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NS-NS sector of type II string theory

Massless fields in NS-NS sector of type II string theory:

• metric g

• B-field

• dilaton φ

comprise the bosonic field content of the common sector of type II

supergravity.

In this talk: type II string backgrounds from supergravity.
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Supergravity backgrounds

These are described by the following data:

• (M1,9, g) a lorentzian spin manifold

• D a metric connection (i.e., Dg = 0) with closed torsion 3-form

H = dB

• dilaton φ
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• extremals of the action (in string frame)∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2
)
dvolg
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Fermions

• C`(1, 9) ∼= R(16)

=⇒ the unique irreducible Clifford module M is real (i.e.,

Majorana) and has dimension 16

• M = S+ ⊕S− under Spin(1, 9) (Majorana–Weyl)

• let S± be the corresponding bundles on M : real and rank 8
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• the gravitino ψ ∈ C∞(M,T ∗M ⊗ S), where

? Type IIA: S = S+ ⊕ S−
? Type IIB: S = S+ ⊕ S+

• the dilatino λ ∈ C∞(M,S′), where

? Type IIA: S′ = S− ⊕ S+

? Type IIB: S′ = S− ⊕ S−

• the fermions are set to zero in a classical background

• supersymmetry does not respect this except on a supersymmetric

background
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Killing spinors

• a Killing spinor ε ∈ C∞(M,S) obeys

δεψ |ψ=λ=0 = Dε = 0

and

δελ |ψ=λ=0 = (dφ+ 1
2H)ε = 0
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• the connection D on S is defined by

? Type IIA: D = D+ ⊕D−, with D±
X = ∇X ± 1

4ıXH

? Type IIB: DX = ∇X + 1
4iıXH, with i the complex structure on

S+ ⊕ S+, i : (ψ1, ψ2) 7→ (ψ2,−ψ1)

• D is (morally) a spin connection induced from D

• the curvature of D is the local obstruction to the existence of

parallel spinors

We will concentrate on backgrounds for which D is flat

If M is simply-connected, this implies that M is parallelisable.
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Parallelisable geometries

Definition: A manifold M is parallelisable if TM is trivial.

⇐⇒ TM has a connection D with trivial holonomy

(Reduction Theorem)

=⇒ D is flat

(Ambrose-Singer Theorem)

• if M is simply-connected then flatness of D is also sufficient



10

• in addition, for a parallelisable background



10

• in addition, for a parallelisable background

? Dg = 0



10

• in addition, for a parallelisable background

? Dg = 0
? dH = 0



10

• in addition, for a parallelisable background

? Dg = 0
? dH = 0, where H is the torsion 3-form of D



10

• in addition, for a parallelisable background

? Dg = 0
? dH = 0, where H is the torsion 3-form of D:

H(X,Y, Z) = g(T (X,Y ), Z)



10

• in addition, for a parallelisable background

? Dg = 0
? dH = 0, where H is the torsion 3-form of D:

H(X,Y, Z) = g(T (X,Y ), Z)

where

T (X,Y ) = DXY −DYX − [X,Y ]



10

• in addition, for a parallelisable background

? Dg = 0
? dH = 0, where H is the torsion 3-form of D:

H(X,Y, Z) = g(T (X,Y ), Z)

where

T (X,Y ) = DXY −DYX − [X,Y ]

These geometries are easily characterised.
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A theorem

Theorem
(M, g) is locally isometric to a Lie group with a a bi-invariant

metric

Proof: Let RD be the curvature of D:

RD(X,Y )Z = D[X,Y ]Z −DXDYZ +DYDXZ

RD = 0 is equivalent to the following:

• torsion T is parallel with respect to ∇ and D!
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• T satisfies the Jacobi identity

• let {ξi} be a D-parallel frame:

T (ξi, ξj) = −[ξi, ξj] = −fijkξk

• DT = 0 =⇒ fij
k are constants =⇒ a Lie algebra g

• the action of g on M integrates to a local diffeomorphism G→M

• the metric g on g is invariant =⇒ the metric on G is bi-invariant

[Chamseddine–FO–Sabra hep-th/0306278]
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Some harder theorems

(M, g) simply-connected irreducible riemannian parallelisable:

• (R, dt2)

• compact simple Lie group with (a multiple of) the Killing form

• S7 with the nearly parallel G2 structure

[Cartan–Schouten (1926), Wolf (1970)]

Only the first two have dH = 0.
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(M, g) simply-connected indecomposable lorentzian parallelisable is

a Lie group with a bi-invariant metric, whence dH = 0
[Cahen–Parker (1977)]

Summary: Parallelisable geometries with closed torsion 3-form are

locally isometric to Lie groups with bi-invariant metrics.
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Lie groups with bi-invariant metrics

“Equivalent”question:

Which Lie algebras have an invariant metric?

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing



16

The double extension



16

The double extension

• g a Lie algebra with an invariant metric



16

The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations



16

The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g



16

The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric



16

The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → so(g)



16

The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → so(g) ∼= Λ2g
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whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g, so it defines

a class [ω] ∈ H2(g, h∗)

• we build the corresponding central extension g×ω h∗

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)
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• the double extension admits an invariant metric


g h h∗

g 〈−,−〉g 0 0
h 0 B id
h∗ 0 id 0


where

? 〈−,−〉g is the invariant metric on g,

? id stands for the dual pairing between h and h∗, and

? B is any invariant symmetric bilinear form on h (not necessarily

nondegenerate)

This construction is due to Medina and Revoy, who also proved...
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A structure theorem

A metric Lie algebra is indecomposable if it is not the direct sum of

two or more orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Lorentzian Lie algebras

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p+ r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.

(Any semisimple factors in a factor out of the double extension.

[FO–Stanciu hep-th/9402035])



21

Symmetric plane waves



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form:

H = du ∧ J



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form:

H = du ∧ J

• indecomposability



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form:

H = du ∧ J

• indecomposability =⇒ J is non-degenerate



21

Symmetric plane waves

The Lie groups corresponding to d(a, h) are examples of symmetric

plane waves, with

• metric:

2dudv − |Jx|2du2 + |dx|2

with J : a → a skew-symmetric, and torsion 3-form:

H = du ∧ J

• indecomposability =⇒ J is non-degenerate =⇒ a = R2n



22

• this is a special case of Cahen–Wallach spacetimes



22

• this is a special case of Cahen–Wallach spacetimes:

2dudv +A(x,x)du2 + |dx|2



22

• this is a special case of Cahen–Wallach spacetimes:

2dudv +A(x,x)du2 + |dx|2

where A = J2



22

• this is a special case of Cahen–Wallach spacetimes:

2dudv +A(x,x)du2 + |dx|2

where A = J2

[Cahen–Wallach (1970); FO-Papadopoulos hep-th/0105308]

• we will call them CW(J)
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Parallelisable building blocks

All ten-dimensional lorentzian parallelisable spacetimes can be built

out of:

Space Torsion

AdS3 dH = 0 |H|2 < 0
R1,n, n ≥ 0 H = 0
Rn, n ≥ 1 H = 0
S3 dH = 0 |H|2 > 0
S7 dH 6= 0 |H|2 > 0
SU(3) dH = 0 |H|2 > 0
CW2n+2(J), n ≥ 1 dH = 0 |H|2 = 0
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Ten-dimensional parallelisable geometries

AdS3×S7

AdS3×S3 × R4

R1,0 × S3 × S3 × S3

R1,2 × S7

R1,6 × S3

CW10(J)
CW6(J)× S3 × R
CW4(J)× S3 × S3

CW4(J)× R6

AdS3×S3 × S3 × R
AdS3×R7

R1,1 × SU(3)
R1,3 × S3 × S3

R1,9

CW8(J)× R2

CW6(J)× R4

CW4(J)× S3 × R3



25

Equations of motion



25

Equations of motion

Parallelisability implies the Einstein equations



25

Equations of motion

Parallelisability implies the Einstein equations. In addition



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton

• |dφ|2 = 1
4|H|

2



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton

• |dφ|2 = 1
4|H|

2

For non-dilatonic backgrounds (dφ = 0) we require |H|2 = 0,

which implies that (M, g) is scalar flat.



25

Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton

• |dφ|2 = 1
4|H|

2

For non-dilatonic backgrounds (dφ = 0) we require |H|2 = 0,

which implies that (M, g) is scalar flat.

The case of linear dilaton was analysed by Kawano and Yamaguchi.
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Supersymmetry

Parallelisability implies that the supercovariant connections for

both type IIA and IIB are flat. The amount of supersymmetry is

determined from the dilatino variation

(dφ+ 1
2H)ε = 0

For non-dilatonic backgrounds, this equation has solutions if and

only if |H|2 = 0; which restricts the possible geometries.



27

Spacetime Supersymmetry

AdS3×S3 × S3 × R 16

AdS3×S3 × R4 16

CW10(J) 16,18(A),20,22(A),24(B),28(B)

CW8(J)× R2 16,20

CW6(J)× R4 16,24

CW4(J)× R6 16

R1,9 32
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Turning on the linear dilaton all backgrounds are now half-BPS:

AdS3×S3 × S3 × R
AdS3×S3 × R4

R1,1 × SU(3)
R1,3 × S3 × S3

R1,6 × S3

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW6(J)× S3 × R
CW4(J)× S3 × R3

CW4(J)× R6

[Kawano–Yamaguchi hep-th/0306038]

All these backgrounds are exact string backgrounds: a WZW

model for (M, g,H) coupled to a Liouville field theory for φ.

Non-simply connected backgrounds are obtained by orbifolding.
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Parallelisable heterotic backgrounds

Type I supergravity coupled to supersymmetric Yang–Mills:

• (M1,9, g,D,H, φ) as before

• F curvature on a E8 × E8 or Spin(32)/Z2 principal bundle

• dH = N
2 TrF ∧ F + · · ·

• action ∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2 − N

2 |F |
2
)
dvolg
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Killing spinors are sections of S+ obeying the following equations:

• gravitino variation:

Dε = 0

• dilatino variation:

(dφ+ 1
2H)ε = 0

• gaugino variation:

Fε = 0



31

Equations of motion in a parallelisable geometry



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇a∂bφ = N
4 TrFacFbc



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇a∂bφ = N
4 TrFacFbc

• |dφ|2 = 1
4|H|

2 + 3N
8 |F |

2



31

Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇a∂bφ = N
4 TrFacFbc

• |dφ|2 = 1
4|H|

2 + 3N
8 |F |

2

• δD,A(e−2φF ) = 0
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Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]

From the dilaton equation

φ is linear (or constant) ⇐⇒ F = 0

for a supersymmetric background.
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Parallelisable backgrounds with F = 0

Linear dilaton: all backgrounds are 1
2-BPS, whereas for constant

dilaton one has:

Spacetime Supersymmetry

AdS3×S3 × S3 × R 8

AdS3×S3 × R4 8

CW10(J) 8,10,12,14

CW8(J)× R2 8,10

CW6(J)× R4 8,12

CW4(J)× R6 8

R1,9 16
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Parallelisable backgrounds with F 6= 0

We must distinguish two classes of supersymmetric backgrounds:

• |H|2 = 0, which are 1
2-BPS:

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW4(J)× R6
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• |H|2 > 0, which are 1
4-BPS:

R1,3 × S3 × S3

R1,6 × S3

CW6(J)× S3 × R
CW4(J)× S3 × R3

In all cases F is null: F = du ∧ θ.
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Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate

• AdS3×S3 × R4  CW6(J) × R4, and AdS3×S3 × S3 × R  
CW8(J)× R2 by taking a Penrose limit
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Thank you.


