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NS-NS sector of type II string theory

Massless fields in NS-NS sector of type II string theory:

• metric g

• B-field

• dilaton φ

comprise the bosonic field content of the common sector of type II

supergravity.

In this talk: type II string backgrounds from supergravity.
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Supergravity backgrounds

These are described by the following data:

• (M1,9, g) a lorentzian spin manifold

• D a metric connection (i.e., Dg = 0) with closed torsion 3-form

H = dB

• dilaton φ
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• extremals of the action (in string frame)∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2
)
dvolg
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Fermions

• C`(1, 9) ∼= R(16)

=⇒ the unique irreducible Clifford module M is real (i.e.,

Majorana) and has dimension 16

• M = S+ ⊕S− under Spin(1, 9) (Majorana–Weyl)

• let S± be the corresponding bundles on M : real and rank 8
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• the gravitino ψ ∈ C∞(M,T ∗M ⊗ S), where

? Type IIA: S = S+ ⊕ S−
? Type IIB: S = S+ ⊕ S+

• the dilatino λ ∈ C∞(M,S′), where

? Type IIA: S′ = S− ⊕ S+

? Type IIB: S′ = S− ⊕ S−

• the fermions are set to zero in a classical background

• supersymmetry does not respect this except on a supersymmetric

background
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Killing spinors

• a Killing spinor ε ∈ C∞(M,S) obeys

δεψ |ψ=λ=0 = Dε = 0

and

δελ |ψ=λ=0 = (dφ+ 1
2H)ε = 0
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• the connection D on S is defined by

? Type IIA: D = D+ ⊕D−, with D±
X = ∇X ± 1

4ıXH

? Type IIB: DX = ∇X + 1
4iıXH, with i the complex structure on

S+ ⊕ S+, i : (ψ1, ψ2) 7→ (ψ2,−ψ1)

• D is (morally) a spin connection induced from D

• the curvature of D is the local obstruction to the existence of

parallel spinors

We will concentrate on backgrounds for which D is flat

If M is simply-connected, this implies that M is parallelisable.
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Parallelisable geometries

Definition: A manifold M is parallelisable if TM is trivial.

⇐⇒ TM has a connection D with trivial holonomy

(Reduction Theorem)

=⇒ D is flat

(Ambrose-Singer Theorem)

• if M is simply-connected then flatness of D is also sufficient
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• in addition, for a parallelisable background

? Dg = 0
? dH = 0, where H is the torsion 3-form of D:

H(X,Y, Z) = g(T (X,Y ), Z)

where

T (X,Y ) = DXY −DYX − [X,Y ]

These geometries are easily characterised.
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A theorem

Theorem
(M, g) is locally isometric to a Lie group with a a bi-invariant

metric

Proof: Let RD be the curvature of D:

RD(X,Y )Z = D[X,Y ]Z −DXDYZ +DYDXZ

RD = 0 is equivalent to the following:

• torsion T is parallel with respect to ∇ and D!
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• T satisfies the Jacobi identity

• let {ξi} be a D-parallel frame:

T (ξi, ξj) = −[ξi, ξj] = −fijkξk

• DT = 0 =⇒ fij
k are constants =⇒ a Lie algebra g

• the action of g on M integrates to a local diffeomorphism G→M

• the metric g on g is invariant =⇒ the metric on G is bi-invariant

[Chamseddine–FO–Sabra hep-th/0306278]
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Some harder theorems

(M, g) simply-connected irreducible riemannian parallelisable:

• (R, dt2)

• compact simple Lie group with (a multiple of) the Killing form

• S7 with the nearly parallel G2 structure

[Cartan–Schouten (1926), Wolf (1970)]

Only the first two have dH = 0.
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(M, g) simply-connected indecomposable lorentzian parallelisable is

a Lie group with a bi-invariant metric, whence dH = 0
[Cahen–Parker (1977)]

Summary: Parallelisable geometries with closed torsion 3-form are

locally isometric to Lie groups with bi-invariant metrics.
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Lie groups with bi-invariant metrics

“Equivalent”question:

Which Lie algebras have an invariant metric?

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing
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The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → so(g) ∼= Λ2g
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whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g, so it defines

a class [ω] ∈ H2(g, h∗)

• we build the corresponding central extension g×ω h∗

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)
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• the double extension admits an invariant metric


g h h∗

g 〈−,−〉g 0 0
h 0 B id
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• the double extension admits an invariant metric


g h h∗

g 〈−,−〉g 0 0
h 0 B id
h∗ 0 id 0


where

? 〈−,−〉g is the invariant metric on g,

? id stands for the dual pairing between h and h∗, and

? B is any invariant symmetric bilinear form on h (not necessarily

nondegenerate)

This construction is due to Medina and Revoy, who also proved...
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A structure theorem

A metric Lie algebra is indecomposable if it is not the direct sum of

two or more orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Lorentzian Lie algebras

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p+ r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.

(Any semisimple factors in a factor out of the double extension.

[FO–Stanciu hep-th/9402035])
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Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form:

H = du ∧ J

• indecomposability =⇒ J is non-degenerate =⇒ a = R2n
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• this is a special case of Cahen–Wallach spacetimes:

2dudv +A(x,x)du2 + |dx|2

where A = J2

[Cahen–Wallach (1970); FO-Papadopoulos hep-th/0105308]

• we will call them CW(J)
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Parallelisable building blocks

All ten-dimensional lorentzian parallelisable spacetimes can be built

out of:

Space Torsion

AdS3 dH = 0 |H|2 < 0
R1,n, n ≥ 0 H = 0
Rn, n ≥ 1 H = 0
S3 dH = 0 |H|2 > 0
S7 dH 6= 0 |H|2 > 0
SU(3) dH = 0 |H|2 > 0
CW2n+2(J), n ≥ 1 dH = 0 |H|2 = 0
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Ten-dimensional parallelisable geometries

AdS3×S7

AdS3×S3 × R4

R1,0 × S3 × S3 × S3

R1,2 × S7

R1,6 × S3

CW10(J)
CW6(J)× S3 × R
CW4(J)× S3 × S3

CW4(J)× R6

AdS3×S3 × S3 × R
AdS3×R7

R1,1 × SU(3)
R1,3 × S3 × S3

R1,9

CW8(J)× R2

CW6(J)× R4

CW4(J)× S3 × R3
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Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton

• |dφ|2 = 1
4|H|

2

For non-dilatonic backgrounds (dφ = 0) we require |H|2 = 0,

which implies that (M, g) is scalar flat.

The case of linear dilaton was analysed by Kawano and Yamaguchi.
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Supersymmetry

Parallelisability implies that the supercovariant connections for

both type IIA and IIB are flat. The amount of supersymmetry is

determined from the dilatino variation

(dφ+ 1
2H)ε = 0

For non-dilatonic backgrounds, this equation has solutions if and

only if |H|2 = 0; which restricts the possible geometries.
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Spacetime Supersymmetry

AdS3×S3 × S3 × R 16

AdS3×S3 × R4 16

CW10(J) 16,18(A),20,22(A),24(B),28(B)

CW8(J)× R2 16,20

CW6(J)× R4 16,24

CW4(J)× R6 16

R1,9 32
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Turning on the linear dilaton all backgrounds are now half-BPS:

AdS3×S3 × S3 × R
AdS3×S3 × R4

R1,1 × SU(3)
R1,3 × S3 × S3

R1,6 × S3

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW6(J)× S3 × R
CW4(J)× S3 × R3

CW4(J)× R6

[Kawano–Yamaguchi hep-th/0306038]

All these backgrounds are exact string backgrounds: a WZW

model for (M, g,H) coupled to a Liouville field theory for φ.

Non-simply connected backgrounds are obtained by orbifolding.
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Parallelisable heterotic backgrounds

Type I supergravity coupled to supersymmetric Yang–Mills:

• (M1,9, g,D,H, φ) as before

• F curvature on a E8 × E8 or Spin(32)/Z2 principal bundle

• dH = N
2 TrF ∧ F + · · ·

• action ∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2 − N

2 |F |
2
)
dvolg
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Killing spinors are sections of S+ obeying the following equations:

• gravitino variation:

Dε = 0

• dilatino variation:

(dφ+ 1
2H)ε = 0

• gaugino variation:

Fε = 0
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Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇a∂bφ = N
4 TrFacFbc

• |dφ|2 = 1
4|H|

2 + 3N
8 |F |

2

• δD,A(e−2φF ) = 0



32

Supersymmetry



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8.



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]

From the dilaton equation



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]

From the dilaton equation

φ is linear (or constant) ⇐⇒ F = 0



32

Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]

From the dilaton equation

φ is linear (or constant) ⇐⇒ F = 0

for a supersymmetric background.
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Parallelisable backgrounds with F = 0

Linear dilaton: all backgrounds are 1
2-BPS, whereas for constant

dilaton one has:

Spacetime Supersymmetry

AdS3×S3 × S3 × R 8

AdS3×S3 × R4 8

CW10(J) 8,10,12,14

CW8(J)× R2 8,10

CW6(J)× R4 8,12

CW4(J)× R6 8

R1,9 16
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Parallelisable backgrounds with F 6= 0

We must distinguish two classes of supersymmetric backgrounds:

• |H|2 = 0, which are 1
2-BPS:

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW4(J)× R6
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• |H|2 > 0, which are 1
4-BPS:
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CW4(J)× S3 × R3
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• |H|2 > 0, which are 1
4-BPS:
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CW6(J)× S3 × R
CW4(J)× S3 × R3

In all cases F is null
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• |H|2 > 0, which are 1
4-BPS:

R1,3 × S3 × S3

R1,6 × S3

CW6(J)× S3 × R
CW4(J)× S3 × R3

In all cases F is null: F = du ∧ θ.



36

Some geometric limits



36

Some geometric limits

Some of these backgrounds are related by geometric limits



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate



36

Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate

• AdS3×S3 × R4  CW6(J) × R4
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of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate
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Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate

• AdS3×S3 × R4  CW6(J) × R4, and AdS3×S3 × S3 × R  
CW8(J)× R2 by taking a Penrose limit
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Thank you.


