Supersymmetric space forms

José Figueroa-O'Farrill
Edinburgh Mathematical Physics Group

School of Mathematics




A cosmological motivation



A cosmological motivation

Hubble (1920s) discovered that the universe expands uniformly in
all directions



A cosmological motivation

Hubble (1920s) discovered that the universe expands uniformly in
all directions

Penzias and Wilson (1965) discovered Cosmic Microwave
Background



A cosmological motivation

Hubble (1920s) discovered that the universe expands uniformly in
all directions

Penzias and Wilson (1965) discovered Cosmic Microwave
Background

<= Isotropy



A cosmological motivation

Hubble (1920s) discovered that the universe expands uniformly in
all directions

Penzias and Wilson (1965) discovered Cosmic Microwave
Background

<= Isotropy

‘principle of mediocrity’ =— homogeneity



A cosmological motivation

Hubble (1920s) discovered that the universe expands uniformly in
all directions

Penzias and Wilson (1965) discovered Cosmic Microwave
Background

<= Isotropy
‘principle of mediocrity’ =— homogeneity

—> spatial universe is a ‘space form’
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locally isometric to one of:

hyperbolic flat spherical

parameterised by 1/R € R, R = radius of curvature
constant curvature

‘'maximally symmetric’
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E™ C R
Lnt+1 — 1
isometry group: O(n) x R” C GL(n + 1)

M v . "
(O 1) with MM =1

Isometry groups have ‘maximal’ dimension: n(n + 1)/2
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Infinitesimal isometries

Generated by linear vector fields:

5 xz-@j—xj&;, 1,7=1,....n+1
7 SE@@j—Ijai, i,jzl,...,n
Tn+10; + Ti0pt1, t=1,...,n

D xic‘?j—xj&; i,jzl,...,n
&L- izl,...,n

where 0; = ==
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Intrinsically...

(M™, g) riemannian manifold:
g = Z gi;(z)dz'dx’
i,j=1
where

x* are local coordinates
gij(x) = g;i(x), smooth, nondegenerate, positive-definite
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isometries are generated by Killing vector fields:

f — Zfi(aj)&; such that ng — ()
i=1

¢ is determined uniquely by

its value &, at a point p; and
its (covariant) derivative V¢, at the same point

Vé, : ToM — T,M
Killing's equation <= V¢, is skew-symmetric
ie., (&,VEy) € T,M & so(1T,M)
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dim (T,M @& so(T,M)) =n+n(n—1)/2=n(n+1)/2

(M™, g) is maximally symmetric iff

n(n + 1)

dim {Killing vectors} = ;

(M™, g) complete, simply-connected = one of S”, H" or E"
(M™, g) complete —
M= M/T

where



M simply-connected space form

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat: Bieberbach (1910s), I' crystallographic

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat: Bieberbach (1910s), I' crystallographic
spherical

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat: Bieberbach (1910s), I' crystallographic
spherical: Vincent (1940s), Wolf (1970s)

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
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Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat: Bieberbach (1910s), I' crystallographic
spherical: Vincent (1940s), Wolf (1970s)

hyperbolic

10



M simply-connected space form; and
[ discrete subgroup of isometries acting freely and properly
discontinuously on M

Clifford—Klein space form: to classify all such I’
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

flat: Bieberbach (1910s), I' crystallographic
spherical: Vincent (1940s), Wolf (1970s)

hyperbolic: still open despite many partial results

10



Lorentzian space forms

11



Lorentzian space forms

(M™, g) lorentzian

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family:

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family:

Minkowski

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family:

Minkowski de Sitter

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family:

anti de Sitter Minkowski de Sitter

11



Lorentzian space forms

(M™, g) lorentzian: g;;(x) has signature (n —1,1)

spaceforms are again locally isometric to one in a family:

anti de Sitter Minkowski de Sitter

again parameterised by 1/R € R
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ds,, ¢ R»*1:
i+ a5+t a, —xn =R
isometry group: O(n,1) C GL(n + 1)

M"™ c R+
Lnt+1 — 1
isometry group: O(n —1,1) x R™ C GL(n + 1)
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2 2 2
5131—|—5132—|—"'—|—33n_1—x

isometry group: O(n —1,2) C GL(n + 1)

M'nM =1

with
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(1 .- 0 0)

0 --- -1 0

\o oo 0 —1)
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AdS,, embeds locally in R"T:
az%+x%+---+x%_1—x%—xi+l = —R?

isometry group: O(n —1,2) C GL(n + 1)

M'nM = n with n =

\0 0 -1/

quadric is not simply-connected; its universal cover is AdS,,

13
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General relativity

The universe is a 4-dimensional lorentzian manifold (M*, g), where
g is subject to the Einstein field equations :

Ric(g) —3Rg=T or R;; —iRgi; =T;;
where
Ric(g) is the Ricci curvature;
R is the Ricci scalar; and

T" is the energy-momentum tensor, e.g., T' = Ag

14
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Big industry: finding solutions for various idealised T’

symmetry plays a fundamental role in finding solutions: simplying
PDEs to ODEs or even to algebraic equations

e.g., Friedmann—Lemaitre—Robertson—\Walker cosmology:
—dt? + a(t)?¢®

with

t cosmological time;
a(t) expansion factor; and
g3 a three-dimensional space form

15
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Indeed, recent surveys of large scale anisotropy:

suggest that ¢(®) is the Poincaré dodecahedral space S°/Eg
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A quantum theory of gravity?

Eistein gravity is not complete: singularity theorems, black

holes,...
—> there are regimes where the theory breaks down

gravity is weak, hence can be ignored in subatomic phenomena,
up to a point...

at small enough scales gravity is comparable to other forces
—> there is a need for a quantum theory of gravity
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String theory

fundamental objects are not point-like,
‘'strings’

particles are vibrational modes of string

String theory embodies:

general relativity;
gauge theory; and
supersymmetry

but one-dimensional

18
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Stringy geometry

classical geometry:

arises out of our visual intuition
concept of ‘point’ is key; a manifold is a collection of points

strings do not just occupy points, but can wrap around things
stringy geometry # classical geometry

stringy geometry Is still elusive; but can be probed in various
limits

19
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Supergravity

‘gauge theory of supersymmetry’
‘massless’ limit of superstring theories
nontrivial extension of General Relativity

‘tight’ structure: determined from representation theory of Lie
superalgebras
—> o finite number of supergravity theories

all in dimension < 11

20
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Supergravities

32 24 20 16 12 8 4
11 \Y
10 A 1B
9 N =2 N=1
8 N =2 N=1
7 N =14 N =2
) (2,2) (3,1) (4,0) (2,1) (3,0) (1,1) (2,0) (1,0)
5 N =8 N =6 N =14 N =2
4 N =38 N =6 N =5 N = N =3 N = N =1
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g =2da”de” — gou” <4 > @)+ Z(azi)2> (de™)? + Y (dat)?

i=4 i=1
F = pdx~ Ndz' A da? A da’

=0 = M!'! F=0
1t 70 = same plane wave (KOwALSKI-GLIKMAN, 1984)

28



lIB supergravity

classical IIB backgrounds: (M,g, S, F,...)

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold
S chiral spinor bundle (real, rank 16)

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold
S chiral spinor bundle (real, rank 16)
F': closed self-dual 5-form on M

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold
S chiral spinor bundle (real, rank 16)

F": closed self-dual 5-form on M
.. other fields of no relevance here

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold
S chiral spinor bundle (real, rank 16)

F": closed self-dual 5-form on M
.. other fields of no relevance here

subject to Einstein field equations

29



lIB supergravity

classical IIB backgrounds: (M, g, S, F,...), where

(M, g): ten-dimensional lorentzian spin manifold
S chiral spinor bundle (real, rank 16)

F": closed self-dual 5-form on M
.. other fields of no relevance here

subject to Einstein field equations

Ric(g) — sRg = T(F,g)

29



Killing spinors

30



Killing spinors: ¢ € C*°(M,S @ S) obeying

30



Killing spinors: ¢ € C*°(M,S @ S) obeying

Vi) +Q(F,g)p =0

30



Killing spinors: ¢ € C*°(M,S @ S) obeying

Vi + Q(F, )¢ =0

(Complete, simply-connected) supersymmetric space forms come in
a one-parameter (s > 0) family

30



Killing spinors: ¢ € C*°(M,S @ S) obeying

Vi + Q(F, )¢ =0

(Complete, simply-connected) supersymmetric space forms come in
a one-parameter (s > 0) family:

s >0

30



Killing spinors: ¢ € C*°(M,S @ S) obeying

Vi) +Q(F,g)p =0

(Complete, simply-connected) supersymmetric space forms come in
a one-parameter (s > 0) family:

s >0

AdSs(—s) x S°(s)  F = \/4;5 (dvol(AdS;) — dvol(S®))
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8 8
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.

1
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and a one-parameter (1 € R) family of symmetric plane waves:

2 (I‘i)2(dm_)2—|—2(dflj‘i)2

1 p=1l

g =2dzTdx™ — iu

1

F = %,udx_ A (dazl Adz? A dxd Adz* + dz® A dx® Adz” A da:S)

3 3

=0 = flat vacuum
1t # 0 = isometric to same plane wave
(BLAU-FO-HuLL-PAPADOPOULOS, 2001)
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(PENROSE, 1976): 'Every spacetime has a plane wave as a limit.’

(M, g) lorentzian

v C M a null geodesic
singular limit of (diffeomorphism + homothety) yields a plane

wave in a neighbourhood of ~
maps solutions of Einstein equation to solutions

(GUVEN, 2000): extension to supergravity theories

(BLAU-FO-PAPADOPOULOS, 2002): (super)symmetry is preserved
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