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§1 Introduction

Extended conformal algebras are associative operator product algebras which

contain the Virasoro algebra as a subalgebra and are finitely generated by, in addi-

tion to the Virasoro generator, holomorphic Virasoro primaries in such a way that

the following closure property is satisfied: that in the singular part of the operator

product expansion (OPE) of these fields there appear only Virasoro descendents

of the identity and of these primary fields themselves as well as normal ordered

products thereof. Clearly if we dropped the requirement of these algebras being

finitely generated we could always satisfy the closure property by augmenting the

number of generators by whichever new primaries appear in the right hand side of

the OPE, but then we would be dealing with objects far too general to offer any

hopes of classification. The study of extended conformal algebras is interesting

because they are the only hope of classifying rational conformal field theories with

c ≥ 1, this being the central poblem in conformal field theory.

The systematic study of extended conformal algebras was initiated by Zamolod-

chikov in [1] , where he analysed the possible associative operator algebras gener-

ated by a stress tensor (generating a Virasoro subalgebra) and one or more holo-

morphic primary fields of half-integral conformal weight s ≤ 3 with the above

closure property. He found a lot of already existing conformal field theories: free

fermions (s = 1
2), affine Lie algebras (s = 1), superVirasoro algebras (s = 3

2), direct

product of Virasoro algebras (s = 2); as well as two new algebras (s = 5
2 and s = 3)

which, unlike the others, are not Lie (super)algebras. The case s = 5
2 satisfies the

associativity condition for a specific value of the central charge (c = −13
14); whereas

the case s = 3 yields an associative operator algebra—called W3—for all values of

the central charge. This extended algebra has been the focus of a lot of recent work

and, in particular, it has been shown to be the symmetry algebra of the 3-state

Potts model at criticality[2].

In [3] Fateev and Zamolodchikov investigated the degenerate representations

and the minimal models associated to W3 after developing the Feigin-Fuchs (or
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Coulomb gas) representation of W3 in terms of two free bosons with background

charge. In this paper they also discovered some suggestive relations between the

representation theory of W3 and of the affine algebra A
(1)
2 . In a later work Fateev

and Lykyanov[4] generalised this work to the so-called Wn algebras obtained by

extending the Virasoro algebra by holomorphic primary fields of weights 3, 4, . . . , n.

They obtained a Feigin-Fuchs representation for these algebras in terms of n − 1

free bosons with background charge by what amounts to a quantum analog of the

Miura transformations in the theory of Korteweg-de Vries equations. They also

found similar suggestive relations between Wn and A
(1)
n−1 as had been found in [3]

for the case n = 3.

Other systematic approaches to extended conformal algebras are the so-called

Casimir algebras. Let g be a simple finite dimensional Lie algebra of rank `.

Then the center of the universal enveloping algebra of g is `-dimensional and is

spanned by the casimirs of g. Associated to each casimir we can define an operator

(also referred to as the casimir with a little abuse of notation) in the universal

enveloping algebra of the affinization ĝ of g. This is a generalisation of the Sugawara

construction which from the quadratic casimir obtains the Sugawara stress tensor.

It turns out that these operators (except for the Sugawara tensor itself) are primary

of weight equal to the order of the casimir with respect to the Virasoro algebra

generated by the Sugawara tensor. However, and except for specific values of the

central charge, the operator algebra generated by the casimirs does not close in the

sense described above. For example[5], in the case of the affine algebra A
(1)
2 , in the

OPE of the cubic casimir with itself there appears a new primary field which only

decouples for c = 2. The way to make a closed operator algebra from the casimirs

relies in a coset construction analogous to that of Goddard-Kent-Olive[6] for A
(1)
1 .

For example in the case of A
(1)
2 , the authors of [7] obtained theW3 operator algebra

by constructing a weight three primary operator in the universal enveloping algebra

of A
(1)
2 ×A

(1)
2 which commutes with the diagonal A

(1)
2 subalgebra: hence a weight

three primary field in the coset theory (A
(1)
2 ×A(1)

2 )/A
(1)
2 . This operator turns out

to form a closed operator algebra with the coset Virasoro generator if and only if
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one of the A
(1)
2 factors is at level 1. The weight three primary is constructed out

of the cubic casimirs of the two factors but also contains mixed terms which are

rather mysterious. In fact, the explicit construction of the operators generating

the casimir algebras associated to other affine algebras is still lacking and the

very existence of the higher casimir algebras has not been proven except for A
(1)
2 ,

although there is certainly some evidence of it coming from character formulas for

affine algebras[8].

In [8] , Bouwknegt continued the approach of Zamolodchikov by investigating

the possible extensions of the Virasoro algebra by a holomorphic primary field of

weight s. He argued that, if one demands associativity of the resulting operator

algebra for generic values of the Virasoro central charge, the only solutions with

integer s can occur for s = 1, 2, 3, 4, 6, which he suggests are related to the casimir

algebras resulting from A1 ×D1, A1 ×A1, A2, B2, and G2 respectively. The coset

construction (or any other construction, for that matter) of these casimir algebras

is known explicitly only for the first three cases. The explicit form of the algebra

(as an abstract associative algebra) is known in all cases: [9] for the case of spin

4 and [10] for the case of spin 6.

In this paper we offer an explicit construction of W3 from A
(1)
2 different from

the coset construction of [7] . Our method is founded on its classical analogue

for which it is possible to prove that a classical version of W3 (as fundamental

Poisson brackets of a Poisson manifold) arises from the symplectic reduction of the

infinite dimensional Poisson manifold defined by the dual of the affine algebra A
(1)
2

relative to the action of a unipotent subgroup. This observation was made precise

by Drinfeld and Sokolov[11] after a previous observation by Reiman and Semenov-

Tyan-Shanskii. It is interesting to notice that also in our construction the cubic

casimir of A2 plays a fundamental role. In fact, the operators which generate the

W3 algebra are induced from (the BRST completions of) deformations (in a sense

made more precise later on) of the Sugawara stress tensor and of the cubic casimir.

Let us very briefly describe this method for the case of A
(1)
n . The dual space
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M of A
(1)
n has a canonical Poisson structure which is invariant under the action

of the corresponding loop group. Let n+ denote the subalgebra of An generated

by the elements associated to the positive roots and n̂+ the corresponding affine

algebra. The action of the corresponding loop group is Poisson and gives rise to a

moment mapping J : M → n̂∗+. Drinfeld and Sokolov consider the level set Mo of

J coresponding to the following constraints:

E−α(z) =

{
1, if α ∈ ∆,

0, otherwise;
(1.1)

where α is a positive root, E−α the generator of An corresponding to the negative

root −α, and ∆ is a choice of simple roots. Equivariance of the moment mapping

implies that Mo is stabilized by the loop group corresponding to n̂+ which allows us

to quotient by its action and obtain a manifold M̃ which inherits a natural Poisson

structure from that on M . In order to write the fundamental Poisson brackets of M̃

explicitly we need to coordinatize M̃ . Since M̃ is defined as a quotient there are no

preferred coordinates. In order for M̃ to inherit coordinates from Mo it is necessary

to exhibit it as a submanifold of Mo, i.e. , to fix a gauge. Different choices of a

gauge slice will give different coordinates and, hence, different fundamental Poisson

brackets. Drinfeld and Sokolov show there exists a choice of gauge slice in which

the fundamental Poisson brackets are those of n free bosons (for An); whereas there

exists a different gauge slice in which the fundamental Poisson brackets represent

the Gelfand-Dickey algebras which, for An is a classical version of Wn+1, the case

n = 1 coresponding to the Virasoro algebra. Moreover the change of coordinates

from one gauge slice to another (i.e. , the corresponding gauge transformation) is

nothing but the Miura transformation of the KdV theory.

The quantum version of this Poisson reduction was carried out explicitly for

the case of A1 (i.e. , Virasoro) by Bershadsky and Ooguri[12]. In this paper we

do the analogous thing for A2 yielding the W3 algebra of Zamolodchikov. The

quantum analogue of the Poisson reduction is treated, as in [12] , within the

framework of BRST cohomology. Bershadsky and Ooguri also proved, using the
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recent work of Felder[13] and of Bernard and Felder[14], that the correspondence

took irreducible representations into irreducible representations, at least in the

case of completely degenerate representations. In our case there are no results

available of this isnd for W3 nor for A2. If such results existed, however, the same

method of [12] can be extended to our case to prove that at least for degenerate

representations, the correspondence takes irreducible representations of A
(1)
2 into

irreducible representations of W3.

This paper is organised as follows. Section 2 contains the explicit construc-

tion of the W3 algebra. The idea behind the construction is the following. In the

BRST framework physical operators are equivalence classes of BRST invariant op-

erators: two such operators being called equivalent when their difference is a BRST

(anti)commutator. In this spirit we construct two BRST invariant operators which,

in cohomology (i.e. , up to BRST (anti)commutators), obey the operator algebra

of W3. In fact, we show this by first computing the BRST cohomology with the

use of a free field representation for A
(1)
2 and then showing that in cohomology the

operators agree with those in the Feigin-Fuchs representation of W3 obtained by

Fateev and Zamolodchikov. The BRST invariant operators we construct are such

that their ghost independent parts are deformations (via the addition of terms of

lower order in currents) of the casimirs of A
(1)
2 . Section 3 contains the computa-

tion of the BRST cohomology in the free field representation. It turns out that the

results of that section generalise considerably (in fact, to arbitrary simple Lie alge-

bras), but we leave the precise statements of the theorems as wells as their proofs

to a separate publication where we also hope to discuss some applications. Finally

in section 4 we offer some conclusions and discuss some obvious open problems.

§2 The Basic Construction

We start by setting down our conventions for A2
∼= sl3. The algebra is gener-
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ated by {h±, J±i }3
i=1 with the following brackets:

[h+ , J±1 ] = ±J±1
[h+ , J±3 ] = ±2J±3

[h− , J±2 ] = ∓
√

3J±2

[J+
1 , J−1 ] =

1

2
(h+ +

√
3h−)

[J+
3 , J−3 ] = h+

[J±1 , J∓3 ] = ∓J∓2

[h+ , J±2 ] = ±J±2
[h− , J±1 ] = ±

√
3J±1

[h− , J±3 ] = 0

[J+
2 , J−2 ] =

1

2
(h+ −

√
3h−)

[J±1 , J±2 ] = ±J±3
[J±2 , J∓3 ] = ±J∓1

(2.1)

all others being zero. We fix an invariant symmetric bilinear form (, ) on the algebra

given by

(h±, h±) = 2 and (J+
i , J

−
i ) = 1 ∀i . (2.2)

Let A
(1)
2 denote the corresponding (untwisted) affine algebra. Its Lie bracket

is encoded in the operator product expansion of the currents X(z) for X ∈ sl3:

X(z)Y (w) =
k(X, Y )

(z − w)2
+

[X , Y ](w)

z − w
+ reg . (2.3)

The Sugawara stress tensor is given by

TS(z) =
1

2(k + 3)
gab (XaXb) (z) , (2.4)

where {Xa} is any basis for sl3, g
ab is the inverse of gab ≡ (Xa, Xb), and where ()

indicates normal ordering. Our conventions for normal ordering are those described

in the appendix of [5] . The currents X(z) are primary fields of weight one with

respect to the Sugawara stress tensor which obeys the Virasoro algebra with central

charge cS = 8k/(k + 3).

In the case of sl3, the constraints (1.1) are given by:

J−1 (z) = J−2 (z) = 1 J−3 (z) = 0 . (2.5)

Since we are interested in inducing the structure of a Virasoro module in the result-

ing quantum theory, we must impose these constraints in a conformally covariant
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fashion: i.e. , we need to deform the Sugawara stress tensor so that the conformal

weights of J−1 (z) and J−2 (z) are zero. If we demand that the constraints remain pri-

mary and that the deformation consists of adding pieces of lower order in currents,

it is easy to see that the unique such deformation is given by

Tdef(z) ≡ TS(z)− ∂h+(z) , (2.6)

which still satisfies the Virasoro algebra with central charge equal to 8k/(k + 3)−
24k. Relative to Tdef all the currents remain primary except for h+. In fact,

Tdef(z)X(w) =
2k(X, h+)

(z − w)3
+

∆XX(w)

(z − w)2
+
∂X(w)

z − w
+ reg , (2.7)

where the conformal weigths ∆ are given by

∆h± = 1 ∆J±1
= 1± 1 ∆J±2

= 1± 1 ∆J±3
= 1± 2 . (2.8)

In order to impose the constraints (2.5) à la BRST we introduce three fermionic

(b, c) systems of weights (0, 1), (0, 1), and (−1, 2) with operator product expansions

bi(z) cj(w) =
δij

z − w
+ reg ; (2.9)

and we define the BRST operator

d ≡
∮

C0

dz

2πi
j(z) , (2.10)

where

j(z) = −c1(z)− c2(z) +
3∑

i=1

(
ciJ

−
i

)
(z) + (c1c2b3) (z) . (2.11)

Since the constraint algebra closes, the BRST operator is square-zero: d2 = 0.

Its cohomology is therefore defined and this will, in fact, be the space of quanta

of the constrained theory. The operators which survive upon reduction are those

which (anti)commute with the BRST operator modulo those which can be written

as [d , something].

– 8 –



Adding the stress tensor T gh of the ghosts

T gh(z) = (∂b1 c1) + (∂b2 c2) + 2 (∂b3 c3) + (∂b3∂c3) (2.12)

to Tdef we obtain a stress tensor Ttot which obeys a Virasoro algebra with central

charge 8k/(k + 3) − 24k − 30 and relative to which the BRST current j(z) is a

primary field of weight one. As a consequence of this fact the total stress tensor

Ttot is BRST invariant and hence makes the BRST cohomology into a Virasoro

module. We can write the central charge in a more suggestive fashion:

c = 50− 24(k + 3)− 24

k + 3
, (2.13)

which, assuming that k + 3 = p/q can be written as

c = 2

(
1− 12(p− q)2

pq

)
, (2.14)

which is precisely the central charge for the minimal series of the W3 algebra if p, q

are relatively prime natural numbers. Notice however that in this case, the level

cannot be an integer.

We also want to show that not only the Virasoro algebra descends to cohomol-

ogy but that in fact the BRST cohomology affords the structure of a W3 module.

In order to prove this we need to show that in the reduced operator algebra (i.e.

, the algebra of BRST invariant operators modulo BRST exact operators) we find

W3 as a subalgebra. More precisely we must show that the algebra generated by

the A
(1)
2 currents and the (b, c) fields has a subalgebra which yields W3 upon reduc-

tion. In order to prove this, we find it convenient to embed this operator algebra

in a larger one. This larger operator algebra is the algebra generated by the modes

of the free fields in the free field realization of A
(1)
2 given, for example, in [12] .

We are clearly allowed to do this as long as the operators realising the W3 algebra

are expressed in terms of currents.
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The free field realization consists of two free bosons {∂ϕi}2
i=1 and three bosonic

{(βi, γi)}3
i=1 systems and the currents are given by:

h− =
√

3(β1γ1 − β2γ2)− iα′+∂ϕ2

h+ =β1γ1 + β2γ2 + 2β3γ3 − iα′+∂ϕ1

J−1 =β1 + γ2β3

J−2 =β2

J−3 =β3 (2.15)

J+
1 =− β1γ

2
1 + β2γ3 + (k + 1)∂γ1 + iα′+γ1~e1 · ∂~ϕ

J+
2 =β1(γ1γ2 − γ3)− β2γ

2
2 − β3γ2γ3 + k∂γ2 + iα′+γ2~e2 · ∂~ϕ

J+
3 =β1(γ

2
1γ2 − γ1γ2)− β2γ2γ3 − β3γ

2
3 + k∂γ3 − (k + 1)∂γ1γ2

+ iα′+γ3∂ϕ1 − iα′+γ1γ2~e1 · ∂~ϕ

where α′+ =
√

2(k + 3), ~e1 = 1
2(1,

√
3), ~e2 = 1

2(1,−
√

3), ~ϕ = (ϕ1, ϕ2); and where

the free fields have the following operator product expansions

∂ϕi(z) ∂ϕj(w) =
−δij

(z − w)2
+ reg (2.16)

βi(z) γj(w) =
δij

z − w
+ reg (2.17)

Computing Tdef in terms of the free fields one finds that it splits into two parts

Tdef(z) = Tϕ(z) + Tβ,γ(z) ; (2.18)

where Tϕ corresponds to two free bosons—one of them with a background charge:

Tϕ = −1

2
((∂ϕ1)

2 + (∂ϕ2)
2) + i2α′0∂

2ϕ1 , (2.19)

where α′0 = (k+ 2)/α′+; and where Tβ,γ is the stress tensor corresponding to three
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bosonic (β, γ) systems of weights (0, 1), (0, 1), and (−1, 2):

Tβ,γ = −∂β1 γ1 − ∂β2 γ2 − 2∂β3 γ3 − ∂β3∂γ3 . (2.20)

Notice that the free field expressions for the currents associated to the negative

roots do not involve the free bosons. Since these are the only currents entering in

the definition of the BRST operator, this operator commutes with the free bosons

and, thus, Tϕ and Tβ,γ +T gh are separately BRST invariant. It is easy to show[12]

that Tβ,γ + T gh can be written as a BRST anticommutator and hence it does not

contribute in cohomology. On the other hand the only way that Tϕ can be trivial

in cohomology is if the BRST cohomology itself vanishes completely. We will prove

in the next section that, in fact, the BRST cohomology is isomorphic to the Fock

space Hϕ of the free bosons. Therefore, under this isomorphism, the operator

in cohomology induced by the BRST invariant stress tensor Ttot is precisely Tϕ.

This, is turn, is precisely the stress tensor in the free boson representation for W3

constructed by Fateev and Zamolodchikov in [3] .

In order to complete the construction of theW3 algebra we need to find a BRST

invariant primary field in terms of currents which induces in BRST cohomology an

operator obeying, together with the operator induced by Ttot, the operator product

algebra defining W3. By analogy with the work of [5] we take as our starting point

the cubic Casimir operator1

1 Our d-symbols are normalised as follows:

dh−h−h− = 1

dh−h+h+

= −1

dh+J+
1 J−1 = −

√
3

dh−J+
1 J−1 = 1

dh+J+
2 J−2 =

√
3

dh−J+
2 J−2 = 1

dh−J+
3 J−3 = −2

dJ±3 J∓1 J∓2 = −2
√

3
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Q(3) = dabc (XaXbXc) , (2.21)

which is primary of conformal weight 3 with respect to the Sugawara stress tensor.

We then deform it by adding terms of lower order in currents and we complete

it to a BRST invariant Ttot-primary operator by adding ghost dependent terms.

Doing this we find, after an extremely tedious albeit straight forward calculation,

that the following operator is both BRST invariant and primary of weight 3 with

respect to Ttot:

W =Q(3) + (k + 3)
[
X(0,0) +X(1,1) +X(2,2)

]
, (2.22)

where

X(0,0) =3
[(
h−∂h+

)
+ 3

(
h+∂h−

)]
+ 6

√
3
[(
J−1 ∂J

+
1

)
+

(
J−2 ∂J

+
2

)]
+ 4

√
3(k + 1)

[(
J+

2 ∂J
−
2

)
+

(
J+

1 ∂J
−
1

)]
, (2.23)

X(1,1) =− 6
√

3(k + 2)
[(
∂2b2c2

)
−

(
∂2b2c2

)]
+ 6

[(
h−b3∂c3

)
−

(
h−∂b3c3

)]
− 18

(
∂h−b3c3

)
− 4

√
3(k2 + 4k + 6) [(∂b2∂c2)− (∂b1∂c1)]

− 3(2k + 3)
[(
h−∂b2c2

)
+

(
h−∂b1c1

)]
+
√

3(2k + 11)
[(
h+∂b2c2

)
−

(
h+∂b1c1

)]
+ 2

√
3(2k − 1)

[(
J−2 ∂b1c3

)
+

(
J−1 ∂b2c3

)]
+ 4

√
3(k + 1)

[(
J+

2 ∂b3c1
)

+
(
J+

1 ∂b3c2
)]

− 6
√

3
[(
∂J+

2 b3c1
)

+
(
∂J+

1 b3c2
)]

+ 4
√

3(k + 4)
[(
J+

2 b3∂c1
)

+
(
J+

1 b3∂c2
)]

, (2.24)

and

X(2,2) =− 24 [(b3∂b2c2c3)− (b3∂b1c1c3)] . (2.25)

Moreover, we find that this is the unique (up to BRST coboundaries) such operator.

Plugging W into the free field representation we find that it splits into a piece Wϕ
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which only depends on the free bosons

Wϕ =i(α′+)3 [(∂ϕ2∂ϕ2∂ϕ2)− 3 (∂ϕ2∂ϕ1∂ϕ1)]

− 3(α′+)2(k + 2)
[(
∂ϕ2∂

2ϕ1

)
+ 3

(
∂ϕ1∂

2ϕ2

)]
+ 6iα′+(k + 2)2∂3ϕ2 (2.26)

and a messy second part which is BRST exact.

Under the isomorphism between BRST cohomology and Hϕ, the operator

which W induces in cohomology is precisely Wϕ which, up to a multiplicative con-

stant which we are free to chose, coincides with the free boson realization of the

weight three primary field of the W3 algebra as computed by Fateev and Zamolod-

chikov in [3] . Therefore we conclude that the operators induced by Ttot and

W in BRST cohomology satisfy the operator product algebra of W3. Therefore

we conclude that the reduced operator algebra obtained from A
(1)
2 contains W3

as a subalgebra. In this way given any A
(1)
2 -module M, the BRST cohomology

Hd(M⊗Hgh) inherits the structure of a W3 module.

We shall have more to say about the nature of this correspondence in the

concluding section, but now several remarks about the construction of W are in

order. First of all, it is worth noticing that the ghost independent part of W is

not primary with respect to the deformed stress tensor Tdef . In fact, if one starts

with the most general deformation of Q(3) (obtained by adding local terms of lower

order in currents) which is primary with respect to Tdef , one finds — in our case,

the hard way — that it is impossible to promote it to a BRST invariant opearator

by only adding ghost dependent pieces.

A second remark is that the expression for W is, of course, not unique since

one can always add BRST coboundaries of primary fields (e.g. ,
(
J+

3 b3
)
) without

altering its cohomology class. We hope that via this method one can find an-

other representative for the cohomology class of W which allows one to recognize

a structure which could suggest a calculationally less involved method to gener-

alize this construction to sln for general n. This should yield, in their free boson
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representations, the operator product algebras of the Wn algebras of Fateev and

Lykyanov[4].

A third remark is that the appearance of the cubic Casimir is unavoidable.

If one works backwards from the expression for Wϕ and one tries to construct a

BRST invariant operator in terms of currents which reproduces it in cohomology,

one is led immediately to the cubic terms in Q(3) which consist purely of Cartan

generators. In order to then promote it to a BRST invariant operator one is forced

to introduce futher terms cubic in currents which, at the end of the day, recover

precisely the cubic terms appearing in the cubic Casimir (and no other cubic terms

can appear).

The fourth and final remark is that we have not determined whether the op-

erator algebra of Ttot and W is already that of W3 before descending to BRST

cohomology; or, in fact, whether this could be achieved by the addition of BRST

coboundaries. This is an interesting question that might be worth pursuing if only

to try and obtain some insight into the form of W .

§3 The Cohomology of the BRST Operator

In this section we conclude the construction by providing a proof of the iso-

morphism between the BRST cohomology and the Fock space of the free bosons

in the free field representation of A
(1)
2 . In other words, if H ≡ Hϕ ⊗Hβγ ⊗Hbc is

the full Fock space of the fields in the free field representation of A
(1)
2 , then we will

prove that

Hd(H) ∼= Hϕ . (3.1)

In terms of the free fields, the BRST operator d corresponding to the constraints

(2.5) is the closed contour integral around the origin of the following current:

j(z) = −c1(z)− c2(z) +
3∑

i=1

(βici) (z) + (c1c2b3) (z) + (c1γ2β3) (z) . (3.2)
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Since it is independent of ∂ϕi the BRST operator is the identity inHϕ and therefore

Hd(H) = Hϕ ⊗Hd(Hβγ ⊗Hbc) , (3.3)

whence (3.1) is equivalent to proving that

Hd(Hβγ ⊗Hbc) ∼= C , (3.4)

to which the rest of this section is devoted. The idea of the proof is very simple: we

will filter C ≡ Hβγ ⊗Hbc in such a way that the computation of Hd(C) is reduced

to the computation of the cohomology of a simpler operator.

To this end let us define a grading on C. We define the following filtration

degree:

fdeg bi = fdeg βi = −1 fdeg ci = fdeg γi = 1 . (3.5)

Assigning zero filtration degree to the sl2 invariant vacuum Ω0 defines fdeg on all

of C, since this is generated by the modes of {bi, ci, βi, γi} acting on Ω0. This

vacuum is annihilated by the following modes: (βi)n and (bi)n for i = 1, 2 and for

all n > 0; by (γi)n and (ci)n for i = 1, 2 and for all n ≥ 0; by (β3)n and (b3)n for

all n > 1; and by (γ3)n and (c3)n for all n ≥ −1.

Let us define Cn ≡ {ω ∈ C | fdegω = n}. Then C =
⊕

n∈ZCn. According to

this grading we can split d into two terms of different filtration degrees: d = d0+d1

where di is the closed contour integral around the origin of ji(z), where

j0(z) =
3∑

i=1

(βici) (z) (3.6)

and

j1(z) =− c1(z)− c2(z) + (c1c2b3) (z) + (c1γ2β3) (z) . (3.7)

Because the filtration degree is compatible with the operator algebra, breaking up

the equation d2 = 0 into its homogeneous terms we find that d2
0 = {d0 , d1} = d2

1 =
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0 separately. Therefore the cohomology of d0 is defined. We will compute it next

and later show that it is isomorphic to the cohomology of d.

As a technical aside for readers familiar with spectral sequences let us mention

that if we define F pC ≡
⊕

n≥pCn, then (FC, d) becomes a filtered complex. This

filtration gives rise to a spectral sequence whose E1 term is isomorphic to the

cohomology of d0. Since d1 is d0-exact — namely j1 = −[d0 , γ1 + γ2 + (c1γ2b3)]

— the differential induced by d on E1 is identically zero and, hence, the spectral

sequence degenerates at the E1 term. However, the filtration is not bounded and,

therefore, one cannot conclude2 that the limit term is isomorphic to the cohomology

of d. However the case at hand is not too pathological, it seems, and by bounding

the filtration from above we will see that the cohomology of d0 is indeed isomorphic

to that of d; although we will not use the existence of a convergent spectral sequence

to prove it.

We now proceed with the proof of the following preliminary result.

Lemma. Hd0
(C) ∼= C.

Proof: Let us introduce the following notation. For every kind of field let us define

the following creation (a†) and annihilation (a) operators:

a†(βi)p ≡ (βi)−p

a(βi)p ≡ −(γi)p

 ∀p ≥ 0, i = 1, 2

a†(β3)p ≡ (β3)−p

a(β3)p ≡ −(γ3)p

 ∀p ≥ −1

a†(γi)p ≡ (γi)−p

a(γi)p ≡ (βi)p

 ∀p ≥ 1, i = 1, 2 (3.8)

a†(γ3)p ≡ (γ3)−p

a(γ3)p ≡ (β3)p

 ∀p ≥ 2

2 We thank Jim Stasheff for confirming this observation.
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and the same for b and c except for the minus signs in the definitions of a(bk).

With this notation and if X is a free field

[a(X)p , a
†(X)q]± = δpq , (3.9)

for allowed p, q. A short calculation further shows that

d0 =
∑

i,p
allowed

(
a†(βi)pa(bi)p + a†(ci)pa(γi)p

)
. (3.10)

Let us define the operator K as follows

K ≡
∑

i,p
allowed

(
a†(bi)pa(βi)p + a†(γi)pa(ci)p

)
. (3.11)

This operator obeys {d0 , K} = N , where N is the full number operator diago-

nalised by the basis states

∏
i,p

allowed

[
a†(βi)p

]ki,p
[
a†(bi)p

]k′i,p [
a†(γi)p

]li,p [
a†(ci)p

]l′i,p
· Ω0 (3.12)

with eigenvalue ∑
i,p

allowed

(
ki,p + k′i,p + li,p + l′i,p

)
<∞ , (3.13)

where ki,p and li,p take integer non-negative values and k′i,p and l′i,p are either 0 or

1. Since N commutes with d0, the cohomology of d0 splits into a direct sum

Hd0
(C) =

⊕
n≥0

Hd0
(C(n)) , (3.14)

where C(n) is the eigenspace of N with eigenvalue n. But since N is d0-exact, the

cohomology resides in C(0); for any d0-cocycle ω ∈ C(n 6=0) is also a coboundary:

ω = d0
1
nK ω. But C(0) is spanned by the vacuum which is thus a non-trivial

d0-cocycle.
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A remark is in order: notice that d0 is the BRST charge corresponding to

abelian constraints. As such we could have invoked the Kugo-Ojima quartet mech-

anism to deduce the lemma. However, we feel that the above proof is conceptually

more transparent.

Before proving the isomorphism between the cohomologies of d and d0 we need

a technical remark. Since the stress tensor T = Tβ,γ +T gh is BRST exact, a similar

argument to the one used in the proof of the lemma shows that all the BRST

cohomology resides in the zero eigenspace of L0, since L0 is also BRST exact and

diagonalisable. States with zero conformal weight are finite linear combinations

of basis states of the form (3.12) which themselves have zero conformal weight.

This imposes a linear relation among the occupation numbers which, since for a

conformal field φ(z) one has that [L0 , φn] = −nφn, is given by

0 =
∑

i,p
allowed

p
(
ki,p + k′i,p + li,p + l′i,p

)

=
∑
i,p≥2

p
(
ki,p + k′i,p + li,p + l′i,p

)
+

2∑
i=1

(
ki,1 + k′i,1 + li,1 + l′i,1

)
+ k3,1 + k′3,1 − k3,−1 − k′3,−1 , (3.15)

where we have also used that the vacuum has zero conformal weight due to sl2

invariance. This relation implies that the filtration degree of a basis state of zero

conformal weight is given by

∑
i,p≥0

(−1− p)
(
ki,p + k′i,p

)
+

∑
i,p≥1

(1− p)
(
li,p + l′i,p

)
≤ 0 . (3.16)

Therefore we can conclude that, since L0 has zero filtration degree, no state ω ∈
C of zero conformal weight can contain homogeneous terms of positive filtration

degree. In other words, the filtration degree of zero conformal weight states is

bounded above. This remark will be crucial in the proof of the following theorem.
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Theorem. Let CL0 denote the subspace of C of zero conformal weight. Then

Hd(C) ∼= Hd(C
L0) ∼= Hd0

(C) .

Proof: The first isomorphism follows from the above remarks. To prove the second

isomorphism it is clearly enough to show that every L0-invariant d-cocycle is d-

cohomologous to a multiple of the vacuum. Let ψ ∈ CL0 be a d-cocycle. We

say that ψ has order p if ψ contains no homogeneous term of filtration degree

less than p. Clearly, by the above remarks, p is a non-positive integer. If p = 0

then dψ = 0 implies that d0ψ = 0. By the lemma, ψ = αΩ0 + d0ξ where ξ is

some vector of zero conformal weight and zero filtration degree. Since d1ξ has

also zero conformal weight (since [d1 , L0] = 0) but positive filtration degree it

must be zero, whence d0ξ = dξ. Therefore ψ is cohomologous to a multiple of the

vacuum. Therefore the theorem is true for cocycles of order zero. Suppose that

the theorem has been proven for cocycles of order up to p + 1. Then let ψ be

a d-cocycle of order p < 0. Under the grading of CL0 induced by the filtration

degree, ψ splits as ψ = ψp ⊕ ψp+1 ⊕ · · · ⊕ ψ0, where ψn ∈ CL0
n . Since dψ = 0,

d0ψp = 0 which, since p < 0, implies (by the lemma) that ψp = d0ξp for some

ξp ∈ CL0
p . Let ψ′ = ψ − dξp. Then ψ′ is a d-cocycle of order p + 1 which, by the

induction hypothesis, is cohomologous to a multiple of the vacuum. Therefore the

theorem holds for oder p and by backwards induction we are done.

It turns out that the analogous statement to (3.1) for a general simple finite

dimensional Lie algebra is also true and that the proof follows essentially the same

lines as in the case of sl3. The precise statement of the theorem, as well as its

proof and some applications will be discussed elsewhere[15].

– 19 –



§4 Conclusions

In this paper we have provided a (quantum) homological construction of the

W3 extended conformal algebra starting from the affine algebra A
(1)
2 , different from

the coset construction of [7] . It is instructive to compare the two constructions

since they both have their merits and their shortcomings.

The coset construction seems to be more natural when it comes to building

the minimal unitary representations of W3 since the relevant values of the central

charge are obtained starting from A
(1)
2 × A

(1)
2 at level (k, 1), where k ∈ N, which

corresponds to unitary representations of A
(1)
2 × A

(1)
2 . Similarly the fusion rules

for the minimal models of W3 behave qualitatively like the ⊗-decomposition of

irreducible representations of A2 × A2, which suggests a closer connection to the

coset construction than to the homological one.

On the other hand, the homological construction is more economical in the

sense that the space of states of the resulting quantum theory (the zero ghost

number BRST cohomology, in the homological construction) is smaller than the

resulting space in the coset construction. In fact, a naive count of the degrees of

freedom shows that the coset construction yields dim A2 = 8 degrees of freedom

whereas the homological construction yields only rankA2 = 2 degrees of freedom

corresponding precisely to the two Virasoro primary fields generating W3.

Also the homological construction seems to be more natural when discussing

free field representations since it intertwines directly between the Feigin-Fuchs

representations for A
(1)
2 and W3. Thus constructions which rely on Feigin-Fuchs

representations (e.g. , computation of Kač determinant, Fock space resolutions)

are bound to correspond via the homological reduction. This is exemplified for the

case of A
(1)
1 ↔ Virasoro in [12] . In particular there is good evidence to support

the fact that at least for completely degenerate representations the homological

reduction of an irreducible A
(1)
2 module yields an irreducible module of W3. This

is to be contrasted with the coset construction where one needs to project out the

irreducible modules after a detailed analysis of branching relations.
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Unfortunately both constructions are computationally involved and neither

invites an immediate generalization to more complicated algebras. The homolog-

ical construction, however, may offer some hope in this context provided that a

Coulomb gas representation exists for the extended algebra. It can be proven[15]

that the analogous result to the theorem in section 3 is still true for an arbitrary

finite dimensional simple Lie algebra g. Thus this construction provides one with

a resolution of the Fock space of the rank g free bosons in terms of the free field

Fock space of ĝ and the ghosts (i.e. , F ≡ Hϕ⊗Hβγ ⊗Hgh). Then general results

in homological algebra guarantee the existence of a lift of any operator in Hϕ to

a BRST invariant operator in F . However there is nothing that guarantees that

the operator can be written in terms of currents (and ghosts, of course) in a local

way. Work is in progress towards this with the hope that one may at least give

an existence proof for general g. Nevertheless, even if this existence proof were

possible there is no ingredient in the method which would suggest that the lifted

operators are in any way related to the casimirs of g. This is clearly something to

be understood from a different perspective.

Finally we should mention that there are two other cases that are still tractable

computationally. These are the ones corresponding to the other rank 2 algebras:

B2 = C2 and G2 which should yield generalizations of W3 with one extra primary

field each of spins 4 and 6 respectively. Work towards this is in progress[16].
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