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For generic a and /3, this describes a “stack” of nocfs
coincident M2-branes.

For 5=0, the background becomes (11-dimensional)

Minkowski spacetime, whereas for a=0, it becomes

AdS4 X 57 with QRAdS — RS — 61/6

which is the near-horizon geometry of the n
coincident M2-branes.
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Generalisation

g=H*PgR?) + HYP(dr? + r?g(X7))

F = dvol(R**) AdH ! /

Any Einstein 7-manifold,
admitting real Killing spinors:

Vyp=3V-¢

Interpretation: M2-branes at a conical singularity
in a special holonomy 8-manifold. Of course, this
breaks some supersymmetry.
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(X, 9) admits real Killing spinors

al

(R" x X, dr* +r°g) admits parallel spinors







If X is complete, then the cone is either flat or
irreducible.




If X is complete, then the cone is either flat or
irreducible.

Parallel
spinors

Holonomy




/-manifolds with real Killing spinors




/-manifolds with real Killing spinors

/-dimensional Holonomy Killing
geometry of cone spinors

Weak G, holonomy

Sasaki-Einstein

3-Sasaki

Sphere
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Manifolds with N=/,5,6 may be obtained by
quotienting the sphere.

Every smooth quotient of the round /-sphere by a
subgroup of isometries admits a spin structure and some
quotients also admit real Killing spinors.

In summary, there exist finite subgroups I'c SO(8) such

that

ST/T

admits V=< 6 Killing spinors. (Also N=8 for I'=7./2.)
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AdS/CFT predicts the existence of a three-
dimensional superconformal field theory dual to
each of these M2-brane configurations.

The superconformal algebra of the field
theory is isomorphic to the Killing
superalgebra of the near-horizon limit.

The Killing superalgebra of the near-horizon limit

of the M2-branes is isomorphic to 05p(IN/4 ), in

agreement with Nahm’s classification of 3-
dimensional superconformal algebras.
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/-manifold AdS/
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SUGRA

N) @ sp(4,R)

/N

CFT R-symmetry conformal algebra
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Chern-Simons theories

It took a decade to construct candidate theories
realising these superconformal algebras.

They are constructed by coupling supersymmetric
Chern-Simons theory to matter hypermultiplets hot

(necessarily) in the adjoint representation.

They can be formulated succinctly in terms of certain
3-algebras.




Superconformal

Chern-Si1mons +
matter theories
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The field content consists of a J-valued gauge field

A and its superpartner )¢ . The Chern-Simons
lagrangian is

ITr(AAdA) + $Te(A A AN A) = Tr(xx)

where 1'r stands for an ad-invariant inner product
on (. The theory is uniquely defined by specifying

d and I7r. For g simple, 1 is a multiple of the

Killing form. This multiple is quantised: the level
of the Chern-Simons theory.

For the M2 theories, however,  is not simple.
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... plus matter

The matter content consists of a scalar field X in

a representation
B M

of 50(N) % ¢ and a fermionic spinor ? in a

representation
FoM

The supercharges, and hence the supersymmetry
parameters, are spinors with values in the vector

representation V of S0(IN) .
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The supersymmetry transformations take the
form

5. X = &)
Soh =dX -4 -

whence
VFDB VoBDF

which suggests taking B and F' to be spinor

representations with the above relations induced
by Clifford multiplication.




Spinor representations

SpINOr reps
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Matter is always in a real representation, so this
dictates the type of the representation M of g :

R for N=1,7,8
Cfor N=2,6
Hfor N=3,4,5

For N=1,2,3 any (unitary) representation is

allowed. For N2/ the representation must give
rise to a particular kind of 3-algebra.
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Metric 3-algebras

The data of the Chern-Simons theory

® a metric Lie algebra ¢, 17

® a unitary representation, /V/

defines a metric 3-Leibniz algebra.
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T : M x M — g is the transpose of the (J-action on M

Tr(T(z,y)X) = (X - z,y)

The 3-bracket M x M x M — M is given by

x,y, z| =T (x,y) - 2

Unitary representations come in three types:
real, complex and quaternionic — each one
giving rise to a different class of 3-algebra.
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It obeys three main properties:

the fundamental identity:

| =1z, y, z1], 22, 23] + |21, |z, ¥, 22], 23] + |21, 22, [x, ¥, 23]]

the metricity condition:

<[£E,y, Zl]? Z2> - <Z17 [ZIZ‘,y, 22]>

and also a symmetry condition:

<[aj7 Y, Zl]v 22> = T <Zl7 [227 Ly y]>
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Real representations

These include two extremal cases:

® 3-Lie algebras, where /z,y,z/ is totally
skewsymmetric, and

e Lie triple systems, where

[x,y,z]+ [y, z,x]+[z,2,y]=0, corresponding
to Riemannian symmetric spaces.
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Complex representations

These include two extremal cases:

® N=6 triple systems, where [x,y,z/=-
[z,y,x/,and

¢ hermitian Lie triple systems,
corresponding to hermitian symmetric
spaces
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Quaternionic representations

These include two extremal cases:

® anti-3-Lie algebras, where /x,y,z/ is
totally symmetric, corresponding to

quaternionic Kahler symmetric
spaces, and

¢ anti-Lie triple systems, where
[:13,y,z]+[y,z,a3]+[z,a3,y]:0
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An important characteristic of the extremal 3-
algebras is that they admit embedding into Lie

(super)algebras in such a way that the 3-bracket is
a nested Lie bracket:

[2,y,2] = [[%,y],2]

This is a classical result for the symmetric spaces:

® RSS:2-graded Lie algebra
® HSS: 3-graded Lie algebra

® QIKSS:5-graded Lie algebra
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The same is true for the other extremal cases
relevant to superconformal Chern-Simons
theories:

® 3LA: Lie superalgebra (at least in pos-def case)

® N=6:3-graded Lie superalgebra

® aLTs:Lie superalgebra

This reduces their classification to that of certain
Lie superalgebras.




Results

N bosonic rep 3-algebra

(P®Vy)® (NoVy) Vi1, Vy H anti-LTS

Se® V vV H anti-LTS

SeV V R 3-Lie

4
5
6 (P®V) & c.c. vV C N=6
7
8

P®V V R 3-Lie

P = positive-chirality spinor of 50 (IN)
N = negative-chirality spinor of 50 (IN)
S = spinor of 50 (IN)
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Some enhancements

—4 to N=25: take V.=V,

N=5to N=6: take v=w ew* (V aLTS iff W is N=6)

N=6to N=7 take V=CoU (V N=6iff Uis 3LA)
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Superpotentials

The N=2 superpotential associated to a complex

unitary representation is given (in N=1
superspace) by

W= /d29 TrT (X, X)?

to which one can add an F-term superpotential
without breaking any supersymmetry.
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The N=3 superpotential associated to a

quaternionic representation is given (in N=1
superspace) by

W= L /d29 (TYT(X, X)? + ReTrT(X, JX)?)

Invariant quaternionic/
structure map

This superpotential is rigid, consistent with the

infinitesimal rigidity of (complete) 3-Sasakian
manifolds.
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The superpotentials for the IN=/ theories are
obtained by plugging the right representation-

theoretic data into the /N =3 superpotential.

Empirically we find that a theory has N2/

superconformal symmetry if and only if the N=3

superpotential is 50 (IN-1 )-invariant.

(All this is in the absence of flavour.)
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Open questions

® How about flavour?

® Are there new superconformal Chern-Simons
theories associated to 3-algebras not obtained via the
Faulkner construction?

® How does the geometry transverse to the M2-branes
manifest itself in the superconformal field theory?




