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M2-branes

Eleven dimensional supergravity admits a two-
parameter family of half-supersymmetric backgrounds:

where

H = α +
β

r6
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g = H−2/3g
(
R1,2

)
+ H1/3

(
dr2 + r2g

(
S7

))

F = dvol
(
R1,2

)
∧ dH−1

Duff+Stelle (1991)
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Gibbons+Townsend (1993),  Duff+Gibbons+Townsend (1994)

For β=0, the background becomes (11-dimensional) 

Minkowski spacetime, whereas for α=0, it becomes

which is the near-horizon geometry of the n 
coincident M2-branes.

AdS4 × S7 with 2RAdS = RS = β1/6
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Generalisation
g = H−2/3g(R1,2) + H1/3(dr2 + r2g(X7))

F = dvol(R1,2) ∧ dH−1

Any Einstein 7-manifold,
admitting real Killing spinors:

∇V φ = 1
2V · φ

9

Interpretation: M2-branes at a conical singularity 
in a special holonomy 8-manifold.  Of course, this 
breaks some supersymmetry.

Acharya+FO+Hull+Spence (1998)
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The cone construction solves the problem of which 
riemannian manifolds admit real Killing spinors:

admits real Killing spinors (X, g)

Bär (1993)

admits parallel spinors (R+ ×X, dr2 + r2g)
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If X is complete, then the cone is either flat or 
irreducible.

Gallot (1979)
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If X is complete, then the cone is either flat or 
irreducible.

Holonomy
Parallel 
spinors

Spin(7) (1,0)

SU(4) (2,0)

Sp(2) (3,0)

{1} (8,8)

Gallot (1979)

Wang (1989)
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7-dimensional 
geometry

Holonomy 
of cone

Killing 
spinors

Weak G₂ holonomy Spin(7) 1

Sasaki-Einstein SU(4) 2

3-Sasaki Sp(2) 3

Sphere {1} 8
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Manifolds with N=4,5,6 may be obtained by 
quotienting the sphere.
Every smooth quotient of the round 7-sphere by a 
subgroup of isometries admits a spin structure and some 
quotients also admit real Killing spinors.

FO+Gadhia (2006,?)

In summary, there exist finite subgroups Γ⊂SO(8) such 
that

S7/Γ

admits N≤6 Killing spinors.  (Also N=8 for Γ=ℤ/2.)
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dimensional superconformal field theory dual to 
each of these M2-brane configurations.
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The superconformal algebra of the field 
t heor y i s i somorph i c to the Kil l ing 
superalgebra of the near-horizon limit.

The Killing superalgebra of the near-horizon limit 
of the M2-branes is isomorphic to osp(N|4), in 
agreement with Nahm’s classification of 3-
dimensional superconformal algebras.

Acharya+FO+Hull+Spence (1998), FO (1999)
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The even Lie subalgebra is isomorphic to

so(N)⊕ sp(4, R)

isometries of
7-manifold

isometries of
AdS4SUGRA

conformal algebraR-symmetryCFT
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Chern-Simons theories
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It took a decade to construct candidate theories 
realising these superconformal algebras.

They are constructed by coupling supersymmetric 
Chern-Simons theory to matter hypermultiplets not 
(necessarily) in the adjoint representation.

They can be formulated succinctly in terms of certain 
3-algebras.



Superconformal 
Chern-Simons + 
matter theories
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Gaiotto+Witten, Hosomichi+Lee+Lee+Lee+Park,
Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)N=4 theories

Some references

 Hosomichi+Lee+Lee+Lee+Park,
Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)N=5 theories

N=6 theories Aharony+Bergman+Jafferis+Maldacena, Bagger+Lambert,
Schnabl+Tachikawa (2008)

Bagger+Lambert (2007), Gustavsson (2007)N=8 theories

Gaiotto+Yin (2007)N≤3 theories
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The field content consists of a g-valued gauge field 
A and its superpartnerχ.  The Chern-Simons 
lagrangian is

where Tr stands for an ad-invariant inner product 
on g.  The theory is uniquely defined by specifying 
g and Tr.  For g simple, Tr is a multiple of the 
Killing form.  This multiple is quantised: the level 
of the Chern-Simons theory. 

For the M2 theories, however, g is not simple.

1
2Tr(A ∧ dA) + 1

3Tr(A ∧A ∧A)− Tr(χχ)
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The supercharges, and hence the supersymmetry 
parameters, are spinors with values in the vector 
representation V of so(N) .

The matter content consists of a scalar field X in 
a representation

of so(N) × g and a fermionic spinor ψ in a 
representation

F ⊗M

B ⊗M

... plus matter
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δεX = εψ

δεψ = dX · ε + · · ·

The supersymmetry transformations take the 
form

V ⊗ F ⊃ B

whence
V ⊗B ⊃ F

which suggests taking B and F to be spinor 
representations with the above relations induced 
by Clifford multiplication.
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N so(N) spinor reps

2 u(1) ℂ
3 sp(1) ℍ
4 sp(1)⊕sp(1) ℍ⊕ℍ
5 sp(2) ℍ²
6 su(4) ℂ⁴
7 so(7) ℝ⁸
8 so(8) ℝ⁸⊕ℝ⁸
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Matter is always in a real representation, so this 
dictates the type of the representation M of g :

ℝ for N=1,7,8 
ℂ for N=2,6 
ℍ for N=3,4,5 

For N=1,2,3 any (unitary) representation is 

allowed.  For N≥4 the representation must give 
rise to a particular kind of 3-algebra.



3-algebras

24



Metric 3-algebras
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The data of the Chern-Simons theory

• a metric Lie algebra g, Tr

• a unitary representation, M

defines a metric 3-Leibniz algebra.
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T : M ×M → g

Tr(T (x, y)X) = 〈X · x, y〉

is the transpose of the g-action on M

[x, y, z] := T (x, y) · z

M ×M ×M →MThe 3-bracket is given by

Faulkner (1973)

Unitary representations come in three types: 
real, complex and quaternionic — each one 
giving rise to a different class of 3-algebra.
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It obeys three main properties:

the fundamental identity:

the metricity condition:

and also a symmetry condition:

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]]

〈[x, y, z1], z2〉 = −〈z1, [x, y, z2]〉

〈[x, y, z1], z2〉 = + 〈z1, [z2, x, y]〉
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These include two extremal cases:

• 3-Lie algebras, where [x,y,z] is totally 
skewsymmetric, and

• Lie triple systems, where                          
[x,y,z]+[y,z,x]+[z,x,y]=0, corresponding 
to Riemannian symmetric spaces.

Real representations

Filippov (1985)

...,Jacobson (1951), Lister (1952), Yamaguti (1957)
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• N=6 triple systems, where [x,y,z]=-
[z,y,x], and

These include two extremal cases:

Bagger+Lambert (2008)
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• N=6 triple systems, where [x,y,z]=-
[z,y,x], and

• hermitian Lie triple systems, 
corresponding to hermitian symmetric 
spaces

These include two extremal cases:

Bagger+Lambert (2008)
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• anti-3-Lie algebras, where [x,y,z] is 
totally symmetric, corresponding to 
quaternionic Kähler symmetric 
spaces, and

• anti-Lie triple systems, where                            
[x,y,z]+[y,z,x]+[z,x,y]=0

These include two extremal cases:
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An important characteristic of the extremal 3-
algebras is that they admit embedding into Lie 
(super)algebras in such a way that the 3-bracket is 
a nested Lie bracket:

[x,y,z] = [[x,y],z]

This is a classical result for the symmetric spaces:

• RSS: 2-graded Lie algebra

• HSS: 3-graded Lie algebra

• QKSS: 5-graded Lie algebra
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The same is true for the other extremal cases 
relevant to superconformal Chern-Simons 
theories:

• 3LA:  Lie superalgebra (at least in pos-def case)

• N=6: 3-graded Lie superalgebra

• aLTS: Lie superalgebra

This reduces their classification to that of certain 
Lie superalgebras.
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N bosonic rep 3-algebra

4 (P ⊗V₁) ⊕ (N ⊗V₂) V₁,V₂ ℍ anti-LTS

5 S ⊗ V V  ℍ anti-LTS

6 (P ⊗V) ⊕ c.c. V  ℂ N=6

7 S ⊗V V  ℝ 3-Lie

8 P ⊗V V  ℝ 3-Lie

P  = positive-chirality spinor of so(N)
N = negative-chirality spinor of so(N)
S  = spinor of so(N)
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Some enhancements

34

N=4 to N=5:  take V₁=V₂ 

N=5 to N=6:  take V=W ⊕W* 

N=6 to N≥7:  take V= ℂ⊗U  

(V aLTS iff W is N=6) 

(V N=6 iff U is 3LA) 
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Superpotentials
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The N=2 superpotential associated to a complex 

unitary representation is given (in N=1 
superspace) by

W = 1
16

∫
d2θ TrT (X, X)2

to which one can add an F-term superpotential 
without breaking any supersymmetry.
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The N=3 superpotential associated to a 

quaternionic representation is given (in N=1 
superspace) by

W = 1
16

∫
d2θ
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TrT (X, X)2 + ReTrT (X,JX)2

)
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The N=3 superpotential associated to a 

quaternionic representation is given (in N=1 
superspace) by

Invariant quaternionic
structure map

This superpotential is rigid, consistent with the 
infinitesimal rigidity of (complete) 3-Sasakian 
manifolds.

Pedersen+Poon (1999)

W = 1
16

∫
d2θ

(
TrT (X, X)2 + ReTrT (X,JX)2

)
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The superpotentials for the N≥4 theories are 
obtained by plugging the right representation-
theoretic data into the N=3 superpotential.

Empirically we find that a theory has N≥4 

superconformal symmetry if and only if the N=3 

superpotential is so(N-1)-invariant.

(All this is in the absence of flavour.)
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• How about flavour?

• Are there new superconformal Chern-Simons 
theories associated to 3-algebras not obtained via the 
Faulkner construction?

• How does the geometry transverse to the M2-branes 
manifest itself in the superconformal field theory?

Open questions


