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4,000 years ago in Scotland...

Platonic solids 1,500 years before Plato?
... or mathematical hoax?



Platonic solids
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Classified by Theaetetus
(= 417 BC - 369 BC)

Mentioned by Plato
in the Timaeus (=360 BC).

Hence the name.




The Classical Elements

Earth

What about the dodecahedron???
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Prediction: a new element!

Ether

(no relation to the |9th century ether)



Planetary model

KEPLER based a model of

the solar system on the
platonic solids.

Johannes ‘qu[er
(1571-1630)



Mysterium
Cosmographicum (1600)

.....
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But then Neptune was discovered

“with the point of @ pen”

Urbain Le Verrier
(1811-1877)



Circogonia icosahedra Pariacoto virus



Finite rotation groups

In 2 dimensions, finite rotation groups are cyclic.
Cs Cs C11

In terms of complex numbers,

Cy = {emk/N|k —0.1,....N — 1}
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And now in 3D

EULER: every (nontrivial)
rotation about the origin

fixes a line in R3.

LEONHARD EULER 1707-1783

That line intersects the unit sphere at two points: the
poles of the rotation.

A finite subgroup G of rotations has a finite set P of
poles. Moreover G acts on P:

xl =/ — yry Tyl = yl



The action of G partitions P into orbits.

There are two cases.

2 orbits  Cyclic groups



3 orbits

Dihedral groups




Polyhedral groups




Quaternions

3d rotations are easily written using quaternions.

‘Eire

William Rowan Hamilton

1805-1865
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Add another imaginary unit j to C declaring that

ij = —ji

and let [ denote the vector space consisting of
r = x9+ 11+ 27 + X319 r; € R
with the obvious associative multiplication.

This defines

the real division algebra of



There is a notion of conjugation
T =x9— X1l — To] — XT31] and Yy=y<xT

and of norm

The quaternion algebra is normed:
zy| = |z|ly

Unit-norm quaternions form a group: Sp(1)

Topologically it is the 3-sphere.
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A quaternion is real if
r=x — r = X
and it is Imaginary if
T—=—-T —> X=2o10+29]+ x31]

Sp(1) acts on the imaginary quaternions:

1

T H— UTU ~ = Uru

linearly and isometrically; in fact, by rotations.

Indeed all rotations can be obtained this way.
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The map from quaternions to rotations is 2-to-|; the
quaternions cover the rotations twice.

There are finite subgroups of unit quaternions
covering the finite subgroups of rotations.

These are the ADE subgroups of quaternions.

Aoy = Conti Ee — 112
Aont1 — Cntt E7 — Oa4
Dn —> D2(n—2) E8 —> [60
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The map from quaternions to rotations is 2-to-|; the
quaternions cover the rotations twice.

There are finite subgroups of unit quaternions
covering the finite subgroups of rotations.

These are the ADE subgroups of quaternions.

Aoy — Congt E¢ — 119
All but the first

Aoyt — Chag E; — Oay are double

covers.
Dn — D2(n—2) E8 — [60
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They are named after some famous graphs:

Fi o I -~ o These are the (simply-
laced) Dynkin diagrams.




The McKay Correspondence

How to assign a graph to a finite
subgroup of quaternions!?

Look at its representations!

p:G— GL(V)

John ‘McﬂCa%

A representation is if there is no proper
subspace W ¢ V which is stable under G.
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A finite group has a finite number of irreducible
complex representations:

Ro. Ry....., Ry
trivial one-dimensional irrep

Finite subgroups of quaternions come with a
two-dimensional complex representation R,
coming from left quaternion multiplication:

. . - To+ 11 T2 + T30
o+ L1t + 2] + T31) > < O ! : 3>

— T2 + .CI?gi Lo — Zli’li
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G a finite subgroup of quaternions

Define a graph [ associated to G

: complex irreps of G

R;C R®R;, = 3Jan (17)

drop the vertex of the trivial representation

> ADE Dynkin diagram!
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e.g., Oy = <€i2W/N>

All complex irreps of an abelian group are one-
dimensional, distinguished by a charge k

Ry : eP?m/N B2 R/IN L c Z/NZ
The two-dimensional representation R is
R=R; & R_4

Since charge is additive:

R ® R= Rpy1 © Ri—1

> — . e e .. An_1

26




Other ADE classifications

Simply-laced complex simple Lie algebras:
A, < su(n+1)
D,, <> s0(2n)

E¢ <> ¢6

E7H€7

EgHeg

Flie Cartan. Wilhelm ﬂ(i[fing‘

(1869-1951) (1847-1923)
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® Finite-type quivers (Gabriel’s theorem)

® Kleinian surface singularities (Brieskorn)

® and many others...

Arnold in 1976 asked whether
there is a connection between
these objects which could

explain why they are classified

by the same combinatorial data.
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Viadimir Arnold.

(1937-2010)



ADE in Physics

In our™ recent work on the AdS,/CFT;
correspondence, we came across a new ADE

classification.

AdS,/CFT3 posits a correspondence between
certain /-dimensional manifolds and certain
superconformal quantum field theories in 3
dimensions. We were interested in classifying a
subclass of such geometries corresponding to

theories with “N>=4 supersymmetry”.

* Paul de Medeiros, JMF, Sunil Gadhia, Elena Méndez-Escobar, ar Xiv:0909.0163
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A little twist

Given an automorphism of G

T:G =G T(u1u2) — T(ul)T(UQ)
we can have G act on Hl?
u - (may) — (U%,T(’U/)y>

preserving and acting freely on the unit sphere in [H?
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The resulting quotients
X=5"G

are all the smooth manifolds for which the
eleven-dimensional manifold

AdS4 X X

is an M=theory universe preserving at least

(Non-smooth quotients are classified by fibred products of ADE groups.
See Paul de Medeiros, JIF arXiv:1007.4761 )
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Perhaps you will see a time when this will
seem as scientifically naive as Plato or Kepler

seem to us today!
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