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4,000 years ago in Scotland...

Platonic solids 1,500 years before Plato?
... or mathematical hoax?
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Platonic solids

3



Mentioned by Plato 
in the Timaeus (≅360 BC).

Classified by Theaetetus
(≅ 417 BC - 369 BC)

Hence the name.
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Fire

Earth

Air

Water

The Classical Elements
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What about the dodecahedron???



Prediction:  a new element!

Ether
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(no relation to the 19th century ether)



Johannes Kepler
(1571-1630)

Kepler based a model of 
the solar system on the 
platonic solids.

Planetary model
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Mysterium 
Cosmographicum (1600)
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Circumradius/Inradius ∼ ratio of sizes of orbits

9



Circumradius/Inradius ∼ ratio of sizes of orbits
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Circumradius/Inradius ∼ ratio of sizes of orbits

9

Rcirc/Rin

T = 3

H,O ∼= 1.73

D, I ∼= 1.26



Circumradius/Inradius ∼ ratio of sizes of orbits
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Rcirc/Rin

T = 3

H,O ∼= 1.73

D, I ∼= 1.26

∼= ±25%



But then Neptune was discovered

Urbain Le Verrier
(1811-1877)

“with the point of a pen”
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Even in Biology...

Pariacoto virusCircogonia icosahedra
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Finite rotation groups
In 2 dimensions, finite rotation groups are cyclic.

In terms of complex numbers, 
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CN =
�
ei2πk/N

���k = 0, 1, . . . , N − 1
�



And now in 3D
Euler: every (nontrivial)
rotation about the origin 
fixes a line in ℝ³.

That line intersects the unit sphere at two points: the 
poles of the rotation.

A finite subgroup G of rotations has a finite set P of 
poles.  Moreover G acts on P:

x� = � =⇒ yxy−1y� = y�
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The action of G partitions P into orbits.

There are two cases.

2 orbits

C5C3 C11

Cyclic groups
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3 orbits

Dihedral groups

D6 D10
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Polyhedral groups

∼=

∼=
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3d rotations are easily written using quaternions.

Quaternions
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Add another imaginary unit j to ℂ declaring that

ij = −ji

and let ℍ denote the vector space consisting of

with the obvious associative multiplication.

This defines

        the real division algebra of quaternions.

x = x0 + x1i+ x2j + x3ij xi ∈ R
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There is a notion of conjugation

and of norm

The quaternion algebra is normed:

|xy| = |x||y|

|x|2 := xx = x2
0 + x2

1 + x2
2 + x2

3

Unit-norm quaternions form a group: Sp(1)

Topologically it is the 3-sphere.

x = x0 − x1i− x2j − x3ij and xy = y x
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A quaternion is real if

and it is imaginary if

x = x =⇒ x = x0

x = −x =⇒ x = x1i+ x2j + x3ij

Sp(1) acts on the imaginary quaternions:

linearly and isometrically; in fact, by rotations.

x �→ uxu−1 = uxu

Indeed all rotations can be obtained this way.
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The map from quaternions to rotations is 2-to-1; the 
quaternions cover the rotations twice.

There are finite subgroups of unit quaternions 
covering the finite subgroups of rotations.

These are the ADE subgroups of quaternions.

A2n �→ C2n+1

A2n+1 �→ Cn+1

Dn �→ D2(n−2)

E6 �→ T12

E7 �→ O24

E8 �→ I60
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The map from quaternions to rotations is 2-to-1; the 
quaternions cover the rotations twice.

There are finite subgroups of unit quaternions 
covering the finite subgroups of rotations.

These are the ADE subgroups of quaternions.

A2n �→ C2n+1

A2n+1 �→ Cn+1

Dn �→ D2(n−2)

E6 �→ T12

E7 �→ O24

E8 �→ I60

All but the first 
are double 
covers.
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They are named after some famous graphs:

An Dn

E6

E7

E8

These are the (simply-
laced) Dynkin diagrams.
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The McKay Correspondence

John McKay

How to assign a graph to a finite
subgroup of quaternions?

Look at its representations!

ρ : G → GL(V )

A representation is irreducible if there is no proper 
subspace W ⊂ V which is stable under G.



24

R0, R1, . . . , RN

A finite group has a finite number of irreducible 
complex representations:

trivial one-dimensional irrep

Finite subgroups of quaternions come with a 
two-dimensional complex representation R, 
coming from left quaternion multiplication:

x0 + x1i+ x2j + x3ij �→
�

x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

�
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G a finite subgroup of quaternions

Define a graph Γ associated to G

vertices: complex irreps of G

Rj ⊂ R⊗Ri =⇒ ∃ an edge (ij)

drop the vertex of the trivial representation

ADE Dynkin diagram!
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All complex irreps of an abelian group are one-
dimensional, distinguished by a charge k

e.g., CN =
�
ei2π/N

�

R ∼= R1 ⊕R−1

Rk : ei2π/N �→ ei2πk/N k ∈ Z/NZ

The two-dimensional representation R is

Since charge is additive:

Rk ⊗R ∼= Rk+1 ⊕Rk−1

AN−1
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Other ADE classifications

Élie Cartan
(1869-1951)

Wilhelm Killing
(1847-1923)

Simply-laced complex simple Lie algebras:

An ↔ su(n+ 1)

Dn ↔ so(2n)

E6 ↔ e6

E7 ↔ e7

E8 ↔ e8



Vladimir Arnold
(1937-2010)28

• Finite-type quivers (Gabriel’s theorem)

• Kleinian surface singularities (Brieskorn)

• and many others...

Arnold in 1976 asked whether 
there is a connection between 
these objects which could 
explain why they are classified 
by the same combinatorial data.
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ADE in Physics
In our* recent work on the AdS₄/CFT₃ 
correspondence, we came across a new ADE 
classification.

* Paul de Medeiros, JMF, Sunil Gadhia, Elena Méndez-Escobar, arXiv:0909.0163

AdS₄/CFT₃ posits a correspondence between 
certain 7-dimensional manifolds and certain 
superconformal quantum field theories in 3 
dimensions.  We were interested in classifying a 
subclass of such geometries corresponding to 
theories with “N≥4 supersymmetry”.
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A little twist
Given an automorphism of G

we can have G act on ℍ²

τ : G → G τ(u1u2) = τ(u1)τ(u2)

preserving and acting freely on the unit sphere in ℍ²

u · (x,y) = (ux, τ(u)y)
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The resulting quotients 

X = S7/G

are all the smooth manifolds for which the
eleven-dimensional manifold

AdS4 ×X

is an M-theory universe preserving at least 
half of the supersymmetry.

(Non-smooth quotients are classified by fibred products of ADE groups.  
See Paul de Medeiros, JMF arXiv:1007.4761.)
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Perhaps you will see a time when this will 

seem as scientifically naive as Plato or Kepler 

seem to us today!

!ank y"!


