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§1 Introduction

The concept of a universal W -algebra, by which we roughly mean a W -algebra

of which Wn (for any n) is a reduction, has received a great deal of attention

recently [1] [2] [3] [4] [5] [6] . It is a concept which, besides being of interest in

its own right, finds applications in the matrix model approach to two-dimensional

quantum gravity and string theory. Indeed the partition function of the n-matrix

model can be almost uniquely specified by the Wn constraints [7] [3] . It is therefore

of interest to construct an abstract W -algebra whose constraints yield the Wn

constraints upon reduction and such that it is in a sense the smallest such algebra.

In this note we put forward a precise definition of what we mean by a uni-

versal W -algebra and prove its existence and uniqueness. We work with classical

W -algebras as they appear in the hamiltonian treatment of the generalized KdV

hierarchies. In other words, we work with Gel’fand-Dickey algebras. The idea of

the construction is quite simple. If Wn−1 were embedded in Wn we could hope to

define a universal W -algebra as their inductive limit: i.e. , something belongs to

the inductive limit if it belongs to some Wn for some n and hence for all m ≥ n.

That would be an algebra containing all the Wn and, in fact, the smallest such

algebra. However the situation is not so paradisiacal and the relation between

Wn−1 and Wn is a more subtle one. In fact, we will show that Wn−1 is a reduction

of Wn in the following sense. Algebraically all this means is that there is a surjec-

tive homomorphism Wn → Wn−1; but it also has a geometric interpretation if we

think of the Wn algebras as the fundamental Poisson brackets in a certain affine

space of differential operators. Then the reduction Wn → Wn−1 corresponds to

the restriction of the fundamental Poisson brackets on an affine subspace defined

by second-class constraints. Then the universal W -algebra can be constructed as

the inverse limit of the Wn via these reductions. In a sense, then, the universal

W -algebra is the smallest W -algebra from which all the Wn can be obtained by

reduction.

The plan of this letter is as follows. First we briefly review W -algebras as they
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appear in the context of integrable systems; that is, as Poisson brackets on certain

spaces of one-dimensional differential operators. We introduce the Miura transfor-

mation, the Gel’fand-Dickey brackets and the Kupershmidt-Wilson theorem which

relates them. We also set up the formalism that will allow us to make the above

observations precise. This necessitates the introduction of Poisson algebras in a

perhaps unusual setting. We illustrate these concepts with the Virasoro and W3

algebras. We then make the observation that the Virasoro algebra is a reduction

of W3 and prove, using the Kupershmidt-Wilson theorem, that this persists for all

n; that is, that Wn−1 is a reduction of Wn for any n. This allows us to define

the universal W -algebra as the inverse limit (see below) of the {Wn}. This is a

universal object and such it is unique if it exists. We prove its existence by giving

a model for it. This model, however, is not very explicit; in particular, it does

not allow us to compute the algebra. Therefore we discuss the possible relation

between the universal W -algebra and some of the candidates that have appeared

in the literature, paying close attention, in particular, to the algebra of differential

operators on the circle [1] . Finally we comment on the extension of these results

to other W -algebras and to W -superalgebras.

§2 Wn algebras

Let Mn denote the affine space of differential operators of the form L = ∂n +∑n−1
j=0 uj∂

j , where the uj are smooth (real- or complex-valued) functions on the

circle. We think of the ring Rn ≡ R(u0, u1, . . . , un−1) of differential polynomials

in the uj as the coordinate ring of Mn. By a Poisson structure on Mn we mean a

Poisson bracket on Rn induced by a Poisson bracket on the generators

{ui(x) , uj(y)} = J(ui, uj) · δ(x− y) , (2.1)

where J(ui, uj) is a differential operator1 with coefficients in Rn evaluated at the

1 Strictly speaking this defines a local Poisson structure. Non-local structures,
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point x. Thus a Poisson structure on Mn can be thought of as a bilinear map

J : Rn ×Rn → Rn[∂] , (2.2)

such that the axioms of a Poisson bracket are obeyed by (2.1) . These axioms can

be translated with more or less effort into properties of the map J . For instance,

the antisymmetry property translates into J(a, b) = −J(b, a)∗ for all a, b ∈ Rn

and where ∗ is the unique anti-involution in Rn[∂] obeying ∂∗ = −∂ and a∗ = a,

for a ∈ Rn. Another important property, and one which has important practical

applications, is the derivation property which allows us to compute J on any two

elements of Rn from the knowledge of J on the generators. In terms of J , the

derivation property translates into the following rules:

J(a′, b) = ∂ ◦ J(a, b) , J(ab, c) = aJ(b, c) + bJ(a, c) , (2.3)

for a, b, c ∈ Rn and where ◦ denotes the composition of differential operators. We

shall not need to transcribe the Jacobi identity in terms of J .

We now proceed to define a Poisson structure on Rn. Let us formally factorize

a given differential operator L = ∂n +
∑n−1

j=0 uj∂
j ∈ Mn as L = (∂ + φ1)(∂ +

φ2) · · · (∂ + φn). Comparing the two expressions for L we find expressions for

each ui as a differential polynomial of the φj . In other words, this factorization

induces an embedding of Rn in the ring R(φ) ≡ R(φ1, φ2, . . . , φn) of differential

polynomials of the φj , which is known as the Miura transformation. On R(φ) we

can define the following Poisson structure

J(φi, φj) = δij∂ . (2.4)

Using the derivation property (2.3) we may compute J(ui, uj) from the expressions

where J(ui, uj) is allowed to be an integral operator or, more generally, a

pseudodifferential operator, play an important role in integrable systems and

could, in principle, be considered within this formalism. We will, in fact, have

to consider such extensions as an auxiliary device when we discuss reductions.
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of the ui in terms of the φj . In general, J(ui, uj) ∈ R(φ)[∂], but remarkably [8]

[9] they actually lie in Rn[∂], thus defining a Poisson structure in Rn. This result

is known as the Kupershmidt-Wilson theorem and the Poisson structure on Mn,

denoted GDn, goes by the name of Gel’fand-Dickey bracket.

The Gel’fand-Dickey bracket can also be computed explicitly from the ui with-

out having to resort to the Miura transformation. Let X =
∑n−1

i=0 ∂−i−1Xi be a

pseudo-differential operator (ΨDO). Define the Adler mapping [10] [11] A(X) of

X as follows

A(X) ≡ (LX)+L− L(XL)+ = L(XL)− − (LX)−L , (2.5)

where the + and − subscripts denote the differential and integral parts, respec-

tively, of a ΨDO. It is evident from its definition that it is a differential operator

of order at most n− 1 depending linearly on the Xi. Indeed, one can show that

A(X) = −
n−1∑
i,j=0

(J(ui, uj) ·Xj) ∂i . (2.6)

Consider now the affine subspace of Mn consisting of differential operators of

the form L = ∂n +
∑n−2

j=0 uj∂
j . It turns out that this is (formally) a symplectic

subspace of Mn. In other words, this subspace can be described by the constraint

un−1 = 0 which is formally second-class. The induced Poisson structure is a

classical realization of Wn and is given simply by the Dirac bracket:

JD(ui, uj) ≡ J(ui, uj)− J(ui, un−1) ◦ J(un−1, un−1)
−1 ◦ J(un−1, uj) , (2.7)

where everything is evaluated at un−1 = 0. It is perhaps remarkable that despite

the appearance of J(un−1, un−1)
−1 the Dirac bracket is actually local.
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As an example let us work out the cases n = 2, 3. A short calculation shows

that (for n = 2)

J(u0, u0) =− ∂3 − u1∂
2 + ∂2u1 − u0∂ − ∂u0 + u1∂u1 ,

J(u0, u1) =∂2 + u1∂ , (2.8)

J(u1, u1) =2∂ ;

whence the Dirac bracket associated to the constraint u1 = 0 is given by

JD(u0, u0) = −1

2
∂3 − u0∂ − ∂u0 , (2.9)

which is nothing but a classical realization of the Virasoro algebra. A longer

calculation shows that the Dirac brackets associated to the constraint u2 = 0 in

the n = 3 case are given by

JD(u0, u0) =
2

3
(∂2 + u1)∂(∂2 + u1)− u′0∂ − ∂u′0 ,

JD(u0, u1) =− (∂2 + u1)∂
2 − 3u0∂ − u0 , (2.10)

JD(u1, u1) =− 2∂3 − ∂u1 − u1∂ ;

which is a classical realization of W3 where the spin 3 field is given by u0 − 1
2u′1.

We now come to our main observation. If we impose the constraint u0 = 0 on

the algebra (2.10) and we compute the associated Dirac bracket, we recover the

Virasoro algebra (2.9) . In fact,

J̃(u1, u1) ≡JD(u1, u1)− JD(u1, u0) ◦ JD(u0, u0)
−1 ◦ JD(u0, u1)

=− 1

2
∂3 − ∂u1 − u1∂ . (2.11)

Therefore we see that the Virasoro algebra is a reduction of W3. This is not an

accident. In fact, it can be easily seen from the Kupershmidt-Wilson theorem that

this extends to other Wn. Consider the embedding of Mn−1 into Mn given by
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L 7→ L ◦ ∂. The image of this embedding is the subspace of Mn defined by the

constraint u0 = 0 or, in terms of the Miura transformation, φn = 0. In terms of

the φi, the constraint is clearly second-class and the Dirac bracket is the same as

the old bracket except that φn never enters the picture again. And comparing the

expression of the ui in terms of the φj we see that it is the same as the Miura

transformation for Mn−1 except that the indices of the ui are shifted down by one.

Thus after relabeling the ui, the Poisson algebra they obey is precisely the one

obtained from the Kupershmidt-Wilson theorem applied to Mn−1—in other words,

Wn−1. In summary, Wn−1 is a reduction of Wn for all n. Iterating the reduction,

we see that for all m < n, Wm is a reduction of Wn. In particular, since W2 is

the Virasoro algebra, the Virasoro algebra is a reduction of every Wn. It should

be remarked that this reduction is not the restriction to the Virasoro subalgebra

present in every Wn, since the central charge is different. Another remark is that

the reduction from Wn down to Wn−1 can also be obtained by embedding Mn−1

into Mn by L 7→ ∂ ◦L, which, in the Miura description, corresponds to the second-

class constraint φ1 = 0. It would be interesting to classify the reductions of Wn

obtained from linear constraints of the φi.

How does this observation help us in defining a universal W -algebra? If Wn

were a subalgebra of Wn+1 we could then hope to define a universal algebra con-

taining all Wn as the inductive limit lim−→n Wn. However this is not the case. Nev-

ertheless, the next best thing occurs: the fact that Wn−1 is a reduction of Wn does

allow us to define their inverse limit or colimit. The resulting algebra would then

have the property that all Wn could be obtained from it by reduction. But in or-

der to make these ideas precise we first need to introduce a few notions concerning

limits of Poisson algebras as we have defined them.

– 7 –



§3 Some abstract nonsense

The notion of inverse limit or colimit is a useful notion in category theory

and we refer the interested reader to the book [12] by Lang for a more general

exposition than the one presented here. We will introduce only those concepts we

need in as much (lack of) generality as necessary. But before talking about inverse

limits we need to set up some formalism.

The basic objects we are dealing with are essentially Poisson algebras, but

perhaps in a slightly eccentric guise. Let R denote some differential ring: that is, a

commutative ring with unit together with a derivation ∂ : R→ R denoted r 7→ r′.

We will let R[∂] denote the ring of differential operators with coefficients in R, with

multiplication defined by the usual Leibnitz rule ∂ ◦ r = r′ + r ◦ ∂. The natural

maps (morphisms) between differential rings are ring homomorphisms preserving

the identity and commuting with the derivation. Every such map ϕ : R → S

between differential rings induces a map—also denoted ϕ—between differential

operators ϕ : R[∂]→ S[∂] by acting on the coefficients. Now by a Poisson structure

on a differential ring R we mean a bilinear map J : R × R → R[∂] obeying the

properties necessary for the bracket defined as in (2.1) to be a Poisson bracket.

In particular, this implies the antisymmetry and derivation properties mentioned

in the previous section. We call the pair (R, J) a Poisson algebra; although when

no confusion can result, the Poisson structure will simply be omitted. Morphisms

between Poisson algebras are morphisms of differential rings which preserve the

Poisson structures. In other words, if (R, J) and (S, K) are Poisson algebras, a

differential ring morphism ϕ : R→ S is a Poisson algebra morphism if ϕ(J(a, b)) =

K(ϕ(a), ϕ(b)), for all a, b ∈ R.

We have already seen a few examples of Poisson algebras and of morphisms

between them. Indeed the content of the Kupershmidt-Wilson theorem is that the

Miura transformation Rn → R(φ) is a Poisson (mono)morphism. Another example

of Poisson morphism—albeit perhaps not so obvious as the Miura transformation—

is the reduction from GDn to Wn.
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Let M̃n denote the subspace of Mn defined by the constraint un−1 = 0. If I

denotes the differential ideal generated by un−1, then the coordinate ring of M̃n is

just Rn/I which is naturally isomorphic to R(u0, u1, . . . , un−2). On this differential

ring we have Wn as a Poisson structure. We would like to exhibit the reduction

GDn → Wn as induced by a Poisson (epi)morphism Rn → Rn/I. However the

natural surjection Rn → Rn/I, sending r to its class modulo I, is not a Poisson

morphism with respect to the Gel’fand-Dickey bracket: the reason being that I

is not a Poisson ideal of Rn and thus the quotient does not inherit a Poisson

structure. In fact, one way to think of the Dirac bracket is that it is the unique

Poisson structure on Rn making the natural surjection Rn → Rn/I into a Poisson

morphism. But we are interested in keeping the original Poisson structure on Rn

and thus we must come up with a Poisson morphism Rn → Rn/I intertwining

between GDn and Wn.

To motivate the construction let us look at the familiar case of the hamiltonian

reduction of a symplectic manifold M by a set of (regular) second-class constraints

{χi}. Since the constraints are second-class, the matrix Ωij = {χi , χj} of their

Poisson brackets is non-degenerate when restricted to the zero locus Mo of the

{χi}. Let us denote its inverse by Ωij . The ring C∞(Mo) of smooth functions on

Mo then inherits a Poisson structure as follows. Given f, g ∈ C∞(Mo), we extend

them to smooth functions (also denoted f, g) on M . Then their Poisson bracket is

defined by the Dirac formula

{f , g}o ≡ {f , g} −
∑
ij

{f , χi}Ωij{χj , g} . (3.1)

This is clearly independent of the extension since the difference between any two

extensions is of the form
∑

ciχi, for ci an arbitrary function and on Mo, these

functions have vanishing Dirac bracket with any function. Therefore the Dirac

bracket induces a Poisson structure on the ring C∞(M)/I ∼= C∞(Mo), where I

is the ideal generated by the constraints or, equivalently, the ideal of functions

vanishing on Mo. Alternatively we consider the following equivalent construction.
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Let N(I) denote the normalizer of I in C∞(M); that is, f ∈ N(I) if {f , I} ⊂ I.

Any function f ∈ C∞(M) can be decomposed as f = fN + fI , where fN ∈ N(I)

and fI ∈ I. Of course, the decomposition is not unique since there are functions

that lie both in I and in N(I). In fact,
∑

ij cijχiχj , for arbitrary functions cij , lies

both in I and in N(I). These functions constitute the ideal I2 and it is not hard

to show that N(I) ∩ I = I2. A possible decomposition of a function f is given by

fI = Ωij{f , χi}χj , fN = f − fI . (3.2)

One can check that fN ∈ N(I). A straightforward calculation now shows that

the Poisson bracket {fN , gN} agrees on Mo with the Poisson bracket {f , g}o.
Therefore we have exhibited the reduction from M to Mo as a Poisson morphism

C∞(M)→ C∞(Mo).

We now do the same for our more formal situation. Since the constraint un−1

is second-class, the ideal I it generates is such that Rn admits a decomposition

Rn = N(I) + I, where now N(I) is defined as follows: r ∈ N(I) if and only if

J(r, I) ⊂ I[∂]. As before the sum is not direct: the intersection is again N(I)∩I =

I2. This sets up an isomorphism of differential rings Rn/I ∼= N(I)/I2, but N(I)/I2

has in addition a natural Poisson structure since N(I) is a Poisson subalgebra of

Rn containing I2 as a Poisson ideal. Thus the Poisson morphism we are after is

the composition of the natural maps:

Rn
∼= N(I) + I → N(I)/I2 ∼= Rn/I . (3.3)

We can see this a bit more explicitly in terms of generators. Rn is generated

by u0, u1, . . . , un−1 whereas I is generated by un−1. It does not follow, however

that N(I) is generated by u0, u1, . . . , un−2 but almost. One can define generators

ũi = ui + · · ·, for i = 0, 1, . . . , n − 2 such that ũi ∈ N(I) and hence generate

it. Of course, the ũi are not unique, since one can always add terms in I2. But

having chosen one such set of ũi, the map ρ : Rn → Rn/I is simply given by

ρ(ũi) = ui mod I for i = 0, 1, . . . , n− 2 and ρ(un−1) = 0.
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As an example consider the reduction from GD2 to the Virasoro algebra. We

impose the constraint u1 = 0. Now, as can be seen in (2.8) , u0 does not lie

in the normalizer of the ideal generated by u1. However, ũ0 = u0 − 1
2u′1 obeys

J(ũ0, u1) = u1∂, and hence generates the normalizer. Moreover, J(ũ0, ũ0) =

JD(u0, u0) mod I[∂], so that they agree on the subspace u1 = 0.

In fact, one does not need to be clever to find the ũi. Notice that, in this

example,

ũ0 = u0 − J(u0, u1) ◦ J(u1, u1)
−1 · u1 mod I2 , (3.4)

which is to be compared with the definition of fN above. In general, to reduce

GDn down to Wn, we define, for i = 0, 1, . . . , n− 2,

ũi = ui − J(ui, un−1) ◦ J(un−1, un−1)
−1 · un−1 mod I2 . (3.5)

One can then show that J(ui, un−1)◦J(un−1, un−1)
−1 is a differential operator and,

using (2.3) , that J(ũi, un−1) ∈ I[∂], so that ũi ∈ N(I). Furthermore, computing

the Gel’fand-Dickey brackets of the ũi one finds precisely the Dirac brackets of the

ui:

J(ũi, ũj) = JD(ui, uj) mod I[∂] . (3.6)

§4 The universal W -algebra as an inverse limit

The reduction Wn → Wn−1 goes along similar lines, except that in order to

describe the normalizer of the ideal generated by the constraint u0 = 0 we have to

extend the formalism slightly to encompass not just differential polynomials of the

ui but also more formal objects obtained from them by the action of ∂−1. Let us

illustrate this with an example: the reduction of W3 down to Virasoro. Analogously

to the reduction GDn → Wn, we define ũ1 = u1 − JD(u1, u0) ◦ JD(u0, u0)
−1 ·

u0 mod I2. Only that now, JD(u1, u0) ◦ JD(u0, u0)
−1 is no longer a differential

operator (even putting u0 = 0) so that ũ1 is not a a differential polynomial of the

ui; in fact, on u0 = 0, JD(u1, u0) ◦ JD(u0, u0)
−1 = 3

2(∂2 + u1)
−1∂.
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Thus we need to extend the differential ring Rn in such a way that the action

of ∂−1 is defined. This involves introducing symbols ∂−1 · ui, ∂
−2 · ui, . . . obeying

(∂−1 · ui)
′ = ∂−1 · u′i = ui, . . . The operator ∂−1 is not a derivation but obeys the

following rule:

∂−1 · (ab) =
∞∑

j=0

(−1)ja(j)∂−j−1 · b , (4.1)

whence we can define ∂−1 everywhere from a knowledge of ∂−1 on the generators.

Notice, by the way, that this necessitates introducing formal infinite sums of mono-

mials. We will still denote the extended ring by Rn and we will let Rn((∂−1)) denote

the ring of pseudodifferential operators with coefficients on Rn. Then Rn((∂−1))

acts naturally on Rn. We now extend the Poisson bracket to the extended ring Rn

as a bilinear map

J : Rn ×Rn → Rn((∂−1)) . (4.2)

We have to extend the derivation property to compute J(∂−1 · a, b) from J(a, b)

so that, again, it is sufficient to know J on generators. Since (∂−1 · a)′ = a, using

(2.3) we find that J(∂−1 · a, b) = ∂−1 ◦ J(a, b). The antisymmetry property is

the same, where ∗ is now the unique extension of ∗ to an anti-involution on the

extended ring.

Now we look at the reduction GDn → GDn−1 obtained by putting u0 = 0.

Let I denote the pseudodifferential ideal generated by u0. For i = 1, 2, . . . , n − 1

we define ũi = ui −Ki · u0, where Ki ∈ Rn((∂−1)) is defined so that J(ũi, u0) ∈
I((∂−1)). This fixes Ki = J(ui, u0) ◦ J(u0, u0)

−1 mod I((∂−1)). Thus,

ũi = ui − J(ui, u0) ◦ J(u0, u0)
−1 · u0 mod I2 . (4.3)

A straightforward calculation now shows that

J(ũi, ũj) = J(ui, uj)− J(ui, u0) ◦ J(u0, u0)
−1 ◦ J(u0, uj) mod I((∂−1)) . (4.4)

We can then define morphisms ρn : Rn → Rn−1 by ρn(ũi) = ui−1, ρn(u0) = 0 which

induce Poisson morphisms GDn → GDn−1. More invariantly, these morphisms can
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be defined as the composition of the following natural maps

Rn
∼= N(I) + I → N(I)/I2 ∼= Rn/I ∼= Rn−1 . (4.5)

We will also denote by ρn : Wn → Wn−1 the Poisson morphism induced by the

above map under the GD → W reduction.

We have therefore a set of Poisson algebras {Wn} and Poisson morphisms

ρn : Wn → Wn−1. This is called an inverse system of Poisson algebras and one can

define its colimit or inverse limit lim←−n Wn as follows. A colimit lim←−n Wn consists

of a Poisson algebra U together with Poisson morphisms πn : U → Wn obeying

ρn ◦ πn = πn−1, which enjoy the following (universal) property: given any other

Poisson algebra P and morphisms µn : P → Wn obeying ρn ◦ µn = µn−1 there

exists a unique Poisson morphism ϕ : P → U such that for all n

µn = πn ◦ ϕ ; (4.6)

in other words, the maps µn all factor through U .

As usual with universal objects, if they exist they are unique up to a unique

isomorphism. In fact, suppose that (Ũ , {π̃n}) is another such colimit. Then by

the universal property of U there is a unique morphism Ũ → U satisfying (4.6) ,

and by the universal property of Ũ there is a unique such morphism U → Ũ as

well. Now, composing them we get two morphisms U → U and Ũ → Ũ which are

unique. But certainly the identity maps also satisfy the above properties, hence,

by uniqueness, the compositions U → Ũ → U and Ũ → U → Ũ are precisely the

identity maps. In other words, U ∼= Ũ for a unique isomorphism.

We still have to show that the colimit exists. Since Poisson algebras are pseu-

dodifferential rings and Poisson morphisms are, in particular, morphisms of pseu-

dodifferential rings, we can appeal to the construction of a model for the colimit

in the category of pseudodifferential rings and just check that the extra structure

(i.e. , the Poisson structure) is preserved.
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Let R ≡
∏

n Rn denote the product of the pseudodifferential rings Rn. That

is, R consists of all sequences (rn) with rn ∈ Rn. R becomes a pseudodifferential

ring in a natural way by simply defining the operations entry-wise: (rn)′ = (r′n),

∂−1 ·(rn) = (∂−1 ·rn), and (rn)(sn) = (rnsn). Let U denote the subset of R defined

by

U = {(un) ∈ R | un−1 = ρn(un)} . (4.7)

It is easy to check that U is a pseudodifferential subring of R and that it has the

universal property of the colimit if we define πn : U → Rn as the composition

U → R → Rn where the first map is the inclusion and the second is the natural

projection onto the nth factor. In fact, if S is another pseudodifferential ring with

morphisms σn : S → Rn, then the map S → U is given by s 7→ (σn(s)) which is

easily checked to obey the conditions (4.6) . If we now turn on the Poisson structure

on each Rn, then R becomes a Poisson algebra defining the bracket entry-wise, U

becomes a Poisson subalgebra, and all maps in sight are Poisson morphisms. Thus

U becomes a colimit in the category of Poisson algebras.

Summarizing, we have shown the existence and uniqueness of a universal W -

algebra for the {Wn} series. The universal property was defined above and shall

not be repeated, but we mention some consequences. First of all, since the maps

ρn : Wn → Wn−1 are surjective, so are the maps πn : U → Wn, whence we

can think of them as reductions which, due to the fact that ρn ◦ πn = πn−1, are

compatible with the reductions Wn → Wn−1 and, in a sense, extend them. In

other words, it does not matter how we reduce U down to Wn. We can either

first reduce U to Wm (for m > n) and then reduce Wm → Wn or reduce U to

Wn directly. Suppose now that someone hands us a Poisson algebra P such that

all Wn are obtained from it by (compatible) reductions; i.e. , there are Poisson

epimorphisms µn : P → Wn obeying ρn ◦µn = µn−1. Then these reductions factor

through U in the sense that we can first map P to U and then reduce U to the

Wn. Loosely speaking then, U is the smallest W -algebra which yields all Wn by

reduction.
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§5 In search of an explicit model

The model given above for the universal W -algebra suffices for a proof of ex-

istence and uniqueness, but does not really give us an algorithm to compute this

algebra explicitly. From a constructive point of view, the above model is there-

fore not very satisfactory. It thus behooves us to elucidate the possible relations

between some of the candidates for “universal” W -algebras that have appeared in

the literature and the universal W -algebra described here. Since the only thing

we know about our algebra is the universal property it obeys, it seems that the

way to proceed is to probe the candidates to see if they obey this property—hence

concluding that they are isomorphic to our algebra—or, on the contrary, that they

are not universal. Two classes of candidates of which we will not be able to say

much are the following: several versions of W∞-type algebras [2] [13] ; and al-

gebras which appear as a hamiltonian structure for the KP hierarchy [14] [5] [6]

[15] . Both of these proposals make sense heuristically. Since the Wn algebras are

realized as the second hamiltonian structure of the nth order KdV hierarchy and

this hierarchy is a reduction of KP, it seems reasonable to expect that the second

hamiltonian structure of the KP hierarchy should yield all the Wn algebras upon

reduction. We have tried to prove this reduction explicitly, but so far without

success. As for the W∞-type algebras, the rationale seems to be the following: for

any fixed n, Wn is the smallest algebra from which all the Wm for m ≤ n can be

obtained by reduction. It thus seems reasonable that the model for the universal

W -algebra should be the limit n → ∞ of Wn. The question is how to make this

limit precise. In this paper we have given one such possibility that seems to be

the natural one, since we know of no other relationship between the Wn algebras

but the fact that one can get Wn−1 from Wn by reduction. It is a very interesting

open problem to see if any one of the W∞-type algebras in the literature is indeed

universal. This seems to be supported by the experimental fact [4] that, at least

for a particular value (c = −2) of the central charge, Wn can be obtained as a re-

duction of W∞. As a side remark, notice also that the first hamiltonian structure

for the KP hierarchy is, in fact, W1+∞ [16] . But since it is the second structure

– 15 –



for the KdV hierarchies that corresponds to Wn, we are not sure if this is not just

a macabre coincidence.

The one proposal for universal W -algebra that we will look at in some detail

is the algebra D of differential operators on the circle, put forward by Radul [1]

. It should be remarked, however, that D is not a Poisson algebra but only a Lie

algebra. Eventually, of course, one is interested in quantizing W algebras. Since

quantization does not respect the Poisson structure but just the Lie structure, this

does not represent a drawback.

To understand the maps D → GDn we have to introduce some minor notation.

We refer the reader to the forthcoming book by Dickey [17] for a more detailed

discussion, or to our paper [18] for a less brief summary. Given L ∈ Mn, the

tangent space TLMn to Mn at L is naturally identified with the differential op-

erators of order at most n − 1. Similarly the cotangent space T ∗
LMn is naturally

identified with the space P−/∂−nP−, where P is the ring of pseudodifferential op-

erators and P− the subring of integral operators. The pairing between TLMn and

T ∗
LMn is given by the Adler trace [10] . The Adler map (2.5) is a linear map

T ∗
LMn → TLMn. The Lie bracket of vector fields gives a Lie algebra structure to

TLMn relative to which the image of the Adler map is a subalgebra. Thus one

can pull back this structure to give T ∗
LMn a Lie algebra structure. Explicitly, if

X, Y ∈ T ∗
LMn, their Lie bracket is given by

[[X,Y ]] ≡ ∂A(X)Y + X(LY )− − ((XL)+Y )− − (X ↔ Y ) , (5.1)

where ∂A(X) represents the Lie derivative of the vector field defined by A(X) ∈
TLMn. One can check that

[A(X) , A(Y )] = A([[X, Y ]]) . (5.2)

This Lie bracket [[, ]] is essentially the Poisson bracket defined by the Adler map;

indeed for G, H functions on Mn, it follows that d{G , H} = [[dG, dH]].
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Now Radul defines a map πn : D → T ∗
LMn by πn(E) = −(EL−1)−. One can

easily show that πn is a homomorphism of Lie algebras, where D is given a Lie

algebra structure via the commutator. In other words,

[[πn(E), πn(F )]] = πn([E , F ]) . (5.3)

Therefore this induces a map D → GDn, which we also denote πn. It is interesting

to notice that since πn((EL−1)+L) = 0, only E−(EL−1)+L = (EL−1)−L matters,

which is a differential operator of order n− 1.

However, it is easy to see that the maps πn : D → GDn are incompatible

with the reduction GDn → GDn−1. To see this notice simply that the reduction

GDn → GDn−1 is induced by the embedding Mn−1 →Mn given by L 7→ L∂. Now,

there is a natural embedding T ∗
L∂Mn−1 ⊂ T ∗

L∂Mn defined as those 1-forms whose

image under the Adler map are tangent vectors to Mn−1. Then these 1-forms

inherit a Lie bracket [[, ]] simply from the one T ∗
L∂Mn. The reduction is compatible

if for L∂ ∈ Mn, the image of the map πn lies in T ∗
L∂Mn−1; in other words, if

A(πn(E)) ∈ TL∂Mn. Now TL∂Mn corresponds to the infinitesimal deformations

of L∂, which in this case are nothing but the differential operators of order at

most n − 1 without free term. An explicit computation shows that A(πn(E)) =

(L∂E∂−1L−1)−L∂ which can be rewritten as L∂E − (L∂E∂−1L−1)+L∂ which,

since E has in general a free term, is not tangent to Mn−1 ⊂Mn.

This discards (D, πn) as a model for the universal W -algebra.

§6 Some extensions of our results

Finally we mention two extensions of our results. Notice that the universal

W -algebra for {Wn} described here is a reduction of the universal Gel’fand-Dickey

algebra. There are other W -algebras besides Wn which arise as reductions of

GDn. In particular, for n = 2` + 1 odd, one can construct a W -algebra as the

hamiltonian reduction of the Gel’fand-Dickey bracket with respect to the second-

class constraint L∗ = −L. This subspace of antisymmetric Lax operators is a
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(formally) symplectic submanifold of M2`+1 and the Dirac brackets induce the W -

algebra2 DS(B`) associated à la Drinfel’d-Sokolov [20] to the simple Lie algebra

B`. Similarly for n = 2` even, the subspace defined by the second-class constraint

L∗ = L inherits a Poisson structure which defines the W -algebra DS(C`) associated

to C`. The reduction GDn → GDn−2 induces a reduction DS(B`) → DS(B`+1)

for n odd, and DS(C`)→ DS(C`+1) for n even, giving rise to universal W -algebras

as the corresponding inverse limits.

Another straightforward extension of these results is the existence and unique-

ness of universal W -superalgebras for the W -superalgebras obtained from the su-

persymmetric Gel’fand-Dickey brackets {SGDn} constructed in [18] . In par-

ticular, the infinite series of N = 1 [21] and N = 2 [22] W -superalgebras

obtained as reductions of the supersymmetric Gel’fand-Dickey brackets give rise,

upon taking the relevant inverse limits, to universal W -superalgebras for those se-

ries. The proof of the existence and uniqueness of these universal W -superalgebras

is a straightforward supersymmetrization of the proof given here: the reduction

SGDn → SGDn−1 being proven using the supersymmetric Kupershmidt-Wilson

theorem of [18] .
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