M2-branes and 3-algebras

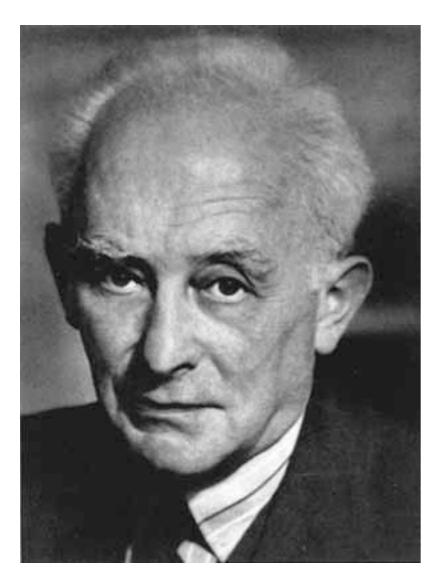
José Miguel Figueroa-O'Farrill

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Wrocław, I July 2009 http://www.maths.ed.ac.uk/~jmf/Research/Talks/Wroclaw.pdf

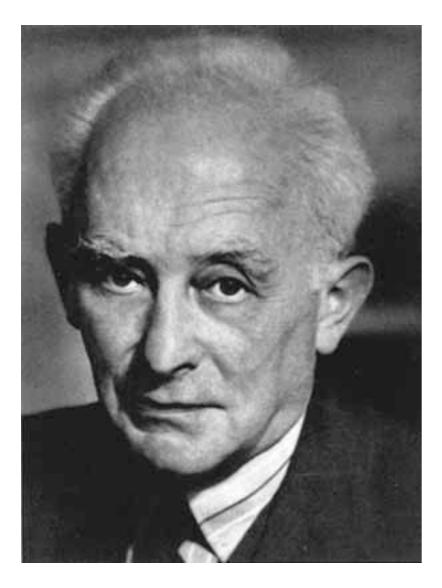
My two connections to Wrocław

My two connections to Wrocław



Max Born (1882-1970)

My two connections to Wrocław



Max Born (1882-1970)

Krzysztof Galicki (1958-2007)

• M2-branes and AdS/CFT

- M2-branes and AdS/CFT
- Superconformal Chern-Simons+matter

- M2-branes and AdS/CFT
- Superconformal Chern-Simons+matter
- Construction in terms of 3-algebras

- M2-branes and AdS/CFT
- Superconformal Chern-Simons+matter
- Construction in terms of 3-algebras
- Some open questions

Based on:

arXiv:0809.1086 [hep-th]

with Paul de Medeiros + Elena Méndez-Escobar + Patricia Ritter

and preprint in preparation

with Paul de Medeiros + Elena Méndez-Escobar

Eleven dimensional supergravity admits a twoparameter family of half-supersymmetric backgrounds:

Eleven dimensional supergravity admits a twoparameter family of half-supersymmetric backgrounds:

$$g = H^{-2/3}g(\mathbb{R}^{1,2}) + H^{1/3}(dr^2 + r^2g(S^7))$$

$$F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dH^{-1}$$

Eleven dimensional supergravity admits a twoparameter family of half-supersymmetric backgrounds:

$$g = H^{-2/3}g(\mathbb{R}^{1,2}) + H^{1/3}(dr^2 + r^2g(S^7))$$

$$F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dH^{-1}$$

where

$$H = \alpha + \frac{\beta}{r^6}$$

Duff+Stelle (1991)

For generic α and β , this describes a "stack" of $n \propto \beta$ coincident **M2**-branes.

For generic α and β , this describes a "stack" of $n \propto \beta$ coincident **M2**-branes.

For $\beta = 0$, the background becomes (11-dimensional) Minkowski spacetime, whereas for $\alpha = 0$, it becomes

 $AdS_4 \times S^7$ with $2R_{AdS} = R_S = \beta^{1/6}$

which is the near-horizon geometry of the *n* coincident **M2**-branes.

Gibbons+Townsend (1993), Duff+Gibbons+Townsend (1994)

 $g = H^{-2/3}g(\mathbb{R}^{1,2}) + H^{1/3}(dr^2 + r^2g(X^7))$ $F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dH^{-1}$

 $g = H^{-2/3}g(\mathbb{R}^{1,2}) + H^{1/3}(dr^2 + r^2g(X^7))$ $F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dH^{-1}$

Any Einstein 7-manifold, / admitting real Killing spinors:

 $\nabla_V \phi = \frac{1}{2} V \cdot \phi$

 $g = H^{-2/3}g(\mathbb{R}^{1,2}) + H^{1/3}(dr^2 + r^2g(X^7))$ $F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dH^{-1}$

> Any Einstein 7-manifold, admitting real Killing spinors:

 $\nabla_V \phi = \frac{1}{2} V \cdot \phi$

Interpretation: M2-branes at a conical singularity in a special holonomy 8-manifold. Of course, this breaks some supersymmetry.

Acharya+FO+Hull+Spence (1998)

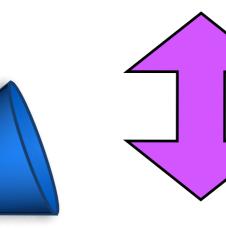
The cone construction solves the problem of which riemannian manifolds admit real Killing spinors:

The cone construction solves the problem of which riemannian manifolds admit real Killing spinors:

(X, g) admits real Killing spinors

The cone construction solves the problem of which riemannian manifolds admit real Killing spinors:

(X, g) admits real Killing spinors



 $(\mathbb{R}^+ \times X, dr^2 + r^2g)$ admits parallel spinors

Bär (1993)

П

If X is complete, then the cone is either flat or irreducible. Gallot (1979)

If X is complete, then the cone is either flat or irreducible.

Gallot (1979)

Holonomy	Parallel spinors	
Spin(7)	(1,0)	
SU(4)	(2,0)	
Sp(2)	(3,0)	
{I}	(8,8)	

7-manifolds with real Killing spinors

7-manifolds with real Killing spinors

7-dimensional geometry	Holonomy of cone	Killing spinors
Weak G ₂ holonomy	Spin (7)	
Sasaki-Einstein	SU(4)	2
3-Sasaki	Sp (2)	3
Sphere	{1}	8

Manifolds with N=4,5,6 may be obtained by quotienting the sphere.

Manifolds with N=4,5,6 may be obtained by quotienting the sphere.

Every smooth quotient of the round 7-sphere by a subgroup of isometries admits a spin structure and some quotients also admit real Killing spinors.

Manifolds with N=4,5,6 may be obtained by quotienting the sphere.

Every smooth quotient of the round 7-sphere by a subgroup of isometries admits a spin structure and some quotients also admit real Killing spinors.

In summary, there exist finite subgroups $\Gamma \subset SO(8)$ such that

 S^7/Γ

admits $N \leq 6$ Killing spinors. (Also N = 8 for $\Gamma = \mathbb{Z}/2$.)

FO+Gadhia (2006,?)

AdS/CFT predicts the existence of a threedimensional superconformal field theory dual to each of these M2-brane configurations. AdS/CFT predicts the existence of a threedimensional superconformal field theory dual to each of these M2-brane configurations.

The **superconformal algebra** of the field theory is isomorphic to the **Killing superalgebra** of the near-horizon limit. AdS/CFT predicts the existence of a threedimensional superconformal field theory dual to each of these M2-brane configurations.

The **superconformal algebra** of the field theory is isomorphic to the **Killing superalgebra** of the near-horizon limit.

The Killing superalgebra of the near-horizon limit of the M2-branes is isomorphic to osp(N/4), in agreement with Nahm's classification of 3-dimensional superconformal algebras.

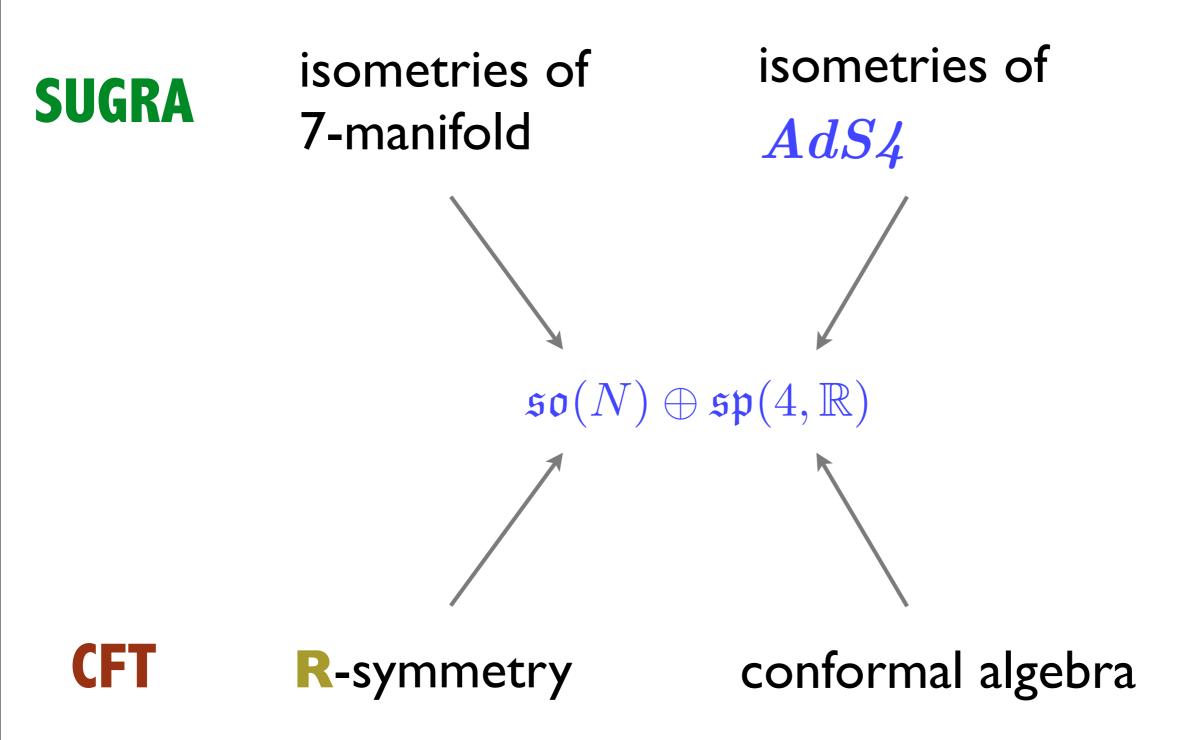
Acharya+FO+Hull+Spence (1998), FO (1999)

 $\mathfrak{so}(N)\oplus\mathfrak{sp}(4,\mathbb{R})$

SUGRA

isometries of 7-manifold isometries of AdS4

 $\mathfrak{so}(N)\oplus\mathfrak{sp}(4,\mathbb{R})$



It took a decade to construct candidate theories realising these superconformal algebras.

It took a decade to construct candidate theories realising these superconformal algebras.

They are constructed by coupling supersymmetric Chern-Simons theory to matter hypermultiplets **not** (necessarily) in the adjoint representation.

It took a decade to construct candidate theories realising these superconformal algebras.

They are constructed by coupling supersymmetric Chern-Simons theory to matter hypermultiplets **not** (necessarily) in the adjoint representation.

They can be formulated succinctly in terms of certain **3-algebras**.

Superconformal Chern-Simons + matter theories

 $N \leq 3$ theories

Gaiotto+Yin (2007)

 $N \leq 3$ theories

Gaiotto+Yin (2007)

N=4 theories

Gaiotto+Witten, Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

 $N \leq 3$ theories

Gaiotto+Yin (2007)

N=4 theories

Gaiotto+Witten, Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

N=5 theories

Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

 $N \leq 3$ theories

Gaiotto+Yin (2007)

N=4 theories

Gaiotto+Witten, Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

N=5 theories

Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

N=6 theories

Aharony+Bergman+Jafferis+Maldacena, Bagger+Lambert, Schnabl+Tachikawa (2008)

 $N \leq 3$ theories

Gaiotto+Yin (2007)

N=4 theories

Gaiotto+Witten, Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

N=5 theories

Hosomichi+Lee+Lee+Lee+Park, Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

N=6 theories

Aharony+Bergman+Jafferis+Maldacena, Bagger+Lambert, Schnabl+Tachikawa (2008)

N=8 theories

Bagger+Lambert (2007), Gustavsson (2007)

The field content consists of a \mathfrak{g} -valued gauge field A and its superpartner χ . The Chern-Simons lagrangian is

 $\frac{1}{2}\operatorname{Tr}(A \wedge dA) + \frac{1}{3}\operatorname{Tr}(A \wedge A \wedge A) - \operatorname{Tr}(\overline{\chi}\chi)$

The field content consists of a \mathfrak{g} -valued gauge field A and its superpartner χ . The Chern-Simons lagrangian is

 $\frac{1}{2}\operatorname{Tr}(A \wedge dA) + \frac{1}{3}\operatorname{Tr}(A \wedge A \wedge A) - \operatorname{Tr}(\overline{\chi}\chi)$

where Tr stands for an ad-invariant inner product on g. The theory is uniquely defined by specifying g and Tr. For g simple, Tr is a multiple of the Killing form. This multiple is quantised: the **level** of the Chern-Simons theory. The field content consists of a g-valued gauge field A and its superpartner χ . The Chern-Simons lagrangian is

 $\frac{1}{2}\operatorname{Tr}(A \wedge dA) + \frac{1}{3}\operatorname{Tr}(A \wedge A \wedge A) - \operatorname{Tr}(\overline{\chi}\chi)$

where Tr stands for an ad-invariant inner product on g. The theory is uniquely defined by specifying g and Tr. For g simple, Tr is a multiple of the Killing form. This multiple is quantised: the **level** of the Chern-Simons theory.

For the M2 theories, however, g is **not** simple.

... plus matter

... plus matter

The matter content consists of a scalar field X in a representation

 $B\otimes M$

of $\mathfrak{so}(N) \times \mathfrak{g}$ and a fermionic spinor ψ in a representation

 $F \otimes M$

... plus matter

The matter content consists of a scalar field X in a representation

$B\otimes M$

of $\mathfrak{so}(N) \times \mathfrak{g}$ and a fermionic spinor ψ in a representation

$F\otimes M$

The supercharges, and hence the supersymmetry parameters, are spinors with values in the vector representation V of $\mathfrak{so}(N)$.

The supersymmetry transformations take the form

$$\delta_{\varepsilon} X = \overline{\varepsilon} \psi$$
$$\delta_{\varepsilon} \psi = dX \cdot \varepsilon + \cdots$$

The supersymmetry transformations take the form

$$\delta_{\varepsilon} X = \overline{\varepsilon} \psi$$
$$\delta_{\varepsilon} \psi = dX \cdot \varepsilon + \cdots$$

whence

 $V \otimes F \supset B$ $V \otimes B \supset F$

The supersymmetry transformations take the form

$$\delta_{\varepsilon} X = \overline{\varepsilon} \psi$$
$$\delta_{\varepsilon} \psi = dX \cdot \varepsilon + \cdots$$

whence

 $V \otimes F \supset B$ $V \otimes B \supset F$

which suggests taking B and F to be spinor representations with the above relations induced by Clifford multiplication.

Spinor representations

N	so(N)	spinor reps
2	u(1)	\mathbb{C}
3	\$p(1)	\mathbb{H}
4	\$p(1) + \$p(1)	$\mathbb{H} \oplus \mathbb{H}$
5	sp(2)	∐ 2
6	su(4)	C ⁴
7	50(7)	R ⁸
8	50(8)	R⁸⊕R ⁸

Matter is always in a real representation, so this dictates the type of the representation M of g :

Matter is always in a real representation, so this dictates the type of the representation M of g:

 \mathbb{R} for N=1,7,8

Matter is always in a real representation, so this dictates the type of the representation M of g:

 \mathbb{R} for N=1,7,8 \mathbb{C} for N=2,6 Matter is always in a real representation, so this dictates the type of the representation M of g:

R for N=1,7,8C for N=2,6H for N=3,4,5 Matter is always in a real representation, so this dictates the type of the representation M of g:

R for N=1,7,8C for N=2,6H for N=3,4,5

For N=1,2,3 any (unitary) representation is allowed. For $N \ge 4$ the representation must give rise to a particular kind of 3-algebra.

Metric 3-algebras

The data of the Chern-Simons theory

• a metric Lie algebra \mathfrak{G} , Tr

• a unitary representation, M

defines a metric 3-Leibniz algebra.

 $T: M imes M o \mathfrak{g}$ is the transpose of the \mathfrak{G} -action on M

$\operatorname{Tr}(T(x,y)X) = \langle X \cdot x, y \rangle$

 $T:M imes M o \mathfrak{g}$ is the transpose of the \mathfrak{G} -action on M

$\operatorname{Tr}(T(x,y)X) = \langle X \cdot x, y \rangle$

The 3-bracket $M \times M \times M \to M$ is given by

 $[x, y, z] := T(x, y) \cdot z$

Faulkner (1973)

 $T: M imes M o \mathfrak{g}$ is the transpose of the \mathfrak{G} -action on M

$\operatorname{Tr}(T(x,y)X) = \langle X \cdot x, y \rangle$

The 3-bracket $M \times M \times M \to M$ is given by

$$[x, y, z] := T(x, y) \cdot z$$

Faulkner (1973)

Unitary representations come in three types: real, complex and quaternionic — each one giving rise to a different class of 3-algebra.

the **fundamental identity**:

 $[x, y, [z_1, z_2, z_3]] = [[x, y, z_1], z_2, z_3] + [z_1, [x, y, z_2], z_3] + [z_1, z_2, [x, y, z_3]]$

the **fundamental identity**:

 $[x, y, [z_1, z_2, z_3]] = [[x, y, z_1], z_2, z_3] + [z_1, [x, y, z_2], z_3] + [z_1, z_2, [x, y, z_3]]$

the **metricity** condition:

$$\langle [x, y, z_1], z_2 \rangle = - \langle z_1, [x, y, z_2] \rangle$$

the **fundamental identity**:

 $[x, y, [z_1, z_2, z_3]] = [[x, y, z_1], z_2, z_3] + [z_1, [x, y, z_2], z_3] + [z_1, z_2, [x, y, z_3]]$

the **metricity** condition:

$$\langle [x, y, z_1], z_2 \rangle = - \langle z_1, [x, y, z_2] \rangle$$

and also a **symmetry** condition:

 $\langle [x, y, z_1], z_2 \rangle = + \langle z_1, [z_2, x, y] \rangle$

These include two extremal cases:

These include two extremal cases:

• **3-Lie algebras**, where [x, y, z] is totally skewsymmetric, and

Filippov (1985)

These include two extremal cases:

• **3-Lie algebras**, where [x,y,z] is totally skewsymmetric, and

Filippov (1985)

Lie triple systems, where
[x,y,z]+[y,z,x]+[z,x,y]=0, corresponding to Riemannian symmetric spaces.

..., Jacobson (1951), Lister (1952), Yamaguti (1957)

These include two extremal cases:

These include two extremal cases:

• N=6 triple systems, where [x,y,z]=-[z,y,x], and Bagger+Lambert (2008)

These include two extremal cases:

- N=6 triple systems, where [x,y,z]=-[z,y,x], and Bagger+Lambert (2008)
- hermitian Lie triple systems, corresponding to hermitian symmetric spaces

These include two extremal cases:

These include two extremal cases:

 anti-3-Lie algebras, where [x,y,z] is totally symmetric, corresponding to quaternionic Kähler symmetric spaces, and

These include two extremal cases:

- anti-3-Lie algebras, where [x,y,z] is totally symmetric, corresponding to quaternionic Kähler symmetric spaces, and
- anti-Lie triple systems, where [x,y,z]+[y,z,x]+[z,x,y]=0

$$[x,y,z] = [[x,y],z]$$

$$[x,y,z] = [[x,y],z]$$

This is a classical result for the symmetric spaces:

$$[x,y,z] = [[x,y],z]$$

This is a classical result for the symmetric spaces:

• **RSS**: 2-graded Lie algebra

$$[x,y,z] = [[x,y],z]$$

This is a classical result for the symmetric spaces:

- **RSS**: 2-graded Lie algebra
- **HSS**: 3-graded Lie algebra

$$[x,y,z] = [[x,y],z]$$

This is a classical result for the symmetric spaces:

- **RSS**: 2-graded Lie algebra
- **HSS**: 3-graded Lie algebra
- **QKSS**: 5-graded Lie algebra

• **3LA**: Lie superalgebra (at least in pos-def case)

- **3LA**: Lie superalgebra (at least in pos-def case)
- N=6: 3-graded Lie superalgebra

- **3LA**: Lie superalgebra (at least in pos-def case)
- N=6: 3-graded Lie superalgebra
- **aLTS**: Lie superalgebra

The same is true for the other extremal cases relevant to superconformal Chern-Simons theories:

- **3LA**: Lie superalgebra (at least in pos-def case)
- N=6: 3-graded Lie superalgebra
- **aLTS**: Lie superalgebra

This reduces their classification to that of certain Lie superalgebras.

Results

N	bosonic rep	3-algebra
4	$(P \otimes V_1) \oplus (N \otimes V_2)$	V_1, V_2 $\mathbb H$ anti-LTS
5	$oldsymbol{S}\otimesoldsymbol{V}$	$oldsymbol{V}$ $\mathbb H$ anti-LTS
6	$(P \otimes V) \oplus c.c.$	V ℂ N=6
7	$oldsymbol{S} \otimes oldsymbol{V}$	V R 3-Lie
8	$P \otimes V$	V R 3-Lie

P = positive-chirality spinor of 50(N) N = negative-chirality spinor of 50(N)S = spinor of 50(N)

N=4 to N=5: take $V_1=V_2$

N=4 to N=5: take $V_1=V_2$

N=5 to N=6: take $V=W \oplus W^*$

N=4 to N=5: take $V_1=V_2$

N=5 to N=6: take $V=W \oplus W^*$ (VaLTS iff W is N=6)

N=4 to N=5: take $V_1=V_2$

N=5 to N=6: take $V=W \oplus W^*$ (VaLTS iff W is N=6)

N=6 to $N \ge 7$: take $V = \mathbb{C} \otimes U$

N=4 to N=5: take $V_1=V_2$

N=5 to N=6: take $V=W \oplus W^*$ (VaLTS iff W is N=6)

N=6 to $N \ge 7$: take $V = \mathbb{C} \otimes U$ (VN=6 iff U is 3LA)

Superpotentials

Superpotentials

The N=2 superpotential associated to a complex unitary representation is given (in N=1 superspace) by

$$W = \frac{1}{16} \int d^2\theta \, \mathrm{Tr}T(X,X)^2$$

Superpotentials

The N=2 superpotential associated to a complex unitary representation is given (in N=1superspace) by

$$W = \frac{1}{16} \int d^2\theta \, \mathrm{Tr}T(X,X)^2$$

to which one can add an F-term superpotential without breaking any supersymmetry.

The N=3 superpotential associated to a quaternionic representation is given (in N=1 superspace) by

$$W = \frac{1}{16} \int d^2\theta \, \left(\mathrm{Tr}T(X, X)^2 + \mathrm{Re}\mathrm{Tr}T(X, JX)^2 \right)$$

The N=3 superpotential associated to a quaternionic representation is given (in N=1 superspace) by

$$W = \frac{1}{16} \int d^2\theta \, \left(\text{Tr}T(X,X)^2 + \text{Re}\text{Tr}T(X,JX)^2 \right)$$

Invariant quaternionic

The N=3 superpotential associated to a quaternionic representation is given (in N=1 superspace) by

$$W = \frac{1}{16} \int d^2\theta \, \left(\text{Tr}T(X,X)^2 + \text{Re}\text{Tr}T(X,JX)^2 \right)$$

Invariant quaternionic

This superpotential is **rigid**, consistent with the infinitesimal rigidity of (complete) 3-Sasakian manifolds.

Pedersen+Poon (1999)

The superpotentials for the $N \ge 4$ theories are obtained by plugging the right representation-theoretic data into the N=3 superpotential.

The superpotentials for the $N \ge 4$ theories are obtained by plugging the right representation-theoretic data into the N=3 superpotential.

Empirically we find that a theory has $N \ge 4$ superconformal symmetry if and only if the N=3superpotential is 50(N-1)-invariant. The superpotentials for the $N \ge 4$ theories are obtained by plugging the right representation-theoretic data into the N=3 superpotential.

Empirically we find that a theory has $N \ge 4$ superconformal symmetry if and only if the N=3superpotential is 50(N-1)-invariant.

(All this is in the absence of flavour.)

• How about flavour?

- How about flavour?
- Are there new superconformal Chern-Simons theories associated to 3-algebras **not** obtained via the Faulkner construction?

- How about flavour?
- Are there new superconformal Chern-Simons theories associated to 3-algebras **not** obtained via the Faulkner construction?
- How does the geometry transverse to the M2-branes manifest itself in the superconformal field theory?