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ABSTRACT

The recent identification of classical BRST cohomology with the “vertical cohomol-

ogy” of a certain fibration is used to compute it in terms of the classical observables

and the topology of the gauge orbits. When the gauge orbits are compact and ori-

entable, a duality theorem is exhibited.
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Introduction

The classical BRST cohomology for finite dimensional systems has recently

been interpreted geometrically. Let (M,Ω) be a symplectic manifold and {φi} a

set of first class constraints. Their zero locus, Mo = ∩iφ
−1
i (0), is a closed co-

isotropic submanifold of M. The hamiltonian vector fields, {Xi}, associated to

the constraints span the null directions of the restriction of Ω to Mo. Since this

distribution is involutive, Mo is foliated by maximal connected submanifolds having

the {Xi} as their tangent vectors. If this foliation, F , fibers, the space of leaves M̃

can be given a differentiable structure such that the canonical map, π : Mo → M̃ ,

sending each point in Mo to the unique leaf it lies in, is a smooth surjection.

Moreover M̃ inherits a symplectic structure Ω̃, making (M̃, Ω̃) into a symplectic

manifold. The passage from (M,Ω) to (M̃, Ω̃) is known as the symplectic reduction

of M by Mo.

The tangent bundle of Mo breaks up as TMo = TF ⊕NF , where TF = TM⊥
o

is the tangent space to the foliation and NF is the normal bundle to the foliation.

Let T ∗F and N∗F denote the cotangent and conormal bundles to the foliation,

respectively. Under this split, the differential forms, Ω(Mo), on Mo decompose as

Ω(Mo) =
⊕
p,q

Ωp,q(Mo) , (1)

where Ωp,q(Mo) is the space of smooth sections through the bundle

∧pT ∗F ⊗
∧qN∗F . (2)

The exterior derivative on Mo has a piece

dF : Ωp,q → Ωp+1,q , (3)

called the “vertical derivative”, which corresponds to exterior differentiation along

the leaves of the foliation. Let us define the “vertical forms” by Ωp
V (Mo) ≡
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Ωp,0(Mo). They form a differential complex under the vertical derivative

· · · −→ Ωp
V (Mo)

dF−→ Ωp+1
V (Mo) −→ · · · , (4)

whose cohomology, called the “vertical cohomology”, is precisely the cohomology

of the classical BRST operator. This is proven in [1] and in [2] for the case of

irreducible constraints; and in [3] for the case of reducible constraints.

In [4] the Poincaré lemma for this complex is proven. That is, if ω is a dF -

closed vertical p-form (for p ≥ 1), then around each point in Mo there exists a

neighborhood U and a vertical (p− 1)-form θ defined on U such that ω = dFθ on

U . A vertical 0-form is just a function on Mo and it is dF -closed if and only if it is

constant on each leaf. Therefore a dF -closed vertical 0-form is the pull back via π

of a function on M̃ . Let E
M̃

be the sheaf of germs of smooth functions on M̃ and

let ΩV denote the sheaf of germs of vertical forms on Mo. By the above remarks

there is an acyclic resolution

0 −→ π∗E
M̃
−→ Ω0

V
dF−→ Ω1

V −→ · · · (5)

where the first map is the inclusion. This identifies the vertical cohomology with

the sheaf cohomology H(Mo; π
∗E

M̃
) and thus makes contact with the work of

Buchdahl[5] on the relative de Rham sequence, of which the vertical cohomology

is an important special case.

Buchdahl treats the case of an arbitrary smooth surjective map f : Y → X

between two arbitrary (smooth, paracompact) manifolds. He then obtains a res-

olution for the pull-back sheaf f∗EX in terms of “relative” forms Ωf . Relative

forms are differential forms along the “fibers” of f and the derivative is the exte-

rior derivative along the fibers. Hence vertical cohomology is a particular case of

this construction for a very special f , Y and X. Buchdahl does not characterize

the relative cohomology completely, but he proves two results that relate it to the

cohomology of the fibers. In the case of vertical cohomology, his results (Proposi-

tions 1 and 2 in [5]) imply the following two theorems, where F is the typical fiber
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in the fibration Mo
π−→M̃ and H(F ) stands for the real de Rham cohomology of

the typical fiber.

Theorem 6. H1(F ) = 0 implies H1
V (Mo) = 0. If Hp−1(F ) = Hp(F ) = 0 for

some p > 1, then Hp
V (Mo) = 0.

Theorem 7. If for some p ≥ 1, Hp
V (Mo) = Hp+1

V (Mo) = 0, then Hp(F ) = 0.

An easy corollary of these two theorems gives a characterization of the vanish-

ing of the BRST cohomology for positive ghost number.

Corollary 8. A necessary and sufficient condition for the classical BRST coho-
mology to vanish for positive ghost number is that the gauge orbits have vanishing
positive de Rham cohomology.

In particular in the case of a compact orientable gauge orbit, Poincaré duality

already forbids the vanishing of the BRST cohomology of top ghost number.

These results, although already providing a lot of information, are far from

fully characterizing the BRST cohomology in terms of the topology of the gauge

orbits and the gauge invariant observables. This is precisely the aim of this paper.

I will prove that for the case of a fibration

F −→ Moyπ

M̃

(9)

the vertical cohomology is isomorphic as C∞(M̃)-modules to the space of smooth

sections of a vector bundle over M̃ whose typical fiber is the real de Rham coho-

mology of F . This vector bundle is moreover an associated bundle to the original

bundle via the natural representation

ρ : Diff F → AutH(F ) . (10)

When the constraints arise from the hamiltonian group action of a connected

Lie group G, the fibration G → Mo → M̃ is, in fact, a principal G-bundle and it
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follows that the associated bundle is trivial. In this case the BRST cohomology

will simply be given by the H(F )-valued functions on M̃ .

Finally, when the orbits are compact and orientable, the Poincaré duality on

H(F ) induces a duality on the BRST cohomology. The orientability hypothesis is

superfluous for irreducible constraints, since the fibers are parallelizable.

Topological Characterization

To fix the notation, let F −→ Mo
π−→M̃ be a smooth fiber bundle where the

typical fiber, F , is connected. Let dV denote the vertical derivative, ΩV (Mo) the

vertical forms, and HV (Mo) the vertical cohomology. By definition, the zeroth

vertical cohomology, H0
V (Mo), consists of those smooth functions on Mo which are

locally constant on the fibers; and since the fibers are connected, these functions

are constant. The projection π induces an isomorphism, π∗ : C∞(M̃) → C∞(Mo),

defined by π∗f = f ◦ π, onto the smooth functions on Mo which are constant on

the fibers. Therefore, there is an isomorphism

H0
V (Mo) ∼= C∞(M̃) . (11)

By its definition the vertical derivative dV obeys

dV (ω ∧ θ) = (dV ω) ∧ θ + (−1)pω ∧ (dV θ) , (12)

for ω ∈ Ωp
V (Mo) and θ ∈ ΩV (Mo). Therefore ∧ induces an operation in cohomology

∪ : Hp
V (Mo)×Hq

V (Mo) −→ Hp+q
V (Mo) , (13)

defined by [ω] ∪ [θ] = [ω ∧ θ]. This operation is well defined because of (12) and

makes the vertical cohomology into a graded ring. In particular,

∪ : H0
V (Mo)×Hq

V (Mo) −→ Hq
V (Mo) (14)

makes HV (Mo) into a graded H0
V (Mo) ∼= C∞(M̃)-module.
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Let HV denote the sheaf of C∞(M̃)-modules on M̃ defined by HV (U) =

HV (π−1U) for all open U ⊂ M̃ . By local triviality there exists an open cover

U for M̃ such that for all U ∈ U , π−1U ∼= U ×F . Therefore HV (U) ∼= HV (U ×F ).

By a theorem of Kacimi-Alaoui (III (1) in [6]) the vertical cohomology of a product

is given simply by

HV (U × F ) ∼= C∞(U)⊗H(F ) , (15)

where H(F ) is the real de Rham cohomology of F . This implies that HV is a

locally free sheaf and thus the sheaf of germs of smooth sections of a vector bundle

over M̃ with fiber H(F ).

The task ahead is to determine the transition functions of this bundle. Let

{ψU} be the family of diffeomorphisms

ψU : π−1U −→ U × F (16)

given by the local triviality of the original bundle Mo
π−→M̃ . The transition func-

tions of this bundle are then given, for all U ∩V 6= ∅, by gUV = ψU ◦ψ−1
V

, thought

of as a map gUV : U ∩ V → Diff F .

Recall that there is a natural representation of Diff F as automorphisms of

degree zero of the (graded) de Rham cohomology ring H(F ). If ϕ ∈ Diff F then

the automorphism is defined by [ω] 7→
[
(ϕ−1)∗ω

]
. By the homotopy invariance of

de Rham cohomology, two diffeomorphisms which are homotopic are represented

by the same automorphism in H(F ). So any diffeomorphism which is homotopic to

the identity will automatically induce the identity automorphism on cohomology.

Composing the transition functions {gUV } with this representation provides

maps

(g−1
UV

)∗ : U ∩ V → AutH(F ) , (17)

which, as I will now show, are the transition functions of the bundle whose sheaf

of sections is given by HV .
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To see this notice that for all open sets U ∈ U

(ψ−1
U

)∗ : HV (π−1U) → HV (U × F ) ∼= C∞(M̃)⊗H(F ) , (18)

allows us to identify vertical cohomology classes on π−1U with H(F )-valued func-

tions on U . Let ω be a dV -closed vertical form and [ω] its class in vertical cohomol-

ogy. Restricted to U ∩ V there are two ways in which one can identify [ω] with an

H(F )-valued function on U ∩ V : either by using the trivialization on U or the one

on V . Let fU =
[
(ψ−1

U
)∗ω

]
and fV =

[
(ψ−1

V
)∗ω

]
. The transition functions hUV are

precisely the automorphisms of the fiber H(F ) relating these two descriptions of

the same object. That is, the transition functions obey fU = hUV fV . But because

fU =
[
(ψ−1

U
)∗ω

]
=

[
(ψ−1

U
)∗ ◦ ψ∗

V
◦ (ψ−1

V
)∗ω

]
=

[
(ψ−1

U
)∗ ◦ ψ∗

V
fV

]
=

[
(ψV ◦ ψ

−1
U

)∗ fV

]
=

[
(g−1

UV
)∗ fV

]
, (19)

the transition functions are in fact the ones in (17) . Therefore I have proven the

following theorem.

Theorem 20. The BRST cohomology is isomorphic as a C∞(M̃)-module to the

smooth sections of the associated bundle Mo ×ρ H(F )−→M̃ associated to the

representation ρ : Diff F → AutH(F ).

Notice that this associated bundle decomposes naturally as a Whitney sum of

vector bundles

Mo ×ρ H(F ) =
⊕

p

Mo ×ρ H
p(F ) (21)

since diffeomorphisms do not alter the degree of a form.
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The Case of a Group Action

When the constraints arise from the hamiltonian action of a connected Lie

group G—i.e. the constraints are the coefficients of the moment map relative to a

fixed basis for the Lie algebra of G—the bundle

G −→ Moyπ

M̃

(22)

is in fact a principal G-bundle and the diffeomorphisms of G defined by the transi-

tion functions correspond to right multiplication by an element of the group. Since

G is connected, right multiplication by any element g ∈ G is homotopic to the

identity. (Proof: Let t 7→ g(t) be a curve in G such that g(0) = 1 and g(1) = g.

Right multiplication by g(t) gives the desired homotopy.) By the homotopy in-

variance of de Rham cohomology, the transition functions of the associated bundle

Mo×ρH(G)−→M̃ are the identity maps and thus the bundle is trivial. This proves

the following corollary.

Corollary 23. When the constraints arise from the hamiltonian action of a con-
nected Lie group G, the BRST cohomology is isomorphic to the H(G)-valued

functions on M̃ .

The Case of Compact Orientable Fibers

Finally suppose that the fibers are compact and orientable.1 Therefore Poincaré

duality induces an isomorphism

? : Hp(F ) → Hn−p(F ) , (24)

where n is the dimension of the fiber. This induces a duality in the BRST coho-

mology as follows. Let σ be a section through Mo ×ρ H
p(F ). Define a section ?̃σ

1 When the constraints are irreducible, the fibers are parallelizable (the {Xi} are

a global basis for the tangent space) and hence orientable.
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through Mo ×ρ H
n−p(F ) by

(?̃σ)(m) = ? σ(m) ∀ m ∈ M̃ . (25)

This is an isomorphism and hence we have the following result.

Corollary 26. Let the typical fiber F be n-dimensional, compact, and orientable.
Then there is an isomorphism

Hp
V (Mo) ∼= Hn−p

V (Mo) . (27)

For some very interesting remarks concerning duality in BRST cohomology see

the recent paper [7].
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