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§1 Introduction

Extended conformal and superconformal algebras have received a great deal

of attention lately[1],[2],[3]. Their study is relevant for the classification problem

of rational conformal field theories[4] (RCFTs) since every RCFT is by definition

a minimal model of its chiral algebra (the operator subalgebra generated by its

holomorphic fields) which, since it contains the Virasoro algebra as a subalgebra,

extends it. As shown by Cardy[5], a conformal field theory (CFT) which is ra-

tional relative to the Virasoro algebra (i.e. , which contains a finite number of

Virasoro primaries) must necessarily have c < 1. Similar arguments show that a

superconformal field theory (SCFT) which is rational relative to the N = 1 super

Virasoro algebra must have c < 3
2 . Therefore, in order to construct RCFTs for

c ≥ 1 (resp. rational SCFTs for c ≥ 3
2) one is lead to extended conformal (resp.

superconformal) algebras.

There is no general agreement in the literature as to the definition of an ex-

tended conformal algebra; hence let us adopt the following definition for illustrative

purposes. An extended conformal algebra is an associative operator product alge-

bra which contains the (universal enveloping algebra of the) Virasoro algebra and is

generated by a finite number of Virasoro primaries in the sense that in the singular

part of the operator product expansion of these fields there appear only Virasoro

descendents of the identity and of these fields as well as normal ordered products

thereof. Similarly, we define an extended superconformal algebra by substituting

‘Virasoro’ by ‘super Virasoro’ in the above definition. Extended superconformal

algebras, however, do not give rise to chiral algebras directly because the duality

axiom of CFT forces the fields in the chiral algebra to have integer spin. Hence to

obtain a chiral algebra from an extended superconformal algebra it is necessary to

truncate the field content leaving only the fields with integer spins.

There is by now a wealth of examples of extended conformal algebras. Among

the best known ones are the affine Lie algebras (extensions of Virasoro by weight

1 primaries), the super Virasoro algebras (extensions of the Virasoro algebra by
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one or more primaries of weight 3
2), and Zamolodchikov’s W3 algebra (the unique

extension by a field of weight 3).

It was Zamolodchikov[6] who initiated the systematic study of the existence of

extended conformal algebras by analyzing the possible extensions of the Virasoro

algebra by one or more fields of a given (integer or half-integer) spin 1/2 ≤ ∆ ≤ 3

which were consistent with duality, i.e. , which yield crossing symmetric four point

functions. He found a lot of already existing algebras: free fermions (∆ = 1
2),

affine Lie algebras (∆ = 1), super Virasoro algebras (∆ = 3
2), direct product of

Virasoro algebras (∆ = 2); as well as two new algebras (∆ = 5
2 and ∆ = 3) which,

unlike the others, are not Lie (super)algebras, since they contain non-linear terms

in the (anti)commutators of the modes. The case ∆ = 5
2 satisfies duality for a

specific value of the central charge (c = −13/14); whereas the case ∆ = 3 yields

W3 which is associative for all c. Zamolodchikov’s work was extended in [7] and

[8] by the introduction of primaries of different spins at once. In [7] the so(N)-

and u(N)-extended superconformal algebras were obtained. For N ≤ 4 the former

algebras can be linearised by adding free spin 1
2 fields. This is the inverse of the

method by Goddard and Schwimmer[9] for decoupling free fermions in a CFT. In

[8] two new algebras were obtained: the extension by primaries of spins 3
2 and

5
2 , which is only associative for c = −13

14 ; and the one by primaries of spins 5
2 and

3, which is associative for all c. Moreover we have investigated the existence of

an extension of the Virasoro algebra by primaries of spin 3 and 4 only and have

found[10] that duality is satisfied only for c = 1, −13, and −116
3 .

The first results of a general nature were obtained by Bouwknegt in [11] , where

he investigated the existence of extensions of the Virasoro algebra by a primary of

integer or half-integer weight. Apart from finding new solutions for spins ∆ > 3,

he argued based on group theoretic counting arguments that if one demands that

the resulting mode algebra be associative for all values of the central charge, one

can only have ∆ = 1/2, 1, 3/2, 2, 3, 4, 6. He also gave the value of the operator

product coefficient C4
44 for the spin 4 algebra. This algebra was later constructed

in [12] , whereas in [13] we constructed the spin 6 algebra.
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The body of knowledge concerning the extended N = 1 superconformal alge-

bras is smaller in comparison; although using supsersymmetric Toda field theories

one can, in principle, construct classical versions of these algebras[3]. The only

hitherto known examples are the super Kac-Moody algebras[14] which are exten-

sions by superprimaries (i.e. , primaries of the super Virasoro algebra) of spin 1
2 ;

the N = 2 and the small N = 4 super Virasoro algebras which are the unique

extensions by one or three superprimary fields of spin 1; and the two algebras con-

structed in [15] : the extension by a spin 2 superprimary without self-coupling,

which is associative for c = −6
5 ; and the one by a spin 5

2 superprimary—called1

super W5/2—which is associative for c = 10
7 and c = −5

2 . The former value cor-

responds to the m = 12 minimal model[19] in the N = 1 unitary series, which

possesses an exceptional modular invariant partition function of type[20] (E6, D8).

It was argued in [16] that the superconformal field theory described by that par-

tition function had super W5/2 as a symmetry algebra and that the exceptional

modular invariant partition function was in fact diagonal when written in terms of

super W5/2 characters, a fact which now appears to have been proven[21]. A coset

construction for super W5/2 analogous to the one of Bais et al.[22] for W3 has been

given in [17] .

In this paper we initiate a systematic investigation of extensions of the N = 1

super Virasoro algebra by additional superprimary fields of integer or half-integer

spin 1
2 ≤ ∆ ≤ 7

2 . We restrict ourselves to fields of integer or half-integer spins since

we are interested in algebras defined by the (anti)commutator of their modes. Our

method is essentially a perturbative treatment of the conformal bootstrap[23],[24]:

we write down the most general operator product expansion consistent with super-

conformal covariance, compute the superconformal blocks and the four point func-

tions perturbatively, and impose duality order by order thus obtaining constraints

1 This algebra was originally termed super W3 in [15] (cf. [16] and [17] );

however, as noted in [18] , it is more natural to call the algebra generated by

a spin ∆ superprimary super W∆. We follow this terminology in this paper.
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on the operator product coefficients and/or the central charge. Our results can be

summarized as follows:

• ∆ = 1
2 : super Kac-Moody algebras, associative for all c.

• ∆ = 1: N = 2 and small N = 4 super Virasoro algebras, associative for all c.

• ∆ = 3
2 : direct product of super Virasoro algebras, associative for all c.

• ∆ = 2: a new (non-linear) algebra, associative for all c.

• ∆ = 5
2 : only associative for c = 10

7 and c = −5
2 .

• ∆ = 3: only associative for c = 5
4 , c = −45

2 , and c = −27
7 .

• ∆ = 7
2 : only associative for c = 7

5 and c = −17
11 .

In particular, notice that apart from the ∆ = 5
2 , c = 10

7 case already discovered

in [15] , we find two other values of the central charge corresponding to two N = 1

unitary minimal models: ∆ = 3, c = 5
4 , which corresponds to m = 6; and ∆ = 7

2 ,

c = 7
5 which is m = 10. We prove that the m = 6 model indeed affords a uni-

tary representation of the extended algebra constructed here. Moreover, we show

that this extended algebra is the symmetry algebra of the unitary SCFT defined

by the (A7, D4)-type modular invariant in the Cappelli classification[20],[25]. The

analogous statement is not true for the m = 10 and m = 12 cases. Nevertheless,

an intriguing structure reveals itself in the corresponding exceptional modular in-

variants (of types (D6, E6) and (E6, D8), respectively) which suggests that these

extended algebras might play a rôle in these theories after all.

The rest of this paper is organized as follows. Section 2 sets the notation and

explains the conventions we use for superconformal field theory. It explains in some

detail the methods used to compute the coefficients of the superconformal families,

the superconformal blocks, and the correlation functions. It also discusses the

crossing symmetry constraints on the correlation functions arising from duality.

The formulas we obtain differ from the ones usually found in the literature in

some spin dependent phases. Since these formulas are crucial in applications of

the conformal bootstrap we feel it is important to state them correctly at least
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once. This section also outlines the group theoretic method we follow to implement

crossing symmetry perturbatively. Section 3 contains the results outlined above;

although the details of the new spin 2 superconformal extension are relegated

to an appendix. Section 4 discusses the relation between some of the extended

algebras we find and some of the N = 1 unitary minimal models and their modular

invariants. Finally section 5 contains some concluding remarks.

§2 Superconformal machinery

N = 1 Superconformal Field Theory

In this subsection we briefly discuss our conventions for N = 1 superconformal

field theory (SCFT)[26],[19]. We focus on only one chiral sector. The N = 1

superconformal algebra is the unique associative extension of the Virasoro algebra

by a holomorphic primary field G(z) of weight 3
2 . It is defined by the following

operator product expansions (OPEs):

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ reg.

T (z)G(w) =
3
2G(w)

(z − w)2
+
∂G(w)

z − w
+ reg. (2.1)

G(z)G(w) =
2c/3

(z − w)3
+

2T (w)

z − w
+ reg. .

This superalgebra can be interpreted geometrically as the algebra of conformal

superdiffeomorphisms of a superspace with points Z = (z, θ). Exploiting this fact,

we can express operator products in a manifestly supercovariant fashion in terms

of superfields Φ(Z) = φ(z) + θψ(z). The OPEs in (2.1) can indeed be succinctly

written in terms of only one OPE involving the superfield T(Z) = 1
2G(z) + θT (z):

T(Z1)T(Z2) =
c/6

Z3
12

+
3
2θ12T(Z2)

Z2
12

+
1
2DT(Z2)

Z12
+
θ12∂T(Z2)

Z12
+ reg. , (2.2)

where Z12 ≡ z1 − z2 − θ1θ2 and θ12 ≡ θ1 − θ2 are the superintervals and D is the

covariant derivative defined by DΦ(Z) ≡ ψ(z) + θ∂φ(z) and obeying D2 = ∂. In
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the sequel we shall refer to OPEs in terms of superfields as SOPEs. A primary

superfield Φ∆(Z) = φ∆(z) + θψ∆+1/2(z) of weight ∆ obeys the following SOPE

with T(Z):

T(Z1)Φ∆(Z2) =
∆θ12Φ∆(Z2)

Z2
12

+
1
2DΦ∆(Z2)

Z12
+
θ12∂Φ∆(Z2)

Z12
+ reg. , (2.3)

which decodes into the following component OPEs:

T (z)φ∆(w) =
∆φ∆(w)

(z − w)2
+
∂φ∆(w)

z − w
+ reg. (2.4)

T (z)ψ∆+1/2(w) =
(∆ + 1/2)ψ∆+1/2(w)

(z − w)2
+
∂ψ∆+1/2(w)

z − w
+ reg. (2.5)

G(z)φ∆(w) =
ψ∆+1/2(w)

z − w
+ reg. (2.6)

G(z)ψ∆+1/2(w) =
2∆φ∆(w)

(z − w)2
+
∂φ∆(w)

z − w
+ reg. . (2.7)

In other words, φ∆(z) and ψ∆+1/2(z) are Virasoro primaries of weights ∆ and

∆ + 1/2 respectively. Note that whereas φ∆ is a superconformal primary, ψ∆+1/2

is its descendent.

The N = 1 superconformal algebra has two kinds of representations depending

on the monodromy around zero of the supercurrent G(z). Being a spin 3
2 field

it can change by at most a sign. Accordingly, if G(e2πiz) = G(z) we say we are

in the Neveu-Schwarz (NS) sector and if G(e2πiz) = −G(z) in the Ramond (R).

The mode expansions for T (z) and G(z) are given by T (z) =
∑

n∈Z z
−n−2Ln and

G(z) =
∑

r z
−r−3/2Gr, where, in this last sum, r runs over the half-integers or

integers in the NS or R sectors respectively. The mode algebra can be read off

from (2.1) :

[Lm , Ln] =(m− n)Lm+n +
c

12
m(m2 − 1)δm,−n

[Lm , Gr] =(
1

2
m− r)Gm+r (2.8)
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{Gr , Gs} =2Lr+s +
c

3
(r2 − 1

4
)δr,−s .

In particular in the NS sector, the subalgebra generated by {L0, L±1, G±1/2}, which

is isomorphic to osp(1|2), is represented without central extension. This subalgebra

plays a rôle in SCFT analogous to the one played by the projective subalgebra of the

Virasoro algebra in CFT. Geometrically it can be understood as superprojective

transformations on the super Riemann sphere[27],[28]. In particular in a SCFT

there is a unique state (the vacuum) which is annihilated by the superprojective

subalgebra. Acting on the vacuum with a superprimary field at the origin sets up

a bijective correspondence between superprimary fields and highest weight states

in the NS sector. On the other hand, to each highest weight state in the R sector

there corresponds a spin field[19] which creates it when acting on the vacuum.

Spin fields are, of course, Virasoro primaries but not superprimaries; in fact, their

OPE with G(z) is non local. For the purposes of this paper we will deal mostly

with the NS sector of the superconformal algebra since we are mainly interested in

investigating the existence of extensions of this algebra by superprimary fields.

For future use we record here the action of the modes of G(z) and T (z) on

primary superfields:

[Ln , Φ∆(Z)] =zn
[
(n+ 1)(∆ +

1

2
θD) + z∂

]
Φ∆(Z) (2.9)

[Gr , Φ∆(Z)]± =zr−1/2 [−∆(2r + 1)θ + zQ] Φ∆(Z) , (2.10)

where QΦ(Z) = ψ(z) − θ∂φ(z) is the generator of translations in superspace. It

anticommutes with the covariant derivative and obeys Q2 = −∂.

Superprojective invariance of the vacuum implies that the correlation functions
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involving (quasi)primary superfields2 obey two differential equations:

N∑
i=1

Qi 〈Φ∆1
(Z1) · · ·Φ∆N

(ZN )〉 =0 , (2.11)

N∑
i=1

(ziQi − 2∆iθi) 〈Φ∆1
(Z1) · · ·Φ∆N

(ZN )〉 =0 . (2.12)

In particular this fixes the two point functions of quasiprimaries up to a propor-

tionality constant:

〈Φ∆1
(Z1)Φ∆2

(Z2)〉 ∝
δ∆1,∆2

Z2∆2

12

. (2.13)

Superconformal Covariance of the Operator Product Algebra

Just as in ordinary (Virasoro) CFT the local fields assemble themselves into

Virasoro families, in SCFT they assemble themselves into superconformal families

constructed from the superprimary via the action of the operators L̂−k and Ĝ−r

defined by their action on any local field φ(z):

L̂−kφ(z) =

∮
Cz

dζ

2πi

1

(ζ − z)k−1
T (ζ)φ(z) , (2.14)

Ĝ−rφ(z) =

∮
Cz

dζ

2πi

1

(ζ − z)r−1/2
G(ζ)φ(z) . (2.15)

The superconformal family of a superprimary φ(z) is isomorphic to the NS Verma

module constructed from the highest weight vector obtained by acting with φ(0)

on the vacuum.

2 By a quasiprimary superfield we mean a superfield which satisfies equation

(2.10) for r = ±1/2.
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The SOPE between two primary superfields can be decomposed into supercon-

formal families:

Φ∆(Z)Φ∆′(W ) =
∑
∆′′

C∆′′

∆∆′ [Φ∆′′ ] (Z|W ) , (2.16)

where [Φ∆′′ ] (Z|W ) is shorthand for the contribution to the above SOPE of the

superconformal family of Φ∆′′ and where C∆′′

∆∆′ are some constants. For the purposes

of this paper we restrict ourselves to integer or half-integer weights ∆, ∆′, and

∆′′. For convenience we put W = 0 in the above expansion. Then we can write

[Φ∆′′ ] (Z|0) more explicitly as follows:

[Φ∆′′ ] (Z|0) =
∑

2N∈N0

Z∆′′−∆′−∆+N
∑

{r},{k}
β

∆′′ {r,k}
∆∆′ Ĝ−{r}L̂−{k}Φ∆′′(0) , (2.17)

where N0 denotes the non-negative integers, and the last sum is over all admissi-

ble pairs of tuples {r} = {r1, . . . , rR} and {k} = {k1, . . . , kK} at level N , that

is, subject to the conditions r1 > · · · > rR > 0, k1 ≥ · · · ≥ kK > 0, and∑R
i=1 ri +

∑K
j=1 kj = N ; and where by Ĝ−{r} we mean the product Ĝ−r1 · · · Ĝ−rR

and similarly for L̂−{k}. Finally note that we have introduced the convenient no-

tation ZN = zN−1/2θ for N half integral.

To obtain the SOPE Φ∆(Z)Φ∆′(W ) for arbitrary W we merely perform a

supertranslation. If Φ(Z) is a holomorphic superfield then it has a convergent

expansion around 0 which we can write as follows:

Φ(Z) =
∑

2n∈N0

1

bnc!
ZnD2nΦ(0) , (2.18)

where bncmeans the integer part of n. LetW = (w,ϕ) and let U(W ) = exp (ϕG−1/2+

wL−1). Then, Φ obeys

U(W )−1Φ(Z)U(W ) = Φ(Z −W ) , (2.19)

where Φ(Z −W ) is defined by the expansion in (2.18) where we put (Z −W )n =

(Z −W )n−1/2(θ − ϕ) for n half-integral. Then the SOPE Φ∆(Z)Φ∆′(W ) is given
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in terms of the one for W = 0 simply by U(W )Φ∆(Z −W )Φ∆′(0)U(W )−1 which,

when plugged into (2.17) , becomes (2.16) with

[Φ∆′′ ] (Z|W ) =
∑

2N∈N0

(Z −W )∆
′′−∆′−∆+N

∑
{r},{k}

β
∆′′ {r,k}
∆∆′

×
(
Ĝ−{r}L̂−{k} + [ϕĜ−1/2 , Ĝ−{r}L̂−{k}]

)
Φ∆′′(W ) . (2.20)

The coefficients β
∆′′ {r,k}
∆∆′ are determined by superconformal covariance of the

operator algebra; in other words, by the associativity of the operator product

T(Z1)Φ∆(Z2)Φ∆′(Z3). We shall need to compute these coefficients for the first few

levels, so we digress momentarily to explain their computation. Applying both

sides of (2.16) to the vacuum one obtains

Φ∆(Z)
∣∣∆′〉 =

∑
∆′′

C∆′′

∆∆′

∑
2N∈N0

Z∆′′−∆′−∆+N
∣∣∣ ∆′′

∆∆′ ;N
〉
, (2.21)

where we have defined

∣∣∣ ∆′′

∆∆′ ;N
〉
≡

∑
{r},{k}

β
∆′′ {r,k}
∆∆′ G−{r}L−{k}

∣∣∆′′〉 , (2.22)

where for any ∆, |∆〉 is the highest weight vector obtained by acting with Φ∆(0)

on the vacuum.

Acting on both sides of (2.21) with Gr for r > 0 and using the fact that

Gr|∆′〉 = 0 together with (2.10) we obtain the following formulas for the action

of Gr>0 on the states
∣∣∣ ∆′′

∆∆′ ;N
〉
:

Gr

∣∣∣ ∆′′

∆∆′ ;N
〉

=
∣∣∣ ∆′′

∆∆′ ;N − r
〉

for
∑

∆ +N ∈ Z

[(2∆− 1)r + ∆′′ −∆′ +N ]
∣∣∣ ∆′′

∆∆′ ;N − r
〉

for
∑

∆ +N ∈ Z + 1
2

,(2.23)
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where by
∑

∆ we mean, here and in the sequel, ∆+∆′+∆′′. From these relations

we can read off the effect of the action of Lk>0:

Lk

∣∣∣ ∆′′

∆∆′ ;N
〉

= [(∆− 1)k + ∆′′ −∆′ +N ]
∣∣∣ ∆′′

∆∆′ ;N − k
〉

for
∑

∆ +N ∈ Z[
(∆− 1

2)k + ∆′′ −∆′ +N
] ∣∣∣ ∆′′

∆∆′ ;N − k
〉

for
∑

∆ +N ∈ Z + 1
2

.(2.24)

In principle these equations are sufficient to compute the β
∆′′ {r,k}
∆∆′ levelwise; how-

ever we find it more convenient to derive a more explicit formula for them involving

the inverse of the Šapovalov form of a Verma module of the NS algebra.

Let {r′} = {r′1, . . . , r′R′} and {k′} = {k′1, . . . , k′K′} be a pair of admissible tuples

at level N and let {m̄} = {mM , . . . ,m1} for any tuple {m} = {m1, . . . ,mM}.
Then, by definition,

L{k̄′}G{r̄′}

∣∣∣ ∆′′

∆∆′ ;N
〉

=
∑

{r},{k}
β

∆′′ {r,k}
∆∆′ L{k̄′}G{r̄′}G−{r}L−{k}

∣∣∆′′〉
=

∑
{r},{k}

β
∆′′ {r,k}
∆∆′ M{r′,k′} {r,k}

∆′′

∣∣∆′′〉 , (2.25)

whereM∆′′ is the Šapovalov form on the NS Verma module V (∆′′, c). On the other

hand, we can use (2.23) and (2.24) iteratively to obtain an explicit expression for

the LHS of (2.22) :

L{k̄}G{r̄}

∣∣∣ ∆′′

∆∆′ ;N
〉

= f
∆′′ {r,k}
∆∆′

∣∣∆′′〉 , (2.26)

where, for {r} and {k} a pair of admissible tuples at level N , f
∆′′ {r,k}
∆∆′ are given

by

∏
i

2∆ri + ∆′′ −∆′ +N −
i∑

j=1

rj

 K∏
i=1

∆̃ki + ∆′′ −∆′ +
K∑

j=i+1

kj

 , (2.27)

where the first product is taken over all 1 ≤ i ≤ R obeying i = 2(
∑

∆ + N)
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(mod 2), and where

∆̃ =

{
∆ for

∑
∆ ∈ Z

∆ + 1
2 for

∑
∆ ∈ Z + 1

2

. (2.28)

Comparing (2.25) with (2.26) we find that

β
∆′′ {r,k}
∆∆′ =

∑
{r′},{k′}

(
M−1

∆′′

){r,k} {r′,k′}
f

∆′′ {r′,k′}
∆∆′ ; (2.29)

which makes manifest the observation of Al. B. Zamolodchikov [29] for the Vi-

rasoro case that the analytic behaviour of the β
∆′′ {r,k}
∆∆′ as a function of c is such

that its poles correspond to the zeros of the Šapovalov form.

Duality and the Conformal Bootstrap

The operator algebra of a SCFT is fixed by superconformal covariance up to a

few parameters: the dimensions of the superprimary fields and the operator prod-

uct coefficients C∆′′

∆∆′ . The conformal bootstrap consists of fixing these parameters

by demanding duality of the correlators. In CFT, Ward identities relate correla-

tors containing secondary fields to the ones with the primaries from which they

descend. Therefore[24] it is sufficient to impose duality only on the correlators of

primary fields. In SCFT, however, things aren’t quite so nice. In fact, supercon-

formal Ward identities relate the correlators involving secondaries to the ones with

only superprimaries and their superpartners, i.e. , the fields obtained from the

superprimaries by acting with G−1/2. These latter correlators are not all related

by Ward identities, leading to what amounts to a superselection rule. Hence these

correlators must be computed separately and duality must be imposed on them

independently. For this reason, and since the superpartners are Virasoro primaries,

we prefer to discuss duality of correlators involving Virasoro primaries.

It is easy to see that duality of any correlator follows from duality of the general

four point functions and that duality of these in turn follow from that of the four
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point functions involving primaries only. Hence let φk, . . . denote Virasoro primary

fields. The four point functions 〈φk(z1)φl(z2)φn(z3)φm(z4)〉 can in principle be

computed from the operator product expansions; but this requires the fields to be

radially ordered: |z1| > |z2| > |z3| > |z4|. The value of the correlation function for

any other ordering is obtained from this one via analytic continuation. Suppose

that a different ordering is given for the {zi}. Then there are two alternative ways

to compute the correlator: we can either analytically continue the correlator com-

puted from the former order, or we can compute it anew performing the operator

product expansions in the latter one. Duality simply states that these two methods

should yield the same result.

The requirement of duality (or crossing symmetry) of the four point functions

translates into a generically infinite set of equations for the parameters in a CFT,

which is in general hopeless to study except perturbatively. In order to set up the

perturbative expansion it is convenient to work not with the four point function

itself but with the related object:

Glk
nm(x) = lim

z→∞
z2∆k 〈φk(z)φl(1)φn(x)φm(0)〉

=〈k|φl(1)φn(x)|m〉 , (2.30)

where as usual we define the out state 〈k| ≡ limz→∞ z2∆k〈0|φk(z). We can arrive

at Glk
nm(x) from the general correlation function by making a projective transfor-

mation which sends (z1, z2, z3, z4) to (∞, 1, x, 0) where x = (z1−z2)(z3−z4)/(z1−
z3)(z2− z4) is the anharmonic ratio. The Glk

nm(x) can be computed perturbatively

in the anharmonic ratio around x = 0. The series is guaranteed to have a finite

radius of convergence if the OPE does, this being a basic axiom of CFT. But before

describing the perturbative evaluation of Glk
nm(x) in terms of the (super)conformal

blocks, we digress to derive the crossing relations for the Glk
nm(x).

Under a projective transformation z 7→ z′ = (az+b)/(cz+d), with ad−bc = 1,

a (quasi)primary field transforms as φk(z) 7→ (cz + d)−2∆kφk(z
′). When ∆k is not

an integer there is a phase ambiguity in the transformation law since (a, b, c, d)
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and (−a,−b,−c,−d) define the same transformation on the points. Fortunately

this ambiguity is absent from the transformation laws of the correlation functions

since we restrict ourselves to integer and half-integer weights only and in any non-

vanishing correlator the sum of the weights is always an integer. Let us then

perform the projective transformation z 7→ 1− z on Glk
nm(x). This transformation

sends (∞, 1, x, 0) to (∞, 0, 1−x, 1) and hence the radial order is upset. Reordering

and taking into account the possible signs in which we may incur by commuting

fermionic fields, we find that duality implies

Glk
nm(x) = (−1)4∆l(∆n+∆m)+4∆n∆m+3∆k+∆l+∆m+∆nGmk

nl (1− x) . (2.31)

Similarly for the transformation z 7→ 1/z, we find

Glk
nm(x) = (−1)4(∆k+∆m)(∆l+∆n)+4∆k∆m+∆k+∆l+∆m+∆nx−2∆nGlm

nk(1/x) . (2.32)

These signs are different from the ones usually found in the literature. We have

verified them explicitly in a variety of examples. At the end of this section we will

describe how to implement the crossing relations from a perturbative knowledge

of the Glk
nm(x) around x = 0; but first we discuss their perturbative evaluation.

Superconformal Blocks

The operator expansion φn(x)φm(0) between two superprimary fields can be

read off from the θ independent part of the SOPE Φn(X)Φm(0) for X = (x, θ):3

3 Sometimes it is convenient to rescale the primaries as follows Φm(Z) = ξmφm(z)+

θψm(z) in such a way that the two point functions of both φm and ψm are nor-

malized according to the standard convention that a Virasoro primary field φ∆

(not equal to the identity) obeys 〈φ∆(z)φ∆(0)〉 = (c/∆)z−2∆. In that case, the

operator product coefficients Cp
nm are related to those appearing in the SOPE

by the formula Cp
nm = ξpξ

−1
m ξ−1

n Cp
nm.
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φn(x)φm(0) =
∑

p

Cp
nm

∑
N∈N0

x∆p−∆n−∆m+Ñ
∑

{r},{k}
β

p {r,k}
nm Ĝ−{r}L̂−{k}φp(0) ,

(2.33)

where

Ñ =

{
N if ∆p + ∆n + ∆m ∈ Z
N + 1

2 if ∆p + ∆n + ∆m ∈ Z + 1
2

, (2.34)

and where the second sum is over admissible pairs of tuples {r}, {k} at level Ñ .

In particular notice that for ∆p +∆n +∆m ∈ Z+ 1
2 the first contribution from the

superconformal family [φp] does not come from the primary field itself but from

its descendent Ĝ−1/2φp(0). This is a phenomenon of extended algebras which does

not occur in Virasoro CFT. Plugging (2.33) into (2.30) we find

Glk
nm(x) =

∑
p

Cp
nmClpkF lk

nm(p|x) , (2.35)

where the superconformal blocks F lk
nm(p|x) are defined via

ClpkF lk
nm(p|x) =

∑
N∈N0

x∆p−∆n−∆m+Ñ
∑

{r},{k}
β

p {r,k}
nm 〈k|φl(1)G−{r}L−{k}|p〉 ,

(2.36)

where Clpk = 〈k|φl(1)|p〉 =
∑

q C
q
lpC

0
kq. The above matrix elements can be calcu-

lated by (anti)commuting the super Virasoro modes to the left and using the facts

that φl is superprimary and that they annihilate the out state. The result is, in

fact, given in terms of the f
p {r,k}
lk (defined in (2.27) )

F lk
nm(p|x) = ε

∑
N∈N0

x∆p−∆n−∆m+Ñ
∑

{r},{k}
{r′},{k′}

f
p {r,k}
lk

(
M−1

p

){r,k} {r′,k′}
f

p {r′,k′}
nm ,

(2.37)

where

ε =

{
1 if ∆p + ∆k + ∆l ∈ Z
(−1)2∆l+1 if ∆p + ∆k + ∆l ∈ Z + 1

2

,

and where we have used (2.29) to express the β
p {r,k}
nm in terms of the f

p {r,k}
nm . As

expected, (2.37) resembles the result in the Virasoro case[30],[13].
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As a consequence of the superselection rules described in the previous subsec-

tion the above superconformal blocks are not sufficient to compute all correlation

functions. In principle one could repeat the above calculations for four point func-

tions containing superpartners and in the process obtain expressions for the other

“superconformal blocks” in terms of which, and also of the ones given by (2.37) ,

any correlation function could then be written. Unfortunately, there does not seem

to be a closed form expression analogous to that of (2.37) for all of these other

blocks. We therefore find it more convenient to compute these other correlators

by first decomposing the relevant OPEs into Virasoro families and then using the

conformal (Virasoro) blocks. Moreover this provides a nontrivial check on our

calculations of the superconformal family coefficients. The analogous formulas to

(2.37) and (2.27) for the conformal blocks have been derived in [13] .

Crossing Symmetry Constraints

We now describe a method essentially due to Bouwknegt[11] to implement the

crossing symmetry constraints perturbatively. Although this method was applied

in [11] to the special case of four point functions involving only one primary

field, we shall need its straightforward generalization to the case of two distinct

primaries. Assume then that only two different conformal weights occur in Glk
nm(x).

In this case the crossing symmetry conditions can be rewritten as

Glk
nm(x) = Gmk

nl (1− x) = (−1)4∆l∆nx−2∆nGlm
nk(1/x) . (2.38)

These conditions can be given a very natural group theoretic interpretation. Con-

sider first the case of all fields being the same and of weight ∆. Denote by S∆ the

4∆ + 1 dimensional vector space spanned by x−2∆, . . . , x−1, 1, (1− x)−1, . . . , (1−
x)−2∆. The symmetric group4 S3 acts on S∆ via the following transformations:

4 This is the finite group of order 6 generated by S and T subject to the relations

S2 = T 2 = (ST )3 = 1. It is isomorphic to the dihedral groupD3: the symmetry

group of the equilateral triangle.

– 17 –



(S · f)(x) =(−x)−2∆f(1/x)

(T · f)(x) =f(1− x) ,

for any function f ∈ S∆. Crossing symmetry of the G∆∆
∆∆(x) is then precisely the

statement that it be in SS3

∆ – the S3-invariants of S∆, which is spanned by the S3

orbits of some of the basis functions. Comparing term by term the perturbative

expansion of G∆∆
∆∆(x) around x = 0 with that of a linear combination of the basis of

the invariants of SS3

∆ gives a set of linear equations involving the operator product

coefficients, the central charge, and the parameters in the linear combination of

the invariant functions; which, generically, is overdetermined. Nevertheless, we

are only interested in the equations coming from the poles at x = 0; the reason

being that the equations coming from regular terms are to be solved by adding

new superprimaries which, since they only appear in the regular terms of the OPE

are not present in the mode algebra.

Consider now the case where two distinct fields of weights ∆ and ∆′ appear

in Glk
nm(x). Crossing transformations now permute the {k, l,m} indices of the

correlator as well as their functional dependence on x. We shall only be interested

in the case where two of the fields have weight ∆ and the other two ∆′. Therefore

the correlators G∆′∆′

∆∆ (x), G∆∆′

∆∆′(x), and G∆′∆
∆∆′(x) will transform into each other.

We find it convenient therefore to introduce an auxiliary 3-dimensional vector space

V spanned by {e1, e2, e3} and a representation of S3 on V given by the following

matrices relative to this basis

T =

 0 0 1

0 1 0

1 0 0

 , S =

 0 σ 0

σ 0 0

0 0 1

 , (2.39)

where σ = (−1)2∆+4∆∆′
. Then the crossing symmetry conditions are equivalent

to the statement that

G(x) ≡ G∆′∆′

∆∆ (x)⊗ e1 +G∆′∆
∆∆′(x)⊗ e2 +G∆∆′

∆∆′(x)⊗ e3 ∈ S∆ ⊗ V (2.40)

be an element of the invariant subspace (S∆ ⊗ V)S3 . This 2∆ + 1 dimensional
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subspace is spanned by the orbits of a subset of the basis elements. Comparing

order by order (and ei by ei) the Laurent expansion of G(x) about x = 0 with that

of a generic element of (S∆ ⊗ V)S3 we once again obtain a set of linear equations

which, after determining the free parameters in the linear combination of invariants,

impose further constraints on the OPE coefficients and/or the central charge. It is

precisely these conditions which we will analyze systematically in the next section

to determine possible extensions of the N = 1 superconformal algebra. It should

be remarked that the extension of the above method to the case of the general four

point function Glk
nm(x) is completely straightforward. Crossing transformations

leave fixed the index n and hence in the case of the fields φk, φl, φm being different

we merely tensor S∆n
with a 6 dimensional representation W of S3 to take into

account the permutation of the indices. Crossing symmetry is then equivalent

to the analogue of (2.40) being an element of the 4∆n + 1 dimensional space

(S∆n
⊗W)S3 .

§3 Extended Superconformal Algebras

In this section we turn to the explicit construction of extended N = 1 super-

conformal algebras. We will mainly focus on those algebras which can be obtained

by extending the N = 1 super Virasoro algebra by one superprimary φ
∆

of spin

1
2 ≤ ∆ ≤ 7

2 subject to the following OPE:

φ
∆
× φ

∆
= C0

∆∆[φ
0
] + C∆

∆∆[φ
∆

] + regular terms , (3.1)

where [φ] denotes the superconformal family of the superprimary φ. In general,

the self-coupling C∆
∆∆ can only be nonzero for ∆ = 2n or 2n+ 3

2 , with n ∈ N0. We

leave open the possibility that further superprimaries may appear in the regular

terms of the above OPE so that their presence may not be detectable in the mode

algebra. The requirement that no new superprimaries may appear at all is much

stronger and, in fact, always constrains the central charge to a finite set of values.

In the case of C∆
∆∆ = 0 this has been investigated in [30] and [31] for the case of

the Virasoro algebra and in [32] for the case of the N = 1 super Virasoro algebra.
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The method we follow is the following. We write down the most general OPE

of the fields involved which is consistent with superconformal covariance. The only

free parameters are the central charge and the possible coupling(s). Following the

(super)conformal bootstrap approach, we now impose crossing symmetry of the

four point functions. As explained in the previous section, it is sufficient to check

the correlators involving the primary fields and their superpartners. There is also

good empirical evidence to suggest that it is sufficient to consider correlators in-

volving only primaries or only superpartners. We do, however, also check the mixed

correlators. The relevant four point functions are computed perturbatively either

from the superconformal blocks (in the case of primaries) or from the conformal

blocks, after breaking up the superconformal families into Virasoro ones. As we

saw in the previous section, one can effectively impose crossing symmetry just from

a perturbative knowledge of the correlators as long as one knows all the poles of

the correlators Gnm
lk (x) at x = 0.

Intuitively one should expect the following results. For ∆ < 2 the algebras

are Lie superalgebras and one should recover the standard results. For ∆ = 2

one should find an algebra that satisfies duality for all values of the central charge.

Indeed the study of the case without self-coupling in [15] revealed that the central

charge was fixed. Including the coupling one expects this parameter to be fixed

instead of the central charge. This is further supported by the existence of a

classical version of this algebra arising from super Toda field theory[3]. For ∆ > 2

counting arguments similar to those in [11] teaches us that these algebras should

only exist for a finite set of values of the central charge.

We now discuss our results case by case. In most cases we omit the details

concerning the explicit form of the algebra but give schematically the Virasoro

decomposition of the operator algebra whose couplings are unambiguously deter-

mined in terms of the couplings in the SOPE by superconformal covariance. We

also discuss the origin of the restriction on the coupling (if any) and/or on the

central charge for each algebra.
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∆ = 1
2

We introduce a primary superfield Φ1/2(Z) = φ
1/2

(z) + θφ
1
(z). In this case

there is no self-coupling and the OPEs are those of a free fermion and a free boson

whose modes commute. This corresponds to a u(1) super Kač-Moody algebra. The

generalization to more than one primary superfield of weight 1
2 is straightforward

and gives rise to more general super Kač-Moody algebras[14]. We omit the details

since these algebras are well known.

∆ = 1

Let Φ1(Z) = φ
1
(z) + θφ

3/2
(z). Again there is no self-coupling possible. The

resulting mode algebra is a Lie superalgebra with the following Virasoro primaries:

φ
0
, G, φ

1
, and φ

3/2
. It is a classical result[33] that the only such algebra with

this field content is the N = 2 super Virasoro algebra whose OPEs are given

(schematically) by

φ
1
× φ

1
→ [φ

0
]

φ
3/2

× φ
3/2

→ [φ
0
]

φ
1
× φ

3/2
→ [G]

G× φ
1
→ [φ

3/2
] (3.2)

G× φ
3/2

→ [φ
1
]

G×G→ [φ
0
] .

This algebra has been the center of a lot attention recently because of its con-

nections to string theory (since N = 1 spacetime supersymmetry requires N = 2

superconformal symmetry on the worldsheet[34]), Landau-Ginzburg theories[35],

and topological field theory[36].

Adding n > 1 weight 1 superprimaries (and nothing else) yields an associative

algebra for all values of the central charge only for n = 3, resulting in the small

N = 4 super Virasoro algebra.
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∆ = 3
2

Analogously to the conformal case treated by Zamolodchikov[6] the addition of

n primary spin 3
2 superfields Φi

3/2(Z) = φi
3/2(z)+θφi

2(z), where i = 1, . . . , n, yields

an algebra which is isomorphic to the direct product of n+ 1 copies of the N = 1

super Virasoro algebra. Indeed, since the resulting algebra is a Lie superalgebra it

is actually easier to impose associativity by satisfying the Jacobi identities on the

modes. Letting Φ0
3/2(Z) = T(Z) and extending the range of the indices from 0 to

n, the algebra takes the following form

Φi
3/2 × Φj

3/2
→

n∑
k=0

Cij
k[Φ

k
3/2] . (3.3)

The Jacobi identities of the modes translate into the requirement that the couplings

Cij
k be the structure constants defining an associative commutative algebra. As is

well known such an algebra can be diagonalized yielding the aforementioned direct

product structure.

∆ = 2

Decomposing the SOPE of a primary superfield Φ2(Z) = φ
2
(z)+ θφ

5/2
(z) into

Virasoro families we find:

φ
2
× φ

2
→ [φ

0
] + [φ

2
]

φ
5/2

× φ
5/2

→ [φ
0
] + [φ

2
] + [φ

4
] + [φ̃

4
] (3.4)

φ
2
× φ

5/2
→ [G] + [φ

5/2
] + [φ

7/2
] ,

where {φ
0
, G, φ

4
, . . .} is the decomposition into Virasoro primaries of the super-

conformal family of the identity, and {φ
2
, φ

5/2
, φ

7/2
, φ̃

4
, . . .} is that of the super-

conformal family of φ
2
. We want to stress the fact that the couplings in the above

operator products are completely determined from the self-coupling C2
22 of the su-

perprimary by superconformal covariance. It should also be remarked that this is

the first of the algebras we present which is not a Lie superalgebra since it contains

quadratic terms in the RHS of the (anti)commutator of the modes.
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The four point function 〈φ2φ2φ2φ2〉 is crossing symmetric for any value of the

central charge and of the self-coupling, whereas
〈
φ5/2φ5/2φ5/2φ5/2

〉
fixes the square

of the self-coupling to (
C2

22

)2
=

4(6 + 5c)2

(21 + 4c)(15− c)
, (3.5)

in a normalization where C0
22 = c/2. In the sequel we will state all numerical results

for the self-couplings in the standard normalization C0
∆∆ = c/∆ for the superpri-

mary φ
∆

. Notice that the coupling vanishes precisely for c = −6
5 in agreement with

the result of [15] where the case without self-coupling was treated. Furthermore

the mixed correlators
〈
φ5/2φ5/2φ2φ2

〉
, . . . are crossing symmetric without imposing

any constraints on the central charge, as we had expected. Therefore the mode

algebra is associative for all values of the central charge. In the appendix we write

the algebra down explicitly.

Recently, a classical version of super W2 was constructed from the supersym-

metric Toda field theory corresponding to osp(3|2) [3] . This algebra was later

quantised in [37] although the expression therein differs from the one given here.

In fact, due to some computational errors which now seem to have been clarified[38],

the form of the algebra in [37] is wrong, as can be easily inferred from the fact

that it does not decompose into superconformal families.

Notice that for c = −6
5 the self-coupling vanishes and hence the superconfor-

mal family of the spin 2 superprimary does not appear. Thus, our results imply

the existence of an extended conformal algebra for this value of the central charge,

with φ2×φ2 = C0
22φ0 + regular terms. This algebra is precisely the one discovered

in [15] . Alternatively, one can put c = −6
5 in the explicit form of the algebra

as given in the appendix. One then sees that some superdescendents of W do

remain, since the zero in the self-coupling is cancelled by a pole in the supercon-

formal family coefficients. It has been remarked[37],[38] that the resulting algebra

is then essentially different from that found in [15] . This, however, is not the

case. Indeed, it is easy to see that the descendent fields which remain are null for

this particular value of the central charge, hence decoupling from any correlation
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function. Therefore, they can be consistently set to zero and thus the “physical”

content of the two algebras is the same. This implies that in a free field realization

of super W2 these null fields should be identically zero for that value of the central

charge.

∆ = 5
2

The extension of the N = 1 super Virasoro algebra by a primary superfield

Φ5/2(Z) = φ
5/2

(z) + θφ
3
(z) was investigated in detail in [15] to where we refer

the reader for details. The algebra is only associative for c = 10
7 and c = −5

2 .

As discussed in the introduction this algebra—super W5/2— plays a rôle in the

c = 10
7 SCFT defined by the (E6, D8) exceptional modular invariant. We will try

to illustrate this in the next section. Recently a proposed extension of this algebra

(for all values of the central charge) has been given in [39] and consists of 8

generating fields.

∆ = 3

In the case of a primary superfield Φ3(Z) = φ
3
(z) + θφ

7/2
(z) there is no self-

coupling and the decomposition of the algebra into Virasoro primaries is schemat-

ically given by:

φ
3
× φ

3
→ [φ

0
] + [φ

4
]

φ
7/2

× φ
7/2

→ [φ
0
] + [φ

4
] + [φ

6
] (3.6)

φ
3
× φ

7/2
→ [G] ,

where {φ
0
, G, φ

4
, φ

6
, . . .} is the decomposition of the superconformal family of the

identity into Virasoro primaries. In particular, φ
4

is the same primary field which

appeared in the ∆ = 2 case.

Crossing symmetry of 〈φ3φ3φ3φ3〉 is satisfied for all values of the central charge,

whereas
〈
φ7/2φ7/2φ7/2φ7/2

〉
fixes the central charge to be 5

4 , −27
7 , and −45

2 . More-

over the mixed correlators do not impose any further constraints on the central

charge.
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In the next section we will exhibit this algebra as the symmetry algebra of the

c = 5
4 SCFT defined by the (A7, D4)-type modular invariant.

∆ = 7
2

Finally we discuss the algebra obtained by adding a primary superfield Φ7/2(Z) =

φ
7/2

(z) + θφ
4
(z). In this case the field can couple to itself. The decomposition of

the OPEs into Virasoro primaries is now a little more complicated:

φ
7/2

× φ
7/2

→ [φ
0
] + [φ

4
] + [φ̃

4
] + [φ

6
] + [φ̃

6
]

φ
4
× φ

4
→ [φ

0
] + [φ

4
] + [φ̃

4
] + [φ

6
] + [φ̃

6
] (3.7)

φ
7/2

× φ
4
→ [G] + [φ

7/2
] + [φ

11/2
] + [φ

13/2
] ,

where {φ
0
, G, φ̃

4
, φ̃

6
, . . .} and {φ

7/2
, φ

4
, φ

11/2
, φ

6
, φ

13/2
, . . .} are the Virasoro de-

compositions of the superconformal families of φ
0

and φ
7/2

respectively.

Duality of the four point function
〈
φ7/2φ7/2φ7/2φ7/2

〉
fixes the square of the

self-coupling to a rational function of the central charge and 〈φ4φ4φ4φ4〉 restricts

the central charge to take only the following values: c = 7
5 and c = −17

11 . Again,

the mixed correlators do not restrict the central charge further.

In conclusion, the values for the self-couplings of this algebra are given by:

(
C

7/2
7/2,7/2

)2
=


4563
25840 for c = 7

5

−34460181
4187144 for c = −17

11

. (3.8)

After a preliminary version of this paper, we received a preprint by Hornfeck[40]

confirming this result via an explicit check of the Jacobi identities.

We shall comment on the possible rôle of this algebra in the c = 7
5 SCFT

defined by the (D6, E6)-type modular invariant in the next section.
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§4 N = 1 Superconformal Unitary Minimal Models with Extended

Symmetry

In this section we explore the relationship between some of the extended alge-

bras constructed in the previous section and some of the unitary minimal models

of the N = 1 super Virasoro algebra[26],[19]. The central charge of these models

are indexed by a positive integer m ≥ 3

c(m) =
3

2

(
1− 8

m(m+ 2)

)
, (4.1)

and the spectrum is given by

∆r,s =
((m+ 2)r −ms)2 − 4

8m(m+ 2)
+

ε

16
, (4.2)

where 1 ≤ r ≤ m − 1, 1 ≤ s ≤ m + 1, and ε = 0 for r − s even (NS sector) and

ε = 1 for r − s odd (R sector).

Notice that for m = 6, c = 5
4 and ∆5,1 = ∆1,7 = 3; for m = 10, c = 7

5

and ∆9,5 = ∆1,7 = 7
2 ; and for m = 12, c = 10

7 and ∆5,1 = ∆7,13 = 5
2 ; and

that these are the positive c-values for which the relevant extended algebras were

found to exist. It follows from the Cappelli classification of modular invariants

for the unitary super Virasoro minimal models, that for these c-values there exist

non-diagonal (in the super Virasoro characters) invariants defining SCFTs in which

either the primary or its superpartner appear—for m = 6 we find the (A7, D4)-type

invariant, for m = 10 the (D6, E6)-type invariant, and the (E6, D8)-type invariant

for m = 12. It is therefore tempting to conjecture that these extended algebras are

in fact realized in these theories. However, this is clearly not sufficient. Indeed,

one must verify that the representations of the super Virasoro algebra appearing

in that particular SCFT assemble themselves into representations of the extended

algebra. To do this it is convenient to study the fusion rules of the relevant minimal

model.
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The fusion rules for the minimal models of the N = 1 super Virasoro algebra

were derived in [26] for the NS sector and the R sector was incorporated in [41]

. Using them we will see that for m = 6 the extended spin 3 algebra is indeed

realized in the fusion rules, whereas for m = 10 and m = 12 we have not been able

to show that this is the case. We therefore discuss them in separate subsections—

the one for m = 6 being the more detailed, since our results in this case are more

conclusive.

m = 6

The Kač table of this minimal model is given by

5 3 67
32

5
4

23
32

1
4

3
32 0

4 29
16

33
32

9
16

5
32

1
16

1
32

5
16

3 5
6

41
96

1
12

5
96

1
12

41
96

5
6

2 5
16

1
32

1
16

5
32

9
16

33
32

29
16

1 0 3
32

1
4

23
32

5
4

67
32 3

r/s 1 2 3 4 5 6 7

From the fusion rules5 one sees that the spin 3 primary φ
3

obeys

φ
3
× φ

3
= φ

0
, (4.3)

which already proves that the spin 3 extended algebra found in the previous section

is realized in this minimal model. Equation (4.3) implies[42] that φ
3

is a simple

current[43] of order 2. Therefore it breaks up the primaries and their superpartners

into orbits of at most length 2. Explicitly the fusion products with φ
3

in the NS

5 For notational convenience we denote the primary field corresponding to the

Kač label (r, s) by φ
∆r,s

.
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sector are given by

φ
3
× φ

1/4
= φ

5/4

φ
3
× φ

1/32
= φ

33/32

φ
3
× φ

5/32
= φ

5/32
(4.4)

φ
3
× φ

5/6
= φ

5/6

φ
3
× φ

1/12
= φ

1/12
,

and in the R sector by

φ
3
× φ

3/32
= φ

67/32

φ
3
× φ

1/16
= φ

9/16

φ
3
× φ

5/16
= φ

29/16

φ
3
× φ

23/32
= φ

23/32
(4.5)

φ
3
× φ

5/96
= φ

5/96

φ
3
× φ

41/96
= φ

41/96
.

In the NS sector we denote by φ
∆

the superpartner of φ
∆

. Although these super-

partners are not primary with respect to the super Virasoro algebra, they are with

respect to the chiral algebra of the SCFT (which consists of the maximal bosonic

subalgebra of the universal enveloping algebra of the super Virasoro algebra) and

hence they can appear in the fusion products. Their fusion products, however,

follow from those of the superprimaries by acting with the supercurrent G (itself a

simple current of order 2) and hence we omit them. In particular, this means that

the superpartner φ
3

is also a simple current of order 2. Recall that the primaries

in the R sector are doubly degenerate; although we shall not clutter the notation

distinguishing between them.

The procedure outlined in [43] in order to obtain a non-diagonal modular

invariant as a result of the existence of a simple current can be straightforwardly

applied in this case yielding, starting from the diagonal modular invariant, the
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following partition function:

Z =
1

2
|χ

0
+ χ

3
|2 +

1

2
|χ

1/4
+ χ

5/4
|2 + |χ

5/6
|2 + |χ

1/12
|2 + (χ ↔ χ̃)

+
1

2
|χ̂

3/32
+ χ̂

67/32
|2 + |χ̂

23/32
|2 + |χ̂

41/96
|2 +

1

2
|χ̂

5/96
|2 , (4.6)

where χ denotes the NS character; χ̃ the NS character with a (−1)F insertion;

and χ̂ denotes the R character. This modular invariant is precisely the (A7, D4)

invariant in the Cappelli classification. Notice that the SCFT defined by this

invariant does contain a holomorphic primary of spin 3 that generates the extended

algebra found in the previous section. Hence, this invariant seems to provide us

with an explicit example of a SCFT with super W3 symmetry.

m = 10 and m = 12

We refrain from giving the Kač table for these models since they involve too

many primaries. The fusion rules for the m = 10 model teach us that φ
7/2

is not

a simple current, but rather it satisfies the following fusion product:

φ
7/2

× φ
7/2

= φ
0
+ φ

3/2
+ φ

19/3
+ φ

7/2
+ φ

1/3
. (4.7)

Therefore, unlike in the m = 6 model, one cannot a priori conclude that this

minimal model realizes super W7/2 symmetry. Nevertheless, an intriguing algebraic

structure surrounds the spin 7/2 field. First of all, φ
7/2

generates a subalgebra of

this minimal model containing (apart from itself) those primaries appearing in the

above fusion product, their superpartners and a simple current J of order 2 (and

its superpartner) of spin ∆9,1 = 10 which pairs up φ
7/2

with φ
3/2

, and φ
1/3

with

φ
19/3

. Moreover φ
7/2

has unique fusion rules with a number of other primaries

in this model (not belonging to this subalgebra) and, remarkably, these fields all

contribute to the exceptional modular invariant of the (D6, E6)-type. Indeed this

invariant has the following structure:

Z =
1

4

∑
∆

|χ
∆

+ χ
φ∆

+ χ
J∆

+ χ
Jφ∆

|2 + (χ ↔ χ̃)
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+
1

2

∑
∆

|χ̂
∆

+ χ̂
J∆
|2 , (4.8)

where χ
φ∆

denotes the character associated with the primary field obtained by

acting with φ
7/2

on φ
∆

, and similarly for J∆ and Jφ∆. Moreover, the first sum

runs over those weights ∆ such that φ
∆

has unique fusion rules with φ
7/2

.

The case m = 12 parallels the previous one closely, hence we omit most details.

In this case, φ
5/2

is not a simple current; but generates a subalgebra containing

a simple current of order 2 of spin ∆1,11 = 15. The (E6, D8)-type exceptional

modular invariant for this model has the form (4.8) where φ is now φ
5/2

and J is

the spin 15 simple current.

We shall not attempt to prove here that these SCFTs do indeed afford such

extended symmetries; although the structure of (4.8) clearly suggests that it can

be obtained via the procedure in [43] applied to the simple current J , but starting

from a non-diagonal invariant that presumably is a consequence of the algebraic

structure related to φ
7/2

(for m = 10) or φ
5/2

(for m = 12).

§5 Conclusions

In this paper we have initiated a systematic investigation of the existence of

extensions of the N = 1 super Virasoro algebra by one or in some cases several pri-

mary superfields of (half-)integer dimension 1
2 ≤ ∆ ≤ 7

2 using the conformal boot-

strap method. Consequently we developed in detail the decomposition of operator

products into superconformal families and the implementation of the requirement

of crossing symmetry of the correlators. Since this method becomes computation-

ally quite involved for high ∆, we have restricted ourselves to the above range of

conformal dimensions. However, a glance at the Kač tables of N = 1 minimal

models reveals that there are certainly many more such algebras. In fact, the mth

N = 1 unitary minimal model (for m even) always contains a representation of

super Wm(m−2)/8, as can easily be inferred from the fusion rules.
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The extended algebras we constructed in that way fall into two classes. For

∆ ≤ 3
2 the algebras are Lie (super)algebras and, hence, it is easier to verify the

Jacobi identities directly in order to check associativity. Some of these results are

already known; but we have included them for completeness. For ∆ ≥ 2, however,

the algebras are non-linear since in the (anti)commutator of the modes there also

appear normal ordered products of them. For ∆ = 2 we found an algebra—super

W2—which is associative for all values of the central charge. For higher values

of ∆ the requirement of crossing symmetry constraints the central charge to lie

in a finite set of values. It is remarkable that all such positive c-values lie in the

N = 1 unitary minimal series. Therefore we investigated the relation between these

minimal models and these extended algebras. We argued that the m = 6 unitary

minimal model realizes the super W3 algebra and that the (A7, D4)-type modular

invariant in the Cappelli classification is diagonal in the super W3 characters. For

super W5/2 and super W7/2 we have not been able to reach similar conclusions.

Nevertheless we pointed out an intriguing connection between the (D6, E6) (resp.

(E6, D8)) exceptional modular invariants and super W7/2 (resp. super W5/2). It

would be interesting to explore the existence of similar connections in, say, Virasoro

minimal models.

Undoubtedly, the most tangible result of this paper is the construction of super

W2—the first non-linear extension of the N = 1 super Virasoro algebra which

is associative for all values of the central charge. There are known examples of

two-dimensional statistical mechanics models displaying superconformal invariance

[19],[44] at criticality as well as models with a non-linear extension of the conformal

algebra as a symmetry[45]. This prompts the question of whether there are models

displaying both. Our investigations are a first step in the construction of such

supersymmetric conformal field theories. In particular, the non-linear algebra super

W2 invites the search for its (unitary) minimal models. On the other hand, recent

advances in W -gravity make super W2 a prime candidate for the construction

of a W -supergravity theory, which could lead to new insights into the nature of

superstring theory.
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Appendix A The Spin 2 Extended Algebra: super W2

In this appendix we describe in some detail the extension of the N = 1 super

Virasoro algebra by a primary of spin 2. This algebra is the first known non-linear

N = 1 superconformal extension which is associative for all values of the central

charge. The SOPE is given by6

Φ2 × Φ2 → C0
22 [Φ0] + C2

22 [Φ2] , (A.1)

where C0
22 = −c/10 and C2

22 = iC22
2/
√

5; and can be easily written explicitly using

equations (2.16) and (2.20) and the following coefficients for the superconformal

families:

{r} {k} β
0 {r,k}
22

{3
2} {} 6

c

{} {2} 4
c

{5
2} {} 4

c

{} {3} 2
c

{7
2} {} 12(c+3)

c(4c+21)

{3
2} {2} 108

c(4c+21)

{r} {k} β
2 {r,k}
22

{1
2} {} 1

2

{} {1} 1
2

{3
2} {} 27

5c+6

{1
2} {1} 3(c−6)

2(5c+6) (A.2)

6 We use the normalization ξ2 = i/
√

5; see footnote 3. We also write W and U

for φ2 and φ5/2 respectively.
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However we find it more illuminating to break the algebra into its Virasoro

primaries. The general form of the algebra is given by (3.4) where the primary

fields are explicitly given by:

Θ(z) ≡ φ
4
(z) = (∂GG) (z)− 17

5c+ 22
Λ(z)− 3

10
∂2T (z) ,

∆(z) ≡ φ̃4(z) = −i
√

5 (GU) (z)− 76

5c+ 44
Ω(z)− 1

5
∂2W (z) , (A.3)

Γ(z) ≡ φ
7/2

(z) = (GW ) (z) +
2i√
5
∂U(z) ,

where as usual the parenthesis denote normal ordering defined via point-splitting

regularization, and the quasiprimary fields Λ(z) and Ω(z) are defined by

Λ(z) = (TT ) (z)− 3

10
∂2T (z) , (A.4)

and

Ω(z) = (TW ) (z)− 3

10
∂2W (z) . (A.5)

In terms of these fields the OPEs are given by (2.1) , (2.4) , (2.5) , (2.6) , (2.7) ,

and

W (z)W (0) =
c/2

z4
+

2T (0) + C22
2W (0)

z2
+
∂T (0) + 1

2C22
2∂W (0)

z
+ reg. ,

U(z)W (0) =

3i√
5
G(0)

z3
+

2i√
5
∂G(0) + 1

2C22
2U(0)

z2

+
aΞΞ(0) + 3i

4
√

5
∂2G(0)

z

+ C22
2

3
10∂U(0) + aΓΓ(0)

z
+ reg. , (A.6)

U(z)U(0) =
2c/5

z5
+

2T (0) + 2
5C22

2W (0)

z3
+
∂T (0) + 1

5C22
2∂W (0)

z2

+ C22
2

3
50∂

2W (0) + aΩΩ(0) + a∆∆(0)

z

+
aΛΛ(0) + 3

10∂
2T (0) + aΘΘ(0)

z
+ reg. ,
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where we have introduced another quasiprimary field:

Ξ(z) = (TG) (z)− 3

8
∂2G(z) , (A.7)

and the constants aΞ = 54i√
5(4c+21)

, aΓ = 27i√
5(5c+6)

, aΩ = 54
5(5c+44) , a∆ = − 27

5(5c+6) ,

aΛ = 27
5c+22 , and aΘ = 27

5(4c+21) ; and where the coupling C22
2 is given (up to a sign

reflecting the algebra automorphism φ
2
7→ −φ

2
) by (3.5) . It is now straightforward

to compute the mode algebra of which we give the most relevant (anti)commutators

for completeness. We define the modes φn for a field φ(z) of weight ∆ by φ(z) =∑
n φnz

−n−∆, where n is half-integer for the NS sector of ∆ ∈ Z + 1
2 fields, and

integer otherwise. One then obtains

[Wm , Wn] =
c

12
m(m2 − 1)δm+n,0 + (m− n)

(
Lm+n +

1

2
C22

2Wm+n

)
,

[Ur , Wn] =
i

4
√

5
(r2 − 2nr + 3n2 − 9

4
)Gn+r + C22

2(
1

5
r − 3

10
n)Un+r

+ aΞΞn+r + C22
2aΓΓn+r , (A.8)

and

{Ur , Us} =
c

60
(r2 − 1

4
)(r2 − 9

4
)δr+s,0

+
1

10
(3r2 + 3s2 − 4rs− 9

2
)
(
Lr+s +

1

5
C22

2Wr+s

)
+ aΛΛr+s + aΘΘr+s + C22

2 (aΩΩr+s + a∆∆r+s) .

A tedious calculation shows that the Jacobi identities are indeed satisfied for and

only for the given value of the self-coupling.
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