet it still provides us with a lot of useful information. In particular

it can be used to obtain vanishing theorems. This will be the use for them in §2.

It is worth elaborating on this point.

1 For our purposes a differential complex consists of a pair (E, d) of a vector

space E and a linear map d : E → E, called the differential, obeying d2 = 0.
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Usually complexes come equipped with a grading under which the differential

acquires a well–defined degree. Let’s suppose for definiteness that E =
⊕

nE
n

and d : En → En+1. Then the cohomology is also graded: H =
⊕

nH
n, in the

obvious manner. In the cases that will occupy our attention the spectral sequence

converging to H will respect the grading and therefore we’ll have convergence in

each dimension: (En
r ) ⇒ Hn for all n. From the definition of the spectral sequence

we notice that En
r+1 is a subquotient of En

r and hence if for any r we have a

vanishing of cohomology, say, En
r = 0 for some n, then the vanishing will persist

and Hn = 0. This propagation of vanishing of cohomology is, in a nutshell, the

essence of the vanishing theorem of Frenkel, Garland and Zuckerman and of our

generalization. Indeed we find that there is a vanishing theorem for the E1 term

in a spectral sequence converging to the (reduced) BRST cohomology of the NSR

string.

We now describe in some detail the spectral sequences arising in this paper.

They are all special cases of the spectral sequence which arises from a filtered

complex, so we start by considering these.

Let (C, d) be a differential complex. By a filtration of C we mean a sequence

(not necessarily finite) of subspaces FC = {F pC} indexed by an integer2 p —

called the filtration degree — such that, for all p, F pC ⊇ F p+1C and such that

∪pF
pC = C. We will deal exclusively with filtrations which are bounded: that is,

there exist p0 and p1 such that

F pC =

{
C for p ≤ p0

0 for p ≥ p1

.

If the differential respects the filtration, that is, dF pC ⊆ F pC, then (FC, d) is

called a filtered differential complex.

2 This is only for definiteness. In this paper, for instance, we will use both

integral and half integral filtrations.
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Let FC be a bounded filtered complex. Then each F pC is, in its own right,

a complex under d and, therefore, its cohomology can be defined. The inclusion

F pC ⊆ C induces a map in cohomology H(F pC) → H(C) which, however, is

generally not injective. To understand this notice that a cocycle in F pC may

be the differential of a cochain which does not belong to F pC but to F p−1C.

Therefore the cohomology class it defines may not be trivial in H(F pC) but it may

be in H(C). Let us denote by F pH(C) ⊆ H(C) the image of H(F pC) under the

aforementioned map. It is easy to verify that FH(C) defines a filtration of H(C)

which is bounded if FC is.

To every filtered vector space FC we can associate a graded vector space

GrC =
⊕

p GrpC where

GrpC ≡ F pC/F p+1C .

It is easy to see that as vector spaces C and GrC are isomorphic; although, since

C is not necessarily graded, this isomorphism does not extend to an isomorphism

of graded spaces.

If (FC, d) is a filtered differential complex then the associated graded space

GrC is also a complex whose differential is induced by d. Notice that if FC is

bounded then GrC is actually finite. Since d respects the filtration, upon passage

to the quotient we obtain a map, also called d, which maps d: GrpC → GrpC,

whose cohomology is denoted by H(GrC). Notice that whereas GrC is graded,

the differential has degree zero. This cohomology is usually easier to calculate than

H(C) or H(FC); the reason being that the differential in the associated graded

complex is usually a simpler operator. It may be that parts of d have positive

filtration degree, mapping F pC → F p+1C, in which case this is already zero in

GrpC.

The spectral sequence of a filtered complex relates the two spaces GrH(C) and

H(GrC). In fact we have the following

Theorem. Let FC be a bounded filtered complex and GrC its associated graded
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complex. Then there exists a spectral sequence {(Er, dr)} of graded spaces

Er =
⊕

p

Ep
r

with

dr:E
p
r → Ep+r

r

and such that

Ep
0
∼= GrpC ,

Ep
1
∼= H(GrpC) ,

and

Ep
∞
∼= GrpH(C) .

Moreover the spectral sequence converges finitely to the limit term.

Now suppose that C is a graded complex C =
⊕

nC
n — where n will be called

the dimension — such that the differential has degree 1

d:Cn → Cn+1

and let FC be a filtration of C. In this case we can grade the filtration as follows:

F pC =
⊕

n F
pCn where F pCn = F pC ∩ Cn. The associated graded complex

is now bigraded as follows GrC =
⊕

p,n GrpCn with the obvious definition for

GrpCn. Supposing that the filtration is bounded in each dimension we get a slightly

modified version of the previous theorem:

Theorem. Let C be a graded complex, FC be a filtration which is bounded
in each dimension and GrC its associated graded complex. Then there exists a
spectral sequence {(Er, dr)} of bigraded spaces

Er =
⊕
p,q

Ep,q
r

with

dr:E
p,q
r → Ep+r,q−r+1

r

and such that

Ep,q
0
∼= GrpCp+q ,

Ep,q
1
∼= Hp+q(GrpC) ,

and
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Ep,q
∞
∼= GrpHp+q(C) .

Moreover the spectral sequence converges finitely to the limit term.

Very important special cases of a filtered complex arise from a double complex.

A double complex is a bigraded vector space K =
⊕

p,q Kp,q — where, for definite-

ness, we take p,q integral; although this is not essential — and two differentials

D′: Kp,q → Kp+1,q

D′′: Kp,q → Kp,q+1

which anticommute. It is often convenient to represent the double complex picto-

rially as follows

...
...x x

· · · −→ Kp,q+1 D′

−→ Kp+1,q+1 −→ · · ·xD′′

xD′′

· · · −→ Kp,q D′

−→ Kp+1,q −→ · · ·x x
...

...

Hence we shall refer to D′ and D′′ as the horizontal and vertical differentials,

respectively.

Defining the total degree of vectors in Kp,q as p + q we may form a graded

complex called the total complex and denoted by Tot K =
⊕

n TotnK where

TotnK =
⊕

p+q=n

Kp,q .

The differential in the total complex is D = D′ + D′′ and is called the total
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differential. Since the total differential has total degree 1

D: TotnK → Totn+1K ,

(Tot K, D) becomes a graded complex. We shall deal exclusively with double com-

plexes which satisfy a mild finiteness condition: for each n there are only a finite

number of non-zero Kp,q with p+ q = n.

There are two natural filtrations associated to the graded complex Tot K. De-

fine

′F pTot K =
⊕

q

⊕
i≥p

Ki,q

and

′′F qTot K =
⊕

p

⊕
j≥q

Kp,j .

Fix n and define

′F pTotnK =
⊕
i≥p

Ki,n−i

and

′′F qTotnK =
⊕
j≥q

Kn−j,j .

The finiteness condition for the double complex imply that the above filtrations

are bounded for each n. Therefore, for each n, there exist p0, p1, q0, and q1 —

which depend on n — such that

′F pTotnK =

{
TotnK for p ≤ p0

0 for p ≥ p1

,

and
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′′F qTotnK =

{
TotnK for q ≤ q0

0 for q ≥ q1
.

By the previous theorem there is a spectral sequence associated to each of the

filtrations defined above which converges finitely to the cohomology of the total

complex (Tot K, D). What makes this example so important is that the earliest

terms in the spectral sequence are easily described in terms of the original data

(K, D′, D′′). In fact one finds for the horizontal filtration:

Theorem′. Associated to the filtration ′FTot K there exists a spectral sequence
{(′Er, dr)}r=0,1,... of bigraded vector spaces

′Er =
⊕
p,q

′Ep,q
r

with

dr:
′Ep,q

r → ′Ep+r,q−r+1
r

such that

′Ep,q
0
∼= Kp,q ,

′Ep,q
1
∼= ′′Hp,q(K) ,

′Ep,q
2
∼= ′Hp(′′Hq(K)) ,

and
′Ep,q
∞
∼= GrpHp+q(Tot K) .

We must explain the notation. In this theorem, by ′′Hp,q(K) we mean the qth

cohomology of the complex (which appears vertically in the double complex)

· · · −→Kp,q D′′

−→Kp,q+1−→· · · ;

whereas by ′Hp(′′Hq(K)) we mean the qth cohomology of the complex

· · · −→′′Hp,q(K)
D′

−→′′Hp+1,q(K)−→· · · ,

which is well defined since D′ and D′′ anticommute.

Similarly for the vertical filtration we have the following

– 10 –



Theorem′′. Associated to the filtration ′′FTot K there exists a spectral sequence

{(′′Er, dr)}r=0,1,... of bigraded vector spaces

′′Er =
⊕
p,q

′′Eq,p
r

with

dr:
′′Eq,p

r → ′′Eq+r,p−r+1
r

such that

′′Eq,p
0
∼= Kp,q ,

′′Eq,p
1
∼= ′Hp,q(K) ,

′′Eq,p
2
∼= ′′Hq(′Hp(K)) ,

and
′′Eq,p

∞
∼= Grq Hp+q(Tot K) .

Similar notational remarks to the ones preceding this last theorem apply here as

well.

§3 THE NEVEU-SCHWARZ SECTOR

In this section we define the relative subcomplexes for the super-Virasoro al-

gebra appearing in the Neveu-Schwarz sector of the NSR string and we prove a

vanishing theorem for its cohomology. We use a Poincaré duality result proven in

[4] for the BRST cohomology of a Fock space possessing a positive definite inner

product. In Appendix B we construct this inner product for the Fock space of the

NSR string.

Let NS denote the centrally extended complexified super-Virasoro algebra ap-

pearing in the Neveu-Schwarz sector of the NSR string. This is a Lie superalgebra

whose even part is the Virasoro algebra L =
⊕

n Ln. Each Ln is spanned by `n
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for n different from zero and L0 is spanned by `0 and c. The Virasoro algebra is

defined by

[`m , `n] = (m− n)`m+n +
c

12
m(m2 − 1)δm,−n , (3.1)

and by the fact that c is central. Also let us define L± =
⊕

±n>0 Ln.

The odd part ofNS is graded according to G =
⊕

r∈Z+ 1
2
Gr, where Gr is spanned

by gr. These generators obey

{gr , gs} =2`r+s +
c

3
(r2 − 1

4
)δr,−s (3.2)

and

[`n , gr] =(
n

2
− r)gr+n . (3.3)

Supplementing these relations by the assertion that c is central, fully defines the

super-Virasoro algebra in this sector. Again we define NS± = L± ⊕
⊕

±r>0 Gr.

As is well known the ghost Fock space of the Neveu-Schwarz sector carries

a representation of NS where c 7→ −15 Id and `n 7→ Lghost
n , gr 7→ Gghost

r . The

Fock space of the string oscillators also carries a representation of NS with the

opposite central charge (in the critical dimension) and where `n 7→ Lmatter
n and

gr 7→ Gmatter
r . Let us denote by Ln and Gr the operators representing `n and

gr respectively in the full Fock space (including ghosts). The formulas for these

generators are standard and can be found for instance in [10].

It was proven by Brower and Friedman[11] that this representation is fully re-

ducible. That is, it can be written as an infinite direct sum of Verma modules

whose highest weight vectors are obtained by repeated application of the creation

operators in the full spectrum-generating algebra.3 Since the BRST operator com-

mutes with the {Ln} and the {Gr} it respects this decomposition and hence we

3 Strictly speaking, this is not true for the case of zero center of mass momentum.

In this case the highest weight vector is also annihilated by Gmatter
− 1

2

and hence

does not generate a Verma module. For this case the theorem in Appendix
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may restrict our attention to one such Verma module at a time when computing

the BRST cohomology. Let M denote one such Verma module. Following [1]

we denote the BRST (or semi-infinite) cohomology4 of the NS superalgebra with

coefficients in M by H∞(NS;M). This is the cohomology of the BRST operator

Q acting on the graded complex C∞(NS;M) =
⊕

nC
n
∞(NS;M) where

Cn
∞(NS;M) = Cn

∞(NS)⊗M , (3.4)

where Cn
∞(NS) is the subspace of the ghost Fock space at ghost number n.

Let us define a subcomplex of C∞(NS;M) — called the subcomplex relative

to L0 — by

C∞(NS,L0;M) = {ω ∈ C∞(NS;M) | L0ω = b0ω = 0} . (3.5)

For the sake of notation let us abbreviate C∞(NS,L0;M) with C∞. Notice that

C∞ is finite dimensional. From the identity {Q , b0} = L0 we notice that this

indeed defines a subcomplex. That is, QC∞ ⊆ C∞. We denote its cohomology by

H∞(NS,L0;M).

Let

|i, j, k, l,m, q〉 =
∏
r≥ 1

2

γir
−r

∏
r≥ 1

2

βjr

−r

∏
n>0

ckn
−n

∏
n>0

bln−n |0〉⊗
∏
r≥ 1

2

Gqr

−r

∏
n>0

Lmn
−n |p〉 (3.6)

denote a vector in C∞ with |p〉 a highest weight vector of momentum p such that

1

2
(p2 − 1) = −

(∑
n

(kn + ln +mn)n+
∑

r

(ir + jr + qr)r
)

= −N
2
, (3.7)

A does not hold and neither does our proof of the vanishing theorem. Here,

however, the BRST cohomology is easy to compute explicitly.

4 To be precise, this is the cohomology relative to the center. In other words,

from now on NS denotes the unextended Neveu-Schwarz algebra.
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for some non-negative integer N . Define the filtration degree as

fdeg |i, j, k, l,m, q〉 =
∑
n

(kn − ln −mn)n+
∑

r

(ir − jr − qr)r . (3.8)

This allows us to define a half-integral filtration of C∞ by

F pC∞ = {ω ∈ C∞ | fdegω ≥ p} . (3.9)

First of all notice that F pC∞ ⊇ F p+ 1
2C∞ and that the filtration is bounded.

Finally we must check that this indeed defines a filtered complex, that is, QF pC∞ ⊆
F pC∞. This is done by examining the filtration degree of the homogeneous terms

in Q and making sure they are all non-negative. From (3.8) we can read off the

filtration degree of all the oscillators which make up Q and we find them to be the

following:

Operator Filtration Degree

cn |n|
bn − |n|
γr |r|
βr − |r|

Lmatter
n n

Gmatter
r r

Therefore it is trivial to verify that all terms in Q have zero filtration degree

except for the terms Lmatter
n c−n for n > 0 which have filtration degree 2n; the terms

Gmatter
r γ−r for r > 0 which have filtration degrees 2r; the terms cm cn b−(m+n) for

sign(m) 6= sign(n) which have filtration degree |m| + |n| − |m+ n|; the terms

γr γs b−(r+s) for sign(r) 6= sign(s) which have filtration degree |r| + |s| − |r + s|;
and finally the terms γr cn β−(r+n) for sign(r) 6= sign(n) which have filtration degree

|r|+|n|−|r + n|. Hence all terms have non-negative filtration degrees and {F pC∞}
indeed defines a bounded filtered complex.
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By the theorem in Section 2 there exists a spectral sequence converging finitely

to H∞(NS,L0;M) whose E1 term is the cohomology of the associated graded

complex GrC∞ =
⊕

p GrpC∞, where GrpC∞ = F pC∞/F
p+ 1

2C∞. The differential

in this complex is precisely the part of Q with zero filtration degree since the terms

with positive filtration degree will automatically map to zero in GrC∞. By the

above discussion the induced differential can be seen to be the differential on the

complex

CL0 =
(
C(NS+)⊗ C∞(NS−;M)

)L0

, (3.10)

where C(NS+) denotes the Lie superalgebra cochains5 of NS+ with coefficients

in the trivial representation, ()L0 denotes the L0 invariant subspace and M is to

be thought of as a representation of only NS−. We remark that this particular

expression makes it very easy to keep track of ghosts and antighosts separately. In

fact, the subspace of CL0 with c ghost and b antighosts is just

(CL0)b,c =
(
Cc(NS+)⊗ Cb

∞(NS−;M)
)L0

. (3.11)

We now compute this cohomology. Since L0 is diagonalizable in C

C = CL0 ⊕ L0(C) , (3.12)

where L0(C) denotes the image of C under L0. Since L0 commutes with Q we

deduce that

QCL0 ⊆ CL0 (3.13)

and

5 Strictly speaking we mean here cochains of finite support. That is, super-

symmetric linear functionals of finite rank. They correspond to polynomials in

the ghost creation operators.
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QL0(C) ⊆ L0(C) . (3.14)

Now suppose that ω is an L0 invariant cocycle. If ω = Qφ then we can chose φ to

be L0 invariant as well. To see this notice that if φ is not L0 invariant already then

by (3.12) φ = φ0 +ψ where φ0 ∈ CL0 and ψ ∈ L0(C). Then ω = Qφ = Qφ0 +Qψ.

By (3.13) and (3.14) Qψ = 0 and therefore ω = Qφ0. Hence we have proven the

inclusion

H(CL0) ⊆ H(C)L0 .

The reverse inclusion is easier. If [ω] ∈ H(C)L0 then L0ω = (Qb0 + b0Q)ω = 0

since Qω = 0 and b0ω = 0. Therefore ω ∈ CL0 defines a class in H(CL0) which, if

trivial, is trivial also in H(C)L0 . Therefore we conclude that

H(C)L0 ∼= H(CL0) . (3.15)

But by the Künneth formula

H(C) ∼= H(NS+)⊗H∞(NS−;M) ; (3.16)

whence, keeping track of ghosts and antighosts separately, the E1 term in the

spectral sequence is

Eb,c
1 =

(
Hc(NS+)⊗Hb

∞(NS−;M)
)L0

. (3.17)

In Appendix A we prove that Hb
∞(NS−;M) = 0 for b 6= 0 and H0

∞(NS−;M) ∼= C.

Thus,

Em
1 =

⊕
c−b=m

Eb,c
1

=E0,m
1

= (Hm(NS+))L0
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∴ Em
1 =0 for m < 0 .

But (Em
r ) ⇒ Hm

∞(NS,L0;M), thus Hm
∞(NS,L0;M) = 0 for m < 0. Taking into

account all the Verma modules M we find that Hm
∞(NS,L0;H) = 0 for m < 0,

where H is the full Fock space (including ghosts) of the Neveu-Schwarz string.

Now in Appendix B we show that there exists a positive definite inner product

in H. This and the obvious fact that H breaks up into finite dimensional subspaces

stabilized by Q allow us to use the Poincaré duality theorem proven in [4]:

Hm
∞(NS,L0;H) ∼= H−m

∞ (NS,L0;H) (3.18)

which gives the vanishing theorem for the relative subcomplex

Hm6=0
∞ (NS,L0;H) = 0 . (3.19)

In the Section 5 we will prove that this induces a vanishing theorem in the full

complex H∞(NS;H) as well.

§4 THE RAMOND SECTOR

Let R denote the centrally extended complexified super-Virasoro algebra ap-

pearing in the Ramond sector of the NSR string. This algebra is very similar to

the Neveu-Schwarz algebra except that the odd part F =
⊕

n∈ZFn is integrally

graded, where Fn is spanned by fn. The even subalgebra is still given by (3.1) .

The rest of the algebra obeys

{fm , fn} =2`n+m +
c

3
(m2 − 1

4
)δm,−n (4.1)

and

[`m , fn] =(
m

2
− n)fm+n . (4.2)

Again we impose that c is central and as before we define R± = L± ⊕
⊕

±n>0Fn.
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The ghost Fock space of the Ramond sector carries a representation of R with

c 7→ −15 Id, `n 7→ Lghost
n , fn 7→ F ghost

n . The Fock space of the string oscillators

also carries a representation of R with the opposite central charge (in the critical

dimension) and where `n 7→ Lmatter
n and fn 7→ Fmatter

n . Finally, let us denote by

Ln and Fn the operators representing `n and fn respectively in the full Fock space

(including ghosts). Again the formulas for these generators are standard and we

refer the reader to [10].

In [11] Brower and Friedman claim to have proven full reducibility of this

representation, although they do not write down the explicit spectrum generating

algebra. Therefore, just as in the Neveu-Schwarz case we can decompose the string

Fock space into Verma modules and thus restrict our attention to one such Verma

module at a time when computing the BRST cohomology.6

Let M be one such Verma module and let H∞(R;M) denote the BRST

cohomology7 on the graded complex C∞(R;M) =
⊕

nC
n
∞(R;M) where again

Cn
∞(R;M) = Cn

∞(R)⊗M , (4.3)

where Cn
∞(R) is the subspace of the ghost Fock space at ghost number n.

There are two natural subcomplexes to consider. One could consider the sub-

complex relative to the zeroth subalgebra R0 = L0⊕F0 or relative to just the even

part L0. The choice of subcomplex has to do with the choice of Hilbert space K
for the zero modes of the superconformal ghosts. The reason is the following. In

order to consider the subcomplex relative to the full zeroth subalgebra we have to

6 Just as before the vanishing theorem as it stands does not apply to the case

where the center of mass momentum is zero. In this case the cohomology is

again easy to compute explicitly.

7 Again this should be relative to the center. Therefore from now on R denotes

the unextended Ramond algebra.
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be able to impose the condition β0 ω = 0. This may or may not be possible as we

shall now see.

The algebra obeyed by the ghost zero modes is the Heisenberg algebra

[γ0 , β0] = 1 , (4.4)

and the hermiticity conditions are such that γ0 is hermitian and β0 is anti-hermitian.

The unique8 representation of this algebra as operators in a Hilbert space (i.e. with

a positive definite inner product) is the Schrödinger representation in which K is

isomorphic with L2(R, dx) and where β0 is represented by i times the multiplica-

tion operator: (β0 h)(x) = i x h(x) and γ0 is the momentum operator: (γ0 h)(x) =

−i h′(x). If this is the case we cannot impose the equation β0 ω = 0 because the

multiplication operator has no eigenvalues in L2(R, dx). In this case we would look

at the subcomplex relative to L0.

If on the other hand — like many other authors, notably Henneaux[12] — we

treat γ0 and β0 as creation and annihilation operators (respectively) the Hilbert

space is now (the completion of) the polynomial algebra in one variable C[γ0]. In

this case the hermiticity conditions that induce a positive definite inner product

are such that γ0 and β0 are mutually adjoint. In this case we can consider the

subcomplex relative to the full zeroth subalgebra R0. It may seem unnatural to

alter the hermiticity properties inherited from the classical fields, but for operators

which do not correspond to physical observables the hermiticity properties are

not too crucial. There is however a major drawback. Changing the hermiticity

properties of γ0 and β0 changes the hermiticity properties of the BRST operator:

it is no longer hermitian. This means that it is no longer guaranteed that the

cohomology space inherits a well-defined (i.e. independent of the representative)

inner product. In fact, a necessary and sufficient condition is kerQ ⊂ kerQ†. In

8 Strictly speaking the uniqueness is proven for the Weyl form of the Heisenberg

algebra.
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particular, since imQ ⊂ kerQ, it is necessary that Q†Q ≡ 0. In this case it can

be checked explicitly that this does not hold.

On the other hand keeping the original hermiticity conditions has one major

inconvenience: the cohomology is not graded by ghost number and hence the

vanishing theorem makes no sense. This is due essentially to the fact that the ghost

number operator has no eigenvalues in L2(R, dx). Still, we can find a particular

class of representatives which does admit a grading. In this case the cohomology

agrees with the one obtained by altering the hermiticity properties of γ0 and β0,

for which we can prove a vanishing theorem.

Therefore we will consider both choices of hermiticity properties. We will see

that both cohomologies are isomorphic as ungraded vector spaces; and we will

prove a vanishing theorem for the graded case.

The Henneaux Representation

Let us first assume that K = C[γ0]. It is then possible to consider the relative

subcomplex C∞(R,R0;M). This complex, which we abbreviate by C∞, is given

by

C∞ = {ω ∈ C∞(R;M) | F0ω = b0ω = β0ω = 0} . (4.5)

Just as in the Neveu-Schwarz case, it is finite dimensional. Hence a typical vector

in C∞ is a linear combination of monomials

|i, j, k, l,m, q〉 =
∏
n>0

γin
−n

∏
n>0

βjn

−n

∏
n>0

ckn
−n

∏
n>0

bln−n |0〉 ⊗
∏
n>0

F qn

−n

∏
n>0

Lmn
−n |p〉 ,

(4.6)

where |p〉 a highest weight vector of momentum p such that

1

2
p2 = −

∑
n

(in + jn + qn + kn + ln +mn)n = −N , (4.7)

for some non-negative integer N . Define the filtration degree as

fdeg |i, j, k, l,m, q〉 =
∑
n

(in − jn − qn + kn − ln −mn)n . (4.8)
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Just as in the Neveu-Schwarz case the filtration defined by this degree is

bounded and defines a filtered complex. Therefore the theorem in Section 2

applies, yielding the existence of a spectral sequence which converges finitely to

H∞(R,R0;M); and whose E1 term is the differential for the complex

CF0 =
(
C(R+)⊗ C∞(R−;M)

)F0

. (4.9)

In this case, however, we cannot use the arguments used for the Neveu-Schwarz

case because F0 does not act reducibly. In fact, in the subspace left invariant by

L0, F0 is nilpotent and not identically zero. Therefore kerF0 ∩ imF0 6= 0 and a

decomposition à la (3.12) is impossible. Therefore we follow a completely different

line of approach. We find a spectral sequence converging toH(CF0) which preserves

the grading by ghost number and for whose E1 term we can prove a vanishing

theorem.

The spectral sequence in question will be that associated to one of the canonical

filtrations of a double complex. The double complex is constructed as follows. For

any ghost number p the space (Cp)L0 naturally affords a representation of F0.

Moreover since F 2
0 = L0 the action of F0 is nilpotent and its cohomology may be

defined. We define

Kp,q = Cq(F0; (C
p)L0) , (4.10)

the q-cochains of the F0 with coefficients in (Cp)L0 . Let δ : Kp,q → Kp,q+1 to be

the coboundary operator for F0 cochains. It is defined by

δ (f ′0)
q ⊗ ω = (f ′0)

q+1 ⊗ F0ω , (4.11)

for ω ∈ (Cp)L0 . Similarly define d : Kp,q → Kp+1,q to be the trivial extension of

the differential Q for CL0 :

d (f ′0)
q ⊗ ω = (f ′0)

q ⊗Qω , (4.12)
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for ω ∈ (Cp)L0 . Therefore the double complex can be represented as follows:

...
...x x

· · · −→ Kp,1 d−→ Kp+1,1 −→ · · ·xδ

xδ

· · · −→ Kp,0 d−→ Kp+1,0 −→ · · ·

Since Q and F0 anticommute so do d and δ. Therefore D = d+ δ is nilpotent

and computes the cohomology of the total complex K =
⊕

m Km where Km =⊕
p Kp,m−p.

Because CL0 is finite-dimensional its grading by ghost number is bounded and

therefore the total complex is finite in each dimension. Therefore we can use the

results of Section 2 and deduce that there exist two spectral sequences converging

to the total cohomology in each dimension. We now compute the early terms.

We first look at the vertical δ cohomology. The space Zp,q
δ of (p, q)–cocycles of

δ is just (f ′0)
q ⊗ (Cp)F0 whereas the (p, q)–coboundaries are (f ′0)

q ⊗ F0(C
p)L0 for

q > 0 whereas for q = 0 there are no coboundaries since there are no −1 cochains.

Therefore the vertical cohomology is

Hp,q
δ =

{
1⊗ (Cp)F0 for q = 0

(f ′0)
q ⊗HF0

((Cp)L0) for q 6= 0
, (4.13)

where HF0
((Cp)L0) is the cohomology of the nilpotent operator F0 in (Cp)L0 . This

space, however, turns out to be trivial[12]. In fact, one can9 define an operator

K such that {F0 , K} = 1. Therefore the vertical cohomology is zero except in

dimension zero where it is isomorphic to CF0 .

9 Strictly speaking, this is only possible for states whose center of mass mo-

mentum is different from zero. In the Ramond sector any such on-shell (L0

invariant) states correspond to one of the degenerate vacua and hence it has

manifestly zero ghost number.
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The spectral sequence associated to the horizontal filtration has as ′E1 term the

vertical cohomology and as ′E2 term Hd(Hδ). Therefore this is zero everywhere but

in dimension zero and there it is just H(CF0). Because d2 maps already between

different rows we see that it is identically zero and so are all the higher dr’s. Hence

the spectral sequence collapses and we have that the total cohomology is

Hm
D
∼= Hm(CF0) . (4.14)

If we take the vertical filtration the first term in the spectral sequence is the

horizontal cohomology Hd. Therefore the ′′E1 is precisely

′′Eq,p
1 = (f ′0)

q ⊗Hp(CL0) , (4.15)

where by an argument identical to that in the in the Neveu-Schwarz case we can

show that Hp(CL0) ∼= Hp(C)L0 . By arguments identical to the ones in the Neveu-

Schwarz sector — i.e. , using the Künneth formula and the theorem in Appendix

A — it follows that Hp(C)L0 is zero for p < 0. Therefore

′′Em
1
∼=
⊕
q≥0

Hm−q(CL0) . (4.16)

Since Hp(CL0) = 0 for p < 0 we have that ′′Em
1 = 0 for m < 0. Therefore

′′Em
∞ = 0 for m < 0. But by the theorem in Section 2, this limit term is also the

total cohomology. Therefore Hm(CF0) = 0 for m < 0. But this is the E1 term

in a spectral sequence converging to H∞(R,R0;M). Therefore we conclude that

Hm
∞(R,R0;M) = 0 for m < 0 and the same for H∞(R,R0;H). By the Poincaré

duality of [4], this implies the vanishing theorem

Hm6=0
∞ (R,R0;H) = 0 . (4.17)

We will see in the next section that this implies a vanishing theorem for the

cohomology of the full complex C∞(R;H)
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The Schrödinger Representation

Now let us assume that K = L2(R, dx). We find it convenient to work in a

dense domain in which γ0 and β0 are defined. To this end let us introduce the

operators a and a† defined by

β0 =
1√
2
(a† − a) γ0 =

1√
2
(a† + a) , (4.18)

and let K be the completion of the polynomial algebra C[a†]. Combining (4.4) and

(4.18) we find that a and a† obey [a , a†] = 1.

Let us define the subcomplex

C∞(R,L0;M) = {ω ∈ C∞(R;M) | L0ω = b0ω = 0} . (4.19)

To study the cohomology of this complex it is convenient to discuss the differentials

occurring in the various complexes under study. The differential in the full complex

C∞(R;M) is the BRST operator Q. Making the dependence on the ghosts’ zero

modes manifest we can write it as

Q = c0 L0 − 2b0 T − γ2
0b0 + Q , (4.20)

where

Q = β0K + γ0 F0 +Q . (4.21)

We don’t need the explicit expressions for these operators but only the following

relations which follow from the nilpotency of Q:

Q2 = 0 F 2
0 = L0 [F0 , T ] = K Q2 = 2L0 T + F0K , (4.22)

and all other (anti)commutators vanish; in particular, [T , K] = 0.
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The differential in the relative subcomplex C∞(R,L0;M) is Q. Isolating the

representation space of the superghosts’ zero modes, this subcomplex can be writ-

ten as C ⊗C[a†] which defines C. According to this decomposition the differential

becomes

Q = Q⊗ Id +
1√
2
(F0 +K)⊗ a† +

1√
2
(F0 −K)⊗ a . (4.23)

In this subcomplex the following identities are satisfied

F 2
0 = 0 Q2 = F0K . (4.24)

Hence the space CF0 is a differential complex with respect to Q. Notice that this

complex is isomorphic to C∞(R,R0;M) in the Henneaux representation. There-

fore their cohomologies are isomorphic as well. We will now prove that the co-

homology of this complex, denoted by HQ(CF0) is isomorphic to H∞(R,L0;M).

But first we need a preliminary result.

Because [F0 , T ] = K and [T , K] = 0 we can write

F0 +K = e−T F0 e
T , (4.25)

which is well defined as it stands because C is finite dimensional. Also because C

is finite dimensional any operator with non-zero ghost number10 is automatically

nilpotent. In particular, since T has ghost number 2, it is nilpotent and therefore

exp(αT ) is an isomorphism for any complex number α. Because F0 is nilpotent,

F0 +K is also nilpotent and its cohomology is isomorphic to that of F0: exp(−T )

gives the isomorphism by (4.25) . Since the cohomology of F0 is trivial, as proven

in [12], so is the cohomology of F0 +K.

10 Here ghost number does not take into account the zero modes.
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We now proceed to prove the isomorphism of HQ(CF0) and H∞(R,L0;M).

Let Ψ be a cocycle in C ⊗ C[a†]. Then we can write it as a polynomial with

coefficients in C as follows

Ψ =
N∑

n=0

ψn ⊗ (a†)n , (4.26)

where ψn ∈ C for all n. Then the fact that it is a cocycle implies that (F0+K)ψN =

0. By the vanishing of the cohomology of F0 + K there exists a cochain φ such

that ψN + (F0 +K)φ = 0. Therefore adding the coboundary Q(φ⊗ (a†)N−1) to Ψ

we get rid of the N th order term in Ψ. Continuing in this fashion we can reduce

Ψ to a constant monomial ψ ⊗ 1, which is still a cocycle cohomologous to Ψ. The

fact that it is a cocycle implies that Qψ = 0 and (F0 +K)ψ = 0. Therefore, using

the fact that [T , Q] = 0, we see that exp(T )ψ obeys

Q eT ψ = 0 F0 e
T ψ = 0 , (4.27)

hence it defines a class [exp(T )ψ] in HQ(CF0). It is straight-forward to verify that

if this class is trivial then the class [Ψ] in H∞(R,L0;M) is also trivial. Therefore

we have an injection H∞(R,L0;M) ↪→ HQ(CF0).

We now prove the reverse injection. Let ψ define a class in HQ(CF0). Then

[exp(−T )ψ ⊗ 1] defines a class in H∞(R,L0;M). Now suppose that this class is

trivial; that is,

e−T ψ ⊗ 1 = Q Ξ for some Ξ . (4.28)

Just as before we may add coboundaries to Ξ in such a way that (4.28) is still

obeyed and such that Ξ gets reduced to a constant monomial ξ ⊗ 1. In that case,

F0 exp(T ) ξ = 0 and ψ = Q exp(T ) ξ; whence [ψ] = 0. This gives the reverse

injection and concludes the proof of the isomorphism.

Notice that the isomorphism is only an isomorphism of ungraded vector spaces.

In particular the cohomology space H∞(R,L0;M) is not graded by ghost number
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since the ghost number operator on C[a†] is of the form 1
2((a†)2−a2) and therefore

has no eigenvalues. As a consequence, a vanishing theorem has no meaning in

this representation. This is not a serious drawback when it comes to proving the

“no-ghost” theorem as we shall see, although it takes away some of the structure.

One can also show that every cohomology class in H∞(R,L0;M) has at least

one representative of ghost number zero. This uses a straight-forward generaliza-

tion for the NSR string of a result proven in [13] for the open bosonic string which

states that every cohomology class in HQ(CF0) has a representative annihilated

by T . If this is the case then it is also annihilated by K and therefore it defines

a class in H∞(R,L0;M); and by the vanishing theorem for HQ(CF0) it has ghost

number zero.

§5 VANISHING THEOREMS FOR THE FULL COMPLEXES

In this section we prove vanishing theorems for the cohomology of the full

complexes C∞(R;H) and C∞(NS;H). For the Ramond sector we only work with

the Henneaux representation since for the Schrödinger representation there is no

vanishing theorem. First we will prove that

H∞(R,L0;H) ∼= H∞(R,R0;H) . (5.1)

Then we will prove that

Hn
∞(NS;H) ∼=

{
H0
∞(NS,L0;H) for n = ±1

2

0 otherwise
, (5.2)

and

Hn
∞(R;H) ∼=

{
H0
∞(R,L0;H) for n = ±1

2

0 otherwise
. (5.3)

Several remarks are in order before we start proving these results. The first is to

notice the rather surprising fact that the BRST cohomology of the Ramond sector

has the same finite degeneracy as the one of the Neveu-Schwarz sector despite the
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fact that at the level of cochains the Ramond sector is infinitely degenerate due to

the existence of the zero modes for the superconformal ghosts. Secondly we notice

that the grading of the full complex is half integral. This is the choice that makes

the full ghost number operator hermitian. Thirdly, because the proofs of (5.2) and

(5.3) are virtually identical we will only present the one for the Ramond sector:

this being the more involved of the two. Finally, the proof of (5.1) is similar to

the proof of the isomorphisms of the relative BRST cohomology of the Ramond

sector in the Henneaux and Schrödinger representations. In fact, part of the proof

already appears in [12].

With these remarks behind us we proceed with the proofs.

Proof of (5.1) : Let’s isolate the space in which the zero modes of the super-

conformal ghosts act by writing C∞(R,L0;H) as CL0 ⊗ C[γ0], which defines C.

Then C∞(R,R0;H) may be identified with CF0 and embedded in C∞(R,L0;H)

as CF0 ⊗ 1. That is, if ψ ∈ C∞(R,R0;H), then ψ ⊗ 1 ∈ C∞(R,L0;H). Suppose

that Ψ is a cocycle in C∞(R,L0;H). Then Ψ is a polynomial in γ0 with coefficients

in CL0

Ψ =
N∑

n=0

ψn ⊗ γn
0 ψn ∈ CL0 ∀n , (5.4)

such that, in particular, F0 ψN = 0. Since the cohomology of F0 is trivial, there

exists φ ∈ CL0 such that ψN + F0 φ = 0. Therefore Ψ + Q(φ⊗ γN−1
0 ) is a cocycle

cohomologous to Ψ but lacking the highest order term in γ0. Continuing in this

fashion we can reduce Ψ to a constant monomial ψ ⊗ 1 still cohomologous to Ψ.

The cocycle condition translates into

Qψ = 0 F0 ψ = 0 ; (5.5)

hence it defines a class in H∞(R,R0;H). Suppose that this class is trivial; that is,

ψ = Q ζ where F0 ζ = 0. Then ψ⊗ 1 = Q(ζ ⊗ 1) and thus Ψ represents the trivial

class. Therefore we have an injection H∞(R,L0;H) ↪→ H∞(R,R0;H).
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Conversely, let ψ be a cocycle in H∞(R,R0;H). Then ψ⊗ 1 defines a class in

H∞(R,L0;H). If trivial,

ψ ⊗ 1 = Q Ξ (5.6)

for some polynomial Ξ =
∑N

n=0 ξn⊗γn
0 . In particular, (5.6) implies that F0 ξN = 0.

As before there exists λ such that ξN +F0 λ = 0. Thus Ξ+Q(λ⊗γN−1
0 ) still obeys

(5.6) but has no order N term. Continuing in this way we can reduce Ξ to a

constant monomial ξ ⊗ 1 still obeying (5.6) . In particular, this implies that

Q ξ = ψ and F0 ξ = 0 . (5.7)

Therefore ψ defines the trivial class in H∞(R,R0;H). This proves the reverse

injection and hence the isomorpshism (5.1) .

In order to prove (5.3) and because L0 acts diagonally in the relative subcom-

plex C∞(R,L0;H) we could appeal to a suitably generalized result of Koszul[14]

which asserts the existence of a spectral sequence converging to H∞(R;H) whose

E2 term is

H∞(R,L0;H)⊗H(L0) . (5.8)

This, together with the easily verifiable fact that

Hn(L0) ∼=
{

C for n = ±1
2

0 otherwise
(5.9)

and the fact that — due to the vanishing theorem for H∞(R,L0;H) — the spectral

sequence collapses at the E2 term, yields (5.3) .

However we can arrive at the same result in a slightly more pedestrian way by

using the spectral sequence associated to a particular double complex.

Proof of (5.3) : The differential in the complex C∞(R;H) is the full BRST op-

erator given by (4.20) where Q, the differential in the complex C∞(R,L0;H), is

given by (4.21) . For notational convenience we define T = −2(T + 1
2γ

2
0). Notice
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that since L0 is diagonalizable and null homotopic: L0 = {Q , b0}, we can restrict

ourselves to L0–invariants. Therefore we write the differential in C∞(R;H) as

Q = Q + b0 T (5.10)

where, due to the nilpotency of Q, Q and b0, both terms anticommute. Abbrevi-

ating C∞(R;H)L0 to C, let us define a tri-grading on this complex as follows:

C =
⊕
m∈Z

⊕
n=± 1

2

⊕
p∈Z+ 1

2

Cm,n,p , (5.11)

where Cm,n,p consists of those cochains which are tensor products of homogeneous

terms of “reduced” ghost number m, (b0, c0)–ghost number n and (β0, γ0)–ghost

number p. By “reduced” ghost number we mean the ghost number which grades

the relative subcomplex C∞(R,R0;H).

According to this tri-grading the relevant terms appearing in Q have the fol-

lowing tri-degree:

Term Tri-degree

Q (1, 0, 0)

β0K (2, 0,−1)

γ0 F0 (0, 0, 1)

b0 T (2,−1, 0)

b0 γ
2
0 (0,−1, 2)

Defining the bigraded complex K =
⊕

r,sK
r,s by

Kr,s =
⊕

m+p=r

Cm,s,p , (5.12)

we notice that Q has bidegree (1, 0) but that b0 T has bidegree (2,−1). Hence the

complex as it stands is slightly skewed. Making a last redefinition, let us introduce
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another bigraded complex K which is just a relabeling of K by K =
⊕

p,q Kp,q

where

Kp,q = Kp+2q,−q . (5.13)

Then Q: Kp,q → Kp+1,q and b0 T : Kp,q → Kp,q+1 yielding a double complex. De-

composing this double complex into eigenspaces of the level operator (the momen-

tum independent part of L0) we easily see that it yields an infinite direct sum of

finite double complexes. Proving (5.3) for each subcomplex and then collating all

terms proves (5.3) for the full complex. Hence from now on we are working in

a given eigenspace of the level operator so that the double complex K is finite.

Notice that the complex is only two rows high in any case, since q only takes ±1
2

as values.

As discussed in Section 2 we have two canonical spectral sequences associated

to this double complex. We use the ′′ filtration. Its E1 term is the horizontal

cohomology for which we have a vanishing theorem. Keeping track of the gradings

we have

′′Eq,p
1
∼=
{
H0
∞(R,L0;H) for (p, q) = (−1, 1

2) and (1,−1
2)

0 otherwise
. (5.14)

Notice further that d1 is identically zero since it maps vertically and by (5.14) its

domain or its range is zero in all cases. Furthermore all higher dr are also zero

because they skip at least one row and there are only two rows in the complex.

Therefore the E1 term is the limit term which is the cohomology of the full complex:

H∞(R;H). This proves (5.3) .

As remarked earlier the proof of (5.2) follows the same steps as the proof of

(5.3) , but without the complications arising from the superconformal ghosts.
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§6 “NO-GHOST” THEOREMS

In this section we prove the “no-ghost” theorem for the NSR string along the

lines suggested in [4]. This method was used to prove the similar result for the

bosonic string in [1] and [3]. We briefly recall the method.

Let C∞ denote the appropriate relative subcomplex of the string. We use the

relative subcomplexes since the full complex — as we have seen in the previous

section — is just two copies of the relative one; hence proving positive-definiteness

of the inner product in the relative subcomplex suffices. Let C denote the conjuga-

tion used to redefine the inner product in order to make it positive definite. The

existence of this positive definite inner product allowed us to define a BRST lapla-

cian whose kernel H is isomorphic to the BRST cohomology. Because C commutes

with the laplacian it stabilizes its kernel. Moreover since C reverses ghost number

it stabilizes also H0 which is isomorphic to the physical space defined as the zeroth

BRST cohomology space. From its definition (see [4] for the details and Appendix

B for its explicit construction in this case) C is the identity on states of positive

norm and minus the identity on states of negative norm. Therefore we see that11

TrH0
C ≤ dim H0 , (6.1)

where the bound is saturated if and only if H0 is positive definite. Since the inner

product on the cohomology does not depend on the particular representative, the

saturation of the above bound is equivalent to the “no-ghost” theorem.

As they stand, the quantities in (6.1) are hard to calculate. However, since C

11 As it stands this next equation is ill-defined since H0 is infinite dimensional.

These quantities are to be understood as weighted traces; the dimension being

understood as the trace of the identity.
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maps Hq → H−q

TrH0
C = TrH C . (6.2)

Moreover in the Hodge style decomposition[4] of C∞ as H⊕ imQ⊕ imQ∗, where

Q∗ is the adjoint of Q with respect to the positive definite inner product, C maps

imQ→ imQ∗ and back. Since the trace is basis independent we see that

TrH0
C = TrC∞

C , (6.3)

which is easy enough to calculate. This settles the left hand side of (6.1) . As

for the right hand side we notice, using the vanishing theorem, that dim H0 is

nothing but the Euler characteristic χ(C∞) of the relative subcomplex: the alter-

nating sum of the dimensions of the cohomology spaces. Using the Euler-Poincaré

principle we can write the Euler characteristic as TrC∞
(−1)G where G is the ghost

number operator in the relative subcomplex. This again is quite straight-forward

to compute. Therefore (6.1) is equivalent to

TrC∞
C ≤ TrC∞

(−1)G . (6.4)

Our proof of the “no-ghost” theorem will consist in proving that the above bound is

saturated for the NSR string. Since the relative subcomplex is graded by the level

operator L (the momentum independence piece of L0) and each level eigenspace is

finite dimensional the following converges for q sufficiently small

TrC∞
qLC ≤ TrC∞

qL(−1)G . (6.5)

Because C∞ splits as tensor products corresponding to the different oscillators and

the trace is multiplicative over the tensor product, we compute each term separately

and then multiply the results. There are two terms common to both sectors: the

{α} and {b, c} oscillators; and we do these now. This calculation was done in [1]

and [3] (for D = 26) but we repeat it here (for D = 10) for completeness.
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The space over which we are taking the traces has the following structure

C =
9⊗

µ=0

∞⊗
n=1

Sµ
n

∞⊗
n=1

An , (6.6)

where Sµ
n is the one particle Hilbert space corresponding to the oscillator aµ

n
†

and

An is the Hilbert space corresponding to the oscillators {b†n, c†n}. The space Sµ
n is

isomorphic to the polynomial algebra in one variable: aµ
n
†

whereas the space An is

isomorphic to the exterior algebra on two generators: b†n and c†n.

Therefore using the fact that the trace is multiplicative over tensor products

the right hand side of (6.5) becomes

TrC (−1)G qL =
9∏

µ=0

∞∏
n=1

TrSµ
n
qnaµ

n
†aµ

n ×
∞∏

n=1

TrAn

[
(−1)c

†
nbn−b†ncn qn(c†nbn+b†ncn)

]

=

[ ∞∏
n=1

( ∞∑
m=0

qnm

)]10

×
∞∏

n=1

(
1− qn − qn + q2n

)
=

∞∏
n=1

(1− qn)−10 · (1− qn)2

=
∞∏

n=1

(1− qn)−8 . (6.7)

As for the left hand side we have

TrC C q
L =

9∏
µ=0

∞∏
n=1

TrSµ
n
C qnaµ

n
†aµ

n ×
∞∏

n=1

TrAn
C qn(c†nbn+b†ncn)

=
9∏

µ=0

∞∏
n=1

∞∑
m=0

(
(−1)δµ,0 qn

)m
×

∞∏
n=1

(
1− q2n

)
=

∞∏
n=1

(1 + qn)−1 · (1− qn)−9 · (1− qn) · (1 + qn)

=
∞∏

n=1

(1− qn)−8 . (6.8)
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We see already that the identity is satisfied. This is not surprising since this is

essentially the “no-ghost” theorem for the bosonic string. Of course, in this case,

the calculation has no cohomological significance since we are away from the critical

dimension.

Having done the calculations common to both sectors we now do each sector

separately.

The Neveu-Schwarz Sector

The relative subcomplex C∞(NS,L0;H), which we abbreviate to C∞, has the

following structure

C∞ = H(a) ⊗H(b,c) ⊗H(b) ⊗H(β,γ) (6.9)

where

H(a) =
9⊗

µ=0

∞⊗
n=1

Sµ
n (6.10)

H(b,c) =
∞⊗

n=1

An (6.11)

H(b) =
9⊗

µ=0

∞⊗
r= 1

2

Aµ
r (6.12)

and

H(β,γ) =
∞⊗

r= 1
2

Sr . (6.13)

The first two terms are the ones over which we computed the relevant traces in the

beginning of this section. Therefore we shall concentrate on the last two terms.

Here Aµ
r is the Hilbert space of the bµr

†
oscillator and is isomorphic to the exterior

algebra on one generator; and Sr is the Hilbert space of the {β†r , γ†r} oscillators

and is isomorphic to the polynomial algebra in two variables.

The contribution to the right hand side of (6.5) coming from the first two terms

in the above decomposition are
∏∞

n=1 (1− qn)−8. The contribution coming from
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the Neveu-Schwarz oscillators can be computed as follows

TrH(b) qL
(b)

=
9∏

µ=0

∞∏
r= 1

2

TrAµ
r
qr bµ

r
†bµ

r

=
∞∏

r= 1
2

(1 + qr)10 ,

whereas the contribution from the superghosts is

TrH(β,γ) (−1)G qL
(β,γ)

=
∞∏

r= 1
2

TrSr
(−1)Nγ−Nβ qr(Nγ+Nβ)

=
∞∏

r= 1
2

TrSr
(−qr)Nγ+Nβ

=
∞∏

r= 1
2

∞∑
n,m=0

(−qr)n+m

=
∞∏

r= 1
2

( ∞∑
n=0

(−qr)n
)2

=
∞∏

r= 1
2

(1 + qr)−2 ,

where Nβ (resp. Nγ) is the number operator corresponding to the {βr} (resp.

{γr}) oscillators. Putting everything together we find that

TrC∞
(−1)G qL =

∞∏
n=1

(1− qn)−8 ×
∞∏

r= 1
2

(1 + qr)8 . (6.14)

In order to compute the left hand side of (6.5) we use the conjugation given in

the second appendix. Once again the contribution now to the right hand side of

(6.5) coming from the {aµ
n, bn, cn} oscillators is

∏∞
n=1 (1− qn)−8. The contribution

from the Neveu-Schwarz oscillators is

TrH(b) C qL
(b)

=
9∏

µ=0

∞∏
r= 1

2

TrAµ
r
C qr bµ

r
†bµ

r
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=
9∏

µ=0

∞∏
r= 1

2

(
1 + (−1)δµ,0qr

)

=
∞∏

r= 1
2

(1− qr) · (1 + qr)9 .

Finally we compute the contribution coming from the superghosts. Notice that

because of the nature of the conjugation C we only pick a contribution to the trace

from states whose β and γ occupation numbers coincide. Therefore

TrH(β,γ) C qL
(β,γ)

=
∞∏

r= 1
2

TrSr
C qr(Nβ+Nγ)

=
∞∏

r= 1
2

∞∑
n=0

q2rn

=
∞∏

r= 1
2

(
1− q2r

)−1
.

Combining all results we find

TrC∞
C qL =

∞∏
n=1

(1− qn)−8 ×
∞∏

r= 1
2

(1 + qr)8 , (6.15)

which agrees with (6.14) , hence proving the “no-ghost” theorem for the Neveu-

Schwarz sector.

The Ramond Sector

We first prove the “no-ghost” theorem for the Henneaux representation. We

will then infer a similar result for the Schrödinger representation.

The relative subcomplex C∞(R,R0;H), which we abbreviate to C∞, has the

following structure

C∞ = H(a) ⊗H(b,c) ⊗H(d) ⊗H(β,γ) , (6.16)

where H(a) and H(b,c) were discussed already at the beginning of this section. As
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for the rest

H(d) =
9⊗

µ=0

∞⊗
n=1

Aµ
n (6.17)

H(β,γ) =
∞⊗

n=1

Sn . (6.18)

Here Aµ
n is the Hilbert space of the dµ

n
†

oscillator and is isomorphic to the exterior

algebra on one generator; and Sn is the Hilbert space of the {β†n, γ†n} oscillators

and is isomorphic to the polynomial algebra in two variables.

Again the contribution to the right hand side of (6.5) coming from the first

two terms in the above decomposition is
∏∞

n=1 (1− qn)−8. The Ramond oscillators

contribute

TrH(d) qL
(d)

=
9∏

µ=0

∞∏
n=1

TrAµ
n
qn dµ

n
†dµ

n

=
∞∏

n=1

(1 + qn)10 ,

and the contribution from the superghosts is

TrH(β,γ) (−1)G qL
(β,γ)

=
∞∏

n=1

TrSn
(−1)Nγ−Nβ qn(Nγ+Nβ)

=
∞∏

n=1

TrSn
(−qn)Nγ+Nβ

=
∞∏

n=1

∞∑
m,p=0

(−qn)m+p

=
∞∏

n=1

( ∞∑
m=0

(−qn)m

)2

=
∞∏

n=1

(1 + qn)−2 ,

where Nβ (resp. Nγ) is the number operator corresponding to the {βn} (resp.
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{γn}) oscillators. Putting everything together we find that

TrC∞
(−1)G qL =

∞∏
n=1

(
1 + qn

1− qn

)8

. (6.19)

In order to compute the left hand side of (6.5) we use the conjugation given in

the second appendix. The contribution coming from the {aµ
n, bn, cn} oscillators is

once again
∏∞

n=1 (1− qn)−8. The Ramond oscillators contribute

TrH(d) C qL
(d)

=
9∏

µ=0

∞∏
n=1

TrAµ
n
C qn dµ

n
†dµ

n

=
9∏

µ=0

∞∏
n=1

(
1 + (−1)δµ,0qn

)
=

∞∏
n=1

(1− qn) · (1 + qn)9 .

Finally we compute the contribution coming from the superghosts. Just as in the

Neveu-Schwarz sector we only pick a contribution to the trace from states whose

β and γ occupation numbers coincide. Indeed,

TrH(β,γ) C qL
(β,γ)

=
∞∏

n=1

TrSn
C qn(Nβ+Nγ)

=
∞∏

n=1

∞∑
m=0

q2nm

=
∞∏

n=1

(
1− q2n

)−1
.

Combining all results we find

TrC∞
C qL =

∞∏
n=1

(
1 + qn

1− qn

)8

, (6.20)

which agrees with (6.19) , hence proving the “no-ghost” theorem.
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In the Schrödinger representation Q and Q are hermitian and therefore the

inner product in cohomology does not depend on the particular cocycle chosen to

represent a given class. Let [Ψ] be a class in H∞(R,L0;H) and let ψ⊗ 1 denote a

representative such that T ψ = 0. Then ψ defines a class in H∞(R,R0;H) in the

Henneaux representation. We can normalize the inner product in the space of the

superconformal ghosts’ zero modes in such a way that the norm of ψ ⊗ 1 agrees

with the norm of ψ. Because Q is hermitian, the norm of a class in H∞(R,R0;H)

is independent of the representative; therefore the norm of ψ is the norm of the

class [ψ] it represents. But by the “no-ghost” theorem just proven, the norm of

ψ is positive. Therefore the norm of [Ψ] is positive. This proves the “no-ghost”

theorem for the Schrödinger representation.

Finally we remark that the GSO projected NSR string is also free of ghosts.

This is true because modular invariance also forces the GSO projection on the

superghost spectrum which goes hand in hand with the GSO projection in the

spectrum of the Neveu-Schwarz and Ramond oscillators. We leave the details of

this calculation as an exercise.
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We would like to thank Martin Roček for suggesting the problem. One of us

(JMF) would like to thank Claude LeBrun for some valuable insight into spec-

tral sequences. We would also like to acknowledge conversations with Francisco

Figueirido, Jim McCarthy, and Eduardo Ramos.

Appendix A COMPUTATION OF H∞(S−;M)

In this section, we show that Hm
∞(S−;M) vanishes unless m = 0 where S−

is either the NS− or R− superalgebras and M a Verma module of the respective

algebra.12 A lie superalgebra decomposes into odd and even subspaces so we can

12 In actuality, this theorem holds for any superalgebra with values in a free

– 40 –



write S− = Seven
−

⊕
Sodd
− . Let us choose a basis in each subspace and denote them

by {ei} and {fα}, respectively. A basis for the Verma module, M, is then given

by the highest weight vector together with the monomials

{ei1ei2 · · · einfα1fα2 · · · fαm} (A.1)

where all of the subscripts are integers satisfying

i1 ≤ i2 · · · ≤ in and α1 < α2 · · · < αm

for some positive integersm and n. Notice that we have omitted writing the highest

weight vector explicitly in order to simplify the notation. A basis for the cochains

C∞(S−;M) is given by

{β†α1
β†α2

· · · β†αk
b†i1b

†
i2
· · · b†il ⊗ ej1ej2 · · · ejmfλ1

fλ2
· · · fλn

} (A.2)

where

i1 < i2 < · · · < il , and α1 ≤ α2 · · · ≤ αk ,

j1 ≤ j2 ≤ · · · ≤ jm , and λ1 < λ2 < · · · < λn .

It is understood that the antighosts are acting upon the usual ghost vacuum.

One might have expected to see some c’s and γ’s in the above expression but we

recall that S− is only “half” of the full superalgebra and the corresponding c’s

and γ’s to this part of the superalgebra are the annihilation operators in those

oscillators. Therefore, there are no such terms in C∞(S−;M).

module but we shall omit the general proof of this result so that the reader is

not distracted by needless generalizations.
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Having characterized the cochains, we proceed to construct a spectral sequence

which converges to H∞(S−;M). Let’s define

Ω = β†α1
· · · β†αK

b†i1 · · · b
†
iL
⊗ ej1 · · · ejMfλ1

· · · fλN
. (A.3)

We then define a filtration degree on C∞(S−;M) via

fdeg Ω = K + L+M +N . (A.4)

This gives us a filtration of C∞(S−;M)

F pC∞(S−;M) = {ω ∈ C∞(S−;M) | fdegω ≤ p} . (A.5)

In the case of the Neveu-Schwarz algebra, this is a half-integral filtration while in

the case the Ramond algebra this is an integral filtration. We shall proceed as if

this filtration were integral throughout the remainder of this section in order to

avoid unnecessary clutter. The arguments for the case of the half-integral filtration

are exactly the same.

It is quite easy to see that FC∞(S−;M) is a filtration since it satisfies

F pC∞(S−;M) ⊆ F p+1C∞(S−;M) ∀p , (A.6)

and all of the terms in the coboundary operator, d, have filtration degrees that

are nonpositive. Furthermore, we observe that L0 is diagonalizable on C∞(S−;M)

and commutes with d. Let us denote a subspace of C∞(S−;M) with L0 eigenvalue

µ by C∞(S−;M)µ so that

C∞(S−;M) =
⊕

µ

C∞(S−;M)µ (A.7)

then their associated cohomologies break up into

H∞(S−;M) =
⊕

µ

H∞(S−;M)µ .

This decomposition is interesting because the dimension of C∞(S−;M)µ is finite

at every value of µ. This implies that fdeg is bounded. Hence, the above filtration
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when restricted to a particular L0 value, µ, forms a bounded filtration. Therefore,

there exists a spectral sequence which converges finitely to H∞(S−;M)µ. Suppose

we are able to show that Hm
∞(S−;M)µ = 0 for all µ and m 6= 0 then it is certainly

true that Hm
∞(S−;M) = 0 unless m 6= 0. We will now show that this is, indeed,

the case. Unless otherwise mentioned, it will be understood that we are restricting

ourselves to cochains and cohomologies at a particular value of µ and shall hitherto

drop all references to µ.

Let us compute the E1 term in the spectral sequence. Recall that E1 =

H(GrC∞(S−;M)) where GrC∞(S−;M) carries the differential induced by d on

FC∞(S−;M). The only terms in d which have fdeg = 0 are

d =
∑

i

ci ⊗ ei +
∑
α

γα ⊗ fα . (A.8)

These are the only terms contributing to action of the induced differential on

GrC∞(S−;M). More explicitly, we can write

dΩ =
∑

i

β†α1
· · · β†αK

cib
†
i1
· · · b†iL ⊗ eiej1 · · · ejMfλ1

· · · fλN

+ (−1)L
∑
α

γαβ
†
α1
· · · β†αK

b†i1 · · · b
†
iL
⊗ ej1 · · · ejMfαfλ1

· · · fλN
. (A.9)

Two remarks are in order. First of all notice that the above sums are actually

finite and second that the terms above are to be taken modulo F p−1C∞(S−;M).

Now define a linear map Γ : GrCm
∞(S−;M) −→ GrCm−1

∞ (S−;M) for all m > 0

by

Γω =
M∑
l=1

β†α1
· · · β†αK

b†jl
b†i1 · · · b

†
iL
⊗ ej1 · · · êjl · · · ejMfλ1

· · · fλN

+
N∑

l=1

(−1)L+l−1β†λl
β†α1

· · · β†αK
b†i1 · · · biL ⊗ ej1 · · · ejMfλ1

· · · f̂λl
· · · fλN

,

(A.10)
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where an element with a ̂ over it means that it is missing from that term. A

calculation shows that this map satisfies the relation

(dΓ + Γ d) Ω = (K + L+M +N) Ω . (A.11)

So, consider any Ω ∈ Cm
∞(S−;M) where m > 0 and dΩ = 0 then the previous

equation implies that

dΓ Ω = (K + L+M +N) Ω . (A.12)

Since m > 0, this means that K + L+M +N 6= 0 which implies that

Hm(GrC∞(S−;M)) = 0 if m 6= 0 . (A.13)

Because we have the convergence of the spectral sequence (Em
r ) ⇒ Hm we are able

to conclude that

Hm(C∞(S−;M)) = 0 if m 6= 0 . (A.14)

Appendix B A POSITIVE-DEFINITE INNER PRODUCT FOR THE

NSR FOCK SPACE

In [4] we proved a Poincaré duality theorem which requires two things: first

that the Fock space decomposes into a direct sum of finite dimensional subspace

which are stabilized by the BRST operator and second that there exists a positive

definite inner product in the Fock space. The first point is obvious since there are

only a finite number of states of a given level. We address the second question

in this appendix, where we construct a positive-definite inner product explicitly.

The inner product is defined from the original one imposed by the quantization
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procedure by the introduction of a self-adjoint involution C in such a way that the

new inner product is

〈ψ, φ〉C = 〈ψ, C φ〉 , (B.1)

where 〈, 〉 is the original inner product and ψ and φ rae vectors in the Fock space.

On the ghost and anti-ghost oscillators this conjugation C plays the rôle of the

Serre-Hodge ? operator in complex geometry[13] and therefore is consistent with

the “semi-infinite” form interpretation of the ghost Fock space.

First a word of caution. Our ghost oscillators are not the natural ones but are

unitarily related to them. In our conventions the mode expansion of the conformal

ghost and antighost fields at τ = 0 are the following:

b(σ) = b0 +
∑
m>0

√
m
(
bm eimσ + b−m e−imσ

)
c(σ) = c0 +

∑
m>0

1√
m

(
cm eimσ + c−m e−imσ

)
,

and similarly for the superconformal ghosts. This seemingly unnatural choice of

mode expansion turns out to be the natural one in our context. It will allow us to

identify the involution C above with ghost conjugation when acting on ghosts and

antighosts.

For the {aµ
n, bn, cn} oscillators we define C as follows

C pµ C = pµ (B.2)

C a0
n C = −a0

n C ai
n C = ai

n ∀ i = 1 . . . 9 and ∀n 6= 0 (B.3)

C cn C = bn C bn C = cn (∀n ∈ Z) (B.4)

For the Neveu-Schwarz oscillators the conjugation with the desired properties

turns out to be the following

C bµs C = (−1)δµ,0 bµs ∀ s ∈ Z +
1

2
(B.5)
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C γr C = βr C βr C = γr (B.6)

C γ−r C = −β−r C β−r C = −γ−r ∀ r ∈ N− 1

2
, (B.7)

and for the Ramond oscillators it is very similar:

C dµ
m C = (−1)δµ,0 dµ

m ∀m ∈ Z (B.8)

C γn C = βn C βn C = γn (B.9)

C γ−n C = −β−n C β−n C = −γ−n ∀n ∈ N . (B.10)

For the ghost zero modes {β0, γ0} there are two possibilities depending on the

choice of Hilbert space that we choose for their representation. As discussed in §2
we can choose the Hilbert space in which they are self-adjoint in which case we

already have a positive definite inner product and therefore C acts leaves them inert.

On the other hand, following Henneaux[12], we can treat them as annihilation and

creation operators, in which case β0 and γ0 are mutual adjoints. It is interesting

to remark that in this case there is no self-adjoint involution C which yields this

adjointness property from the original ones for β0 and γ0. However these are

the only operators acting in this space and hence there is no need — in order to

compute adjoints — for the operator C itself to exist.

To show that the new inner product defined by (B.1) is indeed positive-definite

is completely straight-forward and is left as an exercise for the reader.
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