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ABSTRACT

We summarize some results obtained on the BRST cohomology of the NSR string:

among them vanishing theorems for the full and relative complexes, extending

the work of Frenkel, Garland, and Zuckerman for the bosonic string. Using these

results we give simple proofs of the “no-ghost” theorems for both sectors.



§1 Introduction

It is by now well known that the Dirac quantization of a Hamiltonian system

with first class constraints can be translated into the problem of analyzing the

cohomology of the BRST operator. Of course, many properties of this cohomology

theory will depend on the particular physical theory; but, nevertheless, quite a lot

can be said in general by the study of the structures arising in a BRST quantized

theory.

The data defining a BRST cohomology theory consists of a differential com-

plex (H, Q) where H is a Fock space with an indefinite metric 〈, 〉 relative to which

Q (the BRST operator) is self-adjoint, and a skew-adjoint operator G (the ghost

number operator) which defines an integral (or half-integral in some cases) grading

of H relative to which Q has degree 1. We can then define the space of physical

quanta Hphys as the cohomology at zero ghost number of Q. Because of the her-

miticity of the BRST operator, this space inherits a well-defined inner product:

i.e. it is independent of the representatives chosen from the cohomology classes.

Physical observables, i.e. self-adjoint endomorphisms of Hphys, can quite generally

be shown to arise from BRST invariant endomorphisms of H. In fact, in [1] it is

shown that in many cases HQ(EndH) ∼= EndHQ(H).

However to have a sensible quantum theory in Hphys we require that the in-

herited inner product be positive definite. This absence of negative norm states

— unfortunately misnamed the “no-ghost” theorem — must be checked in each

particular physical theory. We showed in [1], generalizing ideas of [2], that if all

the BRST cohomology is concentrated in the zero ghost number sector (the “van-

ishing” theorem) then the verification of the “no-ghost” theorem reduced itself to

the calculation of certain partition-function-like traces.

But the vanishing theorem plays a more fundamental rôle than just as a calcu-

lational nicety. In [1] we argued that it is also necessary for the consistency of the

BRST quantization. We showed that if the vanishing theorem does not hold then

Hphys may contain states with ghost excitations, which would not be there had we
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quantized the theory in some other way which did not require the introduction of

ghosts.

An important example of a BRST cohomology theory is the semi-infinite co-

homology of Feigin[3] of a graded Lie algebra with coefficients in a module of the

category O. A vanishing theorem valid for a large class of such modules was proven

by Frenkel, Garland, and Zuckerman in [2]. This included the BRST cohomology

of the open bosonic string away from zero center-of-mass momentum. Also in [2],

and later in [4], the “no-ghost” theorem for the open bosonic string was proven in

the way we later generalized in [1].

In this letter we summarize some results obtained for the NSR string along

these lines: the vanishing and “no-ghost” theorems for both the Neveu-Schwarz

and Ramond sectors. The interested reader will find the details in a forthcoming

paper[5]. We should emphasize that the results in this letter are not new, having

appeared, for example, in [9]. The methods used, however, are new and are more

suitable for generalization.

§2 The Neveu-Schwarz Sector

We follow for the most part the notation and conventions of [6]. Let NS
denote the centrally extended complexified Neveu-Schwarz algebra. Let M denote

the “matter” Fock space of the Neveu-Schwarz of the NSR string: that is, the

Fock space for the {αµ
n} and {bµr } oscillators. The full Fock space H (including

the ghost and anti-ghost oscillators) can be thought of, by analogy with the case

of Lie algebras, as the space of semi-infinite cochains of NS with coefficients in M.

The differential in this complex is the BRST operator Q. Making the dependence

of the ghost and anti-ghost zero modes manifest, the BRST operator becomes

Q = Q− 2b0 T + c0 L0 . (2.1)

We denote the cohomology of Q in H, by analogy, as H∞(NS; M): the semi-infinite

cohomology of the Lie super-algebra NS with coefficients in the module M. This

cohomology is graded by ghost number.
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Brower and Friedman in [7] showed that M admits a decomposition M =

(
⊕

λ Vλ) ⊕ V0 where V0 is the Fock space at zero center-of-mass momentum and

the Vλ are Verma modules whose highest weight vectors are obtained by repeated

application of the creation operators in the full spectrum generating algebra. It

turns out that V0 is not a Verma module. In this case, however, the BRST coho-

mology is very easy to calculate explicitly. According to the decomposition of M,

the semi-infinite cohomology also breaks up as
⊕

λH∞(NS; Vλ)⊕H∞(NS; V0). We

ignore V0 from now on and we focus on H∞(NS; V) where V is a fixed Vλ. Consider

the relative subcomplex consisting of vectors ω ∈ H satisfying b0 ω = L0 ω = 0.

The induced differential in this subcomplex is easily seen to be the operator Q in

(2.1) . The cohomology of this complex is nothing but the relative semi-infinite

cohomology H∞(NS,NS0; V) where NS0 is the subalgebra generated by L0.

Then there exists a filtration of this complex giving rise to a spectral sequence

(see e.g. [8]) converging to H∞(NS,NS0; V), whose E1 term obeys Em
1 = 0 for

m < 0. Therefore Hm
∞(NS,NS0; V) = 0 for m < 0. The “Poincaré duality”

theorem proven in [1]:

Hm
∞(NS,NS0; V) ∼= H−m

∞ (NS,NS0; V) , (2.2)

allows us to conclude that

Hm6=0
∞ (NS,NS0; V) = 0 . (2.3)

Putting all Verma modules V together we obtain the vanishing theorem for the full

relative subcomplex away from zero center-of-mass momentum.

From this and the fact that there is another spectral sequence relating the

relative cohomology H∞(NS,NS0; M) to the full cohomology H∞(NS; M), we can

determine the full cohomology from a knowledge of the relative one. In fact, this
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spectral sequence collapses at the E1 term, which is given by

E
m+ 1

2

1 = Hm
∞(NS,NS0; M)⊕Hm+1

∞ (NS,NS0; M) . (2.4)

Therefore from (2.3) we conclude that

Hm
∞(NS; M) ∼=

{
H0
∞(NS,NS0; M) for m = ±1

2

0 otherwise
. (2.5)

The reason that the full cohomology is half-integrally graded is that the ghost

number operator acting on the ghost zero modes has half-integral eigenvalues.

§3 The Ramond Sector

If, in the Ramond sector, we try to repeat the steps leading to the vanishing

theorem for the Neveu-Schwarz sector we are immediately faced with a dilemma:

the choice of representation for the superconformal ghost zero modes: β0 and γ0.

Canonical quantization induces hermiticity properties on these modes such that

β0 is antihermitian and γ0 is hermitian. If we wished to preserve these hermiticity

properties the natural representation for these modes is the Schrödinger represen-

tation, in which the representation space is the closure of the polynomial algebra

C[a†], where β0 = 1√
2
(a† − a) and γ0 = 1√

2
(a† + a) and [a , a†] = 1. The BRST

charge then becomes

Q = c0 L0 − 2b0 T − γ2
0b0 + Q , (3.1)

where

Q = Q+
1√
2
(F0 +K) a† +

1√
2
(F0 −K) a . (3.2)

In this representation the ghost number operator has a piece (a†)2 − a2 which is

not diagonalizable. Therefore the cohomology of Q (or Q) is not graded. Therefore

the vanishing theorem does not make sense.
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On the other hand, following Henneaux[9], we may work with a different rep-

resentation for the superconformal ghost zero modes whose carrier space is C[γ0].

It must be remarked[9] that there is no positive definite inner product on C[γ0]

compatible with the hermiticity conditions on β0 and γ0 induced via canonical

quantization. If we demand a positive definite inner product we would have to al-

ter their hermiticity properties in such a way that β0 and γ0 are mutually adjoint.

Inner product aside we call this the Henneaux representation. In this represen-

tation the vanishing theorem does make sense and moreover, as we shall see, it

holds.

Since cohomology is a purely algebraic object it is independent of the particular

inner product we choose for our representation space. But it clearly does depend

on the representation chosen: the BRST operator is different (see below) in each

representation and it is therefore not a priori obvious that their cohomologies are

isomorphic. In fact we already saw that in the Schrödinger representation the

cohomology is not graded whereas in the Henneaux representation it is; although,

as we will later show, they are isomorphic as (ungraded) vector spaces.

Canonical quantization consists of finding a representation of an operator alge-

bra with involution as operators in a Hilbert space where the involution corresponds

to taking adjoints. Therefore we are not free to alter the hermiticity conditions (i.e.

the involution). This is particularly important in BRST quantization where the

hermiticity properties of the BRST operator Q are instrumental in guaranteeing

that the inner product in cohomology is independent of the representative.

In working with the Henneaux representation we are not changing the quanti-

zation procedure. For us the Henneaux representation is an auxiliary device with

nice formal properties which will allow us to prove, for example, the “no-ghost”

theorem for the Schrödinger representation.

In the Henneaux representation the BRST operator is

Q = c0 L0 − 2b0 T − γ2
0b0 + β0K + γ0 F0 +Q . (3.3)
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Consider the subcomplex defined by those ω ∈ H such that F0 ω = b0 ω = β0 ω = 0.

The differential in this complex is Q and its cohomology is the relative cohomol-

ogy H∞(R,R0; M); where R0 is the subalgebra spanned by F0 and L0, and M
is the “matter” Fock space of the Ramond sector. Again results of Brower and

Friedman[7] tell us that M breaks up as (
⊕

λ Vλ)⊕V0 where Vλ are Verma mod-

ules and V0 is the submodule at zero center-of-mass momentum, which, as in the

Neveu-Schwarz case, is not a Verma module. Again the cohomology breaks up as⊕
λH∞(R,R0; Vλ)⊕H∞(R,R0; V0). The cohomology H∞(R,R0; V0) is easy to

calculate explicitly and, in fact, it is all concentrated in the zero ghost number

sector.

Fix V to be one of the Vλ. One can show that there exists a spectral se-

quence converging to H∞(R,R0; V) such that its E1 term obeys Em
1 = 0 for

m < 0, which together with “Poincaré duality”[1] implies the vanishing theorem

for H∞(R,R0; V).

As a result[9] of the triviality of the cohomology of F0 (which is nilpotent when

restricted to states ω ∈ H such that b0 ω = L0 ω = 0) we can prove the following

isomorphism between relative cohomologies

H∞(R,R0; V) ∼= H∞(R,L0; V) , (3.4)

where L0 is the subalgebra spanned by L0. Putting all the Vλ together (and even

V0 in this sector) we obtain a vanishing theorem for H∞(R,L0; M). A spectral

sequence argument as in the Neveu-Schwarz case further implies that

Hm
∞(R; M) ∼=

{
H0
∞(R,R0; M) for m = ±1

2

0 otherwise
. (3.5)

Now let’s go back to the Schrödinger representation. In this case one can show

the following isomorphism of cohomologies

[H∞(R,L0; M)]S
∼= [H∞(R,R0; M)]H , (3.6)

where the subscripts H and S refer to the Henneaux and the Schrödinger rep-
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resentation respectively. The idea of the proof is first to show that each class in

[H∞(R,L0; M)]S contains a representative ψ such that it is annihilated by a. Then

eT ψ is a representative of a class in [H∞(R,R0; M)]H . Choosing a suitable nor-

malization the above isomorphism is actually an isometry, which makes sense since

[H∞(R,R0; M)]H and [H∞(R,L0; M)]S both inherit well-defined inner products

because their respective differentials (Q and Q) are hermitian. Therefore proving

the “no-ghost” theorem for [H∞(R,R0; M)]H proves it for [H∞(R,L0; M)]S . This

we do in the next section.

§4 The “No-Ghost” Theorems

With these results in mind we can now prove the “no-ghost” theorem for the

NSR string along the lines suggested in [1]. This method was used to prove the

similar result for the bosonic string in [2] and [4]. We briefly recall the method.

Let K denote the appropriate relative subcomplex of the string. We use the

relative subcomplexes since, as we have seen before, the full complex is just two

copies of the relative one; hence proving positive-definiteness of the inner product in

the relative subcomplex suffices. Let C denote the conjugation[1] used to redefine

the inner product in order to make it positive definite. The existence of this

positive definite inner product allows us to define a BRST laplacian whose kernel

— denoted by H and referred to as the space of harmonic states — is isomorphic

to the BRST cohomology. Because C commutes with the laplacian it stabilizes its

kernel. Moreover since C reverses ghost number it stabilizes also H0, the space of

harmonic states at zero ghost number, which is isomorphic to the physical space.

From its definition (see [1] for the details and [5] for its explicit construction in

this case) C is the identity on states of positive norm and minus the identity on

states of negative norm. Therefore we see that1

1 As it stands this next equation is ill-defined since H0 is infinite dimensional.

These quantities are to be understood as weighted traces; the dimension being

understood as the trace of the identity.
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TrH0
C ≤ dim H0 , (4.1)

where the bound is saturated if and only if H0 is positive definite. Since the inner

product on the cohomology does not depend on the particular representative, the

saturation of the above bound is equivalent to the “no-ghost” theorem.

As shown in [1], we can extend the trace of C over H0 over all of K without

picking any further contributions. This makes the left hand side of (4.1) easy to

compute. As for the right hand side we notice, using the vanishing theorem, that

dim H0 is nothing but the Euler characteristic χ(K) of the relative subcomplex:

the alternating sum of the dimensions of the cohomology spaces. Using the Euler-

Poincaré principle we can write the Euler characteristic as TrK (−1)G where G is the

ghost number operator in the relative subcomplex. This again is easy to compute.

Moreover, since the relative subcomplex is graded by the level operator L (the

momentum independent piece of L0) and each level eigenspace is finite dimensional

both TrK qLC and TrK qL(−1)G converge for sufficiently small q. Therefore the

“no-ghost” theorem is equivalent to the saturation of the inequality

TrK qLC ≤ TrK qL(−1)G . (4.2)

These traces are straight-forward to calculate so we will only give the results.

For the Neveu-Schwarz sector one finds that

TrK (−1)G qL =
∞∏

n=1

(1− qn)−8 ×
∞∏

r= 1
2

(1 + qr)8 ; (4.3)

and exactly the same expression for the left hand side of (4.2) . For the Ramond

sector (in the Henneaux representation) one finds that

TrK (−1)G qL =
∞∏

n=1

(
1 + qn

1− qn

)8

, (4.4)

which agrees with the left hand side of (4.2) . By the remarks at the end of the

previous section, this proves the “no-ghost” theorem for the Schrödinger represen-

tation.
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Finally we remark that the GSO projected NSR string is also free of ghosts.

This is true because modular invariance also forces the GSO projection on the

superghost spectrum which goes hand in hand with the GSO projection in the

spectrum of the Neveu-Schwarz and Ramond oscillators.
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