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ABSTRACT

We construct the second hamiltonian structure of the KP hierarchy as a natural

extension of the Gel’fand-Dickey brackets of the generalized KdV hierarchies. The

first structure—which has been recently identified as W1+∞—is coordinated with

the second structure and arises as a trivial (generalized) cocycle. The second struc-

ture gives rise to a non-linear algebra, denoted WKP , with generators of weights

1, 2, . . . . The reduced algebra obtained by setting the weight 1 field to zero contains

a centerless Virasoro subalgebra, and we argue that this is a universal W -algebra

from which all Wn-algebras are obtained through reduction.
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Introduction

The KP hierarchy [1] has become an ubiquitous subject in string theory ever

since the surprising discovery of the connection between the matrix model formu-

lation of two-dimensional gravity and the generalized KdV hierarchies (see e.g.

[2] ). Nevertheless the KP hierarchy—as well as its reductions—has been around

for much longer in the field of classical integrable systems. Its exact integrabil-

ity properties and its relation with free fermion theories via infinite dimensional

grassmannians are by now well understood; as well as its hamiltonian nature with

respect to the natural Kirillov bracket on a coadjoint orbit of a formal Lie al-

gebra of pseudo-differential operators [3] [4] , which has been recently identified

[5] [6] with the W1+∞ algebra. These results notwithstanding, a bihamiltonian

structure for the KP hierarchy has not, to the best of our knowledge, been con-

structed. It is the purpose of this letter to do so. As a byproduct we will see that

the conserved charges obey (Lenard) recursion relations. As a further byproduct,

which is interesting in its own right, we find a nonlinear algebra generated by

fields of weights 1, 2, . . . from which W1+∞ can be recovered as a trivial (gener-

alized) cocycle. Furthermore, setting the field of weight 1 equal to zero yields,

upon hamiltonian reduction, a nonlinear algebra containing a centerless Virasoro

subalgebra—i.e. , containing a subalgebra isomorphic to the Lie algebra of Diff S1.

It is reasonable to expect and, in fact, we shall argue that this is the case, that this

new nonlinear algebra is a universal W -algebra in the sense that all Wn-algebras

[7] can be obtained from it through hamiltonian reduction.

The KP hierarchy is defined as the isospectral problem for the pseudo-differential

operator (ΨDO)

Λ = ∂ +
∞∑
i=0

∂−iui . (1)

The KP flows are given by

∂Λ

∂ti
= [Λi

+ , Λ] . (2)
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The nth-generalized KdV hierarchy is obtained by imposing the constraint Λn
− = 0.

It is well known that the flows in (2) preserve this condition and that they are

bihamiltonian; that is, hamiltonian relative to two coordinated Poisson brackets:

the first and second Gel’fand-Dickey brackets [8] . Furthermore, it is by now

common knowledge that the second bracket gives rise to a classical realization of

the Wn-algebra, and that the first bracket can be obtained from the second as a

trivial (generalized) cocycle.

It is therefore a natural question to ask whether the bihamiltonian structure of

the nth KdV hierarchy is inherited under reduction from a similar structure in the

KP hierarchy. We partially answer this question affirmatively by proving that the

KP hierarchy is in fact bihamiltonian. Moreover we present some evidence that

leads us to the conjecture that the reduction actually works. The two hamiltonian

structures of the KP hierarchy are obtained by a straightforward modification of

the hamiltonian formalism for generalized Lax operators.

Lack of space forbids all but a sketchy description of the formalism and hence

we refer those readers not familiar with the formal calculus of pseudo-differential

operators and/or the basics of integrable systems to Dickey’s comprehensive treat-

ment [9] .

Bihamiltonian Structure of the KP Hierarchy

We want to define Poisson brackets in the space M of KP operators Λ of the

form (1) . In order to define Poisson brackets we need to define several geometric

objects: the class of functions on which we wish to define the Poisson brackets,

the vector fields and 1-forms, and a map sending (the gradient of) a function to

its associated hamiltonian vector field.

We will define Poisson brackets on functions of the form

F [Λ] =

∫
f(u) , (3)
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where f(u) is a differential polynomial in the ui, and the integral sign stands for

any reasonable linear map annihilating perfect derivatives so that we can “integrate

by parts.”

The tangent space T to M at Λ is isomorphic to the infinitesimal deformations

of Λ, which are clearly given by ΨDO’s of the form
∑∞

i=0 ∂−iai. Each A ∈ T gives

rise to a vector field ∂A whose action on a function F =
∫

f is given by

∂AF ≡ d

dε
F [Λ + εA]

∣∣∣
ε=0

=

∫ ∞∑
k=0

ak
δF

δuk
, (4)

where the Euler variational derivative is given by

δF

δuk
=

∞∑
i=0

(−∂)i
∂f

∂u
(i)
k

. (5)

Notice that both sums are actually finite for f a differential polynomial and thus

the action of ∂A is well defined on our class of functions.

The space S of ΨDO’s of the form
∑

i≥0 bi∂
i−1 parametrizes the 1-forms. No-

tice that by definition the above sum is finite since ΨDO’s are formal Laurent series

in ∂−1. Decomposing the ring P of ΨDO’s as P = P+⊕P−, where P± are respec-

tively the subrings of differential and integral operators, we see that S ∼= P/∂−1P−.

The dual pairing between vectors and 1-forms is naturally given by the Adler trace

Tr defined as follows: for any ΨDO P =
∑

i pi∂
−i, Tr P ≡

∫
res P ≡

∫
p1. Thus, if

A ∈ T and X ∈ S then (∂A, X) = Tr(AX). The reader can check that the pairing

is nondegenerate.

If F =
∫

f is any function on M , we define its gradient dF by ∂A F = (∂A, dF )

whence it follows that

dF =
∑
k≥0

δF

δuk
∂k−1 . (6)

It is obvious that for any function in the class defined above, its gradient is a

1-form.

– 4 –



The last ingredient required to define Poisson brackets is a linear map Ω from

1-forms to vector fields which takes the gradient of a function to its associated

hamiltonian vector field. This map is naturally induced from a linear map J : S →
T by Ω(X) = ∂J(X). The Poisson bracket is then given by

{F , G} = (Ω(dF ), dG) = Tr(J(dF )dG) . (7)

Demanding that this be antisymmetric and obey the Jacobi identity, constrains

the allowed maps J . We call the allowed maps hamiltonian.

We now proceed to construct a one-parameter family of such maps. Let λ be

any constant parameter and define Λ̃ = Λ + λ. Then define J by

J(X) = (Λ̃X)+Λ̃− Λ̃(XΛ̃)+ = Λ̃(XΛ̃)− − (Λ̃X)−Λ̃ , (8)

for X any ΨDO. From the first equality it follows that J annihilates ∂−1P−,

hence only the image of X in S really matters, whereas from the second it follows

that J(X) lies in T ; in other words, J defines a map S → T . The proof that

the Poisson brackets defined by J are antisymmetric and obey the Jacobi identity

follows closely the proof of Gel’fand and Dickey [8] for their analogous result (cf.

also [9] ) and thus we omit it here.

Making the dependence in λ manifest we can write J(X) = J2(X) + λJ1(X)

where

J1(X) = [X+ , Λ]− , (9)

J2(X) = (ΛX)+Λ− Λ(XΛ)+ . (10)

Both J1 and J2 define (coordinated) Poisson brackets which, as we will now show,

are the first and second hamiltonian structures of the KP hierarchy of equations.

Notice that J1 is obtained from J2 by shifting u0 7→ u0 + λ. The fundamental

Poisson brackets computed form J1 have recently been shown to be isomorphic [5]

[6] to W1+∞.
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Let us define functions Hk = 1
kTr Λk. They are clearly conserved quantities

for the Lax flows, since the Adler trace annihilates commutators. Moreover they

are nontrivial for all k. Using the cyclic property of the trace one finds that

∂AHk = Tr (AΛk−1) from where the gradients immediately follow

dHk = Λk−1 mod ∂−1P− . (11)

Given a hamiltonian map J , there is a way to associate a flow to a function H

by ∂Λ
∂t = J(dH). Choosing J2 and Hk we find,

J2(dHk) = J2(Λ
k−1)

= [Λk
+ , Λ]

=
∂Λ

∂tk
; from (2)

so that the KP flows (2) are hamiltonian relative to the second hamiltonian struc-

ture. Morevoer, since [Λk
+ , Λ] = J1(dHk+1) we see that they are also hamiltonian

with respect to the first structure. Thus the KP flows are bihamiltonian, as sum-

marized by the Lenard relations relating the conserved charges

∂Λ

∂tk
= J1(dHk+1) = J2(dHk) . (12)

Hamiltonian reduction for u0 = 0

The free term (u0) in the KP operator does not evolve under any of the KP

flows given by (2) and thus the submanifold M̃ of KP opeartors with u0 = 0 is

preserved under the KP dynamics. These dynamics can be described intrinsically

relative to a bihamiltonian structure on M̃ induced by that on M and which we

now proceed to describe.
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As we will now show, the first structure restricts trivially to M̃ since u0 is cen-

tral relative to it; whereas relative to the second structure, M̃ is, at least formally, a

symplectic submanifold of M and the induced brackets are the Dirac brackets. To

see this we need to introduce a few calculational tools. If FA ≡ TrAΛ, FB ≡ TrBΛ

are linear functions on M—i.e. , A, B ∈ S independent of Λ— so that dFA = A

and dFB = B, then their Poisson bracket relative to a hamiltonian map J is given

by

{FA , FB} = TrJ(A) B = −TrA J(B) . (13)

If A =
∑

i≥0 ai∂
i−1 and B =

∑
i≥0 bi∂

i−1, then (13) can be rewritten as

{FA , FB} = −
∑
i,j

∫
ai(Ωij · bj) , (14)

where the Ωij are differential operators defined by J(B) =
∑

i,j ∂−i(Ωij · bj). In

terms of the coordinates ui on M , the fundamental Poisson brackets are given by

{ui(x) , uj(y)} = −Ωij · δ(x− y) , (15)

where Ωij is taken at the point x.

From the expression (9) for the first hamiltonian structure we see that since

only A+ constributes, Ω0i = 0 for all i. Hence u0 is central as claimed.

From the expression (10) for the second hamiltonian structure we see that

Ω00 = −∂ and hence it is formally invertible. However, the Dirac brackets, involv-

ing a Ω−1
00 could be potentially nonlocal. We will see, however that this is not the

case. The fundamental brackets on M̃

{ui(x) , uj(y)} = −Ω̃ij · δ(x− y) (16)

are given from those on M via the celebrated Dirac formula

Ω̃ij = Ωij − Ωi0 Ω−1
00 Ω0j . (17)
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This formula induces brackets on functions F, G on M̃ obtained from those of M

as follows. We first extend the functions to M which we also denote F, G. Since

the extension is not unique, the terms δF
δu0

, δG
δu0

in the expression for the gradients

are rendered undefined. This ambiguity is fixed by demanding that the associated

hamiltonian vector field be tangent to M̃ . In other words, we fix δF
δu0

by the

requirement that J2(dF ) should have no free term. Let the gradient of F be given

by dF =
∑

i≥0 Xi∂
i−1. Then Xi = δF

δui
for i > 0 and X0 is to be determined by

demanding that J2(dF ) =
∑

i,j≥0 ∂−i(Ωij ·Xj) have no free term. In other words,

X0 = −
∑
j>0

Ω−1
00 Ω0j ·Xj , (18)

whence the expression for the Dirac brackets follows at once after rewriting J2(dF )

in terms of the Xi for i > 0:

J2(dF ) =
∑
i,j>0

∂−i(Ω̃ij ·Xj) . (19)

This condition on X0 can be written more invariantly as follows. The free term of

J2(dF ) is given by res J2(dF )∂−1. Setting this to zero we find,

0 =res J2(dF )∂−1

=res
(
Λ(dFΛ)−∂−1 − (ΛdF )−Λ∂−1

)
=res

(
dFΛ(Λ∂−1)+ − ΛdF (Λ∂−1)+

)
=res [dF , Λ] . (20)

As an equation on X0, this simply says that X ′
0 is to be equal to the Adler residue

of a commutator, which is always a perfect derivative. Therefore X0 can always

be solved as a differential polynomial in the Xi and hence the induced brackets on

M̃ are local.
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Notice that if we assign weights [∂] = 1 and [ui] = i+1, then the KP operator Λ

in (1) is homogeneous of weight 1. It is easy to verify that if we define [f ′] = [f ]+1

for any homogeneous differential polynomial f , the multiplication in the ring of

ΨDO’s preserves the weight and thus becomes a graded ring. Since the hamiltonian

structures are defined using only the ring structure of the ΨDO’s (up to some

harmless pojections), it is clear that the differential operators Ωij (and also Ω̃ij)

are homogeneous of weight i + j + 1. Thus the coefficients of Ωij (and also of Ω̃ij)

can be a priori differential polynomials in the u1, u2, . . . , ui+j ; although symmetry

considerations actually forbid the appearence of ui+j .

A straight-forward computation yields the first few Ωij :

Ω00 = −∂

Ω11 = ∂u1 + u1∂

Ω20 = u1∂ (21)

Ω12 = 2∂u2 + u2∂ − ∂2u1

Ω22 =
(
u2

1 + 4u3 − 2u′2
)
∂ + u1u

′
1 − u′′2 + 2u′3

with Ωji = Ω∗ij and all other Ωij being zero. The Ω̃ij follow from (17) :

Ω̃11 = ∂u1 + u1∂

Ω̃12 = 2∂u2 + u2∂ − ∂2u1 (22)

Ω̃22 =
(
2u2

1 + 4u3 − 2u′2
)
∂ + 2u1u

′
1 − u′′2 + 2u′3 ,

where as before Ω̃ji = Ω̃∗ij . The first equation exhibits explicitly a subalgebra

isomorphic to the Lie algebra of Diff S1. The second equation says that u2 − 1
2u′1

is a DiffS1 tensor of weight 3. Presumably this remains true for the uj>2 and

they can be modified by adding differential polynomials of the lower uj that make

them into tensors. The Poisson bracket of u2 with itself involves u1 non-linearly

while also the field u3 shows up. Therefore the fundamental Poisson brackets on

M̃ relative to the second structure define a nonlinear extension of the Lie algebra

of DiffS1 by fields of weights 3, 4, . . . .
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Conclusions

The generalization of the Gel’fand-Dickey brackets to the space of KP oper-

ators has allowed us to display the KP hierarchy as a bihamiltonian integrable

hierarchy. The fundamental brackets coming from the first structure have been

recently identified with the W1+∞ algebra [5] [6] , whereas the ones coming from

the second structure yield a nonlinear algebra which we denote WKP . The fun-

damental brackets induced on the submanifold of KP operators without free term

by restricting the second hamiltonian structure, yields a nonlinear extension of the

Lie algebra of Diff S1 by tensors of weights 3, 4, . . . .

Imposing the constraint Λn
− = 0 reduces the KP hierarchy to the nth order

generalized KdV hierarchy which is bihamiltonian relative to the Gel’fand-Dickey

brackets. These are brackets defined on the space N of Lax (differential) operators

L = ∂n + · · ·. Let N ⊂ M denote the submanifold of KP operators obeying the

constraint Λn
− = 0. Then N is isomorphic to N , the isomorphism being explicitly

given by Λ 7→ Λn. The functions Hi generating the KP flows restrict to N and

can be pulled back to N . Moreover the Lax flows (2) preserve N and induce flows

on N which are bihamiltonian relative to the Gel’fand-Dickey brackets and are

generated by the functions induced on N by the Hi.

Now, N can be given a bihamiltonian structure for the KdV flows in two

different ways. On the one hand we can pull back the Gel’fand-Dickey brackets

on N to N . It is straightforward to derive reasonably explicit formulas for the

induced brackets. On the other hand, one expects that N inherits a bihamiltonian

structure from the one on M that we have constructed in this paper.

It is natural to conjecture that these two structures coincide. It is not enough

that the Lax flows correspond, since the vector fields corresponding to the Lax

flows commute and thus only span a (possibly maximal) isotropic subspace of

the tangent space. However, this correspondence presents strong evidence for our

conjecture. The difficulty in proving the conjecture arises in deriving an expression

for the brackets inherited by N from M . The constraint Λn
− = 0 translates into
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an infinite number of constraints involving the coordinates ui—namely setting

each uj≥n equal to a differential polynomial in the ui<n—which makes the Dirac

prescription difficult to implement. Work on this is in progress.
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