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§1 Introduction

In this paper we study a class of supersymmetric integrable systems which are

obtained as reductions of a supersymmetric analog of the Kadomtsev-Petviashvili

(KP) hierarchy.

The KP hierarchy[1] can be defined as the Lax-type evolution equations

∂L

∂tn
= [Ln

+ , L] = [L , Ln
−] , (1.1)

where L = ∂ +
∑

i≥0 ai∂
−i is a (formal) pseudodifferential operator and + just

projects to the differential part. This hierarchy is formally integrable in the sense

that it contains an infinite number of nontrivial conservation laws and an infinite

number of commuting flows. Moreover a lot of completely integrable bihamilto-

nian systems can be obtained from it by reduction. Namely, if we impose Lk
− = 0,

we obtain the kth order generalized KdV hierarchy. A further reduction (a0 = 0)

yields, for k = 2 and k = 3, the Korteweg-de Vries and Boussinesq hierarchies

respectively. The generalized KdV hierarchies inherit both its conservation laws

and its commuting flows from the KP hierarchy, but moreover, these are now con-

nected by the (bi)hamiltonian structure. For details on these hierarchies we refer

the reader to the review paper of Drinfel’d and Sokolov[2] and to the forthcoming

book of Dickey[3].

In [4] Manin and Radul introduced an integrable supersymmetric hierarchy

(SKP) having the KP hierarchy as a natural reduction. The evolution equations

are defined analogously to those of the KP hierarchy, but with the basic operator

being a superpseudodifferential operator (SΨDO) Λ = D +
∑

i≥0 AiD
−i with D

(resp. Ai) the supercovariant derivative (resp. superfields) on a (1|1) superspace

(see later). This hierarchy is also integrable in the same sense that the KP hier-

archy is. Imposing the constraint Λk
− = 0 one can also get integrable hamiltonian

hierarchies, but unlike in the KP case one does not obtain the most general kth or-

der Lax hierarchy this way unless k is odd, since—unlike in the nonsupersymmetric
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case—not every superdifferential operator of even, say 2n, order has a (2n)th root.

The general odd order Lax hierarchy was investigated in some detail by Manin

and Radul. They showed that the hierarchy was hamiltonian with a supersymmet-

ric analogue of the first Gel’fand-Dickey bracket and that the conserved charges

generate the Lax flows relative to this hamiltonian structure.

In order to study the most general even order supersymmetric Lax hierarchy

one cannot then start from the SKP hierarchy, but rather on needs to introduce

the even order SKP hierarchy (denoted in this paper SKP2) which starts from a

basic SΨDO of the form D2 +
∑

i≥−1 AiD
−i and is supported by the fact (see next

section) that the most general Lax operator of order 2n has a unique nth root.

In section 2 we study this hierarchy in some detail and prove its formal integra-

bility. After reviewing the necessary formalism concerning SΨDO’s we introduce

the SKP2 hierarchy, construct an infinite number of conservation laws and prove

that there are an infinite number of commuting Lax flows. The only feature of

the SKP hierarchy missing from SKP2 are the odd flows. However we do not feel

that this is an important drawback. In section 3 we study the reductions of SKP2

obtained by imposing that Λk
− = 0. We call them generalized SKdV hierarchies in

analogy with the nonsupersymmetric case and anticipating the results of section

4. We prove that these hierarchies are bihamiltonian relative to the supersym-

metric analogs of the Gel’fand-Dickey brackets[5] constructed in [6] . This allows

us to prove that the conservation laws obey Lenard-type recursion relations and

that they are in involution relative to both Poisson structures. Hence proving the

hamiltonian integrability of the hierarchies. In section 4 we consider the simplest

example of these reductions and reduce it even further. The resulting hierarchy is

identified with that of the supersymmetric extension of the KdV equation (SKdV)

introduced in [4] by Manin and Radul. We show that the bihamiltonian nature

still persists after reduction; although one of the Poisson structures is now non-

local. In particular this allows us to prove the hamiltonian integrability of the

SKdV hierarchy; a result that was already announced in [7] . Section 5 offers some

concluding remarks.
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§2 Even order SKP hierarchy

In this section we define and discuss the basic results associated to the even

order SKP hierarchy. We would like to stress that this hierarchy is different from

the one considered in [8] , which is simply the subhierarchy of the SKP hierarchy

introduced by Manin and Radul[4] obtained by taking even powers of the basic SKP

operator. The hierarchy of [8] is the specialization of the one here by demanding

that the basic even order SKP operator have a square root. As shown in [4] this

is not always the case.

In order to define the even order SKP hierarchy, we will consider the space of

differential operators on a (1|1) superspace with coordinates (x, θ). These operators

are polynomials in the supercovariant derivative D = ∂θ + θ∂ whose coefficients

are superfields. The supercovariant derivative obeys D2 = ∂. We shall call those

superfields annihilated by D constants. The basic objects in the (even order) SKP

hierarchy are superpseudodifferential operators (SΨDO’s). These are defined[4]

as formal Laurent series in D−1 whose coefficients are superfields, where D−1 is

a formal inverse to D. The multiplication of SΨDO’s is given by the following

composition law (for any n ∈ Z)

DnΦ =
∞∑
i=0

[
n

n− i

]
(−1)|Φ|(n−i)Φ[i]Dn−i , (2.1)

for Φ any superfield and where the superbinomial coefficients are given by

[
n

n− i

]
=


0 for i < 0 or (n, i) ≡ (0, 1) (mod 2);(

[n2 ][
n−i
2

]) for i ≥ 0 and (n, i) 6≡ (0, 1) (mod 2).
(2.2)
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Given a SΨDO P =
∑

piD
i we define its super-residue as sres P = p−1 and

its (Adler) supertrace as Str P =
∫
B sres P , where

∫
B is defined as follows. If

f = a + θb, then
∫
B f =

∫
b, where the precise meaning of integration will depend

on the context. It denotes integration over the real line if we take our basic fields to

be rapidly decreasing functions; integration over one period if we take them to be

periodic functions; or, more abstractly, a linear map annihilating derivatives so that

we can “integrate by parts”. One can show[4] that the super-residue of a graded

commutator is a perfect derivative so that its supertrace vanishes: Str [P , Q] = 0,

for [P , Q] ≡ P Q − (−1)|P ||Q|QP . This then defines a supersymmetric bilinear

form on SΨDO’s: Str (PQ) = (−1)|P ||Q|Str (QP ). If P is any SΨDO we define its

differential part P+ as the part of P which is polynomial in D (including free terms)

and its “integral” part P− as simply P − P+. It then follows that Str P±Q± = 0

for any two SΨDO’s.

It was proven in [4] that every homogeneous SΨDO of the form L = Dn +

Un−1D
n−1 + · · · for n odd, has a unique nth root L1/n = D + · · ·. For n even , the

nth root need not exist nor be unique; although a unique (n/2)th root does exist.

Lemma 2.3. Let L = D2k+
∑

i≤2k−1 UiD
i be a homogeneous SΨDO of even order.

Then there exists a unique even SΨDO L1/k = D2 + · · · satisfying (L1/k)k = L

(hence the name). Furthermore, the coefficients of L1/k are differential polynomials

in the coefficients of L.

Proof: Let Λ = D2 +
∑∞

i=−1 AiD
−i. Computing one finds that

Λk = D2k + kA−1D
2k−1 + O(D2k−2) , (2.4)

whence, if we take A−1 = 1
kU2k−1, Λk − L = O(D2k−2). Suppose now that

A−1, A0, . . . , An, differential polynomials1 in L, have been found so that Λk −L =

1 By differential polynomials in an operator we will always mean, of course,

differential polynomials in its coefficients.
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O(D2k−n−3). A brief calculation shows that the term of order D2k−n−3 is given by

kAn+1 −X, where X is some differential polynomial in the Ui and in the Ai≤n—

hence in the Ui. Therefore setting An+1 = 1
kX, allows to extend the induction

hypothesis one step further. It is clear that L1/k = Λ is the desired kth root.

We are interested in constructing Lax-type evolution equations of the form

∂L

∂t
= [P , L] , (2.5)

where

L = D2k +
2k−1∑
i=0

UiD
i (2.6)

is a homogeneous superdifferential operator and P is a also homogeneous superdif-

ferential operators whose coefficients are differential polynomials in L. The follow-

ing result motivates the introduction of the even order SKP hierarchy.

Proposition 2.7. L satisfies (2.5) if and only if its kth root L1/k does. That is,

∂L

∂t
= [P , L] ⇔ ∂L1/k

∂t
= [P , L1/k]. (2.8)

Proof: Write the Lax equation as [ ∂
∂t − P , L] = 0. It is then clear that [ ∂

∂t −

P , L1/k] = 0 ⇒ [ ∂
∂t−P , L] = 0, since [ ∂

∂t−P , ·] is a derivation and L =
(
L1/k

)k
.

Conversely, let [ ∂
∂t − P , L1/k] =

∑
i≤N AiD

i. Then

0 = [
∂

∂t
− P , (L1/k)k]

=
k−1∑
j=0

Lj/k[
∂

∂t
− P , L1/k]L(k−j−1)/k

= kANDN+2k−2 + O(DN+2k−3) ,

whence AN = 0. Thus, [ ∂
∂t − P , L1/k] = 0.
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From now on until the end of this section we will investigate the possible

Lax-type evolution equations of a general even SΨDO of the form Λ = D2 + · · ·.

The resulting hierarchy is the even order SKP hierarchy (SKP2). By imposing

the constraint
(
Λk
)
− = 0, we will obtain other hierarchies for the even order

supersymmetric Lax operators as reductions of SKP2. These reductions will be

the main topic of the following section.

We must first determine the superdifferential operators P for which the equa-

tion

∂Λ

∂t
= [P , Λ] (2.9)

is a consistent (local) evolution equation, i.e. , for which homogeneous differential

operators P , whose coefficients are differential polynomials in Λ, is the right hand

side of (2.9) a SΨDO of order at most one. Let us denote the space of such P by

ΩΛ; and let ZΛ denote the space of SΨDO’s commuting with Λ. These two spaces

are related as follows.

Lemma 2.10. If M ∈ ZΛ, then M+ ∈ ΩΛ.

Proof: If M ∈ ZΛ then [M+ , L] = [L , M−], whence [M+ , L] has order at most

1.

Therefore it is important to characterize the centralizer ZΛ of Λ. The following

Proposition does just that.

Proposition 2.11. As a vector space over the constants, ZΛ is spanned by the

powers Λn, for n ∈ Z.
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Proof: Let Λ = D2 +
∑∞

−1 AiD
−i and M ∈ ZΛ. Let us first assume that M =∑

j≤2n+1 BjD
j has odd order. Then order by order in D, the condition [M , Λ] = 0

becomes an infinite number of equations for the coefficients of M . The first two

such equations are

A−1B2n+1 = 0 (2.12)

and

B′′
2n+1 − (A−1B2n+1)

′ = 0 , (2.13)

where we denote the action of D by ′. Using the first equation in the second, we

find that B2n+1 is a constant and back into the first equation that the constant

has to be zero. Thus we find that ZΛ consists only of operators of even order

M =
∑

j≤2n BjD
j . In this case the first two equations coming from demanding

[M , Λ] = 0 are

B′′
2n + A−1B

′
2n + 2B2n−1A−1 = 0 (2.14)

and

B′′
2n−1 − (A−1B2n−1)

′ − nB2nA′′
−1 = 0 . (2.15)

It is not hard to see that if we demand that the Bj be differential polynomials of

the Ai, then the only solution is B2n = λ, B2n−1 = nA−1λ, for λ some constant.

In fact, from (2.14) we can formally solve for B2n as follows

B2n = −2D−1 (D + A−1)
−1 A−1B2n−1 , (2.16)

where we have assumed that B2n is not a constant so that we can invert D. Sub-

stituting this into (2.15) we find an equation for B2n−1 of the form P B2n−1 = 0,

with P a SΨDO with leading term D2. Since such a P is invertible, we find that

B2n−1 = 0 and thus that B2n = 0; whence the only nontrivial solution is B2n con-

stant. Therefore, M−λΛn ∈ ZΛ is an operator of smaller order than M . Applying

the argument repeatedly we are done.

From this we can immediately characterize ΩΛ.
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Proposition 2.17. The most general element of ΩΛ is given by a linear combi-

nation with constant coefficients of Λn
+, for n ∈ N and by any superdifferential

operator of the form fD2 + gD +h, where h is an arbitrary differential polynomial

of Λ and f and g are differential polynomials of Λ subject to the condition

f ′′ + A−1f
′ + 2gA−1 = 0 , (2.18)

where A−1 is the coefficient of D in Λ.

Proof: Let Λ be as in the above proof, and let M ∈ ΩΛ have order > 2. Then by

the same arguments as in the previous proof, we find that the order must be even,

say 2n, and its leading coefficient be a constant, say cn. Then M − cnΛn
+ ∈ ΩΛ

has order at most 2n − 1. Continuing in this way we find that we can subtract

constant linear combinations of the Λi
+ until we are left with an operator of order

2. For this case the argument of the previous proof does not work, since we only

have the analogous of equation (2.14) (for n = 1) but not the one of equation

(2.15) , since the term of order D in [M , Λ] does not have to vanish. Therefore,

we are left with a general second order superdifferential operator fD2 + gD + h

with f , g, and h differential polynomials in Λ subject to the relation (2.14) for

n = 1, which is precisely (2.18) .

Remark 2.19. This result should be contrasted to the similar result for KP (see,

e.g. , [2] ) where ΩLKP
is generated as a vector space over the constants by the

functions together with the differential part of the powers of LKP . In that case

one can disregard the flows generated by the functions by demanding that the free

coefficient in LKP vanish, since those flows do not preserve that constraint. Analo-

gously, in our case, we could restrict ourselves to the first two coefficients in Λ being

zero, in which case these “exotic” flows would not be present either. We will not do

this here but, rather, we will disregard those flows altogether and consider instead

the subhierarchy of flows are generated by the linear combinations of the operators

Λn
+ with constant coefficients. This restriction may seem unwarranted from the

point of view of the SKP2 hierarchy, but it will turn out that the flows induced on

the reduced hierarchies by these exotic Lax operators will not be hamiltonian with

respect to the supersymmetric version of the Gel’fand-Dickey brackets.

– 9 –



Let us then introduce an infinite number of “time” variables tn for n ∈ N and

define the following flows associated to them:

∂Λ

∂tn
= [Λn

+ , Λ] . (2.20)

According to the following Proposition these flows commute:

Proposition 2.21. For all m, n ∈ N,

∂2Λ

∂tm∂tn
=

∂2Λ

∂tn∂tm
. (2.22)

Proof:

∂2Λ

∂tm∂tn
=

∂

∂tm
[Λn

+ , Λ]

= [

(
∂Λn

∂tm

)
+

, Λ] + [Λn
+ , [Λm

+ , Λ]]

= [[Λm
+ , Λn]+ , Λ] + [Λn

+ , [Λm
+ , Λ]]

= [[Λm
+ , Λn]+ , Λ] + [Λm

+ , [Λn
+ , Λ]] + [[Λn

+ , Λm
+ ] , Λ]

= [[Λm
+ , Λn

−]+ , Λ] + [Λm
+ , [Λn

+ , Λ]]

= [[Λm , Λn
−]+ , Λ] + [Λm

+ , [Λn
+ , Λ]]

= [[Λn
+ , Λm]+ , Λ] + [Λm

+ , [Λn
+ , Λ]]

=
∂2Λ

∂tn∂tm
.

The SKP2 hierarchy has an infinite number of nontrivial independent polyno-

mial conserved quantities. Define Hn = 1
nStr Λn, for every n ∈ N. It is clear that

they are the integrals of polynomial densities and, it follows at once from the fact

that the supertrace annihilates (graded) commutators, that these quantities are

conserved. Furthermore they are non-trivial and linearly independent as the next

proposition shows.
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Proposition 2.23. The Hn for n ∈ N form an infinite set of non-trivial, linearly

independent, polynomial conserved charges for the SKP2 hierarchy.

Proof: It is obvious that these charges are polynomial. Independence follows at

once from the fact that one can grade the differential polynomials in such a way

that these charges all have different degree. Indeed, let us define the following

gradings [D] = 1, [θ] = −1, [P ′] = [P ] + 1. This makes the SΨDO’s into a

graded ring such that its reduction modulo 2 coincides with the natural Z2 grading.

Now assign degrees to the coefficients of Λ in such a way that [Λ] = 2. It then

follows that [Hn] = 2n and hence that they are independent. Now let Λ = D2 +∑∞
i=−1 AiD

−i. It is easy to see that in the expression for the super-residue of Λn

there always appears a linear term A2n−1. If Hn = 0 for some n, it would then

imply a differential relation between the Ai; namely that A2n−1 is given, up to a

perfect derivative, by a differential polynomial of the Ai<2n−1, which contradicts

the assumption that the Ai are differentially independent.

This proves the formal integrability of the SKP2 hierarchy. It is noteworthy

that all the conserved charges are even under the Z2 grading.

§3 Even order generalized SKdV hierarchies

In this section we study the family of reductions of the SKP2 hierarchy defined

as follows. Fix a positive integer k ∈ N and impose the constraint that the operator

L ≡ Λk be differential, that is,
(
Λk
)
− = 0 and such that k is the smallest such

number for which this is true. The SKP2 flows clearly induce flows

∂L

∂tn
= [Λn

+ , L] . (3.1)
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Notice, however, that for n a multiple of k, these flows are trivial. Since the kth

root of L is a specialization of the general SKP2 operator treated in the last section,

a lot of results can be immediately exported to this case. In particular, the charac-

terization of the possible evolution equations, the commutativity of the flows, and

the existence of the infinite number of conserved charges follow from the analogous

results for the unreduced hierarchy. Only the nontriviality of the conserved charges

needs a new argument. We will prove this after introducing a bihamiltonian struc-

ture for the reduced hierarchy. We call this hierarchy the generalized kth order

super Korteweg-de Vries (SKdV) hierarchy or, to make obvious the fact that this

is a reduction of the even order SKP hierarchy, SKP
(k)
2 .

Let L be as in (2.6) . Its kth root L1/k, which exists by Lemma 2.3 , is a spe-

cialization of the SΨDO Λ considered in the previous section. Therefore any result

which does not use the fact that the coefficients of Λ are independent immediately

holds. In fact, this observation, together with Proposition 2.7 , allows us to prove

the following results as we did in the previous section. We shall therefore omit their

proofs here. Define ZL and ΩL in the obvious way. Then we have the following

three results analogous to Lemma 2.10 , Proposition 2.11 , and Proposition 2.17 :

Lemma 3.2. If M ∈ ZL, then M+ ∈ ΩL.

Proposition 3.3. As a vector space over the constants, ZL is spanned by the

powers Ln/k, for n ∈ Z.

Proposition 3.4. The most general element of ΩL is given by a linear combination

with constant coefficients of L
(n/k)
+ , for n ∈ N and by any superdifferential operator

of the form fD2 + gD +h, where h is an arbitrary differential polynomial of L and

f and g are differential polynomials of L subject to the condition

kf ′′ + U2k−1f
′ + 2gU2k−1 = 0 . (3.5)
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As in the unreduced hierarchy (cf. Remark 2.19 ), we will disregard the flows

generated by the Lax operators which are not constant linear combinations of the

L
(n/k)
+ . We will, thus, associate a time tn with each generator L

n/k
+ of ΩL as follows:

∂L

∂tn
= [L

n/k
+ , L] . (3.6)

Of course, those times tn with n a multiple of k will yield trivial evolution equations

and can be disregarded. In exactly the same way we proved Proposition 2.21 we

obtain that these flows also commute.

Proposition 3.7. For all m, n ∈ N,

∂2L

∂tm∂tn
=

∂2L

∂tn∂tm
. (3.8)

This hierarchy possesses an infinite number of polynomial conserved quantities.

Let n ∈ N and define Hn ≡ k
nStr Ln/k. Most of the analogous result to Proposi-

tion 2.23 can still be proven in the same way, except for the nontriviality of the

conserved charges, since that part of the proof used the fact that the coefficients of

Λ were independent. It follows from the proof of Lemma 2.3 that only the first k

coefficients of L1/k are independent in our case. Since the grading argument used

to prove Proposition 2.23 still goes through, the only thing that could go wrong

is for a charge to be identically zero. This already happens to the charges Hn with

n a multiple of k. We will see that, in fact, these are the only ones for which

this happens. But in order to prove this we will use the fact that the evolution

equations are hamiltonian, a result which is interesting in its own right and which

we now discuss.

In order to define a Poisson structure in the space M of Lax operators of the

form (2.6) , we need to define several formal geometric objects on M : functions,

vector fields, 1-forms, ... This is done in detail, for example, in [9] and thus we

only briefly list the results here.
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We will take as our functions objects of the form

F [L] =

∫
B

f(U) , (3.9)

where f(U) is a homogeneous differential polynomial of the Ui. Vector fields are

parametrized by infinitesimal deformations L 7→ L + εA where A =
∑

AlD
l is a

homogeneous differential operator of order at most 2k − 1. We denote the space

of such operators by S2k. To such an operator A ∈ S2k we associate a vector field

DA as follows. If F =
∫
B f is a function then

DA F ≡ d

dε
F [L + εA]

∣∣∣∣
ε=0

= (−1)|A|
∫

B

2k−1∑
j=0

∞∑
i=0

(−1)|A|iA
[i]
j

∂f

∂U
[i]
j

, (3.10)

with U
[i]
j = (DiUj) and the same for A

[i]
j . Integrating by parts we can write this as

DA F = (−1)|A|
∫

B

2k−1∑
j=0

Aj
δF

δUj
, (3.11)

where the Euler variational derivative is given by

δF

δUj
=

∞∑
i=0

(−1)|Uj |i+i(i+1)/2Di ∂f

∂U
[i]
j

. (3.12)

We define 1-forms as the space S∗2k of SΨDO’s of the form X =
∑2k−1

i=0 D−i−1Xi,

whose pairing with a vector field DA, with A =
∑

AiD
i, is given by

(DA, X) ≡ (−1)|A|+|X|+1Str (AX) = (−1)|A|
∫

B

2k−1∑
i=0

(−1)iAi Xi , (3.13)
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which is nondegenerate. The choice of signs has been made to avoid undesirable

signs later on. Given a function F =
∫
B f we define its gradient dF by

(DA, dF ) = DAF , (3.14)

whence, comparing with (3.11) , yields

dF =
2k−1∑
i=0

(−1)iD−i−1 δF

δUi
. (3.15)

Therefore the gradient of a function is a 1-form, as expected.

To define Poisson brackets on the space of supersymmetric Lax operators, we

start by defining a map J : S∗2k → S2k in such a way that the Poisson bracket of

two functions F and G is given by

{F , G} = DJ(dF )G = (DJ(dF ), dG) = (−1)|J |+|F |+|G|+1 Str (J(dF )dG) . (3.16)

Demanding that the Poisson brackets defined by J obey the correct (anti)symme-

try properties and the Jacobi identity imposes strong restrictions on the allowed

maps J . Maps obeying these conditions are often called “hamiltonian”. It was

proven in [6] that the map

J : S∗2k → S2k

X 7→ (LX)+L− L(XL)+ (3.17)

is hamiltonian. The proof in [6] employed a supersymmetric version of the Miura

transformation and, in fact, established a supersymmetric version of the celebrated

Kupershmidt-Wilson theorem[10] along the lines of Dickey[11]. In [9] , a purely

combinatorial proof of the hamiltonian property of J was given which yields, mu-

tatis mutandis, a proof of the following result.
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Proposition 3.18. Let z be a parameter and define L̂ ≡ L− zk. Then the map

Jz : S∗2k → S2k defined by

Jz(X) = (L̂X)+L̂− L̂(XL̂)+ (3.19)

is hamiltonian.

Making the dependence on the parameter z manifest, we find that Jz decom-

poses as Jz = J0 − zkJ∞, where J0 is given by (3.17) and J∞ is given by

J∞(X) = [L , X]+ . (3.20)

This defines a one-parameter family of Poisson brackets

{F , G}z = −(−1)|F |+|G|Str (Jz(dF ) dG) , (3.21)

= {F , G}0 − zk{F , G}∞ , (3.22)

where

{F , G}0 = −(−1)|F |+|G|Str ((LdF )+LdG− L(dFL)+dG) , (3.23)

and

{F , G}∞ = −(−1)|F |+|G|Str
(
[L , dF ]+ dG

)
, (3.24)

are the supersymmetric analogs of the Gel’fand-Dickey brackets. The latter Poisson

bracket can be rewritten as

{F , G}∞ = −(−1)|F |+|G|Str (L[dF , dG]) , (3.25)

which is nothing but the Kirillov-Kostant Poisson structure on the coadjoint orbit

of L under the supersymmetric Volterra group.
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Suppose now that H is a function on M . Given a hamiltonian map J and

associated Poisson bracket { , }, one can define a flow associated to H as follows:

∂L

∂t
= J(dH) , (3.26)

or, equivalently,

∂F

∂t
= {H , F} , (3.27)

for F any function on M . If for J we take J∞, then from (3.20) we can write this

flow in a way which suggests a Lax-type equation,

∂L

∂t
= J∞(dH) = [L , dH]+ . (3.28)

The following lemma pursues this suggestion.

Lemma 3.29. Let Hn ≡ −k
nStr Ln/k. Then its gradient is given simply by

dHn = L
n
k
−1

− mod D−2k−1 . (3.30)

Proof: If A is any vector field, the directional derivative of Hn in the direction

specified by A is given by

DAHn[L] =
d

dε
Hn[L + εA]

∣∣∣∣
ε=0

= −k

n

d

dε
Str (L + εA)n/k

∣∣∣∣
ε=0

= −(−1)|A|Str AL
n
k
−1 ,

whence, after comparing with (3.14) , the lemma follows.

Together with (3.28) and (3.6) , Lemma 3.29 immediately yields
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Proposition 3.31. With respect to the Poisson structure defined by J∞, the

conserved charge Hn+k is the hamiltonian generating the flow along the time tn.

In other words,

∂L

∂tn
= J∞(dHn+k) . (3.32)

Proof: From Lemma 3.29 and (3.20) we find

J∞(dHn+k) = [L , L
n/k
− ]+

= [L
n/k
+ , L] ,

which by (3.6) is precisely ∂L
∂tn

.

Remark 3.33. It is possible to show that those Lax operators in ΩL which are

not just constant linear combinations of L
(n/k)
+ generate flows which are not hamil-

tonian with respect to the Poisson structure J∞. We immediately see that none

of the flows which are hamiltonian with respect to J∞ evolve U2k−1 in time, since,

for any H, the order of [L , dH]+ is at most 2k − 2. This already means that for

an exotic Lax operator to generate a hamiltonian flow with respect to J∞, it must

have the form cL
1/k
+ +h, where c is some constant and h is an arbitrary differential

polynomial in L. Moreover, a calculation then shows that h cannot generate a

hamiltonian flow with respect to J∞, unless it is a constant, in which case the flow

is trivial.

From the hamiltonian nature of the flows we can already prove the nontriviality

of the conserved charges Hn for n not a multiple of k.

Corollary 3.34. The Hn, for n ∈ N not a multiple of k, form an infinite set

of nontrivial, linearly independent, polynomial conserved charges for the SKP
(k)
2

hierarchy.
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Proof: That the charges are conserved follows from Proposition 2.7 and the fact

that the supertrace vanishes on (graded) commutators. Now, the charges are ob-

viously polynomial and the proof of linear independence is identical to that of the

similar statement (cf. Proposition 2.23 ) for the unreduced hierarchy. Only the

proof of nontriviality changes. If Hn+k = 0, its associated flow is trivial; whence

∂L
∂tn

= 0. According to (3.6) this means that L
n/k
+ commutes with L. But in Propo-

sition 3.3 , we characterized those elements as linear combinations with constant

coefficients of the Li/k. By comparing the degree of homogeneity and the leading

term, we conclude that L
n/k
+ has to be Ln/k itself. Thus, L

n/k
− = 0. Taking the

supertrace we see that Hn = 0. Writing n = sk + r, with 0 ≤ r < k, we eventually

find that
(
L1/k

)r

−
= 0. But by the definition of the hierarchy, this is not true for

any r < k unless r = 0.

The rest of the section is devoted to the bihamiltonian structure of the SKP
(k)
2

hierarchy. It turns out that the evolution equations of this hierarchy are hamilto-

nian with respect to J0 as well. This will follow from the Lenard relations for the

conserved charges. Let us introduce the notion of a “basic resolvent”. Let z be the

parameter introduced in Proposition 3.18 and define the following formal series

R(z) =
∑
n∈Z

z−n−kL
n/k
− . (3.35)

For our purposes, the most important property of R(z) is the following:

Lemma 3.36. Let L̂ ≡ L − zk. Then both L̂R(z) and R(z)L̂ are differential
operators.

Proof: Computing one finds

(L− zk)R(z) =
∑
n∈Z

[
z−n−kL L

n/k
− − z−nL

n/k
−

]
=
∑
n∈Z

z−n−k
[
L L

n/k
− − (L Ln/k)−

]
.

But
[
L L

n/k
− − (L Ln/k)−

]
−

=
[
L L

n/k
− − L Ln/k

]
−

= −
[
L L

n/k
+

]
−

= 0. The sec-

ond statement is proven in a similar fashion.
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This immediately yields a recursive relation between the gradients of the con-

served charges.

Proposition 3.37. (Lenard relations) For all n ∈ N,

J∞(dHn+k) = J0(dHn) . (3.38)

Proof: From Lemma 3.36 we have that (L̂R(z))+L̂ − L̂(R(z)L̂)+ = 0, whence

J0(R(z)) = J∞(zkR(z)). Comparing order by order in z, and using Lemma 3.29 ,

we obtain the desired relations.

In particular this implies that the SKP
(k)
2 hierarchy is also hamiltonian with

respect to the Poisson structure defined by J0, since the flow along the time tn is

generated by Hn relative to this Poisson structure.

Proposition 3.39. The conserved charges Hn are in involution with respect to
both Poisson structures J0 and J∞ and, hence, relative to the one parameter family
of Poisson brackets { , }z.

Proof: For all m,n ∈ N, ∂Hn

∂tm
= 0. But ∂

∂tm
is the hamiltonian flow generated by

Hm relative to J0 and by Hm+k relative to J∞. Thus, for all m, n ∈ N,

{Hn , Hm}0 = {Hn , Hm}∞ = 0 . (3.40)

This, by the way, gives a new proof for Proposition 3.7 .
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§4 An explicit example: the SKdV hierarchy

In this section we study a reduction of the SKP
(2)
2 hierarchy. Denoting the Lax

operator of the SKP
(2)
2 by D4 + U3D

3 + U2D
2 + U1D + U0, we will consider the

reduction obtained by setting U0 = U2 = U3 = 0. A more invariant description

of this reduction is obtained by noticing that the reduced operator is the unique

superdifferential operator of order 4 satisfying 2

L∗ = DLD−1 , (4.1)

where ∗ is the unique involution in the ring S of SΨDO’s satisfying

(a) D∗ = −D,

(b) f∗ = f , for any differential polynomial f ; and,

(c) (PQ)∗ = (−1)|P ||Q|Q∗P ∗, for all homogeneous P, Q ∈ S.

The proof of the following Proposition is routine.

Proposition 4.2. The involution ∗ enjoys the following additional properties:

(1) If P ∈ S is homogeneous and invertible, (P−1)∗ = (−1)|P |(P ∗)−1.

(2) For all p ∈ Z, (Dp)∗ = (−1)
p(p+1)

2 Dp.

(3) For all P ∈ S, (P±)∗ = (P ∗)±.

(4) For all P ∈ S, sres P ∗ = sres P (in particular, Str P ∗ = Str P ).

Remarkably all but the exotic flows obtained in the last section survive this

reduction. We show this in three steps. First we determine the centralizer of the

reduced operator.

2 We could equally well consider the reduction L∗ = D−1LD, which consists in

setting U3 = U2 = U0 + U ′
1 = 0. Both reductions yield the same integrable

hierarchy.
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Proposition 4.3. As a vector space over the constants, ZL is spanned by the

powers Ln/k, for n ∈ Z.

Proof: Suppose M =
∑

j≤2n BjD
j ∈ ZL. Then the first equation in [M , L] = 0

(i.e. , setting to zero the coefficient at order 2n + 2) is B′′
2n = 0, which implies

that B2n is a constant. Therefore M̃ = M −B2nLn/2 belongs to ZL and has order

2n− 1. Let M̃ =
∑

j≤2n−1 B̃jD
j . Then the first two equations in [M̃ , L] = 0 are

obtained by setting to zero the coefficients at orders 2n + 1 and 2n:

B̃′′
2n−1 = 0 ,

and

B̃2n−2 + B̃2n−1U = 0 .

The first equation says that B̃2n−1 is a constant, whereas the second says that U

times a constant is a total derivative, which is absurd unless the constant is zero.

Hence B̃2n−1 = 0. By induction we obtain the desired result.

Let us define ΩL as those differential operators with coefficients in the differen-

tial polynomials of L whose commutator with L is of order at most 1. This extra

condition leaves behind the exotic flows obtained in the previous section.

Proposition 4.4. As a vector space over the constants, ΩL is spanned by the

powers Ln/k, for n ∈ Z.

Proof: The proof follows similar lines to the previous one. If M =
∑2n

0 BjD
j ∈

ΩL and n ≥ 0 then we find that B2n is a constant and we can subtract B2nL
n/2
+ .

If, on the other hand, M has odd order then it follows as before that the leading

coefficient actually has to vanish.

As we have defined it, however, belonging to ΩL is not a sufficient criterion for

an operator to induce a consistent evolution equation. We should also make sure

that the free term of L does not evolve in time. In principle this could get rid of

some flows but, remarkably, it doesn’t.
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Proposition 4.5. For all operators P ∈ ΩL, the Lax equation

∂L

∂t
= [P , L]

is a consistent evolution equation.

Proof: By linearity and the previous Proposition we may (and will) take P =

L
n/2
+ . Since L has no free term, we have to show that [L

n/2
+ , L] has no free term.

For this same reason this is equivalent to L
n/2
+ (equivalently Ln/2) having no free

term. Now, the free term of a SΨDO P is given by sres PD−1. Thus we need

to show that sres Ln/2D−1 vanishes. As will be shown in the following lemma,(
Ln/2

)∗
= (−1)nDLn/2D−1. Then using Proposition 4.2 (4), we find

sres Ln/2D−1 = sres
(
Ln/2D−1

)∗
= sres D−1

(
Ln/2

)∗
= (−1)nsres Ln/2D−1 ,

which vanishes for n odd. For n even, Ln/2 is an integer power of L and hence has

no free term since L has none.

Lemma 4.6.
(
Ln/2

)∗
= (−1)nDLn/2D−1.

Proof: From
(
DL1/2D−1

)2
= DLD−1 = L∗ it follows that DL1/2D−1 is equal to

(L∗)1/2 up to a sign. Comparing leading terms we find that DL1/2D−1 = (L∗)1/2.

On the other hand,
((

L1/2
)∗)2

= L∗, whence
(
L1/2

)∗
must be (L∗)1/2 up to a

sign. Comparing leading terms we find that we must chose the − sign, whence(
Ln/2

)∗
= (−1)n (L∗)n/2. Thus,

(
Ln/2

)∗
= (−1)nDLn/2D−1 as we had claimed.

We now write down the first two equations in the hierarchy. For this it is

necessary to compute L1/2 to sufficiently high (i.e. , negative) order. It shall be

convenient to write L1/2 up to order D−9.
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Lemma 4.7. If L = D4 + UD, then its square root is given by L1/2 = D2 +∑
i≥1 aiD

−i, where the first nine coefficients are given by

a1 =
1

2
U , a2 = 0 , a3 = −1

4
U ′′ , a4 = 0 ,

a5 =
1

8
(U [4] − UU ′) , a6 = −1

8
UU ′′ ,

a7 =
1

4
UU ′′′ +

1

8
U ′U ′′ − 1

16
U [6] , a8 =

1

4
UU [4] ,

and

a9 =
1

32
U [8] +

1

16
U(U ′)2 − 11

32
UU [5] − 3

32
U ′U [4] − 11

32
U ′′U ′′′ .

From this it follows that L
1/2
+ = D2 and L

3/2
+ = D6 + 3

2UD3 + 3
4U ′′D; whence

the first two equations of the hierarchy are:

∂U

∂t1
= U ′′ (4.8)

and
∂U

∂t3
=

1

4
U [6] +

3

4
(UU ′)′′ ; (4.9)

which are, respectively, the supersymmetric chiral wave equation and the super-

symmetric extension of the KdV equation found by Manin and Radul[4] by the

same Lax representation.

We now investigate the induced Poisson structures. Let M denote the space

of Lax operators of the form D4 + · · ·, and Mo denote the submanifold of Lax

operators L obeying L∗ = DLD−1. As we will show, Mo will inherit both Poisson

structures from M . Strictly speaking, we cannot say that Mo is a symplectic

submanifold of M with respect to both Poisson structures—not even in a formal

sense— since the first Poisson structure is degenerate. Nevertheless, the second

structure is (formally) nondegenerate and will allow us to define on Mo a well-

defined split of vector fields into those tangent to Mo and those (symplectically)

normal to Mo. This is important in order to define, for example, the gradient
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of a function on Mo as a 1-form on M . An embedding of manifolds induces an

embedding of their tangent bundles, but not of their cotangent bundles, since

this is equivalent to a choice of normal bundle for the embedded submanifold. In

the symplectic category there is a natural choice, since we then have a notion of

symplectically normal vectors. Thus, a 1-form on M defines a 1-form on Mo if

and only if the vector field associated to it via the symplectic form is tangent to

Mo. This only makes sense, however, if the symplectic form is nondegenerate when

restricted to Mo, which is precisely the condition that the embedded submanifold be

symplectic. In our case we have two Poisson structures: one of which—the second—

is (formally) nondegenerate; whereas the other—the first— is degenerate. Thus,

using the second structure we can specify 1-forms on Mo uniquely, whereas with

the first structure some ambiguity remains. In principle it could happen that the

ambiguity in one specification is incompatible with the other but here, remarkably,

this is not the case. Hence both structures will turn out to be induced and, as a

consequence, the bihamiltonian structure will be preserved under reduction.

Proposition 4.10. Let X =
∑3

i=0 D−i−1Xi be a 1-form on M . Then, relative

to the (second) Poisson structure J0, it defines a 1-form on Mo if and only its

coefficients satisfy the following conditions:

X2 = −1

2
X ′

1 , X3 =
1

2
X ′′

1 , and X ′′
1 = −(X ′′′

0 + UX0) .

Proof: Let X =
∑3

i=0 D−i−1Xi be a 1-form on M . Relative to J0 it defines a

1-form on Mo if and only if the vector field J0(X) = (LX)+L−L(XL)+ is tangent

to Mo. In other words, writing J0(X) =
∑3

i=0 YiD
i, we require that all the Yi are

zero except for Y1. A somewhat tedious computation yields
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Y3 = (−1)|X|
[
2X ′′

2 −X
[4]
0 − (UX0)

′
]

,

Y2 = X
[5]
0 + (UX0)

′′ − 2X ′′′
2 − 2X ′′

3 − UX ′
1 − 2UX2 + X

[4]
1 ,

Y1 = (−1)|X|
[
X

[4]
2 −X

[6]
0 − (UX0)

′′′ + 2UX ′′
1 + U ′′X1 − (UX2)

′
]

,

and

Y0 = X
[7]
0 + X

[6]
1 −X

[5]
2 −X

[4]
3 + (UX0)

[4] + UX
[4]
0 + UX ′′′

1

− UX ′′
2 − UX ′′

3 + UU ′X0 .

Setting Y3 = Y2 = Y0 = 0 we find the conditions listed above.

On the other hand, the first Poisson structure does not determine the coeffi-

cients of the one-form uniquely, but the constraints it imposes on a given 1-form

are compatible with the ones imposed by the second Poisson structure.

Proposition 4.11. Let X =
∑3

i=0 D−i−1Xi be a 1-form on M . Then, relative to

the (first) Poisson structure J∞, it defines a 1-form on Mo as long as its coefficients

satisfy

X ′′
1 = −(X ′′′

0 + UX0) .

Proof: This follows similar lines to that of the previous proof, except that now it

is J∞(X) = [L , X]+ that must be tangent to Mo. Writing J∞(X) =
∑3

i=0 YiD
i,

we find that Y3 = Y2 = 0, Y1 = −(−1)|X|2X ′′
0 , and Y0 = 2X ′′

1 + 2X ′′′
0 + 2UX0.

Setting Y0 = 0 we find the condition stated above.

We can now compute the induced Poisson structures. These can be computed

by the Dirac bracket prescription or, equivalently, by using the Poisson brackets

on M but with the gradients defined in such a way that they define 1-forms on

Mo. In other words, given two functions F and G defined on Mo to compute their

gradients we first extend them to functions on M , which we also denote by F and

G. Clearly, on Mo,
δF
δU and δG

δU are unambiguously determined; but this is not the

case for the variations with respect to the other coordinates since this depends on
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the extension. Nevertheless, Proposition 4.10 fixes them unambiguously in terms

of δF
δU .

Theorem 4.12. The Poisson structures induced by J∞ and J0 on Mo are given
by

{F , G}∞ = −
∫

B

(
J̃∞ · δF

δU

)
δG

δU
(4.13)

and

{F , G}0 = −
∫

B

(
J̃0 ·

δF

δU

)
δG

δU
, (4.14)

where

J̃∞ = 2D2(D3 + U)−1D2 (4.15)

and

J̃0 =
1

2
D5 +

3

2
UD2 +

1

2
U ′D + U ′′ . (4.16)

Moreover, the two brackets are coordinated.

Proof: We first compute J0(dF ) and J∞(dF ) and then use (3.23) and (3.24) .

We write dF =
∑3

i=0 D−i−1Xi where X1 = − δF
δU and the other coefficients are

determined from this by the relations in Proposition 4.10 . From the calculation

in the proof of Proposition 4.10 we find

J0(dF ) = −
[
(−1)|F |

(
1

2
D5 +

3

2
UD2 +

1

2
U ′D + U ′′

)
· δF

δU

]
D ;

and from the proof of Proposition 4.11

J∞(dF ) = −
[
(−1)|F |2D2(D3 + U)−1D2 · δF

δU

]
D .

Plugging this into (3.23) and (3.24) yields the desired result. To see that they are

coordinated it suffices to note that for any two functions on M the two brackets

are coordinated, and the expressions we have just obtained for the brackets on Mo

correspond to the bracket on M evaluated in particular extensions of the functions

from Mo to M .
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Let us denote the restriction of the conserved charges Hn = − 2
nStr Ln/2 to Mo

also by Hn. Of course, the charges for n even are automatically trivial. The first

three nontrivial charges can be easily computed from the results of Lemma 4.7 :

H1 = −
∫

B
U , (4.17)

H3 = −1

4

∫
B

UU ′ , (4.18)

and

H5 =
1

16

∫
B

(
U ′′U ′′′ − 2U(U ′)2

)
. (4.19)

In fact, we will see that, for n odd, the Hn are all nontrivial. But to prove this we

need to exhibit the relation between the Hn and the Lax flows.

Proposition 4.20. The Lax flow ∂L
∂tn

= [L
n/2
+ , L] is hamiltonian and is generated

by Hn+2 relative to the first hamiltonian structure and by Hn relative to the
second.

Proof: We can take dHn = L
n
2
−1

− modD−4 for L in Mo since, by Proposition

4.5 , J∞(L
n/2
− ) = J0(L

n
2
−1

− ) is tangent to Mo. The Lax equations are given by

∂L
∂tn

= J0(dHn) = J∞(dHn+2) still after reduction; and since the gradients dHp of

all the conserved charges obey the conditions of Proposition 4.10 , this translates

into

∂U

∂tn
= −

(
1

2
D5 +

3

2
UD2 +

1

2
U ′D + U ′′

)
· δHn

δU

= −2D2(D3 + U)−1D2 · δHn+2

δU
,

which proves what we claimed.

As an immediate corollary we find Lenard relations between these charges.

Corollary 4.21. (Lenard relations) For all n ∈ N, the following relation hold

2D2(D3 + U)−1D2 · δHn+2

δU
=

[
1

2
D5 +

3

2
UD2 +

1

2
U ′D + U ′′

]
· δHn

δU
. (4.22)
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The Lenard relations allow us to give a different proof of the involutivity of

the conserved charges.

Proposition 4.23. For all m, n ∈ N,

{Hm , Hn}∞ = {Hm , Hn}0 = 0 . (4.24)

Proof: The Lenard relations say that the Poisson flows generated by Hn relative

to the second Poisson structure and the one generated by Hn+2 relative to the first

coincide. In other words, for all functions H,

{H , Hn}2 = {H , Hn+2}1 . (4.25)

In particular, when H is one of the conserved quantities, say Hm, one has that

{Hm , Hn}2 = {Hm , Hn+2}1

= {Hm−2 , Hn+2}2

...

= {Hm−2j+2 , Hn+2j}1

= {Hm−2j , Hn+2j}2

...

Assuming, for definiteness, that m > n we find in the above chain of equations

either {Hq , Hq}1 or {Hq , Hq}2 for some q, both of which vanish since |Hq| = 0 for

all q. Therefore we find that the conserved charges are in involution with respect

to both Poisson structures.

Finally it remains to prove that the conserved charges are nontrivial. We

showed in the previous section (cf. Corollary 3.34 ) that this was the case on M .

However after setting U0 = U2 = U3 = 0 it would not be inconceivable that some

of them do not survive the reduction. Still, one has the following.
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Proposition 4.26. For all n odd, the conserved charges Hn are nontrivial.

Proof: Let n be odd and suppose that Hn+2 = 0. Then by Proposition 4.20 ∂L
∂tn

=

0, which forces L
n/2
+ to belong to ZL. By the usual grading arguments it follows

that L
n/2
+ = Ln/2, whence Hn = 0. Eventually we reach at H1 = 0, which is absurd

as evidenced by (4.17) .

This concludes the proof of the hamiltonian integrability of the SKdV hierar-

chy.

§5 Conclusions

In this paper we have studied a class of supersymmetric integrable systems

which arise as reductions of the even order SKP hierarchy. The resulting hierar-

chies consists of nonlinear evolution equations given in Lax form. We have shown

that these equations are bihamiltonian with respect to the supersymmetric analogs

of the Gel’fand-Dickey brackets constructed in [6] . The hamiltonian functions gen-

erating the flows are given by the supertrace of fractional powers of the relevant

Lax operator. They are shown to satisfy (Lenard) recursion relations and to be

in involution relative to both Poisson brackets and, hence, relative to any linear

combination of them—since they are coordinated.

The evolution equations for the resulting hierarchies—even the simplest one—

are rather complicated; although—as shown in section 4—by further reductions one

finds more tractable systems. In particular, a reduction of the simplest hierarchy is

identified with the supersymmetric extension of the KdV equation (SKdV) found

by Manin and Radul[4]. Moreover all properties pertaining to the bihamiltonian

nature of the hierarchy are induced under reduction and this has allowed us to

discover the missing “first” hamiltonian structure of the SKdV equation and to

prove the hamiltonian integrability of the hierarchy.

This fact suggests that interesting supersymmetric hierarchies can be ontained

by reduction of the higher order SKdV hierarchies treated here. This is an interest-

ing open problem to which we hope to turn our attention in a future publication.
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Another interesting by-product of these reductions is the appearance of ex-

tended superconformal algebras (W -superalgebras) as the fundamental Poisson

brackets relative to the second hamiltonian structure. Already before reduction

one can show that the fundamental Poisson brackets relative to the second su-

persymmetric Gel’fand-Dickey bracket contain a superconformal algebra. Indeed,

the two superfields of weights 1 and 3
2 can be suitably redefined (by addition of

derivatives of superfields of lower weight) in such a way that the resulting super-

field of weight 3
2 generates the N = 1 supervirasoro algebra and such that the one

of weight 1 is a classical superconformal tensor of conformal weight 1. In [9] and

[12] W -superalgebras were constructed by reduction of the second supersymmetric

Gel’fand-Dickey bracket for odd order Lax operators. It is an interesting question

to ask what reductions can be performed on even order Lax operators to obtain

W -superalgebras.

Reductions are also interesting from the viewpoint of string theory and statis-

tical mechanics, where W -superalgebras and, in particular, their unitary highest

weight representations as operators in a two-dimensional superconformal quantum

field theory, play a very important role. The analysis of these representations usu-

ally proceeds by first embedding the relevant W -superalgebra inside a free field

algebra as classical algebras. Then this embedding is quantized to obtain a quan-

tum free field realization. For W -(super)algebras related to integrable systems

the classical embedding is given by the Miura transformation. Now, as shown in

[6] , for the W -superalgebras obtained from supersymmetric Lax operators, the

natural (Fock) representations of the free field algebra are not unitary, since the

free fields have alternating signs in their Poisson brackets—equivalently, in their

(anti)commutation relations. One way to avoid this problem—and thus to obtain

manifestly unitary representations without further ado—would be to find a reduc-

tion which, at the level of the free fields, leaves only those fields with the same

sign in their Poisson bracket. Particularly trivial examples of this are the N = 1
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and N = 2 supervirasoro algebras obtained as the simplest examples of the W -

superalgebras of [9] and [12] , respectively. The search for further reductions of

this type is in progress.
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