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Introduction

The aim of these lectures is to introduce supersymmetry to graduate
students in Physics having completed the first year of their PhD stud-
ies in a British university. No previous exposure to supersymmetry is
expected, but familiarity with topics normally covered in an introduc-
tory course in relativistic field theory will be assumed. These include,
but are not restricted to, the following: lagrangian formulation of rel-
ativistic field theories, Lie symmetries, representations of the Poincaré
group, gauge theories and spontaneous symmetry breaking. I have
adopted a conservative approach to the subject, discussing exclusively
four-dimensional rigid N=1 supersymmetry.

The lecture notes are accompanied by a series of Exercises and Prob-
lems. Exercises are meant to fill in the details of the lectures. They
are relatively easy and require little else than following the logic flow
of the lectures. Problems are more involved (although none are really
difficult) and make good topics for tutorials.

The written version of the lectures contains more material than can
be comfortably covered during the School and certainly more exercises
and problems than can possibly be completed by the student during
this time. It is my hope, however, that the interested student can
continue working on the problems and exercises after the School has
ended and that the written version of these notes can be of help in this
task.

! Throughout the written version of the lectures you will find paragraphs
like this one with one of the following signs:

! b Z ©
indicating, respectively, caveats, exercises, scholia and the (very) oc-
casional amusing comment.

These notes are organised as follows.
In Lecture I we will introduce the simplest field theoretical model ex-

hibiting (linearly realised) supersymmetry: the Wess–Zumino model.
It will serve to illustrate many of the properties found in more phe-
nomenologically realistic models. We will prove that the Wess–Zumino
model is invariant under a “super” extension of the Poincaré algebra,
known as the N=1 Poincaré superalgebra. The tutorial problem for
this lecture investigates the superconformal invariance of the massless
Wess–Zumino model.

In Lecture II we will study another simple four-dimensional super-
symmetric field theory: supersymmetric Yang–Mills. This is obtained
by coupling pure Yang–Mills theory to adjoint fermions. We will show
that the action is invariant under the Poincaré superalgebra, and that



4 JM FIGUEROA-O’FARRILL

the algebra closes on-shell and up to gauge transformations. This the-
ory is also classically superconformal invariant, and this is the topic of
the tutorial problem for this lecture.

In Lecture III we will study the representations of the N=1 Poincaré
superalgebra. We will see that representations of this superalgebra
consist of mass-degenerate multiplets of irreducible representations of
the Poincaré algebra. We will see that unitary representations of the
Poincaré superalgebra have non-negative energy and that they consist
of an equal number of bosonic and fermionic fields. We will discuss the
most important multiplets: the chiral multiplet, the gauge multiplet
and the supergravity multiplet. Constructing supersymmetric field the-
ories can be understood as finding field-theoretical realisations of these
multiplets. The tutorial problem introduces the extended Poincaré su-
peralgebra, the notion of central charges and the “BPS” bound on the
mass of any state in a unitary representation.

In Lecture IV we will introduce superspace and superfields. Super-
space does for the Poincaré superalgebra what Minkowski space does
for the Poincaré algebra; namely it provides a natural arena in which
to discuss the representations and in which to build invariant actions.
We will learn how to construct invariant actions and we will recover the
Wess–Zumino model as the simplest possible action built out of a chiral
superfield. The tutorial problem discusses more general models built
out of chiral superfields: we will see that the most general renormalis-
able model consists of N chiral multiplets with a cubic superpotential
and the most general model consists of a supersymmetric sigma model
on a Kähler manifold and a holomorphic function on the manifold (the
superpotential).

In Lecture V we continue with our treatment of superspace, by study-
ing supersymmetric gauge theories in superspace. We will see that su-
persymmetric Yang–Mills is the natural theory associated to a vector
superfield. We start by discussing the abelian theory, which is easier
to motivate and then generalise to the nonabelian case after a brief
discussion of the coupling of gauge fields to matter (in the form of
chiral superfields). This is all that is needed to construct the most
general renormalisable supersymmetric lagrangian in four dimensions.
In the tutorial problem we introduce the Kähler quotient in the simple
context of the CPN model.

In Lecture VI we will discuss the spontaneous breaking of supersym-
metry. We will discuss the relation between spontaneous supersym-
metry breaking and the vacuum energy and the vacuum expectation
values of auxiliary fields. We discuss the O’Raifeartaigh model, Fayet–
Iliopoulos terms and the Witten index. In the tutorial problem we
discuss an example of Higgs mechanism in an SU(5) supersymmetric
gauge theory.
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Lastly, there are two appendices. Appendix A includes the basic
mathematical definitions needed in the lectures. More importantly, it
also includes our conventions. It should probably be skimmed first for
notation and then revisited as needed. It is aimed to be self-contained.
Appendix B is a “reference card” containing formulas which I have
found very useful in calculations. I hope you do too.

Enjoy!

Notes for lecturers

The format of the School allocated six one-hour lectures to this topic.
With this time constraint I was forced to streamline the presentation.
This meant among other things that many of the Exercises were indeed
left as exercises; although I tried to do enough to illustrate the different
computational techniques.

The six lectures in the School did not actually correspond to the
six lectures in the written version of the notes. (In fact, since the
conventions must be introduced along the way, the written version
really has seven lectures.) The first lecture was basically Lecture I,
only that there was only enough time to do the kinetic term in detail.
The second lecture did correspond to Lecture II with some additional
highlights from Lecture III: the notion of supermultiplet, the balance
between bosonic and fermionic degrees of freedom, and the positivity
of the energy in a unitary representation. This allowed me to devote
the third lecture to introducing superspace, roughly speaking the first
three sections in Lecture IV, which was then completed in the fourth
lecture. The fifth lecture covered the abelian part of Lecture V and all
too briefly mentioned the extension to nonabelian gauge theories. The
sixth and final lecture was devoted to Lecture VI.

It may seem strange to skip a detailed analysis of the representation
theory of the Poincaré superalgebra, but this is in fact not strictly
speaking necessary in the logical flow of the lectures, which are aimed
at supersymmetric field theory model building. Of course, they are an
essential part of the topic itself, and this is why they have been kept
in the written version.
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I. The Wess–Zumino model

We start by introducing supersymmetry in the context of a simple
four-dimensional field theory: the Wess–Zumino model. This is ar-
guably the simplest supersymmetric field theory in four dimensions.
We start by discussing the free massless Wess–Zumino model and then
we make the model more interesting by adding masses and interactions.

I.1. The free massless Wess–Zumino model. The field content of
the Wess–Zumino model consists of a real scalar field S, a real pseu-
doscalar field P and a real (i.e., Majorana) spinor ψ. (See the Appendix
for our conventions.) Of course, ψ is anticommuting. The (free, mass-
less) lagrangian for these fields is:

Lkin = −1
2

(∂S)2 − 1
2

(∂P )2 − 1
2
ψ̄ ∂/ψ , (1)

where ∂/ = ∂µγ
µ and ψ̄ = ψtC = ψ†iγ0. The signs have been chosen

in order to make the hamiltonian positive-semidefinite in the chosen
(mostly plus) metric. The action is defined as usual by

Ikin =

∫
d4xLkin (2)

To make the action have the proper dimension, the bosonic fields S
and P must have dimension 1 and the fermionic field ψ must have
dimension 3

2
, in units where ∂µ has dimension 1.

! You may wonder why it is that P is taken to be a pseudoscalar, since
the above action is clearly symmetric in S and P . The pseudoscalar
nature of P will manifest itself shortly when we discuss supersymme-
try, and at the end of the lecture when we introduce interactions: the
Yukawa coupling between P and ψ will have a γ5. Since changing the
orientation changes the sign in γ5, the action would not be invariant
unless P also changed sign. This means that it is a pseudoscalar.

b
Exercise I.1. Check that the action Ikin is real and that the equations
of motion are

�S = �P = ∂/ψ = 0 , (3)
where � = ∂µ∂

µ.
We now discuss the symmetries of the action Ikin. It will turn out

that the action is left invariant by a “super” extension of the Poincaré
algebra, so we briefly remind ourselves of the Poincaré invariance of the
above action. The Poincaré algebra is the Lie algebra of the group of
isometries of Minkowski space. As such it is isomorphic to the semidi-
rect product of the algebra of Lorentz transformations and the algebra
of translations. Let Mµν = −Mνµ be a basis for the (six-dimensional)
Lorentz algebra and let Pµ be a basis for the (four-dimensional) trans-
lation algebra. The form of the algebra in this basis is recalled in (A-2)
in the Appendix.
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Let τµ and λµν = −λνµ be constant parameters. Then for any field
ϕ = S, P or ψ we define infinitesimal Poincaré transformations by

δτϕ = τµPµ · ϕ
δλϕ = 1

2
λµνMµν · ϕ ,

(4)

where

Pµ · S = −∂µS
Pµ · P = −∂µP
Pµ · ψ = −∂µψ

Mµν · S = −(xµ∂ν − xν∂µ)S

Mµν · P = −(xµ∂ν − xν∂µ)P

Mµν · ψ = −(xµ∂ν − xν∂µ)ψ − Σµνψ ,

(5)

and Σµν = 1
2
γµν .

Z The reason for the minus signs is that the action on functions is inverse to that on
points. More precisely, let G be a group of transformations on a space X: every
group element g ∈ G sends a point x ∈ X to another point g ·x ∈ X. Now suppose
that f : X → R is a function. How does the group act on it? The physically
meaningful quantity is the value f(x) that the function takes on a point; hence
this is what should be invariant. In other words, the transformed function on the
transformed point (g · f)(g · x) should be the same as the original function on the
original point f(x). This means that (g · f)(x) = f(g−1 · x) for all x ∈ X.
As an illustration, let’s apply this to the translations on Minkowski space, sending
xµ to xµ + τµ. Suppose ϕ is a scalar field. Then the action of the translations
is ϕ 7→ ϕ′ where ϕ′(xµ) = ϕ(xµ − τµ). For infinitesimal τµ we have ϕ′(xµ) =
ϕ(xµ)− τµ∂µϕ(xµ), or equivalently

τµPµ · ϕ = ϕ′ − ϕ = −τµ∂µϕ ,

which agrees with the above definition.

b
Exercise I.2. Show that the above operators satisfy the Poincaré al-
gebra (A-2) and show that

δτLkin = ∂µ (−τµLkin)

δλLkin = ∂µ (λµνxνLkin) .
(6)

Conclude that the action Ikin is Poincaré invariant.

! I should issue a word of warning when computing the algebra of oper-
ators such as Pµ and Mµν . These operators are defined only on fields,
where by “fields” we mean products of S, P and ψ. For instance,
Pµ · (xνS) = xνPµ · S: it does not act on the coordinate xν . Simi-
larly, Mµν · ∂ρS = ∂ρ(Mµν · S), and of course the ∂ρ does act on the
coordinates which appear in Mµν · S.

I.2. Invariance under supersymmetry. More interestingly the ac-
tion is invariant under the following “supersymmetry” transformations:

δεS = ε̄ψ

δεP = ε̄γ5ψ

δεψ = ∂/(S + Pγ5)ε ,

(7)

where ε is a constant Majorana spinor. Notice that because transfor-
mations of any kind should not change the Bose–Fermi parity of a field,
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we are forced to take ε anticommuting, just like ψ. Notice also that
for the above transformations to preserve the dimension of the fields, ε
must have dimension −1

2
. Finally notice that they preserve the reality

properties of the fields.

b
Exercise I.3. Show that under the above transformations the free
lagrangian changes by a total derivative:

δεLkin = ∂µ
(
−1

2 ε̄γ
µ ∂/ (S + Pγ5)ψ

)
, (8)

and conclude that the action is invariant.
The supersymmetry transformations are generated by a spinorial

supercharge Q of dimension 1
2

such that for all fields ϕ,

δεϕ = ε̄Q · ϕ . (9)

The action of Q on the bosonic fields is clear:

Q · S = ψ and Q · P = γ5 ψ . (10)

To work out the action of Q on ψ it is convenient to introduce indices.
First of all notice that ε̄Q = εbCbaQ

a = εaQ
a = −εaQa, whereas

δεψ
a = ((γµ)ab∂µS + (γµγ5)ab∂µP ) εb . (11)

Equating the two, and taking into account that ψa = ψbCba and simi-
larly for Q, one finds that

Qa · ψb = − (γµ)ab ∂µS + (γµγ5)ab ∂µP , (12)

where we have lowered the indices of γµ and γµγ5 with C and used
respectively the symmetry and antisymmetry of the resulting forms.

I.3. On-shell closure of the algebra. We now check the closure of
the algebra generated by Pµ, Mµν and Qa. We have already seen that
Pµ and Mµν obey the Poincaré algebra, so it remains to check the
brackets involving Qa. The supercharges Qa are spinorial and hence
transform nontrivially under Lorentz transformations. We therefore
expect their bracket with the Lorentz generators Mµν to reflect this.
Also the dimension of Qa is 1

2
and the dimension of the translation

generators Pµ is 1, whence their bracket would have dimension 3
2
. Since

there is no generator with the required dimension, we expect that their
bracket should vanish. Indeed, we have the following.

b
Exercise I.4. Show that

[Pµ,Qa] · ϕ = 0

[Mµν ,Qa] · ϕ = − (Σµν)a
bQb · ϕ ,

(13)

where ϕ is any of the fields S, P or ψ.
We now compute the bracket of two supercharges. The first thing we

notice is that, because Qa anticommutes with the parameter ε, it is the
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anticommutator of the generators which appears in the commutator of
transformations. More precisely,

[δε1 , δε2 ] · ϕ =
[
−εa1Qa,−εb2Qb

]
· ϕ

= εa1Qa · εb2Qb · ϕ− εb2Qb · εa1Qa · ϕ
= −εa1εb2 (Qa · Qb + Qb · Qa) · ϕ
= −εa1εb2 [Qa,Qb] · ϕ ,

(14)

where we use the same notation [−,−] for the bracket of any two
elements in a Lie superalgebra. On dimensional grounds, the bracket
of two supercharges, having dimension 1, must be a translation. Indeed,
one can show the following.

b
Exercise I.5. Show that

[Qa,Qb] · S = 2 (γµ)ab Pµ · S
and similarly for P , whereas for ψ one has instead

[Qa,Qb] · ψ = 2 (γµ)ab Pµ · ψ + (γµ)ab γµ ∂/ψ .

If we use the classical equations of motion for ψ, the second term in
the right-hand side of the last equation vanishes and we obtain an on-
shell realisation of the extension of the Poincaré algebra (A-2) defined
by the following extra brackets:

[Pµ,Qa] = 0

[Mµν ,Qa] = − (Σµν)a
bQb

[Qa,Qb] = 2 (γµ)ab Pµ .

(15)

These brackets together with (A-2) define the (N=1) Poincaré super-
algebra.

Z The fact that the commutator of two supersymmetries is a translation has a re-
markable consequence. In theories where supersymmetry is local, so that the spinor
parameter is allowed to depend on the point, the commutator of two local super-
symmetries is an infinitesimal translation whose parameter is allowed to depend on
the point; in other words, it is an infinitesimal general coordinate transformation
or, equivalently, an infinitesimal diffeomorphism. This means that theories with
local supersymmetry automatically incorporate gravity. This is why such theories
are called supergravity theories.

A (N=1) supersymmetric field theory is by definition any field the-
ory which admits a realisation of the (N=1) Poincaré superalgebra on
the space of fields (maybe on-shell and up to gauge equivalence) which
leaves the action invariant. In particular this means that supersymme-
try transformations take solutions to solutions.
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Z It may seem disturbing to find that supersymmetry is only realised on-shell, since
in computing perturbative quantum corrections, it is necessary to consider virtual
particles running along in loops. This problem is of course well-known, e.g., in
gauge theories where the BRST symmetry is only realised provided the antighost
equation of motion is satisfied. The solution, in both cases, is the introduction of
non-propagating auxiliary fields. We will see the need for this when we study the
representation theory of the Poincaré superalgebra. In general finding a complete
set of auxiliary fields is a hard (sometimes unsolvable) problem; but we will see
that in the case of N=1 Poincaré supersymmetry, the superspace formalism to be
introduced in Lecture IV will automatically solve this problem.

I.4. Adding masses and interactions. There are of course other
supersymmetric actions that can be built out of the same fields S, P
and ψ by adding extra terms to the free action Ikin. For example, we
could add mass terms:

Lm = −1
2
m2

1S
2 − 1

2
m2

2P
2 − 1

2
m3ψ̄ψ , (16)

where mi for i = 1, 2, 3 have units of mass.

b
Exercise I.6. Show that the action∫

d4x (Lkin + Lm) (17)

is invariant under a modified set of supersymmetry transformations
δεS = ε̄ψ

δεP = ε̄γ5ψ

δεψ = (∂/−m)(S + Pγ5)ε ,
(18)

provided that m1 = m2 = m3 = m. More concretely, show that with
these choices of mi,

δε (Lkin + Lm) = ∂µX
µ , (19)

where
Xµ = −1

2 ε̄γ
µ (S − Pγ5)

(←−
∂/ −m

)
ψ , (20)

where for any ζ, ζ
←−
∂/ = ∂µζγ

µ. Moreover show that the above super-
symmetry transformations close, up to the equations of motion of the
fermions, to realise the Poincaré superalgebra.

This result illustrates an important point: irreducible representations
of the Poincaré superalgebra are mass degenerate; that is, all fields
have the same mass. This actually follows easily from the Poincaré
superalgebra itself. The (squared) mass is up to a sign the eigenvalue
of the operator P2 = ηµνPµPν which, from equations (A-2) and the first
equation in (15), is seen to be a Casimir of the Poincaré superalgebra.
Therefore on an irreducible representation P2 must act as a multiple of
the identity.

The action (17) is still free, hence physically not very interesting.
It is possible to add interacting terms in such a way that Poincaré
supersymmetry is preserved.
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Indeed, consider the following interaction terms

Lint = −λ
(
ψ̄ (S − Pγ5)ψ + 1

2
λ
(
S2 + P 2

)2
+mS

(
S2 + P 2

))
. (21)

The Wess–Zumino model is defined by the action

IWZ =

∫
d4x (Lkin + Lm + Lint) . (22)

b
Exercise I.7. Prove that IWZ is invariant under the following modi-
fied supersymmetry transformations:

δεS = ε̄ψ

δεP = ε̄γ5ψ

δεψ = [∂/−m− λ (S + Pγ5)] (S + Pγ5) ε ,
(23)

and verify that these transformations close on-shell to give a realisa-
tion of the Poincaré superalgebra. More concretely, show that

δεLWZ = ∂µY
µ , (24)

where

Y µ = −1
2 ε̄γ

µ(S − Pγ5)
(←−
∂/ −m− λ(S − Pγ5)

)
ψ . (25)

For future reference, we notice that the supersymmetry transforma-
tions in (23) can be rewritten in terms of the generator Qa as follows:

Qa · S = ψa

Qa · P = −(γ5)a
bψb

Qa · ψb = −∂µS(γµ)ab + ∂µP (γµγ5)ab −mSCab −mP (γ5)ab

− λ(S2 − P 2)Cab − 2λSP (γ5)ab .

(26)

Problem 1 (Superconformal invariance, Part I).
In this problem you are invited to show that the massless Wess–

Zumino model is classically invariant under a larger symmetry than
the Poincaré superalgebra: the conformal superalgebra.

The conformal algebra of Minkowski space contains the Poincaré
algebra as a subalgebra, and in addition it has five other generators:
the dilation D and the special conformal transformations Kµ. The
conformal algebra has the following (nonzero) brackets in addition to
those in (A-2):

[Pµ,D] = Pµ

[Kµ,D] = −Kµ

[Pµ,Kν ] = 2ηµνD− 2Mµν

[Mµν ,Kρ] = ηνρKµ − ηµρKν .

(27)

Any supersymmetric field theory which is in addition conformal in-
variant will be invariant under the smallest superalgebra generated by
these two Lie (super)algebras. This superalgebra is called the confor-
mal superalgebra. We will see that the massless Wess–Zumino model
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is classically conformal invariant. This will then show that it is also
classically superconformal invariant. In the course of the problem you
will also discover the form of the conformal superalgebra.

(1) Prove that the following, together with (5), define a realisa-
tion of the conformal algebra on the fields in the Wess–Zumino
model:

D · S = −xµ∂µS − S
D · P = −xµ∂µP − P
D · ψ = −xµ∂µψ − 3

2
ψ

Kµ · S = −2xµx
ν∂νS + x2∂µS − 2xµS

Kµ · P = −2xµx
ν∂νP + x2∂µP − 2xµP

Kµ · ψ = −2xµx
ν∂νψ + x2∂µψ − 3xµψ + xνγνµψ

(2) Prove that the massless Wess–Zumino action with lagrangian

LmWZ = −1
2

(∂S)2 − 1
2

(∂P )2 − 1
2
ψ̄ ∂/ψ

− λψ̄ (S − Pγ5)ψ − 1
2
λ2
(
S2 + P 2

)2
(28)

is conformal invariant. More precisely, show that

D · LmWZ = ∂µ(−xµLmWZ)

and that

Kµ · LmWZ = ∂ν
[(
−2xµx

ν + x2δνµ
)
LmWZ

]
,

and conclude that the action is invariant.

Z It is actually enough to prove that the action is invariant under Kµ and Pµ, since as
can be easily seen from the explicit form of the algebra, these two sets of elements
generate the whole conformal algebra.

We now know that the massless Wess–Zumino model is invariant
both under supersymmetry and under conformal transformations. It
follows that it is also invariant under any transformation obtained by
taking commutators of these and the resulting transformations until
the algebra closes (at least on-shell). We will now show that this pro-
cess results in an on-shell realisation of the conformal superalgebra. In
addition to the conformal and superPoincaré generators, the conformal
superalgebra has also a second spinorial generator Sa, generating con-
formal supersymmetries and a further bosonic generator R generating
the so-called R-symmetry to be defined below.

Let κµ be a constant vector and let δκ denote an infinitesimal special
conformal transformation, defined on fields ϕ by δκϕ = κµKµ · ϕ. The
commutator of an infinitesimal supersymmetry and an infinitesimal
special conformal transformation is, by definition, a conformal super-
symmetry. These are generated by a spinorial generator Sa defined
by

[Kµ,Qa] = +(γµ)a
bSb .
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Let ζ be an anticommuting Majorana spinor and define an infinitesimal
conformal supersymmetry δζ as δζϕ = ζ̄S · ϕ.

3. Show that the infinitesimal conformal supersymmetries take the
following form:

δζS = ζ̄xµγµψ

δζP = ζ̄xµγµγ5ψ

δζψ = − [(∂/−λ(S + Pγ5)) (S + Pγ5)]xµγµζ − 2(S − Pγ5)ζ .

(29)

4. Show that the action of Sa on fields is given by:

Sa · S = xµ(γµ)ab ψ
b

Sa · P = xµ(γµγ5)ab ψ
b

Sa · ψb = −(xµ∂µ + 2)SCab + (xµ∂µ + 2)P (γ5)ab)

− (xµ∂νS + 1
2
εµν

ρσxρ∂σP )(γµν)ab

− λ(S2 − P 2)xµ(γµ)ab − 2λSPxµ(γµγ5)ab .

(30)

5. Show that the action of Pµ, Mµν , Kµ, D, R, Qa and Sa on the
fields S, P and ψ defines an on-shell realisation of the confor-
mal superalgebra defined by the following (nonzero) brackets in
addition to those in (A-2), (15) and (27):

[Mµν , Sa] = − (Σµν)a
bSb

[R,Qa] = +1
2
(γ5)a

bQb

[R, Sa] = −1
2
(γ5)a

bSb

[D,Qa] = −1
2
Qa

[D, Sa] = +1
2
Sa

[Kµ,Qa] = +(γµ)a
bSb

[Pµ, Sa] = −(γµ)a
bQb

[Sa, Sb] = −2(γµ)abKµ

[Qa, Sb] = +2CabD− 2(γ5)abR + (γµν)abMµν ,

(31)

where the action of the R-symmetry on fields is

R · S = P

R · P = −S
R · ψ = 1

2
γ5 ψ .

(32)
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Z This shows that the massless Wess–Zumino model is classically superconformal
invariant. However several facts should alert us that this symmetry will be broken
by quantum effects. First of all the R-symmetry acts via γ5 and this sort of
symmetries are usually quantum-mechanically anomalous. Similarly, we expect
that the trace and conformal anomalies should break invariance under D and Kµ
respectively. This is in fact the case. What is remarkable is that the Wess–Zumino
model (with or without mass) is actually quantum mechanically supersymmetric to
all orders in perturbation theory. Moreover the model only requires wave function
renormalisation: the mass m and the coupling constant λ do not renormalise. This
sort of nonrenormalisation theorems are quite common in supersymmetric theories.
We will be able to explain why this is the case in a later lecture, although we will
not have the time to develop the necessary formalism to prove it.
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II. Supersymmetric Yang–Mills theory

In this section we introduce another simple model exhibiting super-
symmetry: supersymmetric Yang–Mills. This model consists of ordi-
nary Yang–Mills theory coupled to adjoint fermions. We will see that
this model admits an on-shell realisation of the Poincaré superalgebra
which however only closes up to gauge transformations. More is true
and in the tutorial you will show that the theory is actually supercon-
formal invariant, just like the massless Wess–Zumino model.

II.1. Supersymmetric Yang–Mills. The existence of a supersym-
metric extension of Yang–Mills theory could be suspected from the
study of the representations of the Poincaré superalgebra (see Lec-
ture III), but this does not mean that it is an obvious fact. Indeed, the
existence of supersymmetric Yang–Mills theories depends on the di-
mensionality and the signature of spacetime. Of course one can always
write down the Yang–Mills action in any dimension and then couple
it to fermions, but as we will see in the next lecture, supersymmetry
requires a delicate balance between the bosonic and fermionic degrees
of freedom. Let us consider only lorentzian spacetimes. A gauge field
in d dimensions has d − 2 physical degrees of freedom corresponding
to the transverse polarisations. The number of degrees of freedom of a
fermion field depends on what kind fermion it is, but it always a power
of 2. An unconstrained Dirac spinor in d dimensions has 2d/2 or 2(d−1)/2

real degrees of freedom, for d even or odd respectively: a Dirac spinor
has 2d/2 or 2(d−1)/2 complex components but the Dirac equation cuts
this number in half. In even dimensions, one can further restrict the
spinor by imposing that it be chiral (Weyl). This cuts the number of
degrees of freedom by two. Alternatively, in some dimensions (depend-
ing on the signature of the metric) one can impose a reality (Majorana)
condition which also halves the number of degrees of freedom. For a
lorentzian metric of signature (1, d − 1), Majorana spinors exist for
d ≡ 1, 2, 3, 4 mod 8. When d ≡ 2 mod 8 one can in fact impose that
a spinor be both Majorana and Weyl, cutting the number of degrees
of freedom in four. The next exercise asks you to determine in which
dimensions can supersymmetric Yang–Mills theory exist based on the
balance between bosonic and fermionic degrees of freedom.
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b
Exercise II.1. Verify via a counting of degrees of freedom that (N=1)
supersymmetric Yang–Mills can exist only in the following dimensions
and with the following types of spinors:

d Spinor
3 Majorana
4 Majorana (or Weyl)
6 Weyl

10 Majorana–Weyl

Z The fact that these dimensions are of the form 2 + n, where n = 1, 2, 4, 8 are the
dimensions of the real division algebras is not coincidental. It is a further curious
fact that these are precisely the dimensions in which the classical superstring ex-
ists. Unlike superstring theory, in which only the ten-dimensional theory survives
quantisation, it turns out that supersymmetric Yang–Mills theory exists in each of
these dimensions. Although we are mostly concerned with four-dimensional field
theories in these notes, the six-dimensional and ten-dimensional theories are useful
tools since upon dimensional reduction to four dimensions they yield N=2 and
N=4 supersymmetric Yang–Mills, respectively.

We will now write down a supersymmetric Yang–Mills theory in four
dimensions. We will show that the action is invariant under a super-
symmetry algebra which closes on-shell and up to gauge transforma-
tions to a realisation of the Poincaré superalgebra.

II.2. A brief review of Yang–Mills theory. Let us start by review-
ing Yang–Mills theory. We pick a gauge group G which we take to be
a compact Lie group. We let g denote its Lie algebra. We must also
make the choice of an invariant inner product in the Lie algebra, which
we will call Tr. Fix a basis {Ti} for g and let Gij = TrTiTj be the
invariant inner product and fij

k be the structure constants.
The gauge field is a one-form in Minkowski space with values in g:

Aµ = AiµTi. Geometrically it represents a connection in a principal

G bundle on Minkowski space. The field-strength Fµν = F i
µνTi is the

curvature two-form of that connection, and it is defined as

Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ] ,

or relative to the basis {Ti}:
F i
µν = ∂µA

i
ν − ∂νAiµ + gfjk

iAjµA
k
ν ,

where g is the Yang–Mills coupling constant. The lagrangian is then
given by

LYM = −1
4

TrFµνF
µν ,

and the action is as usual the integral

IYM = −1
4

∫
d4x TrFµνF

µν .

The sign has been chosen so that with our choice of spacetime metric,
the hamiltonian is positive-semidefinite.
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b
Exercise II.2. Show that the action is invariant under the natural
action of the Poincaré algebra:

Pµ ·Aν = −∂µAν
Mµν ·Aρ = −(xµ∂ν − xν∂µ)Aρ − ηνρAµ + ηµρAν .

(33)

The action is also invariant under gauge transformations. Let U(x)
be a G-valued function on Minkowski space. The gauge field Aµ trans-
forms in such a way that the covariant derivative Dµ = ∂µ + gAµ
transforms covariantly:

DU
µ = ∂µ + gAUµ = UDµU

−1 = U (∂µ + gAµ)U−1 ,

whence the transformed gauge field is

AUµ = UAµU
−1 − 1

g
(∂µU)U−1 .

The field-strength transforms covariantly

FU
µν = UFµνU

−1 ,

which together with the invariance of the inner product (or equivalently,
cyclicity of the trace) implies that the Lagrangian is invariant.

Suppose that U(x) = expω(x) where ω(x) = ω(x)iTi is a g-valued
function. Keeping only terms linear in ω in the gauge transformation
of the gauge field, we arrive at the infinitesimal gauge transformations:

δωAµ = −1
g
Dµω =⇒ δωFµν = [ω, Fµν ] , (34)

which is easily verified to be an invariance of the Yang–Mills lagrangian.

II.3. Supersymmetric extension. We will now find a supersymmet-
ric extension of this action. Because supersymmetry exchanges bosons
and fermions, we will add some fermionic fields. Since the bosons
Aµ are g-valued, supersymmetry will require that so be the fermions.
Therefore we will consider an adjoint Majorana spinor Ψ = ΨiTi. The
natural gauge invariant interaction between the spinors and the gauge
fields is the minimally coupled lagrangian

− 1
2

Tr Ψ̄D/Ψ , (35)

where Ψ̄ = ΨtC, D/ = γµDµ and

DµΨ = ∂µΨ + g[Aµ,Ψ] =⇒ DµΨi = ∂µΨi + gfjk
iAjµΨk .

b
Exercise II.3. Prove that the minimal coupling interaction (35) is
invariant under the infinitesimal gauge transformations (34) and

δωΨ = [ω,Ψ] . (36)
The action

ISYM =

∫
d4xLSYM , (37)

with
LSYM = −1

4
TrFµνF

µν − 1
2

Tr Ψ̄D/Ψ (38)
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is therefore both Poincaré and gauge invariant. One can also verify
that it is real. In addition, as we will now show, it is also invariant
under supersymmetry.

Taking into account dimensional considerations, Bose–Fermi parity,
and equivariance under the gauge group (namely that gauge transfor-
mations should commute with supersymmetry) we arrive at the follow-
ing supersymmetry transformations rules:

δεAµ = ε̄γµΨ =⇒ Qa · Aµ = −(γµ)a
bΨb

δεΨ = 1
2
αFµνγ

µνε =⇒ Qa ·Ψb = −1
2
αFµν(γ

µν)ab ,

where α is a parameter to be determined and ε in again an anticom-
muting Majorana spinor.

Z The condition on gauge equivariance is essentially the condition that we should only
have rigid supersymmetry. Suppose that supersymmetries and gauge transforma-
tions would not commute. Their commutator would be another type of supersym-
metry (exchanging bosons and fermions) but the parameter of the transformation
would be local, since gauge transformations have local parameters. This would
imply the existence of a local supersymmetry. Since we are only considering rigid
supersymmetries, we must have that supersymmetry transformations and gauge
transformations commute.

b
Exercise II.4. Prove that the above “supersymmetries” commute with
infinitesimal gauge transformations:

[δε, δω]ϕ = 0 ,

on any field ϕ = Aµ,Ψ.

Now let us vary the lagrangian LSYM. This task is made a little easier
after noticing that for any variation δAµ of the gauge field—including,
of course, supersymmetries—the field strength varies according to

δFµν = DµδAν −DνδAµ .

Varying the lagrangian we notice that there are two types of terms in
δεLSYM: terms linear in Ψ and terms cubic in Ψ. Invariance of the
action demands that they should vanish separately.

It is easy to show that the terms linear in Ψ cancel up a total deriv-
ative provided that α = −1. This result uses equation (A-6) and the
Bianchi identity

D[µFνρ] = 0 .

On the other hand, the cubic terms vanish on their own using the Fierz
identity (A-10) and the identities (A-7).
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b
Exercise II.5. Prove the above claims; that is, prove that under the
supersymmetry transformations:

δεAµ = ε̄γµΨ

δεΨ = −1
2Fµνγ

µνε
(39)

the lagrangian LSYM transforms into a total derivative

δεLSYM = ∂µ
(
−1

4 ε̄γ
µγρσFρσΨ

)
,

and conclude that the action ISYM is invariant.

II.4. Closure of the supersymmetry algebra. We have called the
above transformations “supersymmetries” but we have still to show
that they correspond to a realisation of the Poincaré superalgebra (15).
We saw in the Wess–Zumino model that the algebra only closed up to
the equations of motion of the fermions. In this case we will also
have to allow for gauge transformations. The reason is the following:
although supersymmetries commute with gauge transformations, it is
easy to see that translations do not. Therefore the commutator of two
supersymmetries could not simply yield a translation. Instead, and
provided the equations of motion are satisfied, it yields a translation
and an infinitesimal gauge transformation.

b
Exercise II.6. Prove that

[Qa,Qb] ·Aµ = 2(γρ)abPρ ·Aµ + 2(γρ)abDµAρ .

Notice that the second term in the above equation has the form of
an infinitesimal gauge transformation with (field-dependent) parameter
−2gγρAρ, whereas the first term agrees with the Poincaré superalgebra
(15).

b
Exercise II.7. Prove that up to terms involving the equation of mo-
tion of the fermion (D/Ψ = 0),

[Qa,Qb] ·Ψ = 2(γρ)abPρ ·Ψ− 2g(γρ)ab[Aρ,Ψ] .

Again notice that the second term has the form of an infinitesi-
mal gauge transformation with the same parameter −2gγρAρ, whereas
again the first term agrees with the Poincaré superalgebra (15).

The fact that the gauge transformation is the same one in both cases
allows us to conclude that the Poincaré superalgebra is realised on-shell
and up to gauge transformations on the fields Aµ and Ψ.
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Z There is a geometric picture which serves to understand the above result. One can
understand infinitesimal symmetries as vector fields on the (infinite-dimensional)
space of fields F. Each point in this space corresponds to a particular field configu-
ration (Aµ,Ψ). An infinitesimal symmetry (δAµ, δΨ) is a particular kind of vector
field on F; in other words, the assignment of a small displacement (a tangent vector
field) to every field configuration.
Now let F0 ⊂ F be the subspace corresponding to those field configurations which
obey the classical equations of motion. A symmetry of the action preserves the
equations of motion, and hence sends solutions to solutions. Therefore symmetries
preserve F0 and infinitesimal symmetries are vector fields which are tangent to F0.
The group G of gauge transformations, since it acts by symmetries, preserves the
subspace F0 and in fact foliates it into gauge orbits: two configurations being in the
same orbit if there is a gauge transformation that relates them. Unlike other sym-
metries, gauge-related configurations are physically indistinguishable. Therefore
the space of physical configurations is the space F0/G of gauge orbits.
Now, any vector field on F0 defines a vector field on F0/G: one simply throws away
the components tangent to the gauge orbits. The result we found above can be
restated as saying that in the space of physical configurations we have a realisation
of the Poincaré superalgebra.

We have proven that the theory defined by the lagrangian (38) is a
supersymmetric field theory. It is called (N=1) (pure) supersymmet-
ric Yang–Mills. This is the simplest four-dimensional supersymmetric
gauge theory, but by no means the only one. One can add matter cou-
pling in the form of Wess–Zumino multiplets. Some of these theories
have extended supersymmetry (in the sense of Problem 3). Extended
supersymmetry constrains the dynamics of the gauge theory. In the
last five years there has been much progress made on gauge theories
with extended supersymmetry, including for the first time the exact
(nonperturbative) solution of nontrivial interacting four-dimensional
quantum field theories.

Problem 2 (Superconformal invariance, Part II).
This problem does for supersymmetric Yang–Mills what Problem 1

did for the Wess–Zumino model: namely, it invites you to show that
supersymmetric Yang–Mills is classically invariant under the conformal
superalgebra. As with the Wess–Zumino model the strategy will be
to show that the theory is conformal invariant and hence that it is
invariant under the smallest superalgebra generated by the Poincaré
supersymmetry and the conformal transformations. This superalgebra
will be shown to be (on-shell and up to gauge transformations) the
conformal superalgebra introduced in Problem 1.

(1) Show that supersymmetric Yang–Mills theory described by the
action ISYM with lagrangian (38) is invariant under the confor-
mal transformations:

D · Aρ = −xµ∂µAρ − Aρ
D ·Ψ = −xµ∂µΨ− 3

2
Ψ

Kµ · Aρ = −2xµx
ν∂νAρ + x2∂µAρ − 2xµAρ + 2xρAµ − 2ηµρx

νAν

Kµ ·Ψ = −2xµx
ν∂νΨ + x2∂µΨ− 3xµΨ + xνγνµΨ .
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More precisely show that

D · LSYM = ∂µ (−xµLSYM)

Kµ · LSYM = ∂ν
[(
−2xµx

ν + x2δνµ
)
LSYM

]
,

and conclude that the action ISYM is invariant.
(2) Show that ISYM is invariant under the R-symmetry:

R · Aµ = 0 and R ·Ψ = 1
2
γ5Ψ .

(3) Referring to the discussion preceding Part 3 in Problem 1, show
that the infinitesimal conformal supersymmetry of supersym-
metric Yang–Mills takes the form:

δζAµ = ζ̄xνγνγµΨ

δζΨ = 1
2
xρFµνγ

µνγρζ .

(4) Defining the generator Sa by

δζϕ = ζ̄S · ϕ = −ζaSa · ϕ
show that the action of Sa is given by

Sa · Aµ = (xνγνγµ)ab Ψb

Sa ·Ψ = −1
2
xρFµν (γµνγρ)ba

= 1
2
εµνρσxρFµν (γσγ5)ab + xµFµν (γν)ab .

(5) Finally show that Sa, together with Mµν , Pµ, Kµ, D, R and Qa,
define an on-shell (and up to gauge transformations) realisation
of the conformal superalgebra defined by the brackets (A-2),
(15), (27) and (31).

Z Again we expect that the classical superconformal symmetry of supersymmetric
Yang–Mills will be broken by quantum effects: again the R-symmetry acts by
chiral transformations which are anomalous, and as this theory has a nonzero beta
function, conformal invariance will also fail at the quantum level. Nevertheless
Poincaré supersymmetry will be preserved at all orders in perturbation theory.
Remarkably one can couple supersymmetric Yang–Mills to supersymmetric matter
in such a way that the resulting quantum theory is still superconformal invariant.
One such theory is the so-called N=4 supersymmetric Yang–Mills. This theory
has vanishing beta function and is in fact superconformally invariant to all orders.
It is not a realistic quantum field theory for phenomenological purposes, but it has
many nice properties: it is maximally supersymmetric (having 16 supercharges),
it exhibits electromagnetic (Montonen–Olive) duality and it has been conjectured
(Maldacena) to be equivalent at strong coupling to type IIB string theory on a ten-
dimensional background of the form adS5×S5, where S5 is the round 5-sphere and
adS5, five-dimensional anti-de Sitter space, is the lorentzian analogue of hyperbolic
space in that dimension.
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III. Representations of the Poincaré superalgebra

In the first two lectures we met the Poincaré superalgebra and showed
that it is a symmetry of the Wess–Zumino model (in Lecture I) and
of Yang–Mills theories with adjoint fermions (in Lecture II). In the
present lecture we will study the representations of this algebra. We
will see that irreducible representations of the Poincaré superalgebra
consist of multiplets of irreducible representations of the Poincaré al-
gebra containing fields of different spins (or helicities) but of the same
mass. This degeneracy in the mass is not seen in nature and hence
supersymmetry, if a symmetry of nature at all, must be broken. In
Lecture VI we will discuss spontaneous supersymmetry breaking.

III.1. Unitary representations. It will prove convenient both in this
lecture and in later ones, to rewrite the Poincaré superalgebra in terms
of two-component spinors. (See the Appendix for our conventions.)
The supercharge Qa, being a Majorana spinor decomposes into two
Weyl spinors

Qa =

(
Qα

Q̄α̇

)
, (40)

in terms of which, the nonzero brackets in (15) now become

[Mµν ,Qα] = −1
2

(σµν)α
βQβ[

Mµν , Q̄α̇

]
= 1

2
(σ̄µν)α̇

β̇Q̄β̇[
Qα, Q̄β̇

]
= 2i (σµ)αβ̇ Pµ .

(41)

For the purposes of this lecture we will be interested in unitary rep-
resentations of the Poincaré superalgebra. This means that represen-
tations will have a positive-definite invariant hermitian inner product
and the generators of the algebra will obey the following hermiticity
conditions:

M†µν = −Mµν P†µ = −Pµ Q†α = Q̄α̇ . (42)

b
Exercise III.1. Show that these hermiticity conditions are consistent
with the Poincaré superalgebra.

Notice that Pµ is antihermitian, hence its eigenvalues will be imagi-
nary. Indeed, we have seen that Pµ acts like −∂µ on fields. For example,
acting on a plane wave ϕ = exp(ip · x), Pµ · ϕ = −ipµ ϕ. Therefore on
a momentum eigenstate |p〉, the eigenvalue of Pµ is −ipµ.

A remarkable property of supersymmetric theories is that the energy
is positive-semidefinite in a unitary representation. Indeed, acting on
a momentum eigenstate |p〉 the supersymmetry algebra becomes[

Qα, Q̄β̇

]
|p〉 = 2

(
−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
|p〉 .
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Recalling that the energy is given by p0 = −p0, we obtain

p0|p〉 = 1
4

(
[Q1,Q

†
1] + [Q2,Q

†
2]
)
|p〉 .

In other words, the hamiltonian can be written in the following mani-
festly positive-semidefinite way:

H = 1
4

(
Q1Q

†
1 + Q†1Q1 + Q2Q

†
2 + Q†2Q2

)
. (43)

This shows that energy of any state is positive unless the state is an-
nihilated by all the supercharges, in which case it is zero. Indeed, if
|ψ〉 is any state, we have that the expectation value of the hamiltonian
(the energy) is given by a sum of squares:

〈ψ|H|ψ〉 = 1
4

(
‖Q1|ψ〉‖2 + ‖Q†1|ψ〉‖2 + ‖Q2|ψ〉‖2 + ‖Q†2|ψ〉‖2

)
.

This is a very important fact of supersymmetry and one which plays a
crucial role in many applications, particularly in discussing the spon-
taneous breaking of supersymmetry.

III.2. Induced representations in a nutshell. The construction of
unitary representations of the Poincaré superalgebra can be thought
of as a mild extension of the construction of unitary representations
of the Poincaré algebra. This method is originally due to Wigner and
was greatly generalised by Mackey. The method consists of inducing
the representation from a finite-dimensional unitary representation of
some compact subgroup. Let us review this briefly as it will be the
basis for our construction of irreducible representations of the Poincaré
superalgebra.

The Poincaré algebra has two Casimir operators: P2 and W2, where
Wµ = 1

2
εµνλρPνMλρ is the Pauli–Lubansky vector. By Schur’s lemma,

on an irreducible representation they must both act as multiplication by
scalars. Let’s focus on P2. On an irreducible representation P2 = m2,
where m is the “rest-mass” of the particle described by the representa-
tion. Remember that on a state with momentum p, Pµ has eigenvalue
−ipµ, hence P2 has eigenvalues −p2, which equals m2 with our choice
of metric. Because physical masses are real, we have m2 ≥ 0, hence
we can distinguish two kinds of physical representations: massless for
which m2 = 0 and massive for which m2 > 0.

Wigner’s method starts by choosing a nonzero momentum p on the
mass-shell: p2 = −m2. We let Gp denote the subgroup of the Lorentz
group (or rather of SL(2,C)) which leaves p invariant. Gp is known
as the little group. Wigner’s method, which we will not describe in
any more detail than this, consists in the following. First one chooses a
unitary finite-dimensional irreducible representation of the little group.
Doing this for every p in the mass shell defines a family of representa-
tions indexed by p. The representation is carried by functions assigning
to a momentum p in the mass shell, a state φ(p) in this representation.



26 JM FIGUEROA-O’FARRILL

Finally, one Fourier transforms to obtain fields on Minkowski spacetime
subject to their classical equations of motion.

Z In more mathematical terms, the construction can be described as follows. The
mass shell Mm2 = {pµ | p2 = −m2} is acted on transitively by the Lorentz group
L. Fix a vector p ∈Mm2 and let Gp be the little group. Then Mm2 can be seen as
the space of right cosets of Gp in L; that is, it is a homogeneous space L/Gp. Any
representation V of Gp defines a homogeneous vector bundle on Mm2 whose space of
sections carries a representation of the Poincaré group. This representation is said
to be induced from V. If V is unitary and irreducible, then so will be the induced
representation. The induced representation naturally lives in momentum space,
but for field theoretical applications we would like to work with fields in Minkowski
space. This is easily achieved by Fourier transform, but since the momenta on the
mass-shell obey p2 = −m2, it follows that the Fourier transform ϕ(x) of a function
ϕ̃(p) automatically satisfies the Klein–Gordon equation. More is true, however,
and the familiar classical relativistic equations of motion: Klein–Gordon, Dirac,
Rarita–Schwinger,... can be understood group theoretically simply as projections
onto irreducible representations of the Poincaré group.

In extending this method to the Poincaré superalgebra all that hap-
pens is that now the Lie algebra of the little group gets extended by
the supercharges, since these commute with Pµ and hence stabilise the
chosen 4-vector pµ. Therefore we now induce from a unitary irreducible
representations of the little (super)group. This representation will be
reducible when restricted to the little group and will at the end of the
day generate a supermultiplet of fields.

Before applying this procedure we will need to know about the struc-
ture of the little groups. The little group happens to be different for
massive and for massless representations, as the next exercise asks you
to show.

b
Exercise III.2. Let pµ be a momentum obeying p0 > 0, p2 = −m2.
Prove that the little group of pµ is isomorphic to:

• SU(2), for m2 > 0;
• Ẽ2, for m2 = 0,

where E2
∼= SO(2) n R2, is the two-dimensional euclidean group and

Ẽ2
∼= Spin(2) n R2 is its double cover.

(Hint: Argue that two momenta which are Lorentz-related have iso-
morphic little groups and then choose a convenient pµ in each case.)

III.3. Massless representations. Let us start by considering mass-
less representations. As shown in Exercise III.2, the little group for
the momentum pµ of a massless particle is noncompact. Therefore its
finite-dimensional unitary representations must all come from its max-
imal compact subgroup Spin(2) and be trivial on the translation sub-
group R2. The unitary representations of Spin(2) are one-dimensional
and indexed by a number λ ∈ 1

2
Z called the helicity. Since CPT re-

verses the helicity, it may be necessary to include both helicities ±λ in
order to obtain a CPT -self-conjugate representation.
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Let’s choose pµ = (E, 0, 0,−E), with E > 0. Then the algebra of
the supercharges [

Qα, Q̄β̇

]
= 4E

(
0 0
0 1

)
.

b
Exercise III.3. Show that as a consequence of the above algebra,
Q1 = 0 in any unitary representation.

Let us now define q ≡ (1/2
√
E) Q2, in terms of which the supersym-

metry algebra becomes the fermionic oscillator algebra:

q q† + q† q = 1 .

This algebra has a unique irreducible representation of dimension 2.
If |Ω〉 is a state annihilated by q, then the representation has as basis
{|Ω〉, q†|Ω〉}. Actually, |Ω〉 carries quantum numbers corresponding to
the momentum p and also to the helicity λ, so that |Ω〉 = |p, λ〉.

b
Exercise III.4. Paying close attention to the helicity of the super-
symmetry charges, prove that q lowers the helicity by 1

2 , and that q†

raises it by the same amount. Deduce that the massless supersymme-
try multiplet of helicity λ contains two irreducible representations of
the Poincaré algebra with helicities λ and λ+ 1

2 .

For example, if we take λ = 0, then we have two irreducible represen-
tations of the Poincaré algebra with helicities 0 and 1

2
. This representa-

tion cannot be realised on its own in a quantum field theory, because of
the CPT invariance of quantum field theories. Since CPT changes the
sign of the helicity, if a representation with helicity s appears, so will
the representation with helicity −s. That means that representations
which are not CPT-self-conjugate appear in CPT-conjugate pairs. The
CPT-conjugate representation to the one discussed at the head of this
paragraph has helicities −1

2
and 0. Taking both representations into ac-

count we find two states with helicity 0 and one state each with helicity
±1

2
. This is precisely the helicity content of the massless Wess–Zumino

model: the helicity 0 states are the scalar and the pseudoscalar fields
and the states of helicities ±1

2
correspond to the physical degrees of

freedom of the spinor.
If instead we start with helicity λ = 1

2
, then the supermultiplet has

helicities 1
2

and 1 and the CPT -conjugate supermultiplet has helicities

−1 and −1
2
. These are precisely the helicities appearing in supersym-

metric Yang–Mills. The multiplet in question is therefore called the
gauge multiplet.

Now take the λ = 3
2

supermultiplet and add its CPT -conjugate. In
this way we obtain a CPT -self-conjugate representation with helicities
−2,−3

2
, 3

2
, 2. This has the degrees of freedom of a graviton (helicities

±2) and a gravitino (helicities ±3
2
). This multiplet is realised field
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theoretically in supergravity, and not surprisingly it is called the su-
pergravity multiplet.

III.4. Massive representations. Let us now discuss massive repre-
sentations. As shown in Exercise III.2, the little group for the momen-
tum pµ of a massive particle is SU(2). Its finite-dimensional irreducible
unitary representations are well-known: they are indexed by the spin
s, where 2s is a non-negative integer, and have dimension 2s+ 1.

A massive particle can always be boosted to its rest frame, so that
we can choose a momentum pµ = (m, 0, 0, 0) with m > 0. The super-
charges now obey [

Qα, Q̄β̇

]
= 2m

(
1 0
0 1

)
.

Thus we can introduce qα ≡ (1/
√

2m)Qα, in terms of which the super-
symmetry algebra is now the algebra of two identical fermionic oscilla-
tors:

qα (qβ)† + (qβ)† qα = δαβ . (44)

This algebra has a unique irreducible representation of dimension 4
with basis

{|Ω〉, (q1)†|Ω〉, (q2)†|Ω〉, (q1)†(q2)†|Ω〉} ,

where |Ω〉 is a nonzero state obeying

q1|Ω〉 = q2|Ω〉 = 0 .

However unlike the case of massless representations, |Ω〉 is now de-
generate, since it carries spin: for spin s, |Ω〉 is really a (2s + 1)-
dimensional SU(2) multiplet. Notice that (qα)† transforms as an SU(2)-
doublet of spin 1

2
. This must be taken into account when determining

the spin content of the states in the supersymmetry multiplet. Instead
of simply adding the helicities like in the massless case, now we must
use the Clebsch–Gordan series to add the spins. On the other hand,
massive representations are automatically CPT -self-conjugate so we
don’t have to worry about adding the CPT-conjugate representation.

For example, if we take s = 0, then we find the following spectrum:
|p, 0〉 with spin 0, (qα)†|p, 0〉 with spin 1

2
and (q1)†(q2)†|p, 0〉 which has

spin 0 too. The field content described by this multiplet is then a scalar
field, a pseudo-scalar field, and a Majorana fermion, which is precisely
the field content of the Wess–Zumino model. The multiplet is known
as the scalar or Wess–Zumino multiplet.

b
Exercise III.5. What is the spin content of the massive supermulti-
plet with s = 1

2? What would be the field content of a theory admitting
this representation of the Poincaré superalgebra?
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All representations of the Poincaré superalgebra share the property
that the number of fermionic and bosonic states match. For the mass-
less representations this is clear because the whatever the Bose–Fermi
parity of |p, λ〉, it is opposite that of |p, λ+ 1

2
〉.

For the massive representations we see that whatever the Bose–Fermi
parity of the 2s + 1 states |p, s〉, it is opposite that of the 2(2s + 1)
states (qα)†|p, s〉 and the same as that of the 2s+1 states (q1)†(q2)†|p, s〉.
Therefore there are 2(2s+ 1) bosonic and 2(2s+ 1) fermionic states.

Problem 3 (Supersymmetry and the BPS bound).
Here we introduce the extended Poincaré superalgebra and study its

unitary representations. In particular we will see the emergence of cen-
tral charges, the fact that the mass of a unitary representation satisfies
a bound, called the BPS bound, and that the sizes of representations
depends on whether the bound is or is not saturated.

The extended Poincaré superalgebra is the extension of the Poincaré
algebra by N supercharges QI for I = 1, 2, . . . , N . The nonzero brack-
ets are now

[Qα I ,Qβ J ] = 2εαβZIJ[
Qα I , Q̄

J
α̇

]
= 2iδJI (σµ)αα̇Pµ ,

(45)

where ZIJ commute with all generators of the algebra and are therefore
known as the central charges. Notice that ZIJ = −ZJI , whence central
charges requires N ≥ 2. The hermiticity condition on the supercharges
now says that

(Qα I)
† = Q̄I

α̇ .

We start by considering massless representations. Choose a lightlike
momentum pµ = (E, 0, 0,−E) with E > 0. The supercharges obey

[Qα I , (Qβ J)†] = 4EδJI

(
0 0
0 1

)
.

(1) Prove that all Q1 I must act trivially on any unitary represen-
tation, and conclude that the central charges must vanish for
massless unitary representations.

(2) Consider a massless multiplet with lowest helicity λ. Which
helicities appear and with what multiplicities?

(3) Prove that CPT -self-conjugate multiplets exist only for even N .
Discuss the CPT -self-conjugate multiplets for N = 2, N = 4
and N = 8. These are respectively the N=2 hypermultiplet, the
N=4 gauge multiplet and N=8 supergravity multiplet.

Now we consider massive representations without central charges.
The situation is very similar to the N=1 case discussed in lecture.

4. Work out the massive N=2 multiplets without central charges
and with spin s=0 and s=1

2
. Show that for s=0 the spin content

is (05, 1
2

4
, 1) in the obvious notation, and for s=1

2
it is given by

(3
2
, 14, 1

2

6
, 04).
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Now consider massive N=2 multiplets with central charges. In this
case ZIJ = zεIJ , where there is only one central charge z. Since z is
central, it acts as a multiple of the identity, say z, in any irreducible
representation. The algebra of supercharges is now:

[Qα I ,QαJ ] = z εIJ

(
0 1
−1 0

)
[
Qα I , (QαJ)†

]
= 2mδJI

(
1 0
0 1

)
.

5. Show that for a unitary massive representation of mass m, the
following bound is always satisfied: m ≥ |z|. (Hint: Consider
the algebra satisfied by the linear combination of supercharges

Qα 1 ± ε̄α̇β̇(Qβ 2)†.)
6. Show that representations where the bound is not saturated—

that is, m > |z|—have the same multiplicities as massive rep-
resentations without central charge.

7. Show that massive representations where the bound is saturated
have the same multiplicities as massless representations.

Z The bound in Part 5 above is called the BPS bound since it generalises the Bogo-
mol’nyi bound for the Prasad–Sommerfield limit of Yang–Mills–Higgs theory. In
fact, in the context of N=2 supersymmetric Yang–Mills it is precisely the Bogo-
mol’nyi bound.
The result in Part 7 above explains why BPS saturated multiplets are also called
short multiplets. The difference in multiplicity between ordinary massive multiplets
and those which are BPS saturated underlies the rigidity of the BPS-saturated
condition under deformation: either under quantum corrections or under other
continuous changes in the parameters of the model.
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IV. Superspace and Superfields

In the previous lectures we have studied the representations of the
Poincaré superalgebra and we have seen some of its field theoretical re-
alisations. In both the Wess–Zumino model and supersymmetric Yang–
Mills, proving the supersymmetry of the action was a rather tedious
task, and moreover the superalgebra was only realised on-shell and, in
the case of supersymmetric Yang–Mills, up to gauge transformations.

It would be nice to have a formulation in which supersymmetry was
manifest, just like Poincaré invariance is in usual relativistic field theo-
ries. Such theories must have in addition to the physical fields, so-called
auxiliary fields in just the right number to reach the balance between
bosonic and fermionic fields which supersymmetry demands. For exam-
ple, in the Wess–Zumino model this balance is present on the physical
degree of freedoms: 2 bosonic and 2 fermionic. In order to have a
manifestly supersymmetric formulation this balance in the degrees of
freedom must be present without the need to go on-shell. For example,
in the Wess–Zumino model, the bosons are defined by 2 real functions
S and P , whereas the fermions are defined by 4: ψa. We conclude
therefore that a manifestly supersymmetric formulation must contain
at least two additional bosonic fields. The superfield formulation will
do just that.

Superfields are fields in superspace, and superspace is to the Poincaré
superalgebra what Minkowski space is to the Poincaré algebra. Just
like we can easily write down manifestly Poincaré invariant models as
theories of fields on Minkowski space, we will be able to (almost) effort-
lessly write down models invariant under the Poincaré superalgebra as
theories of superfields in superspace.

In this lecture we will introduce the notions of superspace and su-
perfields. We will discuss the scalar superfields and will rewrite the
Wess–Zumino model in superspace. Unpacking the superspace action,
we will recover a version of this model with the requisite number of
auxiliary fields for the off-shell closure of the Poincaré superalgebra.
The auxiliary fields are essential not only in the manifestly supersym-
metric formulation of field theories but, as we will see in Lecture VI,
also play an important role in the breaking of supersymmetry.

IV.1. Superspace. For our purposes the most important character-
istic of Minkowski space is that, as discussed in the Appendix, it is
acted upon transitively by the Poincaré group. We would now like to
do something similar with the “Lie supergroup” corresponding to the
Poincaré superalgebra.
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! We will not give the precise mathematical definition of a Lie super-
group in these lectures. Morally speaking a Lie supergroup is what
one obtains by exponentiating elements of a Lie superalgebra. We
will formally work with exponentials of elements of the superalgebra
keeping in mind that the parameters associated to odd elements are
themselves anticommuting.

By analogy with the treatment of Minkowski space in the Appendix,
we will define Minkowski superspace (or superspace for short) as the
space of right cosets of the Lorentz group. Notice that the Poincaré
superalgebra has the structure of a semidirect product, just like the
Poincaré algebra, where the translation algebra is replaced by the su-
peralgebra generated by Pµ and Qa. Points in superspace are then in
one-to-one correspondence with elements of the Poincaré supergroup
of the form

exp(xµPµ) exp(θ̄Q) ,

where θ is an anticommuting Majorana spinor and θ̄Q = −θaQa as
usual.

The Poincaré group acts on superspace by left multiplication with the
relevant group element. However as we discussed in the Appendix, this
action generates an antirepresentation of the Poincaré superalgebra.
In order to generate a representation of the Poincaré superalgebra we
must therefore start with the opposite superalgebra—the superalgebra
where all brackets are multiplied by −1. In the case of the Poincaré
superalgebra, the relevant brackets are now

[Pµ,Qa] = 0

[Qa,Qb] = −2 (γµ)ab Pµ .
(46)

Translations act as expected:

exp(τµPµ) exp(xµPµ) exp(θ̄Q) = exp ((xµ + τµ)Pµ) exp(θ̄Q) ,

so that the point (x, θ) gets sent to the point (x+ τ, θ).
The action of the Lorentz group is also as expected: xµ transforms

as a vector and θ as a Majorana spinor. In particular, Lorentz trans-
formations do not mix the coordinates.

On the other hand, the noncommutativity of the superalgebra gen-
erated by Pµ and Qa has as a consequence that a supertranslation does
not just shift θ but also x, as the next exercise asks you to show. This
is the reason why supersymmetry mixes bosonic and fermionic fields.

b
Exercise IV.1. With the help of the Baker–Campbell–Hausdorff for-
mula (A-1), show that

exp(ε̄Q) exp(θ̄Q) = exp(−ε̄γµθPµ) exp
(
(θ + ε)Q

)
.

It follows that the action of a supertranslation on the point (xµ, θ)
is given by (xµ − ε̄γµθ, θ + ε).
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! We speak of points in superspace, but in fact, as in noncommutative
geometry, of which superspace is an example (albeit a mild one), one
is supposed to think of x and θ are coordinate functions. There are
no points corresponding to θ, but rather nilpotent elements in the
(noncommutative) algebra of functions. For simplicity of exposition
we will continue to talk of (x, θ) as a point, although it is good to keep
in mind that this is an oversimplification. Doing so will avoid “koans”
like

What is the point with coordinates xµ − ε̄γµθ?
This question has no answer because whereas (for fixed µ) xµ is an
ordinary function assigning a real number to each point, the object
xµ−ε̄γµθ is quite different, since ε̄γµθ is certainly not a number. What
it is, is an even element in the “coordinate ring” of the superspace,
which is now a Grassmann algebra: with generators θ and θ̄ and
coefficients which are honest functions of xµ. This is to be understood
in the sense of noncommutative geometry, as we now briefly explain.
Noncommutative geometry starts from the observation that in many
cases the (commutative) algebra of functions of a space determines
the space itself, and moreover that many of the standard geometric
concepts with which we are familiar, can be rephrased purely in terms
of the algebra of functions, without ever mentioning the notion of a
point. (This is what von Neumann called “pointless geometry”.) In
noncommutative geometry one simply starts with a noncommutative
algebra and interprets it as the algebra of functions on a “noncom-
mutative space.” Of course, this space does not really exist. Any
question for which this formalism is appropriate should be answerable
purely in terms of the noncommutative algebra. Luckily this is the
case for those applications of this formalism to supersymmetry with
which we are concerned in these lectures.
In the case of superspace, the noncommutativity is mild. There are
commuting coordinates, the xµ, but also (mildly) noncommuting co-
ordinates θ and θ̄. More importantly, these coordinates are nilpotent:
big enough powers of them vanish. In some sense, superspace consists
of ordinary Minkowski space with some “nilpotent fuzz” around each
point.

IV.2. Superfields. A superfield Φ(x, θ) is by definition a (differen-
tiable) function of x and θ. By linearising the geometric action on
points, and recalling that the action on functions is inverse to that
on points, we can work out the infinitesimal actions of Pµ and Qa on
superfields:

Pµ · Φ = −∂µΦ

Qa · Φ =
(
∂a + (γµ)abθ

b∂µ
)

Φ ,
(47)

where by definition ∂aθ
b = δba.

b
Exercise IV.2. Verify that the above derivations satisfy the opposite
superalgebra (46).
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Since both Pµ and Qa act as derivations, they obey the Leibniz rule
and hence products of superfields transform under (super)translations
in the same way as a single superfield. Indeed, if f is any differen-
tiable function, f(Φ) transforms under Pµ and Qa as in equation (47).
Similarly, if Φi for i = 1, 2, . . . , n transform as in (47), so will any
differentiable function f(Φi).

The derivations −∂µ and Qa := ∂a + (γµ)abθ
b∂µ are the vector fields

generating the infinitesimal left action of the Poincaré supergroup. The
infinitesimal right action is also generated by vector fields which, be-
cause left and right multiplications commute, will (anti)commute with
them. Since ordinary translations commute, right translations are also
generated by −∂µ. On the other hand, the noncommutativity of the
supertranslations means that the expression for the right action of Qa

is different. In fact, from Exercise IV.1 we read off

exp(θ̄Q) exp(ε̄Q) = exp(+ε̄γµθPµ) exp
(
(θ + ε)Q

)
,

whence the infinitesimal generator (on superfields) is given by the su-
percovariant derivative

Da := ∂a − (γµ)abθ
b∂µ .

b
Exercise IV.3. Verify that the derivations Qa and Da anticommute
and that

[Da, Db] = −2(γµ)ab∂µ . (48)
We are almost ready to construct supersymmetric lagrangians. Re-

call that a lagrangian L is supersymmetric if it is Poincaré invariant
and such that its supersymmetric variation is a total derivative:

δεL = ∂µ (ε̄Kµ) .

It is very easy to construct supersymmetric lagrangians using super-
fields.

To explain this let us make several crucial observations. First of
all notice that because the odd coordinates θ are anticommuting, the
dependence on θ is at most polynomial, and because θ has four real
components, the degree of the polynomial is at most 4.

b
Exercise IV.4. Show that a superfield Φ(x, θ) has the following θ-
expansion

Φ(x, θ) = φ(x) + θ̄χ(x) + θ̄θ F (x) + θ̄γ5θ G(x)

+ θ̄γµγ5θ vµ(x) + θ̄θ θ̄ξ(x) + θ̄θ θ̄θ E(x) ,

where φ, E, F , G, vµ, χ and ξ are fields in Minkowski space.
(Hint: You may want to use the Fierz-like identities (A-11).)

Now let L(x, θ) be any Lorentz-invariant function of x and θ which
transforms under supertranslations according to equation (47). For
example, any function built out of superfields, their derivatives and
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their supercovariant derivatives transforms according to equation (47).
The next exercise asks you to show that under a supertranslation, the
component of L with the highest power of θ transforms into a total
derivative. Its integral is therefore invariant under supertranslations,
Lorentz invariant (since L is) and, by the Poincaré superalgebra, also
invariant under translations. In other words, it is invariant under su-
persymmetry!

b
Exercise IV.5. Let Φ(x, θ) be a superfield and let E(x) be its (θ̄θ)2

component, as in Exercise IV.4. Show that E(x) transforms into a
total derivative under supertranslations:

δεE = ∂µ
(
−1

4 ε̄γ
µξ
)
.

(Hint: As in Exercise IV.4, you may want to use the identities (A-11).)

We will see how this works in practice in two examples: the Wess–
Zumino model presently and in the next lecture the case of supersym-
metric Yang–Mills.

IV.3. Superfields in two-component formalism. The cleanest su-
perspace formulation of the Wess–Zumino model requires us to describe
superspace in terms of two-component spinors. Since θ is a Majorana
spinor, it can be written as θa = (θα, θ̄α̇). Taking into account equation
(A-20), a point in superspace can be written as

exp(xµPµ) exp
(
−(θQ + θ̄Q̄)

)
.

The two-component version of the opposite superalgebra (46) is now[
Qα, Q̄β̇

]
= −2i(σµ)αβ̇Pµ , (49)

with all other brackets vanishing.

b
Exercise IV.6. Show that under left multiplication by exp(εQ) the
point (xµ, θ, θ̄) gets sent to the point (xµ − iεσµθ̄, θ − ε, θ̄). Similarly,
show that under left multiplication by exp(ε̄Q̄), (xµ, θ, θ̄) gets sent to
(xµ − iε̄σ̄µθ, θ, θ̄ − ε̄).

This means that action on superfields (recall that the action on func-
tions is inverse to that on points) is generated by the following deriva-
tions:

Qα = ∂α + i(σµ)αβ̇ θ̄
β̇∂µ and Q̄α̇ = ∂̄α̇ + i(σ̄µ)α̇βθ

β∂µ . (50)

Repeating this for the right action, we find the following expressions
for the supercovariant derivatives:

Dα = ∂α − i(σµ)αβ̇ θ̄
β̇∂µ and D̄α̇ = ∂̄α̇ − i(σ̄µ)α̇βθ

β∂µ . (51)
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b
Exercise IV.7. Verify that Q̄α̇ = (Qα)∗ and D̄α̇ = (Dα)∗. Also show
that any of Qα and Q̄α̇ anticommute with any of Dα and D̄α̇, and that
they obey the following brackets:

[Qα, Q̄β̇] = +2iσµ
αβ̇
∂µ and [Dα, D̄β̇] = −2iσµ

αβ̇
∂µ . (52)

IV.4. Chiral superfields. Let Φ(x, θ, θ̄) be a complex superfield. Ex-
panding it as a series in θ we obtain

Φ(x, θ, θ̄) = φ(x) + θχ(x) + θ̄χ̄′(x) + θ̄σ̄µθvµ(x)

+ θ2F (x) + θ̄2F̄ ′(x) + θ̄2θξ(x) + θ2θ̄ξ̄′(x) + θ2θ̄2D(x) , (53)

where φ, χ, χ̄′, vµ, ξ, ξ̄′, F , F ′ and D are all different complex fields.
Therefore an unconstrained superfield Φ gives rise to a large number

of component fields. Taking φ, the lowest component of the superfield,
to be a complex scalar we see that the superfield contains too many
component fields for it to yield an irreducible representation of the
Poincaré superalgebra. Therefore we need to impose constraints on the
superfield in such a way as to cut down the size of the representation.
We now discuss one such constraint and in the following lecture will
discuss another.

Let us define a chiral superfield as a superfield Φ which satisfies the
condition

D̄α̇Φ = 0 . (54)

Similarly we define an antichiral superfield as one satisfying

DαΦ = 0 . (55)

Chiral superfields behave very much like holomorphic functions. In-
deed, notice that a real (anti)chiral superfield is necessarily constant.
Indeed, the complex conjugate of a chiral field is antichiral. If Φ is real
and chiral, then it also antichiral, whence it is annihilated by both Dα

and D̄α̇ and hence by their anticommutator, which is essentially ∂µ,
whence we would conclude that Φ is constant.

It is very easy to solve for the most general (anti)chiral superfield.
Indeed, notice that the supercovariant derivatives admit the following
operatorial decompositions

Dα = eiU∂αe
−iU and D̄α̇ = e−iU ∂̄α̇e

iU , (56)

where U = θσµθ̄∂µ is real.
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b
Exercise IV.8. Use this result to prove that the most general chiral
superfield takes the form

Φ(x, θ, θ̄) = φ(y) + θχ(y) + θ2F (y) ,

where yµ = xµ − iθσµθ̄. Expand this to obtain

Φ(x, θ, θ̄) = φ(x) + θχ(x) + θ2F (x) + iθ̄σ̄µθ∂µφ(x)

− i
2θ

2θ̄σ̄µ∂µχ(x) + 1
4θ

2θ̄2�φ(x) . (57)

It is possible to project out the different component fields in a chi-
ral superfields by taking derivatives. One can think of this as Taylor
expansions in superspace.

b
Exercise IV.9. Let Φ be a chiral superfield. Show that

φ(x) = Φ
∣∣

χα(x) = DαΦ
∣∣

F (x) = −1
4D

2Φ
∣∣ ,

where D2 = DαDα and where
∣∣ denotes the operation of setting θ =

θ̄ = 0 in the resulting expressions.

IV.5. The Wess–Zumino model revisited. We will now recover
the Wess–Zumino model in superspace. The lagrangian couldn’t be
simpler.

Let Φ be a chiral superfield. Its dimension is equal to that of its
lowest component Φ

∣∣, which in this case, being a complex scalar, has
dimension 1.

Since θ has dimension −1
2
, the highest component of any superfield

(the coefficient of θ2θ̄2) has dimension two more than that of the su-
perfield. Therefore if we want to build a lagrangian out of Φ we need
to take a quadratic expression. Since Φ is complex and but the action
should be real, we have essentially one choice: Φ̄Φ, where Φ̄ = (Φ)∗.
The highest component of Φ̄Φ is real, has dimension 4, is Poincaré
invariant and transforms into a total derivative under supersymme-
try. It therefore has all the right properties to be a supersymmetric
lagrangian.

b
Exercise IV.10. Let Φ be a chiral superfield and let Φ̄ = (Φ)∗ be its
(antichiral) complex conjugate. Show that the highest component of
Φ̄Φ is given by

−∂µφ∂µφ̄+ FF̄ + i
4 (χσµ∂µχ̄+ χ̄σ̄µ∂µχ) + 1

4∂µ
(
φ∂µφ̄+ φ̄∂µφ

)
.

Rewrite the lagrangian of the free massless Wess–Zumino model (given
in (1)) in terms of two-component spinors and show that it agrees (up
to total derivatives and after using the equation of motion of F ) with
2Φ̄Φ where φ = 1

2(S + iP ) and ψa = (χα, χ̄α̇).
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Z A complex scalar field is not really a scalar field in the strict sense. Because of
CPT-invariance, changing the orientation in Minkowski space complex conjugates
the complex scalar. This means that the real part is indeed a scalar, but that
the imaginary part is a pseudoscalar. This is consistent with the identification
φ = 1

2
(S + iP ) in the above exercise.

Let us now recover the supersymmetry transformations of the com-
ponent fields from superspace. By definition, δεΦ = −(εQ + ε̄Q̄)Φ.
In computing the action of Qα and Q̄α̇ on a chiral superfield Φ, it is
perhaps easier to write Φ as

Φ = e−iU
(
φ+ θχ+ θ2F

)
,

and the supercharges as

Qα = e−iU∂αe
iU and Q̄α̇ = D̄α̇ + 2i(σ̄µ)α̇βθ

β∂µ ,

with U = θσµθ̄∂µ.

b
Exercise IV.11. Doing so, or the hard way, show that

δεφ = −εχ
δεχα = −2εαF + 2iε̄α̇(σ̄µ)α̇α∂µφ
δεF = iε̄σ̄µ∂µχ .

(58)

Now rewrite the supersymmetry transformations (7) of the free mass-
less Wess–Zumino model in terms of two-component spinors and show
that they agree with the ones above after using the F equations of mo-
tion and under the identification φ = 1

2(S + iP ) and ψa = (χα, χ̄α̇).

The above result illustrates why in the formulation of the Wess–
Zumino model seen in Lecture I, the Poincaré superalgebra only closes
on-shell. In that formulation the auxiliary field F has been eliminated
using its equation of motion F = 0. However for this to be consistent,
its variation under supersymmetry has to vanish as well, and as we
have just seen F varies into the equation of motion of the fermion.

Let us introduce the following notation:∫
d2θd2θ̄ ↔ the coefficient of θ2θ̄2.

! The notation is supposed to be suggestive of integration in superspace.
Of course this integral is purely formal and has not measure-theoretic
content. It is an instance of the familiar Berezin integral in the path
integral formulation of theories with fermions; only that in this case
the definition is not given in this way, since the Grassmann algebra in
quantum field theory has to be infinitely generated so that correlation
functions of an arbitrary number of fermions are not automatically
zero. Therefore it makes no sense to extract the “top” component of
an element of the Grassmann algebra.



BUSSTEPP LECTURES ON SUPERSYMMETRY 39

In this notation, the (free, massless) Wess–Zumino model is described
by the following action: ∫

d4xd2θd2θ̄ 2Φ̄Φ . (59)

A convenient way to compute superspace integrals of functions of
chiral superfields is to notice that∫

d4xd2θd2θ̄K(Φ, Φ̄) =

∫
d4x 1

16
D2D̄2K(Φ, Φ̄)

∣∣ . (60)

This is true even if Φ is not a chiral superfield, but it becomes par-
ticularly useful if it is, since we can use chirality and Exercise IV.9 to
greatly simplify the computations.

b
Exercise IV.12. Take K(Φ, Φ̄) = Φ̄Φ and, using the above expression
for
∫
d4xd2θd2θ̄K(Φ, Φ̄), rederive the result in the first part of Exercise

IV.10.
Z In Problem 1 we saw that the free massless Wess–Zumino model is invariant under

the R-symmetry (32). This symmetry can also be realised geometrically in super-
space. Notice that the infinitesimal R-symmetry acts on the component fields of
the superfield as

R · φ = iφ R · χ = − i
2
χ and R · χ̄ = i

2
χ̄ .

Since φ = Φ| we are forced to set R · Φ = iΦ, which is consistent with the R-
symmetry transformation properties of the fermions provided that θ and θ̄ trans-
form according to

R · θ = 3i
2
θ and R · θ̄ = − 3i

2
θ̄ . (61)

This forces the superspace “measures” d2θ and d2θ̄ to transform as well:

R · d2θ = −3id2θ and R · d2θ̄ = 3id2θ̄ , (62)

and this shows that the lagrangian
R
d2θd2θ̄ΦΦ̄ is manifestly invariant under the

R-symmetry.

IV.6. The superpotential. We now add masses and interactions to
the theory with superspace lagrangian Φ̄Φ.

The observation that allows us to do this is the following. It follows
from the supersymmetry transformation properties (58) of a chiral su-
perfield, that its θ2 component transforms as a total derivative. Now
suppose that Φ is a chiral superfield. Then so is any power of Φ and
in fact any differentiable function W (Φ). Therefore the θ2 component
of W (Φ) is supersymmetric. However it is not real, so we take its real
part. The function W (Φ) is called the superpotential. In the case of
the Wess–Zumino model it is enough to take W to be a cubic polyno-
mial. In fact, on dimensional grounds, a renormalisable superpotential
is at most cubic. This follows because the θ2 component of W (Φ) has
dimension 1 more than that of W (Φ). Since the dimension of a la-
grangian term must be at most four, the dimension of W (Φ) must be
at most three. Since Φ has dimension 1 and renormalisability does not
allow coupling constants of negative dimension, we see that W (Φ) must
be at most cubic.
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Let us introduce the notation∫
d2θ ↔ the coefficient of θ2∫
d2θ̄ ↔ the coefficient of θ̄2,

with the same caveat about superspace integration as before. A conve-
nient way to compute such chiral superspace integrals is again to notice
that ∫

d4xd2θW (Φ) = −
∫
d4x 1

4
D2W (Φ)

∣∣ ,∫
d4xd2θ̄ W (Φ̄) = −

∫
d4x 1

4
D̄2W (Φ̄)

∣∣ . (63)

b
Exercise IV.13. Let W (Φ) be given by

W (Φ) = µΦ2 + νΦ3 .

Determine µ and ν in such a way that the action obtained by adding
to the action (59) the superpotential term∫

d2θW (Φ) +
∫
d2θ̄ W (Φ) (64)

and eliminating the auxiliary field via its equation of motion we recover
the Wess–Zumino model, under the identification φ = 1

2(S + iP ) and
ψa = (χα, χ̄α̇).
(Hint: I get µ = m and ν = 4

3λ.)

Z R-symmetry can help put constraints in the superpotential. Notice that the R-
symmetry transformation properties of the superspace measures d2θ and d2θ̄ in
(62) says that an R-invariant superpotential must transform as R·W (Φ) = 3iW (Φ).
This means that only the cubic term is invariant and in particular that the model
must be massless. This is consistent with the results of Problem 1: the conformal
superalgebra contains the R-symmetry, yet it is not a symmetry of the model unless
the mass is set to zero.
It is nevertheless possible to redefine the action of the R-symmetry on the fields
in such a way that the mass terms are R-invariant. For example, we could take
R·Φ = 3i

2
Φ, but this then prohibits the cubic term in the superpotential and renders

the theory free. Of course the massive theory, even if free, is not (super)conformal
invariant.

In other words, we see that the Wess–Zumino model described by
the action (22) can be succinctly written in superspace as∫

d4x d2θ d2θ̄ 2Φ̄Φ +

[∫
d4x d2θ

(
mΦ2 + 4

3
λΦ3

)
+ c.c.

]
. (65)

Using equation (63) and Exercise IV.9 it is very easy to read off the
contribution of the superpotential to the the lagrangian:

dW (φ)

dφ
F − 1

4

d2W (φ)

dφ2
χχ+ c.c ,



BUSSTEPP LECTURES ON SUPERSYMMETRY 41

and hence immediately obtain the Yukawa couplings and the fermion
mass. The scalar potential (including the masses) is obtained after
eliminating the auxiliary field.

We leave the obvious generalisations of the Wess–Zumino model to
the tutorial problem. It is a pleasure to contemplate how much simpler
it is to write these actions down in superspace than in components, and
furthermore the fact that we know a priori that the resulting theories
will be supersymmetric.

The power of superfields is not restricted to facilitating the construc-
tion of supersymmetric models. There is a full-fledged superspace ap-
proach to supersymmetric quantum field theories, together with Feyn-
man rules for “supergraphs” and manifestly supersymmetry regulari-
sation schemes. This formalism has made it possible to prove certain
powerful “nonrenormalisation” theorems which lie at the heart of the
attraction of supersymmetric theories. A simple consequence of super-
space perturbation theory is that in a theory of chiral superfields, any
counterterm is of the form of an integral over all of superspace (that is,
of the form

∫
d4x d2θd2θ̄). This means that in a renormalisable theory,

the superpotential terms—being integrals over chiral superspace (that
is,
∫
d4xd2θ or

∫
d4xd2θ̄)—are not renormalised. Since the superpoten-

tial contains both the mass and the couplings of the chiral superfields,
it means that the tree level masses and couplings receive no perturba-
tive loop corrections. In fact, “miraculous cancellations” at the one-
loop level were already observed in the early days of supersymmetry,
which suggested that there was only need for wave-function renormal-
isation. The nonrenormalisation theorem (for chiral superfields) is the
statement that this persists to all orders in perturbation theory. More
importantly, the absence of mass renormalisation provides a solution
of the gauge hierarchy problem, since a hierarchy of masses fixed at
tree-level will receive no further radiative corrections. From a phe-
nomenological point of view, this is one of the most attractive features
of supersymmetric theories.

Problem 4 (Models with chiral superfields).
In this tutorial problem we discuss the most general supersymmetric

models which can be constructed out of chiral superfields. Let Φi,
for i = 1, 2, . . . , N , be chiral superfields, and let (Φi)∗ = Φ̄ı̄ be the
conjugate antichiral fields.

(1) Show that the most general supersymmetric renormalisable la-
grangian involving these fields is given by the sum of a kinetic
term ∫

d2θd2θ̄ KīΦ
iΦ̄̄

and a superpotential term (64) with

W (Φ) = aiΦ
i + 1

2
mijΦ

iΦj + 1
3
λijkΦ

iΦjΦk ,
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where ai, mij and λijk are totally symmetric real constants, and
Kī is a constant hermitian matrix. Moreover unitarity of the
model forces Kī to be positive definite.

(2) Argue that via a complex change of variables Φi 7→ M i
jΦ

j,
where M is a matrix in GL(N,C), we can take Kī = δī with-
out loss of generality. Moreover we we still have the freedom
to make a unitary transformation Φi 7→ U i

jΦ
j, where U is a

matrix in U(N) with which to diagonalise the mass matrix mij.
Conclude that the most general supersymmetric renormalisable
lagrangian involving N chiral superfields is given by the sum of
a kinetic term ∫

d2θd2θ̄
N∑
i=1

ΦiΦ̄i ,

where Φ̄i = δīΦ̄
̄, and a superpotential term (64) with

W = aiΦ
i +

N∑
i=1

mi(Φ
i)2 + 1

3
λijkΦ

iΦjΦk .

(3) Expand the above action into components and eliminate the
auxiliary fields via their equations of motion.

If we don’t insist on renormalisability, we can generalise the above
model in two ways. First of all we can consider more general superpo-
tentials, but we can also contemplate more complicated kinetic terms.
Let K(Φ, Φ̄) be a real function of Φi and Φ̄ı̄ and consider the kinetic
term ∫

d4x d2θd2θ̄ K(Φ, Φ̄) . (66)

4. Show that the above action is invariant under the transforma-
tions

K(Φ, Φ̄) 7→ K(Φ, Φ̄) + Λ(Φ) + Λ(Φ) . (67)

5. Expand the above kinetic term and show that it gives rise to a
supersymmetric extension of the “hermitian sigma model”

−
∫
d4x gī(φ, φ̄)∂µφ

i∂µφ̄̄ ,

with metric

gī(φ, φ̄) = ∂i∂̄K(φ, φ̄) ,

where ∂i = ∂/∂φi and ∂ı̄ = ∂/∂φ̄ı̄.

Z Such a metric gī is called Kähler. Notice that it is the metric which is physical
even though the superspace action is written in terms of the Kähler potential K.
This is because the action is invariant under the Kähler gauge transformations (67)
which leave the metric invariant.
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6. Eliminate the auxiliary fields via their equations of motion and
show that the resulting lagrangian becomes (up to a total de-
rivative)

−gī∂µφi∂µφ̄̄ + i
2
gīχ

iσµ∇µχ̄
̄ + 1

16
Rijk̄ ¯̀χiχjχ̄k̄χ̄

¯̀
,

where

∇µχ̄
ı̄ = ∂µχ̄

ı̄ + Γ̄k̄
ı̄∂µφ̄

̄χ̄k̄

Γ̄k̄
ı̄ = gīı∂k̄gī

(
and Γjk

i = gīı∂kgı̄j
)

Rijk̄ ¯̀ = ∂i∂k̄gj ¯̀− gmm̄∂igjm̄∂k̄gm¯̀ ,

where gī is the inverse of gī, which is assumed invertible due
to the positive-definiteness (or more generally, nondegeneracy)
of the kinetic term.

7. Finally, consider an arbitrary differentiable function W (Φ) and
add to the kinetic term (66) the corresponding superpotential
term (64). Expand the resulting action in components and elim-
inate the auxiliary fields using their field equations to arrive at
the most general supersymmetric action involving only scalar
multiplets:

− gī∂µφi∂µφ̄̄ + i
2
gīχ

iσµ∇µχ̄
̄ + 1

16
Rijk̄ ¯̀χiχjχ̄k̄χ̄

¯̀

− gī∂iW∂̄W − 1
4
χiχjHij(W )− 1

4
χ̄ı̄χ̄̄Hı̄̄(W ) , (68)

where

Hij(W ) = ∇i∂jW = ∂i∂jW − Γij
k∂kW

Hı̄̄(W ) = ∇ı̄∂̄W = ∂ı̄∂̄W − Γı̄̄
k̄∂k̄W

is the Hessian of W .

Z Models such as (68) are known as supersymmetric sigma models. The scalar fields
can be understood as maps from the spacetime to a riemannian manifold. Not
every riemannian manifold admits a supersymmetric sigma model and indeed this
problem shows that supersymmetry requires the metric to be Kähler. The data
of a supersymmetric sigma model is thus geometric in nature: a Kähler manifold
(M, g) and a holomorphic function W on M . This and similar results underlie the
deep connections between supersymmetry and geometry.
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V. Supersymmetric Yang–Mills revisited

The general supersymmetric renormalisable models in four dimen-
sions can be built out of the chiral superfields introduced in the pre-
vious lecture and the vector superfields to be introduced presently. In
terms of components, chiral superfields contain complex scalar fields
(parametrising a Kähler manifold, which must be flat in renormalisable
models) and Majorana fermions. This is precisely the field content of
the Wess–Zumino model discussed in Lecture I and in the previous lec-
ture we saw how to write (and generalise) this model in superspace. In
contrast, the vector superfield is so called because it contains a vector
boson as well as a Majorana fermion. This is precisely the field con-
tent of the supersymmetric Yang–Mills theory discussed in Lecture II
and in the present lecture we will learn how to write this theory down
in superspace. By the end of this lecture we will know how to write
down the most general renormalisable supersymmetric theory in four
dimensions. The tutorial problem will introduce the Kähler quotient,
in the context of the CPN supersymmetric sigma model. Apart from
its intrinsic mathematical interest, this construction serves to illustrate
the fact that in some cases, the low energy effective theory of a super-
symmetric gauge theory is a supersymmetric sigma model on the space
of vacua.

V.1. Vector superfields. In the component expansion (53) of a gen-
eral scalar superfield one finds a vector field vµ. If we wish to identify
this field with a vector boson we must make sure that it is real. Com-
plex conjugating the superfield sends vµ to its complex conjugate v̄µ,
hence reality of vµ implies the reality of the superfield. I hope this
motivates the following definition.

A vector superfield V is a scalar superfield which satisfies the reality
condition V̄ = V .

b
Exercise V.1. Show that the general vector superfield V has the fol-
lowing component expansion:

V (x, θ, θ̄) = C(x) + θξ(x) + θ̄ξ̄(x) + θ̄σ̄µθvµ(x)

+ θ2G(x) + θ̄2Ḡ(x) + θ̄2θη(x) + θ2θ̄η̄(x) + θ2θ̄2E(x) , (69)

where C, vµ and E are real fields.
The real part of a chiral superfield Λ is a particular kind of vector

superfield, where the vector component is actually a derivative:

Λ + Λ̄ = (φ+ φ̄) + θχ+ θ̄χ̄+ θ2F + θ̄2F̄ + iθ̄σ̄µθ∂µ(φ− φ̄)

− i
2
θ2θ̄σ̄µ∂µχ− i

2
θ̄2θσµ∂µχ̄+ 1

4
θ2θ̄2�(φ+ φ̄) . (70)

This suggests that the transformation

V 7→ V − (Λ + Λ̄) , (71)
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where V is a vector superfield and Λ is a chiral superfield, should be
interpreted as the superspace version of a U(1) gauge transformation.

b
Exercise V.2. Show that the transformation (71) has the following
effect on the components of the vector superfield:

C 7→ C − (φ+ φ̄)
ξ 7→ ξ − χ
G 7→ G− F
vµ 7→ vµ − i∂µ(φ− φ̄)

ηα 7→ ηα + i
2(σµ)αβ̇∂µχ̄

β̇

E 7→ E − 1
4 �(φ+ φ̄) .

This result teaches us two things. First of all, we see that the com-
binations

λα = ηα − i
2
(σµ)αβ̇∂µξ̄

β̇

D := E − 1
4
�C

(72)

are gauge invariant.

! I hope that the gauge-invariant field D will not be confused with the
supercovariant derivative. This abuse of notation has become far too
ingrained in the supersymmetry literature for me to even attempt to
correct it here.

Of these gauge-invariant quantities, it is λα which is the lowest com-
ponent in the vector superfield. This suggests that we try to construct
a gauge-invariant lagrangian out of a superfield having λα as its lowest
component. Such a superfield turns out to be easy to construct, as we
shall see in the next section.

The second thing we learn is that because the fields C, G and ξ
transform by shifts, we can choose a special gauge in which they van-
ish. This gauge is called the Wess–Zumino gauge and it of course
breaks supersymmetry. Nevertheless it is a very convenient gauge for
calculations, as we will have ample opportunity to demonstrate. For
now, let us merely notice that in the Wess–Zumino gauge the vector
superfield becomes

V = θ̄σ̄µθvµ + θ̄2θλ+ θ2θ̄λ̄+ θ2θ̄2D , (73)

and that powers are very easy to compute:

V 2 = −1
2
θ2θ̄2vµv

µ ,

with all higher powers vanishing. This is not a gratuitous comment. We
will see that in coupling to matter and indeed already in the nonabelian
case, it will be necessary to compute the exponential of the vector
superfield eV , which in the Wess–Zumino gauge becomes simply

eV = 1 + θ̄σ̄µθvµ + θ̄2θλ+ θ2θ̄λ̄+ θ2θ̄2
(
D − 1

4
vµv

µ
)
. (74)
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Furthermore gauge transformations with imaginary parameter φ = −φ̄
and χ = F = 0 still preserve the Wess–Zumino gauge and moreover
induce in the vector field vµ the expected U(1) gauge transformations

vµ 7→ vµ − i∂µ(φ− φ̄) . (75)

V.2. The gauge-invariant action. Define the following spinorial su-
perfields

Wα := −1
4
D̄2DαV and W α̇ := −1

4
D2D̄α̇V . (76)

Notice that reality of V implies that (Wα)∗ = W α̇. To show that the
lowest component of Wα is λα it will be convenient to compute it in
the Wess–Zumino gauge (73). This is allowed because Wα is actually
gauge invariant, so it does not matter in which gauge we compute it.

b
Exercise V.3. Prove that the supercovariant derivatives satisfy the
following identities: [

D̄α̇,
[
D̄β̇, Dγ

]]
= 0

D̄α̇D̄
2 = 0 ,

(77)

and use them to prove that Wα is both chiral:

D̄β̇Wα = 0 ,

and gauge invariant. Use complex conjugation to prove that W α̇ is
antichiral and gauge invariant. Finally, show that the following “real”
equation is satisfied:

DαWα = D̄α̇W α̇ . (78)
In the Wess–Zumino gauge, the vector superfield V can be written

as

V = e−iU
[
θ̄σ̄µθvµ + θ̄2θλ+ θ2θ̄λ̄+ θ2θ̄2

(
D + i

2
∂µvµ

)]
, (79)

where as usual U = θσµθ̄∂µ.

b
Exercise V.4. Using this fact show that

D̄α̇V = e−iU
[
−θα(σµ)αα̇vµ + 2θ̄α̇θλ+ θ2λ̄α̇ + 2θ2θ̄α̇

(
D + i

2∂
µvµ
)]

and that
−1

4D̄
2V = e−iU

[
θλ+ θ2

(
D + i

2∂
µvµ
)]

,

and conclude that Wα takes the following expression

Wα = e−iU
[
λα + 2θαD + i

2θβ(σµν)βαfµν + iθ2(σ̄µ)β̇α∂µλ̄
β̇
]
, (80)

where fµν = ∂µvν − ∂νvµ is the field-strength of the vector vµ.
(Hint: You may want to use the expressions (56) for the supercovariant
derivatives.)

Since Wα is chiral, so is WαWα, which is moreover Lorentz invariant.
The θ2 component is also Lorentz invariant and transforms as a total
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derivative under supersymmetry. Its real part can therefore be used as
a supersymmetric lagrangian.

b
Exercise V.5. Show that∫

d2θWαWα = 2iλσµ∂µλ̄+ 4D2 − 1
2fµνf

µν + i
4ε
µνρσfµνfρσ , (81)

and hence that its real part is given by

i
(
λσµ∂µλ̄+ λ̄σ̄µ∂µλ

)
− 1

2fµνf
µν + 4D2 . (82)

! It may seem from this expression that the supersymmetric Yang–Mills
lagrangian involves an integral over chiral superspace, and perhaps
that a similar nonrenormalisation theorem to the one for chiral super-
fields would prevent the Yang–Mills coupling constant to renormalise.
This is not true. In fact, a closer look at the expression for the super-
symmetric Yang–Mills reveals that it can be written as an integral over
all of superspace, since the D̄2 in the definition of Wα acts like a

∫
d2θ̄.

In other words, counterterms can and do arise which renormalise the
supersymmetric Yang–Mills action.

Now consider the supersymmetric Yang–Mills action with lagrangian
(38) for the special case of the abelian group G = U(1). The resulting
theory is free. Let Ψa = (ψα, ψ̄α̇). Expanding the lagrangian we obtain

LSYM = i
4

(
ψσµ∂µψ̄ + ψ̄σ̄µ∂µψ

)
− 1

4
FµνF

µν , (83)

which agrees with half the lagrangian (82) provided that we eliminate
the auxiliary field D and identify Aµ = vµ and ψα = λα. Actually,
this last field identification has a phase ambiguity, and we will fix it by
matching the supersymmetry transformation properties (39) with the
ones obtained in superspace: −(εQ+ ε̄Q̄)V .

V.3. Supersymmetry transformations. We can (and will) simplify
the computation by working in the Wess–Zumino gauge. However it
should be noticed that this gauge breaks supersymmetry; that is, the
supersymmetry variation of a vector superfield in the Wess–Zumino
gauge will not remain in the Wess–Zumino gauge. In order to get
it back to this gauge it will be necessary to perform a compensating
gauge transformation. This is a common trick in supersymmetry and
it’s worth doing it in some detail.
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b
Exercise V.6. Compute the supersymmetry transformation of a vec-
tor superfield V in the Wess–Zumino gauge (73) to obtain

−(εQ+ ε̄Q̄)V = θσµε̄vµ − θ̄σ̄µεvµ − θ2ε̄λ̄− θ̄2ελ

+ θ̄σ̄µθ
(
ε̄σ̄µλ− εσµλ̄

)
− 2θ2θ̄ε̄

(
D − i

4∂
µvµ
)
− 2θ̄2θε

(
D + i

4∂
µvµ
)

− i
4θ

2θ̄σ̄µν ε̄fµν − i
4 θ̄

2θσµνεfµν

+ i
2θ

2θ̄2
(
εσµ∂µλ̄+ ε̄σ̄µ∂µλ

)
.

(84)

As advertised, the resulting variation is not in the Wess–Zumino
gauge. Nevertheless we can gauge transform it back to the Wess–
Zumino gauge. Indeed, we can find a chiral superfield Λ with compo-
nent fields φ, χ and F such that

δεV = −(εQ+ ε̄Q̄)V − (Λ + Λ̄) (85)

is again in the Wess–Zumino gauge. To do this notice that the first
four terms in the expansion (84) of −(εQ + ε̄Q̄)V have to vanish in
the Wess–Zumino gauge. This is enough to fix Λ up to the imaginary
part of φ, which simply reflects the gauge invariance of the component
theory.

b
Exercise V.7. Show that the parameters of the compensating gauge
transformation are given by (where we have chosen the imaginary part
of φ to vanish)

φ = 0

χα = −(σµ)αα̇ε̄α̇vµ
F = −ε̄λ̄ ,

(86)

and hence that
δεV = −(εQ+ ε̄Q̄)V − (Λ + Λ̄)

= θ̄σ̄µθδεvµ + θ̄2θδελ+ θ2θ̄δελ̄+ θ2θ̄2δεD ,

with
δεvµ = ε̄σ̄µλ− εσµλ̄

δελα = −2εαD + i
2(σµν)αβεβfµν

δεD = i
2

(
εσµ∂µλ̄+ ε̄σ̄µ∂µλ

)
.

(87)

Rewriting the supersymmetry transformations (39) of supersymmet-
ric Yang–Mills (for G = U(1)) in terms of Ψa = (ψα, ψ̄α̇) we obtain

δεAµ = −i(ε̄σ̄µψ + εσµψ̄)

δεψα = −1
2
Fµν(σ

µν)αβε
β .

Therefore we see that they agree with the transformations (87) provided
that as before we identify vµ = Aµ, but now ψα = iλα.

In summary, supersymmetric Yang–Mills theory (38) with gauge
group U(1) can be written in superspace in terms of a vector superfield
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V which in the Wess–Zumino gauge has the expansion

V = θ̄σ̄µθAµ − iθ̄2θψ + iθ2θ̄ψ̄ + θ2θ̄2D ,

with lagrangian given by

LSYM =

∫
d2θ 1

4
WαWα + c.c. ,

with Wα given by (76).

V.4. Coupling to matter. Let us couple the above theory to matter
in the form in one chiral superfield. We will postpone discussing more
general matter couplings until we talk about nonabelian gauge theories.

Consider a chiral superfield Φ in a one-dimensional representation of
the group U(1) with charge e. That is to say, if exp(iϕ) ∈ U(1) then
its action on Φ is given by

exp(iϕ) · Φ = eieϕΦ and exp(iϕ) · Φ̄ = e−ieϕΦ̄ .

The kinetic term Φ̄Φ is clearly invariant. If we wish to promote this
symmetry to a gauge symmetry, we need to consider parameters ϕ(x)
which are functions on Minkowski space. However, eieϕ(x)Φ is not a
chiral superfield and hence this action of the gauge group does not
respect supersymmetry. To cure this problem we need to promote ϕ to
a full chiral superfield Λ, so that the gauge transformation now reads

Φ 7→ eieΛΦ . (88)

Now the gauge transformed superfield remains chiral, but we pay the
price that the kinetic term Φ̄Φ is no longer invariant. Indeed, it trans-
forms as

Φ̄Φ 7→ Φ̄Φeie(Λ−Λ̄) .

However, we notice that i(Λ− Λ̄) is a real superfield and hence can be
reabsorbed in the gauge transformation of a vector superfield V :

V 7→ V − i
2
(Λ− Λ̄) , (89)

in such a way that the expression

Φ̄e2eV Φ

is gauge invariant under (88) and (89).
The coupled theory is now defined by the lagrangian∫

d2θd2θ̄ Φ̄e2eV Φ +

[∫
d2θ 1

4
WαWα + c.c

]
, (90)

which can be understood as the supersymmetric version of scalar QED.
The coupling term might look nonpolynomial (and hence nonrenor-

malisable), but since it is gauge invariant it can be computed in the
Wess–Zumino gauge where V 3 = 0.



50 JM FIGUEROA-O’FARRILL

b
Exercise V.8. Show that the component expansion of the lagrangian
(90), with Φ given by (57), V in the Wess–Zumino gauge by (73) and
having eliminated the auxiliary fields, is given by

−1
4fµνf

µν + i
2

(
λσµ∂µλ̄+ λ̄σ̄µ∂µλ

)
+ i

4

(
χσµDµχ+ χ̄σ̄µDχ

)
−DµφDµφ− e

(
φ̄λχ+ φλ̄χ̄

)
− 1

2e
2
(
|φ|2

)2
,

(91)

where Dµφ = ∂µφ− ievµφ and similarly for Dµχ.
The above model does not allow massive charged matter, since the

mass term in the superpotential is not gauge invariant. In order to con-
sider massive matter, and hence supersymmetric QED, it is necessary
to include two oppositely charged chiral superfields Φ±, transforming
under the U(1) gauge group as

Φ± 7→ e±ieΛΦ± .

Then the supersymmetric QED lagrangian in superspace is given by∫
d2θd2θ̄

(
Φ̄+e

2eV Φ+ + Φ̄−e
−2eV Φ−

)
+

[∫
d2θ

(
1
4
WαWα +mΦ+Φ−

)
+ c.c.

]
. (92)

b
Exercise V.9. Expand the supersymmetric QED lagrangian in com-
ponents and verify that it describes a massless gauge boson (the pho-
ton) and a charged massive fermion (the electron), as well as a a
massless neutral fermion (the photino) and a a massive charged scalar
(the selectron).

© Detractors often say, with some sarcasm, that supersymmetry is doing
well: already half the particles that it predicts have been found.

The coupling of supersymmetric gauge fields to supersymmetric mat-
ter suggests that the fundamental object is perhaps not the vector su-
perfield V itself but its exponential expV , which in the Wess–Zumino
gauge is not too different an object—compare equations (73) and (74).
One might object that the supersymmetric field-strength Wα actually
depends on V and not on its exponential, but this is easily circumvented
by rewriting it thus:

Wα = −1
4
D̄2e−VDαe

V . (93)

It turns out that this observation facilitates enormously the construc-
tion of nonabelian supersymmetric Yang–Mills theory in superspace.

V.5. Nonabelian gauge symmetry. As in Lecture II, let G be a
compact Lie group with Lie algebra g and fix an invariant inner prod-
uct, denoted by Tr in the Lie algebra. The vector superfield V now
takes values in g. Relative to a fixed basis {Ti} for g we can write

V = iV iTi , (94)
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where as we will see, the factor of i will guarantee that the superfields
V i are real.

The expression (93) for the field-strength makes sense for a Lie al-
gebra valued V , since the only products of generators Ti appearing in
the expression are in the form of commutators. The form of the gauge
transformations can be deduced by coupling to matter.

Suppose that Φ is a chiral superfield taking values in a unitary rep-
resentation of G. This means that under a gauge transformation, Φ
transforms as

Φ 7→ eΛΦ ,

where Λ is an antihermitian matrix whose entries are chiral superfields.
The conjugate superfield Φ̄ takes values in the conjugate dual represen-
tation; this means that now Φ̄ denotes the conjugate transpose. Under
a gauge transformation, it transforms according to

Φ̄ 7→ Φ̄ eΛ̄ ,

where Λ̄ is now the hermitian conjugate of Λ. Consider the coupling

Φ̄eV Φ . (95)

Reality imposes that V be hermitian,

V̄ = V (96)

where V̄ is now the hermitian conjugate of V . Since the Ti are anti-
hermitian, this means that the components V i in (94) are vector su-
perfields: V̄ i = V i. Gauge invariance implies that V should transform
according to

eV 7→ e−Λ̄eV e−Λ . (97)

We can check that the field-strength (93) transforms as expected under
gauge transformations.

b
Exercise V.10. Show that the field-strength (93) transforms covari-
antly under the gauge transformation (97):

Wα 7→ eΛWαe
−Λ ,

and conclude that ∫
d2θ TrWαWα

is gauge invariant
In order to compare this to the component version of supersymmetric

Yang–Mills we would like to argue that we can compute the action in
the Wess–Zumino gauge, but this requires first showing the existence of
this gauge. The nonabelian gauge transformations (97) are hopelessly
complicated in terms of V , but using the Baker–Campbell–Hausdorff
formula (A-1) we can compute the first few terms and argue that the
Wess–Zumino gauge exists.
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b
Exercise V.11. Using the Baker–Campbell–Hausdorff formula (A-1),
show that the nonabelian gauge transformations (97) takes the form

V 7→ V − (Λ + Λ̄)− 1
2 [V,Λ− Λ̄] + · · · ,

and conclude that V can be put in the Wess–Zumino gauge (73) by a
judicious choice of Λ + Λ̄.

Notice that in the Wess–Zumino gauge, infinitesimal gauge trans-
formations simplify tremendously. In fact, since V 3 = 0, the gauge
transformation formula (97) for infinitesimal Λ, reduces to

V 7→ V − (Λ + Λ̄)− 1
2
[V,Λ− Λ̄]− 1

12
[V, [V,Λ + Λ̄]] . (98)

Notice that an infinitesimal gauge transformation which preserves the
Wess–Zumino gauge has the form

Λ = ω + iθ̄σ̄µθ∂µω + 1
4
θ2θ̄2�ω , (99)

for some Lie algebra-valued scalar field ω obeying ω̄ = −ω. In this
case, the term in V 2 in the transformation law (98) is absent, as it has
too many θ’s.

b
Exercise V.12. Show that the infinitesimal gauge transformation

V 7→ V − (Λ + Λ̄)− 1
2 [V,Λ− Λ̄]

for V in the Wess–Zumino gauge and with parameter Λ given by (99),
induces the following transformation of the component fields:

δωvµ = −2i∂µω − [vµ, ω]

δωχ = −[χ, ω]

δωD = −[D,ω] .

Conclude that Aµ = 1
2givµ, where g is the Yang–Mills coupling con-

stant, obeys the transformation law (34) of a gauge field.

This result suggests that in order to identify the fields in the com-
ponent formulation of supersymmetric Yang–Mills, we have to rescale
the nonabelian vector superfield by 2g, with g the Yang–Mills coupling
constant. In order to obtain a lagrangian with the correct normalisa-
tion for the kinetic term, we also rescale the spinorial field strength by
1/(2g):

Wα := − 1
8g
D̄2e−2g VDαe

2g V . (100)

V.6. Nonabelian gauge-invariant action. We now construct the
nonabelian gauge-invariant action. We will do this in the Wess–Zumino
gauge, but we should realise that the nonabelian field-strength is no
longer gauge invariant. Nevertheless we are after the superspace la-
grangian TrWαWα, which is gauge invariant.
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b
Exercise V.13. Show that in Wess–Zumino gauge

e−VDαe
V = DαV − 1

2 [V,DαV ] , (101)

and use this to find the following expression for the nonabelian field-
strength Wα in (100):

Wα = e−iU
[
λα + 2θαD + i

2θβ(σµν)βαfµν + iθ2Dµλ
α̇(σ̄µ)α̇α

]
, (102)

where
fµν = ∂µvν − ∂νvµ − ig[vµ, vν ]

Dµλ = ∂µλ− ig[vµ, λ] .

! The factors of i have to do with the fact that vµ = vµiTi. In terms of
Aµ = −ivµ these expressions are standard:

fµν = i (∂µAν − ∂νAµ + g[Aµ, Aν ])

Dµλ = ∂µλ+ g[Aµ, λ] .

Comparing (102) with the abelian version (80), we can use the results
of Exercise V.5 to arrive at the component expansion for the lagrangian

LSYM =

∫
d2θ 1

4
TrWαWα + c.c (103)

for (pure, nonabelian) supersymmetric Yang–Mills. Expanding in com-
ponents, we obtain

LSYM = i
2

Tr
(
λσµDµλ̄+ λ̄σ̄µDµλ

)
− 1

4
Tr fµνf

µν + 2 TrD2 . (104)

In order to fix the correspondence with the component theory dis-
cussed in Lecture II, we need again to compare the supersymmetry
transformations. As in the abelian theory this is once again easiest to
do in the Wess–Zumino gauge, provided that we then perform a com-
pensating gauge transformation to get the result back to that gauge.
In other words, we define the supersymmetry transformation of the
nonabelian vector superfield V in the Wess–Zumino gauge by

δεV = θσµθ̄δεvµ + θ̄2θδελ+ θ2θ̄δελ̄+ θ2θ̄2δεD

= −(εQ+ ε̄Q̄)V − (Λ + Λ̄)− 1
2

[
V,Λ− Λ̄

]
− 1

12

[
V,
[
V,Λ + Λ̄

]]
,

where Λ is chosen in such a way that the right hand side in the second
line above is again in the Wess–Zumino gauge. This calculation has
been done already in the abelian case in Exercise V.6 and we can use
much of that result. The only difference in the nonabelian case are
the commutator terms in the expression of the gauge transformation:
compare the above expression for δεV and equation (85).
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b
Exercise V.14. Let V be a nonabelian vector superfield in the Wess–
Zumino gauge. Follow the procedure outlined above to determine the
supersymmetry transformation laws of the component fields. In other
words, compute

δεV := −(εQ+ ε̄Q̄)V − (Λ + Λ̄)− 1
2

[
V,Λ− Λ̄

]
− 1

12

[
V,
[
V,Λ + Λ̄

]]
for an appropriate Λ and show that, after rescaling the vector superfield
V 7→ 2g V , one obtains

δεvµ = i
(
εσµλ̄+ ε̄σ̄µλ

)
δελα = −2εαD + i

2(σµν)αβεβfµν

δεD = i
2

(
ε̄σ̄µDµλ− εσµDµλ

)
.

(105)

Now expand the supersymmetry transformation law (39) with Ψ =
(ψα, ψ̄α̇) and show that the result agrees with (105) after eliminating
the auxiliary field, and provided that we identify Aµ = −ivµ and ψα =
iλα.

In summary, the supersymmetric Yang–Mills theory discussed in Lec-
ture II has a superspace description in terms of a vector superfield

V = iθ̄2σ̄µθAµ − iθ̄2θψ + iθ2θ̄ψ̄ + θ2θ̄2D

with lagrangian ∫
d2θ Tr 1

4
WαWα + c.c. ,

where Wα is given by (100).
To be perfectly honest we have omitted one possible term in the

action which is present whenever the center of the Lie algebra g is
nontrivial; that is, whenever there are U(1) factors in the gauge group.
Consider the quantity TrκV where κ = κiTi is a constant element in
the center of the Lie algebra. This yields a term in the action called
a Fayet–Iliopoulos term and, as we will see in Lecture VI, it plays an
important role in the spontaneous breaking of supersymmetry.

b
Exercise V.15. Show that the Fayet–Iliopoulos term∫

d2θ d2θ̄ TrκV = TrκD

is both supersymmetric and gauge-invariant.

V.7. Gauge-invariant interactions. Having constructed the gauge-
invariant action for pure supersymmetric Yang–Mills and having al-
ready seen the coupling to matter∫

d2θd2θ̄ Φ̄e2gV Φ , (106)

there remains one piece of the puzzle in order to be able to construct
the most general renormalisable supersymmetric field theory in four di-
mensions: a gauge-invariant superpotential. On dimensional grounds,
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we saw that the most general renormalisable superpotential is a cubic
polynomial

W (Φ) = aIΦ
I + 1

2
mIJΦIΦJ + 1

3
λIJKΦIΦJΦK (107)

where the {ΦI} are chiral superfields—the components of Φ relative to
some basis {eI} for the representation.

b
Exercise V.16. Prove that W (Φ) is gauge invariant if and only if aI ,
mIJ and λIJK are (symmetric) invariant tensors in the representation
corresponding to Φ.

Let us end by summarising what we have learned in this lecture.
The general renormalisable supersymmetric action is built out of vector
superfields V taking values in the Lie algebra of a compact Lie group
G and a chiral superfield Φ taking values in a unitary representation,
not necessarily irreducible. The lagrangian can be written as follows:∫

d2θd2θ̄
(
Φ̄e2gV Φ + TrκV

)
+

[∫
d2θ

(
1
4

TrWαWα +W (Φ)
)

+ c.c.

]
, (108)

with W (Φ) given in (107) where aI , mIJ and λIJK are (symmetric)
G-invariant tensors in the matter representation.

! Strictly speaking when the group is not simple, one must then restore
the Yang–Mills coupling separately in each factor of the Lie algebra by
rescaling the corresponding vector superfield by 2g, where the coupling
constant g can be different for each factor, and rescaling the spinorial
field-strength accordingly. This is possible because the Lie algebra of
a compact Lie group splits as the direct product of several simple Lie
algebras and an abelian Lie algebra, itself the product of a number of
U(1)’s. The Yang–Mills superfield breaks up into the different factors
and neither the metric nor the Lie bracket couples them.

We end this lecture by mentioning the names of the particles as-
sociated with the dynamical fields in the different superfields. In the
vector superfield, the vector corresponds to the gauge bosons, whereas
its fermionic superpartner is the gaugino. The supersymmetric part-
ner of the photon and the gluons are called the photino and gluinos,
respectively. There are two kinds of chiral superfield in phenomeno-
logical models, corresponding to the Higgs scalars and the quarks and
leptons. In the former case the scalars are the Higgs fields and their
fermionic partners are the Higgsinos. In the latter case, the fermions
correspond to either quarks or leptons and their bosonic partners are
the squarks and sleptons.

Problem 5 (Kähler quotients and the CPN model).
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In this problem we will study the “moduli space of vacua” of a su-
persymmetric gauge theory and show that, in the absence of superpo-
tential, it is given by a “Kähler quotient.” The low-energy effective
theory is generically a sigma model in the moduli space of vacua and
we will illustrate this in the so-called CPN model.

Let ΦI , for I = 1, . . . , N be N chiral superfields, which we will
assemble into an N -dimensional vector Φ. Let Φ̄ denote the conjugate
transpose vector. It is anN -dimensional vector of antichiral superfields.

(1) Check that the kinetic term∫
d2θ d2θ̄ Φ̄Φ ,

is invariant under the natural action of U(N)

Φ 7→ eXΦ ,

where X is a constant antihermitian matrix.

Let us gauge a subgroup G ⊂ U(N) in this model by introducing
a nonabelian vector superfield V = V i(iTi), where {Ti} is a basis for
the Lie algebra g of G. Since G is a subgroup of the unitary group,
the Ti are antihermitian matrices. As we have seen in this lecture, the
coupled theory has the following lagrangian∫

d2θ d2θ̄
(
Φ̄e2g V Φ− 2gκ2 TrV

)
+

[∫
d2θ Tr 1

4
WαWα + c.c.

]
,

where Wα is given in (100), and where we have introduced a conve-
niently normalised Fayet–Iliopoulos term, since G may have an abelian
factor.

A choice of vacuum expectation values of the dynamical scalars in
the chiral superfield yields a point zI =

〈
φI
〉

in C
N . Let M0 ⊂ C

N

correspond to those points z = (zI) which minimise the potential of
the theory.

2. Show that M0 consists of those points z in CN such that

z̄Tiz = κ2 TrTi for all i,

and that the potential is identically zero there.

Notation: Let g∗ denote the dual vector space of the Lie algebra
g. Let us define a momentum map µ : CN → g∗ as follows. If z ∈ CN
then µ(z) is the linear functional on g which sends X ∈ g to the real
number

〈µ(z), X〉 := i
(
z̄Xz − κ2 TrX

)
.

3. Show that M0 agrees with µ−1(0); in other words,

z ∈M0 ⇐⇒ µ(z) = 0 .
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Since we have identified C
N as the space of vacuum expectation

values of the dynamical scalar fields, the action of G on the fields
induces an action of G on CN :

z 7→ eXz ,

where X ∈ g is an antihermitian matrix.

4. Show that M0 is preserved by the action of G, so that if z ∈M0

then so does eXz for all X ∈ g.

Since in a gauge theory field configurations which are related by
a gauge transformations are physically indistinguishable, we have to
identify gauge related vacua z ∈ M0. This means that the moduli
space of vacua is the quotient

M := M0/G ,

which by the above result is well-defined. It can be shown that M

admits a natural Kähler metric. With this metric, M is called the
Kähler quotient of CN by G. It is often denoted CN//G.

Z One of the beautiful things about supersymmetry is that it allows us to understand
this fact in physical terms. At low energies, only the lightest states will contribute
to the dynamics. The scalar content of the low-energy effective theory is in fact a
sigma model on the moduli space of vacua. We will see in the next lecture that since
the potential vanishes on the space of vacua, supersymmetry is unbroken. This
means that the low-energy effective theory is supersymmetric; but by Problem 4
we know that the supersymmetric sigma models are defined on manifolds admitting
Kähler metrics. Therefore M must have a Kähler metric. In fact, it is possible
to work out the form of this metric exactly at least in one simple, but important,
example: the CPN model, the Kähler quotient of CN+1 by U(1).

Let us take N + 1 chiral superfields Φ = (ΦI) for I = 0, 1, . . . , N and
gauge the natural U(1) action

Φ 7→ eiϑΦ ,

with ϑ ∈ R. To simplify matters, let us take 2g = κ = 1. We have one
vector superfield V = V̄ . The lagrangian is given by∫

d2θ d2θ̄
(
Φ̄eV Φ− V

)
+

[∫
d2θ Tr 1

4
WαWα + c.c.

]
.

The space M0 of minima of the potential is the unit sphere in CN+1:

z̄z = 1 .

The moduli space of vacua is obtained by identifying each z on the
unit sphere with eiϑz for any ϑ ∈ R. The resulting space is a com-
pact smooth manifold, denoted CPN and called the complex projective
space. It is the space of complex lines through the origin in CN+1. The
natural Kähler metric on CPN is the so-called Fubini–Study metric.
Let us see how supersymmetry gives rise to this metric.
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5. Choose a point in M0 and expanding around that point, show
that the U(1) gauge symmetry is broken and that the photon
acquires a mass.

Since supersymmetry is not broken (see the next lecture) its super-
partner, the photino, also acquires a mass. For energies lower than the
mass of these fields, we can disregard their dynamics. The low-energy
effective action becomes then∫

d2θ d2θ̄
(
Φ̄eV Φ− V

)
.

6. Eliminate V using its (algebraic) equations of motion to obtain
the following action:∫

d2θ d2θ̄ log(Φ̄Φ) .

7. Show that this action is still invariant under the abelian gauge
symmetry Φ 7→ eiΛΦ, with Λ a chiral superfield.

8. Use the gauge symmetry to fix, Φ0 = 1, say, and arrive at the
following action in terms of the remaining chiral superfields ΦI ,
I = 1, . . . , N :∫

d2θ d2θ̄ log(1 +
N∑
I=1

ΦIΦ̄I) .

! This is only possible at those points where φ0 is different from zero.
This simply reflects the fact that CPN , like most manifolds, does not
have global coordinates.

9. Expand the action in components to obtain

−gIJ̄(φ, φ̄)∂µφ
I∂µφ̄J̄ + · · ·

where gIJ̄ is the Fubini–Study metric for CPN . Find the metric
explicitly.
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VI. Spontaneous supersymmetry breaking

In the previous lecture we have learned how to write down renor-
malisable supersymmetric models in four dimensions. However if su-
persymmetry is a symmetry of nature, it must be broken, since we do
not observe the mass degeneracy between bosons and fermions that
unbroken supersymmetry demands. There are three common ways to
break supersymmetry:

• Introducing symmetry breaking terms explicitly in the action
(soft);
• Breaking tree-level supersymmetry by quantum effects, either

perturbatively or nonperturbatively (dynamical); and
• Breaking supersymmetry due to a choice of non-invariant vac-

uum (spontaneous).

We will not discuss dynamical supersymmetry breaking in these lec-
tures, except to note that nonrenormalisation theorems usually forbid
the perturbative dynamical breaking of supersymmetry. Neither will
we discuss soft supersymmetry breaking, except to say that this means
that the supersymmetric current is no longer conserved, and this for-
bids the coupling to (super)gravity. We will concentrate instead on
spontaneous supersymmetry breaking.

! I should emphasise, however, that from the point of view of super-
symmetric field theories (that is, ignoring (super)gravity) the most
realistic models do involve soft breaking terms. These terms are the
low-energy manifestation of the spontaneous breaking (at some high
energy scale) of local supersymmetry, in which the gravitino acquires
a mass via the super-Higgs mechanism.

VI.1. Supersymmetry breaking and vacuum energy. We saw in
Lecture III the remarkable fact that in supersymmetric theories the en-
ergy is positive-semidefinite. This means in particular that the lowest-
energy state—the vacuum, denoted |vac〉—has non-negative energy.
Indeed, applying the hamiltonian to the vacuum and using (43), we
obtain

〈vac|H|vac〉

= 1
4

(
‖Q1|vac〉‖2 + ‖Q†1|vac〉‖2 + ‖Q2|vac〉‖2 + ‖Q†2|vac〉‖2

)
,

from where we deduce that the vacuum has zero energy if and only
if it is supersymmetric, that is, if and only if it is annihilated by the
supercharges. This gives an elegant restatement of the condition for
the spontaneous breaking of supersymmetry: supersymmetry is spon-
taneously broken if and only if the vacuum energy is positive. This is
to be contrasted with the spontaneous breaking of gauge symmetries,
which is governed by the shape of the potential of the dynamical scalar
fields. Spontaneous breaking of supersymmetry is impervious to the
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shape of the potential, but only to the minimum value of the energy.
Figure 1 illustrates this point. Whereas only potentials (b) and (d)
break supersymmetry, the potentials breaking gauge symmetry are (c)
and (d).

(a) SUSY × Gauge × (b) SUSY X Gauge ×

(c) SUSY × Gauge X (d) SUSY X Gauge X

Figure 1. Generic forms of scalar potentials, indicating
which symmetry is broken (denoted by a X) for each
potential.

! You may ask whether one cannot simply shift the zero point energy in
order to make it be precisely zero at the minimum of the potential. In
contrast with nonsupersymmetric theories, the energy is now dictated
by the symmetry, since the hamiltonian appears in the supersymmetry
algebra.

VI.2. Supersymmetry breaking and VEVs. Another criterion of
spontaneous supersymmetry breaking can be given in terms of vacuum
expectation values of auxiliary fields.

We start with the observation that supersymmetry is spontaneously
broken if and only if there is some field ϕ whose supersymmetry vari-
ation has a nontrivial vacuum expectation value:

〈vac| δεϕ |vac〉 6= 0 . (109)
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Indeed, notice that δεϕ = −
[
εQ + ε̄Q̄, ϕ

]
as quantum operators, hence

〈vac| δεϕ |vac〉 = −εα〈vac| [Qα, ϕ] |vac〉 − ε̄α̇〈vac| [(Qα)†, ϕ] |vac〉 .

Because Lorentz invariance is sacred, no field which transform nontriv-
ially under the Lorentz group is allowed to have a nonzero vacuum ex-
pectation value. Since supersymmetry exchanges bosons with fermions,
and fermions always transform nontrivially under the Lorentz group, it
means that the field ϕ in equation (109) must be fermionic. By exam-
ining the supersymmetry transformation laws for the fermionic fields in
the different superfields we have met thus far, we can relate the spon-
taneous breaking of supersymmetry to the vacuum expectation values
of auxiliary fields. This illustrates the importance of auxiliary fields
beyond merely ensuring the off-shell closure of the supersymmetry al-
gebra.

Let’s start with the chiral superfields. Equation (58) describes how
the fermions in the chiral superfield transform under supersymmetry.
Only the dynamical scalar and the auxiliary field can have vacuum
expectation values, and only the vacuum expectation value of the aux-
iliary field can give a nonzero contribution to equation (109). This sort
of supersymmetry breaking is known as F -term (or O’Raifeartaigh)
supersymmetry breaking.

In the case of the vector superfields, the transformation law of the
fermion is now given by equation (105). Only the auxiliary field can
have a nonzero vacuum expectation value and hence give a nonzero
contribution to (109). This sort of supersymmetry breaking is known
as D-term supersymmetry breaking and will be discussed in more detail
below. Notice however that giving a nonzero vacuum expectation value
to D breaks gauge invariance unless D, which is Lie algebra valued,
happens to belong to the center; that is, to have vanishing Lie brackets
with all other elements in the Lie algebra. This requires the gauge
group to have abelian factors.

Z Notice that when either the F or D auxiliary fields acquire nonzero vacuum expec-
tation values, the transformation law of some fermion contains an inhomogeneous
term:

δελα = −2εα 〈D〉+ · · · and δεχα = −2εα 〈F 〉+ · · ·
Such a fermion is called a Goldstone fermion, by analogy with the Goldstone boson
which appears whenever a global continuous symmetry is spontaneously broken.
Just like in the standard Higgs mechanism, wherein a vector boson “eats” the
Goldstone boson to acquire mass, in a supergravity theory the gravitino acquires
a mass by eating the Goldstone fermion, in a process known as the super-Higgs
mechanism.

VI.3. The O’Raifeartaigh model. We now consider a model which
breaks supersymmetry spontaneously because of a nonzero vacuum ex-
pectation value of the F field. Consider a theory of chiral superfields
{Φi}. The most general renormalisable lagrangian was worked out in
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Problem 4. It consists of a positive-definite kinetic term∫
d2θ d2θ̄

∑
i

ΦiΦ̄i

and a superpotential term∫
d2θW (Φ) + c.c. ,

where W (Φ) is a cubic polynomial (for renormalisability)

W (Φ) = aiΦ
i + 1

2
mijΦ

iΦj + 1
3
λijkΦ

iΦjΦk .

In Problem 4 we found the component expression for the above la-
grangian. From this one can read off the equations of motion of the
auxiliary fields:

F̄i = −∂W (φ)

∂φi
= −

(
ai +mijφ

j + λijkφ
jφk
)
.

Substituting this back into the lagrangian, one gets the potential energy
term:

V =
∑
i

F̄iF
i =

∑
i

∣∣∣∣−∂W (φ)

∂φi

∣∣∣∣2 =
∑
i

∣∣ai +mijφ
j + λijkφ

jφk
∣∣2 .

This potential is positive-semidefinite. It breaks supersymmetry if and
only if there exist no vacuum expectation values 〈φi〉 such that 〈F i〉 = 0
for all i. Notice that if ai = 0, then 〈φi〉 = 0 always works, so that su-
persymmetry is not broken unless ai 6= 0. Can we find superpotentials
W (Φ) for which this is the case?

It turns out that one cannot find any interesting (i.e., interacting)
such theories with less than three chiral superfields.

b
Exercise VI.1. Prove that if there is only one chiral superfield Φ,
then the only cubic superpotential which breaks supersymmetry consists
is W (Φ) = aΦ, so that the theory is free.

In fact the same is true for two chiral superfields, although the proof
is more involved. The simplest model needs three chiral superfields Φ0,
Φ1 and Φ2. This is the O’Raifeartaigh model and is described by the
following superpotential:

W (Φ) = µΦ1Φ2 + λΦ0

(
Φ2

1 − α2
)
,

where α, µ and λ can be chosen to be real and positive by changing, if
necessary, the overall phases of the chiral superfields and of W .
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b
Exercise VI.2. Show that this superpotential is determined uniquely
by the requirements of renormalisability, invariance under the R-
symmetry

R · Φ0 = Φ0 R · Φ1 = 0 R · Φ2 = Φ2 ,

and invariance under the discrete Z2 symmetry

Φ0 7→ Φ0 Φ1 7→ −Φ1 Φ2 7→ −Φ2 .

The equations of motion of the auxiliary fields are given by

F̄0 = −λ
(
φ2

1 − α2
)

F̄1 = − (µφ2 − 2λφ0φ1)

F̄2 = −µφ1 .

b
Exercise VI.3. Show that the above superpotential breaks supersym-
metry spontaneously provided that λ, µ and α are nonzero.

Let us introduce complex coordinates zi = 〈φi〉. The potential de-
fines a function V : C3 → R, which is actually positive:

V = λ2|z2
1 − α2|2 + µ2|z1|2 + |µz2

2 − 2λz0z1|2 .

To minimise the potential, notice that provided that µ 6= 0, we can
always set z2 such that the last term vanishes for any values of z0 or
z1. The other two terms depend only on z1, hence the potential will
have a flat direction along z0.

b
Exercise VI.4. Show that provided µ2 ≥ 2λ2α2, the minimum of the
potential V is at z1 = z2 = 0 and arbitrary values of z0. Compute
the spectrum of masses in this case and show that there is a massless
fermion, which can be identified with the Goldstone fermion.
(Hint: The masses will depend on z0, but the fact there exists a mass-
less fermion has to do with the vanishing of the determinant of the
fermion mass matrix, and this is the case for all z0.)

Notice that the existence of the Goldstone fermion was inferred from
the vanishing of the determinant of the fermion mass matrix. This
comes from the superpotential term and is protected from quantum
corrections. But even if this were not the case, it is clear that under
radiative corrections the condition that the vacuum energy is positive is
stable under deformations, in the sense that this condition is preserved
under small perturbations. In the language of (point set) topology,
one would say that this is an open condition: meaning that in the
relevant space of deformation parameters, every point for which the
vacuum energy is positive has a neighbourhood consisting of points
which share this property. This is illustrated in Figure 2 below, where
the dashed lines indicate deformations of the potential, drawn with a
solid line.
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Figure 2. Potentials with positive vacuum energy are
stable under deformations.

Z How about chiral superfields coupled to gauge fields? Ignoring for the moment the
Fayet–Iliopoulos terms, which will be the subject of the next section, let me just
mention that it is possible to show that in the absence of Fayet–Iliopoulos terms,
it is the O’Raifeartaigh mechanism again which governs the spontaneous breaking
of supersymmetry, in the sense that if the F equations of motion (F i = 0) are
satisfied for some scalar vacuum expectation values, then it is possible to use the
“global” gauge symmetry, which is a symmetry of the superpotential and hence of
the F equations of motion, in order to find (possibly different) vacuum expectation
values such that the D-equations of motion (Di = 0) are also satisfied.

VI.4. Fayet–Iliopoulos terms. The O’Raifeartaigh model breaks su-
persymmetry because of the linear term in the superpotential (the F
term), which gives a nonzero vacuum expectation value to the auxiliary
field in the chiral superfield. It is also possible to break supersymme-
try by giving a nonzero vacuum expectation value to the auxiliary field
in the vector superfield. This is possible by adding a Fayet–Iliopoulos
term to the action. Gauge invariance requires that the Fayet–Iliopoulos
term belong to the center of the Lie algebra g of the gauge group. Since
the gauge group is compact, its Lie algebra is the direct product of a
semisimple Lie algebra and an abelian Lie algebra. Semisimple Lie
algebras have no center, hence for the Fayet–Iliopoulos term to exist,
there has to be a nontrivial abelian factor. In other words, the gauge
group must have at least one U(1) factor. To illustrate this phenome-
non, we will actually consider an abelian Yang–Mills theory with gauge
group U(1): supersymmetric QED, with superspace lagrangian (92),
except that we also add a Fayet–Iliopoulos term κV to the superspace
lagrangian:∫

d2θd2θ̄
(
Φ̄+e

2eV Φ+ + Φ̄−e
−2eV Φ− + κV

)
+

[∫
d2θ

(
1
4
WαWα +mΦ+Φ−

)
+ c.c.

]
.

The potential energy terms are

2D2 + κD + 2eD
(
|φ+|2 − |φ−|2

)
+ |F+|2 + |F−|2 +m

(
F+φ− + F−φ+ + F̄+φ̄− + F̄−φ̄+

)
.
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Eliminating the auxiliary fields via their equations of motion

F± = −mφ̄∓
D = −1

4

(
κ+ 2e

(
|φ+|2 − |φ−|2

))
we obtain the potential energy

V = 1
8

(
κ+ 2e

(
|φ+|2 − |φ−|2

))2
+m2

(
|φ−|2 + |φ+|2

)
.

Notice that for nonzero κ supersymmetry is spontaneously broken,
since it is impossible to choose vacuum expectation values for the
scalars such that 〈F±〉 = 〈D〉 = 0.

Expanding the potential

V = 1
8
κ2 +(m2− 1

2
eκ)|φ−|2 +(m2 + 1

2
eκ)|φ+|2 + 1

2
e2
(
|φ+|2 − |φ−|2

)2

we notice that there are two regimes with different qualitative be-
haviours.

If m2 > 1
2
eκ the minimum of the potential occurs for 〈φ+〉 = 〈φ−〉 =

0 and the model describes two complex scalars with masses m2
∓ =

m2 ± 1
2
eκ. The electron mass m does not change, and the photon

and photino remain massless. Hence supersymmetry is spontaneously
broken—the photino playing the rôle of the Goldstone fermion—and
the gauge symmetry is unbroken. This is the situation depicted by the
potential of the type (b) in Figure 1.

On the other hand if m2 < 1
2
eκ, the minimum of the potential is no

longer at 〈φ+〉 = 〈φ−〉 = 0. Instead we see that the minimum happens
at 〈φ+〉 = 0 but at 〈φ−〉 = z where

|z|2 =

(
κ

2e
− m2

e2

)
.

There is a circle of solutions corresponding to the phase of z. We can
always choose the global phase so that z is real and positive:

z =

√
κ

2e
− m2

e2
.

b
Exercise VI.5. Expand around 〈φ+〉 = 0 and 〈φ−〉 = z and compute
the mass spectrum. Show that the photon acquires a mass, signalling
the spontaneous breaking of the U(1) gauge symmetry, but that there is
a massless fermion in the spectrum, signalling the spontaneous break-
ing of supersymmetry.

The situation is now the one depicted by the potential of type (d) in
Figure 1.
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VI.5. The Witten index. Finally let us introduce an extremely im-
portant concept in the determination of supersymmetry breaking. In
theories with complicated vacuum structure it is often nontrivial to
determine whether supersymmetry is broken. The Witten index is a
quantity which can help determine when supersymmetry is not broken,
provided that one can actually compute it. Its computation is facili-
tated by the fact that it is in a certain sense a “topological” invariant.

Suppose that we have a supersymmetric theory, by which we mean
a unitary representation of the Poincaré superalgebra on some Hilbert
space H. We will furthermore assume that H decomposes as a direct
sum (or more generally a direct integral) of energy eigenstates

H =
⊕
E≥0

HE ,

with each HE finite-dimensional. (In practice the extension to the
general case is usually straightforward.)

Let β be a positive real number and consider the following quantity

I(β) = STrH e−βH = TrH (−1)F e−βH ,

which defines the supertrace STr, and where H is the hamiltonian and
F is the fermion number operator. In particular, this means that (−1)F

is +1 on a bosonic state and −1 on a fermionic state. We will show
that I(β) is actually independent of β—the resulting integer is called
the Witten index of the representation H.

The crucial observation is that in a supersymmetric theory there
are an equal number of bosonic and fermionic states with any given
positive energy. Hence the Witten index only receives contributions
from the zero energy states, if any. This means in particular that a
nonzero value of the Witten index signals the existence of some zero
energy state which, by the discussion at the start of this lecture, implies
that supersymmetry is not broken. In contrast, a zero value for the
Witten index does not allow us to conclude anything, since all this says
is that there is an equal number of bosonic and fermionic zero energy
states, but this number could either be zero (broken supersymmetry)
or nonzero (unbroken supersymmetry).

By definition,

I(β) =
∑
E≥0

eβE TrHE
(−1)F =

∑
E≥0

eβE n(E),

where

n(E) = TrHE
(−1)F = n+(E)− n−(E)

is the difference between the number of bosonic states with energy E
and the number of fermionic states with the same energy. It is here
that we make use of the assumption that HE is finite-dimensional: so
that n±(E), and hence their difference, are well-defined.
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b
Exercise VI.6. Show that for E 6= 0, n(E) = 0.
(Hint: You may find of use the expression (43) for the hamiltonian in
terms of the supercharges.)

Z Alternatively, one can prove the β independence of I(β) by taking the derivative
of I(β) and showing that the result vanishes as a consequence of the expression
(43) for the Hamiltonian of a supersymmetric theory, the fact that H commutes
with the supercharges, and that the supertrace of an (anti)commutator vanishes.
This last result (which you are encouraged to prove) is the super-analogue of the
well-known fact that the trace of a commutator vanishes.

This result implies that

I(β) = TrH0 (−1)F = n+(0)− n−(0) ,

is independent of β. This means that it can be computed for any
value of β, for example in the limit as β → ∞, where the calculation
may simplify enormously. In fact, the Witten index is a “topological”
invariant of the supersymmetric theory. As such it does not depend
on parameters, here illustrated by the independence on β. This means
that one can take couplings to desired values, put the theory in a finite
volume and other simplifications.

Z The Witten index is defined in principle for any supersymmetric theory. As we saw
in Problem 4, there are supersymmetric theories whose data is geometric and it is
to be expected that the Witten index should have some geometric meaning in this
case. In fact, the dimensional reduction to one dimension of the supersymmetric
sigma model discussed in Problem 4 yields a supersymmetric quantum mechanical
model whose Witten index equals the Euler characteristic. More is true, however,
and the computation of the Witten index gives a proof of the well-known Gauss–
Bonnet theorem relating the Euler characteristic of the manifold to the curvature.
In fact, the Witten index underlies many of the topological applications of super-
symmetry and in particular the simplest known proof of the Atiyah–Singer index
theorem relating the analytic index of an elliptic operator on a manifold to the
topology of that manifold.
There are many deep and beautiful connections like that one between supersymme-
try and mathematics. Indeed, whatever the final verdict might be for the existence
of supersymmetry (albeit broken) in nature, the impact of supersymmetry in math-
ematics will be felt for many years to come.

Problem 6 (The Higgs mechanism).
In supersymmetric theories the issue of gauge symmetry breaking

(Higgs mechanism) and supersymmetric breaking are intimately re-
lated. Although the topic of this lecture has been supersymmetry
breaking, in this tutorial you are asked to study a simple example
of Higgs mechanism which preserves supersymmetry. The model in
question is an SU(5) gauge theory coupled to adjoint matter in the
form of chiral superfields. In other words, the model consists of a non-
abelian vector superfield V = V i(iTi) and an adjoint chiral superfield
Φ = ΦiTi, where Ti are 5 × 5 traceless antihermitian matrices. No-
tice that Φi are chiral superfields, hence complex, and V i are vector
superfields, hence real.
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The superspace lagrangian has the form∫
d2θ d2θ̄ Tr Φ̄e2g adV Φ

+

[∫
d2θ
(

1
4

TrWαWα +W (Φ)
)

+ c.c.

]
,

where we are treating the Φ as matrices in the fundamental represen-
tation, hence V acts on Φ via the matrix commutator (denoted adV )
and Tr is the matrix trace. Since SU(5) is a simple group, there is
no Fayet–Iliopoulos term in this model. Notice that since the Ti are
antihermitian, the trace form TrTiTj = −Kij where Kij is positive-
definite.

(1) Show that the most general renormalisable gauge-invariant su-
perpotential takes the form

W (Φ) = 1
2
mTr Φ2 + 1

3
λTr Φ3 ,

and argue that m and λ can be taken to be real by changing, if
necessary, the overall phases of W and of Φ.

(2) Expanding the superspace action in components and eliminat-
ing the auxiliary fields F and D, show that the scalar potential
takes the form

V = −1
2
g2 Tr[φ̄,φ]2 − Tr∇W∇W ,

where ∇W is defined by Tr∇WTi = −∂W/∂φi.
Let us remark that since the trace form on antihermitian matrices is

negative-definite, the above potential is actually positive-semidefinite—
in fact, it is a sum of squares.

Notation: Let A := 〈φ〉 be the vacuum expectation value of φ. It
is a 5× 5 traceless antihermitian matrix.

3. Show that A = 0 is a minimum of the potential V.

This solution corresponds to unbroken SU(5) gauge theory and, since
the potential is zero for this choice of A, unbroken supersymmetry. The
rest of the problem explores other supersymmetric minima for which
SU(5) is broken down to smaller subgroups. As we saw in the lecture,
a vacuum is supersymmetric if and only if it has zero energy, hence we
are interested in vacuum expectation values A for which V = 0. These
vacua will be degenerate, since they are acted upon by the subgroup
of the gauge group which remains unbroken.

4. Show that the minima of the potential V correspond to those
matrices A obeying the following two equations:

[A, Ā] = 0 and mA+ λ
(
A2 − 1

5
TrA2

)
= 0 ,

where Ā is the hermitian conjugate of A.
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5. Conclude from the first equation that A can be diagonalised by
a matrix in SU(5), hence we can assume that A takes the form

A =


µ1

µ2

µ3

µ4

µ5


for complex numbers µi obeying

∑
i µi = 0.

6. Assume that λ 6= 0 and show that both

3m

λ


1

1
1

1
−4

 and
2m

λ


1

1
1
−3

2
−3

2


are possible choices for A which solve the equations. Which
subgroup of SU(5) remains unbroken in each case?
(Answers: The groups are S (U(4)×U(1)) and S (U(3)×U(2)), which
are locally isomorphic to SU(4) × U(1) and SU(3) × SU(2) × U(1),
respectively; but you have to show this!)

It is possible to show that up to gauge transformations these are
the only three minima of V. Hence the situation in this problem corre-
sponds to a potential which is a mixture of types (a) and (c) in Figure 1,
and roughly sketched below:
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Appendix A. Basic definitions and conventions

This appendix collects the basic definitions used in the lecture con-
cerning Lie (super)algebras, Minkowski space, the Poincaré group, the
Clifford algebra, the spin group and the different types of spinors. More
importantly it also contains our spinor conventions. I learned super-
symmetry from Peter van Nieuwenhuizen and these conventions agree
mostly with his. I am however solely responsible for any inconsisten-
cies.

b
Exercise A.1. Find any inconsistencies and let me know!

A.1. Lie algebras. We now summarise the basic notions of Lie alge-
bras and Lie superalgebras used in the lectures.

A Lie algebra consists of a vector space g and an antisymmetric
bilinear map

[−,−] : g× g→ g ,

called the Lie bracket, which satisfying the Jacobi identity

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] for all X, Y, Z ∈ g.

Fixing a basis {Ti} for g, the Lie bracket is specified by the structure
constants fij

k = −fjik defined by

[Ti, Tj] = fij
kTk .

All Lie algebras considered in these lectures are real; in other words,
g is a real vector space and the structure constants are real. This
means, in particular, that in a unitary representation they are realised
as antihermitian matrices.

Most Lie algebras of interest possess an invariant inner product, de-
noted Tr, since it can often be taken to be the trace in some faithful
representation. Relative to a basis, the inner product is specified by a
real symmetric matrix Gij = Gji = TrTiTj. Invariance means that

Tr[Ti, Tj]Tk = TrTi[Tj, Tk]

which is equivalent to fijk := fij
`G`k being totally antisymmetric. For

a compact Lie group, one can always choose a basis for the Lie algebra
such that Gij = −δij. Notice that it is negative-definite.

The exponential of a matrix is defined in terms of the Taylor series
of the exponential function:

eA := 1+ A + 1
2
A2 + · · · .

Suppose we are given a linear representation of a Lie algebra g. Ev-
ery element X ∈ g is represented by a matrix X, and hence we can
define the exponential exp(X) in the representation as the exponen-
tial of the corresponding matrix exp(X). Given X, Y ∈ g with corre-
sponding matrices X,Y and consider the product of their exponentials
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exp(X) exp(Y). It turns out that this is the exponential of a third
matrix Z:

eXeY = eZ where Z = X + Y + · · · ,
where the omitted terms consists of nested commutators of X and Y.
This implies that there is an element Z ∈ g which is represented by Z.
The dependence of Z on X and Y is quite complicated, and is given by
the celebrated Baker–Campbell–Hausdorff formula. For our purposes
it will be sufficient to notice that

Z = X +

(
− adX

e− adX − 1

)
· Y + · · ·

where the omitted terms are at least quadratic in Y . In this formula,
adX is defined by adX · Y = [X, Y ] and the expression in parenthesis
is defined by its Taylor series. Keeping only those terms at most linear
in Y , Z takes the form

Z = X + Y + 1
2
[X, Y ] + 1

12
[X, [X, Y ]] +

∑
k≥2

ck(adX)2k · Y , (A-1)

where the ck are rational coefficients. Notice that the sum has only
even powers of adX.

A.2. Lie superalgebras. The notion of a Lie superalgebra is a natural
extension of the notion of a Lie algebra. By definition, a Lie superal-
gebra consists of a Z2-graded vector space g = g0 ⊕ g1 and a bilinear
operation to be defined presently. In practice we will only consider
homogeneous elements; that is, elements in either g0 or g1. For X a
homogeneous element the following are equivalent:

|X| = 0 ⇐⇒ X ∈ g0 ⇐⇒ X is even,

|X| = 1 ⇐⇒ X ∈ g1 ⇐⇒ X is odd,

which defines what we mean by even and odd. The Lie bracket is now
Z2-graded

[−,−] : gi × gj → gi+j

where i+ j are added modulo 2. It is again bilinear and obeys

[X, Y ] = −(−1)|X||Y |[Y,X]

and

[X, [Y, Z]] = [[X, Y ], Z] + (−1)|X||Y |[Y, [X,Z]]

for all homogeneous elements X, Y, Z ∈ g. We use the same notation
[−,−] for the bracket of any two elements in a superalgebra. We should
remember however that it is symmetric if both elements are odd and
antisymmetric otherwise. Furthermore, in a linear representation, the
bracket of two odd elements is realised as the anticommutator of the
corresponding matrices, whereas it is realised as the commutator in all
other cases.
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We introduce a useful categorical concept. Given a Lie superalgebra
defined by some brackets, by the opposite superalgebra we will mean the
Lie superalgebra defined by multiplying the brackets by −1. Clearly
any Lie superalgebra is isomorphic to its opposite, by sending each
generator X to −X. We are only introducing this notion for notation:
I find it more convenient conceptually to think in terms of representa-
tions of the opposite algebra than in terms of antirepresentations of an
algebra, and in these lectures we will have to deal with both.

It is a general fact, following trivially from the axioms, that the even
subspace of a Lie superalgebra forms a Lie algebra of which the odd
subspace is a (real, in the cases of interest) representation. It follows
in particular that a Lie algebra is a Lie superalgebra which has no odd
elements. Hence the theory of Lie superalgebras contains the theory of
Lie algebras, and extends it in a nontrivial way. From a kinematic point
of view, supersymmetry is all about finding field theoretical realisations
of Lie superalgebras whose even subspace contains a Lie subalgebra
isomorphic to either the Poincaré or conformal algebras.

A.3. Minkowski space and the Poincaré group. Minkowski space
is the four-dimensional real vector space with “mostly plus” metric

ηµν =


−1

+1
+1

+1

 .

We fix an orientation εµνρσ by

ε0123 = −ε0123 = +1 .

The group of isometries of Minkowski space is called the Poincaré
group. The subgroup of isometries which preserve the origin is called
the Lorentz group. The Poincaré group is the semidirect product of the
Lorentz group and the translation group. Its Lie algebra is therefore
also the semidirect product of the Lorentz algebra and the translation
algebra. Let Mµν = −Mνµ be a basis for the Lorentz algebra and let
Pµ be a basis for the translation algebra. They satisfy the following
brackets:

[Pµ,Pν ] = 0

[Mµν ,Pρ] = ηνρPµ − ηµρPν
[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ .

(A-2)

The Poincaré group acts transitively on Minkowski space: any point
can be reached from the origin by a Poincaré transformation. This
transformation is not unique, since there are some transformations
which leave the origin fixed: the Lorentz transformations. Therefore
Minkowski space (with a choice of origin) can be identified with the
space of right cosets of the Lorentz group. Each such coset has a
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unique representative which is a translation. This allows us to assign
a unique element of the Poincaré group to each point in Minkowski
space:

xµ ∈ Minkowski space
l

exp(xµPµ) ∈ Poincaré group,

which in turn allows us to realise the action of the Poincaré group in
Minkowski space as left multiplication in the group.

Indeed, a translation exp(τµPµ) acts as

exp(τµPµ) exp(xµPµ) = exp((xµ + τµ)Pµ) ,

whence xµ 7→ xµ + τµ. Similarly a Lorentz transformation acts as

exp(1
2
λµνMµν) exp(xµPµ) = exp(xµΛµ

νPν) exp(1
2
λµνMµν) ,

where Λµ
ν is the adjoint matrix defined by

Λµ
νPν = exp(1

2
λµνMµν)Pµ exp(−1

2
λµνMµν) .

Therefore the effect of a Poincaré transformation exp(τ · P) exp(λ ·M)
is

xµ 7→ xνΛν
µ + τµ .

Let us call this transformation P (Λ, τ). Notice that acting on points
the order of the transformations is reversed:

P (Λ1, τ1)P (Λ2, τ2) = P (Λ2Λ1,Λ1τ2 + τ1) .

Similarly, we can work out the action of the Lie algebra by consid-
ering infinitesimal transformations:

δτx
µ = τµ and δλx

µ = xνλν
µ ,

whence we see that Pµ and Mµν are realised in terms of vector fields

Pµ  ∂µ and Mµν  xµ∂ν − xν∂µ .
Again notice that these vector fields obey the opposite algebra.

A.4. The Clifford algebra and its spinors. The Lorentz group has
four connected components. The component containing the identity
consists of those Lorentz transformations which preserve the space and
time orientations, the proper orthochronous Lorentz transformations.
This component is not simply connected, but rather admits a simply-
connected double cover (the spin cover) which is isomorphic to the
group SL(2,C) of 2× 2 complex matrices with unit determinant. The
spinorial representations of the Lorentz group are actually representa-
tions of SL(2,C).

A convenient way to study the spinorial representations is via the
Clifford algebra of Minkowski space

γµγν + γνγµ = +2ηµν1 .
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The reason is that the spin group is actually contained in the Clifford
algebra as exponentials of (linear combinations of)

Σµν = 1
4

(γµγν − γνγµ) .

Notice that under the Clifford commutator these elements represent
the Lorentz algebra (cf. the last equation in (A-2))

[Σµν ,Σρσ] = ηνρΣµσ − ηµρΣνσ − ηνσΣµρ + ηµσΣνρ .

As an associative algebra, the Clifford algebra is isomorphic to the
algebra of 4 × 4 real matrices. This means that it has a unique irre-
ducible representation which is real and four-dimensional. These are
the Majorana spinors.

It is often convenient to work with the complexified Clifford algebra,
that is to say, one is allowed to take linear combination of the Dirac
γ matrices. The complexified Clifford algebra has a unique irreducible
representation which is complex and four-dimensional. These are the
Dirac spinors.

We can always choose the inner product of spinors in such a way
that the Dirac matrices are unitary. The Clifford algebra then implies
that γ0 is antihermitian and γi are hermitian. These conditions can be
summarised succinctly as

γ†µγ0 = −γ0γµ .

One recovers the Majorana spinors as those Dirac spinors for which
its Dirac ψ̄D = ψ†iγ0 and Majorana ψ̄M = ψtC conjugates agree:

ψ̄ := ψ̄D = ψ̄M , (A-3)

where C is the charge conjugation matrix. This implies a reality con-
dition on the Dirac spinor:

ψ∗ = iCγ0ψ .

I find it easier to work with the Majorana conjugate, since this avoids
having to complex conjugate the spinor.

Its historical name notwithstanding, C is not a matrix, since under a
change of basis it does not transform like a γ matrix. Introducing spinor
indices ψa, the γ matrices have indices (γµ)ab whereas C has indices
Cab. In other words, whereas the γ matrices are linear transformations,
the charge conjugation matrix is a bilinear form. We will always use
C to raise and lower spinor indices.

The charge conjugation matrix obeys the following properties:

Ct = −C and Cγµ = −γtµC . (A-4)

Writing the indices explicitly the first of these equations becomes

Cab = −Cba ,
so that C is antisymmetric. This means that care has to be taken
to choose a consistent way to raise and lower indices. We will raise
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and lower indices using the North-West and South-East conventions,
respectively. More precisely,

ψa = Cabψb and ψa = ψbCba .

This implies that the inner product of Majorana spinors takes the form

ε̄ψ := εaψ
a = εbCbaψ

a = −εbψaCab = −εbψb .
The second identity in equation (A-4) can then be written as a sym-
metry condition:

(γµ)ab = (γµ)ba ,

where
(γµ)ab = (γµ)cbCca = −Cac(γµ)cb .

We will employ the following useful notation γµν...ρ for the totally
antisymmetrised product of γ matrices. More precisely we define

γµ1µ2...µn :=
1

n!

∑
σ∈Sn

sign(σ)γµσ(1)
γµσ(2)

· · · γµσ(n)
, (A-5)

where the sum is over all the permutations of the set {1, 2, . . . , n}.
Notice the factorial prefactor. For example, for n = 2 this formula
unpacks into

γµν = 1
2

(γµγν − γνγµ) .

The following identity is very convenient for computations

γµ1µ2...µnγν = γµ1µ2...µnν + ηνµnγµ1µ2...µn−1 − ηνµn−1γµ1µ2...µ̂n−1µn

+ ηνµn−2γµ1...µ̂n−2µn−1µn − · · ·+ (−1)n−1ηνµ1γµ2µ3...µ3 ,

where a hat over an index indicates its omission. For example,

γµνγρ = γµνρ + ηνργµ − ηµργν . (A-6)

As an immediate corollary, we have the following useful identities:

γργµγρ = −2γµ and γργµνγρ = 0 . (A-7)

The Clifford algebra is isomorphic as a vector space to the exterior
algebra of Minkowski space. The above antisymmetrisation provides
the isomorphism. This makes it easy to list a basis for the Clifford
algebra

1 γµ γµν γµνρ γµνρσ .

There are 1 + 4 + 6 + 4 + 1 = 16 elements which are clearly linearly
independent.

Define γ5 as
γ5 = 1

4!
εµνρσγµνρσ = γ0γ1γ2γ3 .

It satisfies the following properties:

γµγ5 = −γ5γµ γ2
5 = −1 γ†5 = −γ5 γt5C = Cγ5 .

This last identity can be rewritten as the antisymmetry condition

(γ5)ab = −(γ5)ba .
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Using γ5 we never need to consider antisymmetric products of more
than two γ matrices. Indeed, one has the following identities:

γµνγ5 = −1
2
εµνρσγ

ρσ

γµνρ = εµνρσγ
σγ5

γµνρσ = −εµνρσγ5 .

Thus an equally good basis for the Clifford algebra is given by

1 γ5 γµ γµγ5 γµν . (A-8)

Lowering indices with C we find that 1, γ5 and γµγ5 becomes antisym-
metric, whereas γµ and γµν become symmetric.

Let ε1 and ε2 be anticommuting spinors, and let ε1ε̄2 denote the
linear transformation which, acting on a spinor ψ, yields

ε1ε̄2 ψ = (ε̄2ψ) ε1 .

Since the Clifford algebra is the algebra of linear transformations in
the space of spinors, the basis (A-8) is also a basis of this space and we
can expand ε1ε̄2 in terms of it. The resulting identity is the celebrated
Fierz identity :

ε1ε̄2 = −1
4
(ε̄2ε1) 1+ 1

4
(ε̄2γ5ε1) γ5 − 1

4
(ε̄2γ

µε1) γµ

+ 1
4
(ε̄2γ

µγ5ε1) γµγ5 + 1
8
(ε̄2γ

µνε1) γµν , (A-9)

whose importance in supersymmetry calculations can hardly be overem-
phasised. (For commuting spinors there is an overall minus sign in the
right-hand side.) The Fierz identity can be proven by tracing with the
elements of the basis (A-8) and noticing that γ5, γµ, γµγ5 and γµν are
traceless. An important special case of the Fierz identity is

ε1ε̄2 − ε2ε̄1 = 1
2
(ε̄1γ

µε2) γµ − 1
4
(ε̄1γ

µνε2) γµν , (A-10)

which comes in handy when computing the commutator of two super-
symmetries.

Closely related to the Fierz identity are the following identities in-
volving powers of an anticommuting Majorana spinor θ:

θaθb = 1
4

(
θ̄θ Cab + θ̄γ5θ (γ5)ab + θ̄γµγ5θ (γµγ5)ab

)
θaθbθc = 1

2
θ̄θ (Cabθc + Ccaθb + Cbcθa)

θaθbθcθd = 1
8
θ̄θ θ̄θ (CabCcd − CacCbd + CadCbc) ,

(A-11)

with all other powers vanishing. These identities are extremely useful
in expanding superfields.

A.5. The spin group. The spin group is isomorphic to SL(2,C) and
hence has a natural two-dimensional complex representation, which we
shall call W. More precisely, W is the vector space C2 with the natural
action of SL(2,C). If w ∈ W has components wα = (w1, w2) relative to
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some fixed basis, and M ∈ SL(2,C), the action of M on w is defined
simply by (M w)α = Mα

βw
β.

This is not the only possible action of SL(2,C) on C
2, though. We

could also define an action by using instead of the matrix M , its com-
plex conjugate M̄ , its inverse transpose (M t)−1 or its inverse hermitian
adjoint (M †)−1, since they all obey the same group multiplication law.
These choices correspond, respectively to the conjugate representation
W, the dual representation W

∗, and the conjugate dual representation
W
∗
.
We will adopt the following notation: if wα ∈ W, then w̄α̇ ∈ W,

wα ∈ W∗ and w̄α̇ ∈ W
∗
. These representations are not all inequivalent,

since we can raise and lower indices in an SL(2,C)-equivariant manner
with the antisymmetric invariant tensors εαβ and ε̄α̇β̇. (The SL(2,C)-
invariance of these tensors is the statement that matrices in SL(2,C)
have unit determinant.) Notice that we raise and lower also using the
North-West and South-East conventions:

wα = wβεβα and wα = εαβwβ ,

and similarly for the conjugate spinors:

w̄α̇ = w̄β̇ ε̄β̇α̇ and w̄α̇ = ε̄α̇β̇w̄β̇ .

We choose the perhaps unusual normalisations:

ε12 = 1 = ε12 and ε̄1̇2̇ = −1 = ε̄1̇2̇ .

Because both the Lie algebra sl(2,C) (when viewed as a real Lie alge-
bra) and su(2)× su(2) are real forms of the same complex Lie algebra,
one often employs the notation (j, j′) for representations of SL(2,C),
where j and j′ are the spins of the two su(2)’s. In this notation the triv-
ial one dimensional representation is denoted (0, 0), whereasW = (1

2
, 0).

The two su(2)’s are actually not independent but are related by com-
plex conjugation, hence W = (0, 1

2
). In general, complex conjugation

will interchange the labels. If a representation is preserved by complex
conjugation, then it makes sense to restrict to the subrepresentation
which is fixed by complex conjugation. For example, the Dirac spinors
transform like (1

2
, 0) ⊕ (0, 1

2
). The subrepresentation fixed by complex

conjugation are precisely the Majorana spinors.
Another example is the representation (1

2
, 1

2
). The real subrepresen-

tation coincides with the defining representation of the Lorentz group—
that is, the vector representation. To see this notice that any 4-vector
pµ = (p0,p) can be turned into a bispinor as follows:

σ · p ≡ σµpµ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
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where σµ = (1,σ) with σ the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A-12)

Since the Pauli matrices are hermitian, so will be σ·p provided pµ is real.
The Pauli matrices have indices (σµ)αα̇, which shows how SL(2,C) acts
on this space. If M ∈ SL(2,C), then the action of M on such matrices
is given by σ · p 7→M σ · pM †. This action is linear and preserves both
the hermiticity of σ ·p and the determinant det(σ ·p) = −p2 = p2

0−p ·p,
whence it is a Lorentz transformation. Notice that both M and −M
act the same way on bispinors, which reiterates the fact that the spin
group is the double cover of the Lorentz group.

A.6. Weyl spinors. Although the Dirac spinors form an irreducible
representation of the (complexified) Clifford algebra, they are not an
irreducible representation of the spin group. Indeed, since γ5 anti-
commutes with γµ, it follows that it commutes with Σµν and is not a
multiple of the identity. Schur’s lemma implies that the Dirac spinors
are reducible under the spin group. In fact, they decompose into
two irreducible two-dimensional representations, corresponding to the
eigenspaces of γ5. Since (γ5)2 = −1, its eigenvalues are ±i and the
eigenspaces form a complex conjugate pair. They are the Weyl spinors.

We now relate the Weyl spinors and the two-dimensional representa-
tions of SL(2,C) discussed above. To this effect we will use the following
convenient realisation of the Clifford algebra

γµ =

(
0 −iσµ
iσ̄µ 0

)
, where σ̄µ = (−1,σ). (A-13)

Notice that σ̄µ is obtained from σµ by lowering indices:

(σ̄µ)α̇α = (σµ)ββ̇εβαε̄β̇α̇ . (A-14)

Notice that the indices in γµ are such that it acts naturally on objects
of the form

ψa =

(
χα

ζ̄α̇

)
, (A-15)

whence we see that a Dirac spinor indeed breaks up into a pair of
two-component spinors. To see that these two-component spinors are
precisely the Weyl spinors defined above, notice that in this realisation
γ5 becomes

γ5 =

(
−i1αβ 0

0 i1α̇
β̇

)
,

so that W and W̄ are indeed complex conjugate eigenspaces of γ5.
In this realisation the generators of the spin algebra Σµν become

block diagonal

Σµν =

(
1
2
σµν 0
0 1

2
σ̄µν

)
,
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where
(σµν)

α
β = 1

2
(σµσ̄ν − σν σ̄µ)αβ

(σ̄µν)α̇
β̇ = 1

2
(σ̄µσν − σ̄νσµ)α̇

β̇ .

Notice that σµν and σ̄µν with both (spinor) indices up or down are
symmetric matrices.

We collect here some useful identities involving the Pauli matrices:

(σµ)αβ̇(σ̄ν)β̇γ = ηµνδαγ + (σµν)αγ

(σ̄µ)β̇α(σν)αγ̇ = ηµνδγ̇
β̇

+ (σ̄µν)β̇
γ̇

(σµ)αβ̇(σµ)γδ̇ = 2εαγ ε̄β̇δ̇.

(A-16)

Using the relation between the γ matrices and the Pauli matrices, it
is possible to prove the following set of identities:

σµσ̄νσρ = iεµνρτστ + ηνρσµ − ηµρσν + ηµνσρ

σ̄µσν σ̄ρ = −iεµνρτ σ̄τ + ηνρσ̄µ − ηµρσ̄ν + ηµν σ̄ρ

σµνσρ = ηνρσµ − ηµρσν + iεµνρτστ

σ̄µν σ̄ρ = ηνρσ̄µ − ηµρσ̄ν − iεµνρτ σ̄τ
1
2
εµνρτσ

ρτ = +iσµν
1
2
εµνρτ σ̄

ρτ = −iσ̄µν
Tr (σµνσρτ ) = 2 (ηνρηµτ − ηµρηντ + iεµνρτ ) .

(A-17)

In this realisation, a Majorana spinor takes the form

ψa =

(
ψα

ψ̄α̇

)
, (A-18)

which is the same as saying that the charge conjugation matrix takes
the form

Cab =

(
εαβ 0

0 ε̄α̇β̇

)
. (A-19)

In particular the (Majorana) conjugate spinor is given by

ψ̄a = ψbCba = (ψα,−ψ̄α̇) .

The passage from Majorana to Weyl spinor inner products is given by:

χ̄ψ = χaψ
a = χαψ

α − χ̄α̇ψ̄α̇ = −(χαψα + χ̄α̇ψ̄α̇) . (A-20)

where the spinors on the left are four-component Majorana and those
on the right are two-component Weyl.

A.7. Two-component Fierz identities. One of the advantages of
the two-component formalism is that Fierz identities simplify consid-
erably; although there are more of them. For example, suppose that ε
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and θ are two anticommuting spinors, then we have the following Fierz
identities:

εαθβ = −1
2
εθ εαβ − 1

8
εσµνθ (σµν)αβ

ε̄α̇θ̄β̇ = −1
2
ε̄θ̄ ε̄α̇β̇ − 1

8
ε̄σ̄µν θ̄ (σ̄µν)α̇β̇

εαθ̄β̇ = +1
2
εσµθ̄ (σ̄µ)β̇α ,

(A-21)

where we have used the following contractions

εθ = εαθα

ε̄θ̄ = ε̄α̇θ̄α̇

εσµθ̄ = εα(σµ)αβ̇ θ̄β̇

ε̄σ̄µθ = ε̄α̇(σ̄µ)α̇βθ
β

εσµνθ = εα(σµν)αβθ
β

ε̄σ̄µν θ̄ = ε̄α̇(σ̄µν)α̇
β̇ θ̄β̇ .

(A-22)

These contractions satisfy the following (anti)symmetry properties:

εθ = +θε

ε̄θ̄ = +θ̄ε̄

ε̄σ̄µθ = −θσµε̄
εσµνθ = −θσµνε
ε̄σ̄µν θ̄ = −θ̄σ̄µν ε̄ .

(A-23)

(For commuting spinors, all the signs change.)
These Fierz identities allow us to prove a variety of useful identities

simply by contracting indices and using equations (A-16) and (A-17).
For example,

θ̄σ̄µθ θ̄σ̄νθ = −1
2
θ2θ̄2 ηµν (A-24)

and
θψ θσµξ̄ = −1

2
θ2 ψσµξ̄

θ̄ψ̄ θ̄σ̄µξ = −1
2
θ̄2 ψ̄σ̄µξ .

(A-25)

These and similar identities come in handy when working out compo-
nent expansions of superfields.

A.8. Complex conjugation. Finally we come to complex conjuga-
tion. By definition, complex conjugation is always an involution, so
that (O∗)∗ = O for any object O. For spinorial objects, we have that

(θα)∗ = θ̄α̇ ,

which, because of our sign conventions, implies

(θα)∗ = −θ̄α̇ .
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Complex conjugation always reverses the order of anticommuting
objects. For example,

(θαθβ)∗ = θ̄β̇ θ̄α̇ and (θαθβθγ)∗ = −θ̄γ̇ θ̄β̇ θ̄α̇ .
In so doing, it does not give rise to a sign. This is not in conflict with
the fact that the objects are anticommuting, since conjugation actually
changes the objects being conjugated.

Hermiticity of the Pauli matrices means that(
(σµ)αα̇

)∗
= (σ̄µ)α̇α

((σµν)
α
β)∗ = −(σ̄µν)β̇

α̇(
(σµν)

αβ
)∗

= +(σ̄µν)
α̇β̇ .

The last two equations show that complex conjugation indeed ex-
changes the two kinds of Weyl spinors.

In particular, notice that

(εθ)∗ = +θ̄ε̄ = +ε̄θ̄

(εσµθ̄)∗ = −ε̄σ̄µθ = +θσµε̄

(εσµνθ)∗ = +θ̄σ̄µν ε̄ = −ε̄σ̄µν θ̄ .
This rule applies also to conjugating derivatives with respect to an-

ticommuting coordinates. This guarantees that spinorial derivatives of
scalars are indeed spinors. For example,

(∂α)∗ = ∂̄α̇ and (∂α)∗ = −∂̄α̇ .
More generally, the rule applies to spinorial indices, as in

(εαβ)∗ = ε̄β̇α̇ .

A useful “reality check” is to make sure that any result involving
bar’d objects agrees with the complex conjugate of the corresponding
result with unbar’d objects. This simple procedure catches many a
wayward sign.
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Appendix B. Formulas

ηµν =

0BB@
−1

+1
+1

+1

1CCA
ε0123 = −ε0123 = +1

γµγν + γνγµ = +2ηµν1

γµν := 1
2
(γµγν − γνγµ)

γµνγρ = γµνρ + ηνργµ − ηµργν
γργµγρ = −2γµ

γργµνγρ = 0

γ5 := 1
4!
εµνρσγµνρσ = γ0γ1γ2γ3

γ2
5 = −1

γµγ5 = −γ5γµ

γµνγ5 = − 1
2
εµνρσγ

ρσ

γµνρ = εµνρσγ
σγ5

γµνρσ = −εµνρσγ5

Ct = −C

Cγµ = −γtµC

Cγ5 = +γt5C

Cγµν = −γtµνC

ψ̄M := ψtC

Cab = −Cba
(γµ)ab := (γµ)cbCca = (γµ)ba

(γµν)ab = (γµν)ba

(γµγ5)ab = −(γµγ5)ba

(γ5)ab = −(γ5)ba

ψa = Cabψb

ψa = ψbCba

ε̄ψ := εaψ
a = −εbψb

γ†µ = γ0γµγ0

γ†5 = −γ5

γ†µν = γ0γµνγ0

ψ̄D := ψ†iγ0

ψ̄D = ψ̄M ⇐⇒ ψ∗ = iCγ0ψ

ε1ε̄2 =− 1
4
(ε̄2ε1)1

+ 1
4
(ε̄2γ5ε1) γ5

− 1
4
(ε̄2γ

µε1) γµ

− 1
4
(ε̄2γ

µγ5ε1) γµγ5

+ 1
8
(ε̄2γ

µνε1) γµν

ε1ε̄2 − ε2ε̄1 = + 1
2
(ε̄1γ

µε2) γµ

− 1
4
(ε̄1γ

µνε2) γµν

θaθb = 1
4

`
θ̄θ Cab + θ̄γ5θ (γ5)ab

+ θ̄γµγ5θ (γµγ5)ab
´

θaθbθc = 1
2
θ̄θ (Cabθc + Ccaθb

+ Cbcθa)

θaθbθcθd = 1
8
θ̄θ θ̄θ (CabCcd − CacCbd
+ CadCbc) ,

ε12 = 1 = ε12

ε̄1̇2̇ = −1 = ε̄1̇2̇

(εαβ)∗ = ε̄β̇α̇

wα = wβεβα wα = εαβwβ

w̄α̇ = w̄β̇ ε̄β̇α̇ w̄α̇ = ε̄α̇β̇w̄β̇

σµ = (1,σ) σ̄µ = (−1,σ)

σ :

„
0 1
1 0

« „
0 −i
i 0

« „
1 0
0 −1

«
(σ̄µ)α̇α = (σµ)ββ̇εβαε̄β̇α̇“

(σµ)αα̇
”∗

= (σ̄µ)α̇α
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(σµν)αβ := 1
2
(σµσ̄ν − σν σ̄µ)αβ

(σ̄µν)α̇
β̇ := 1

2
(σ̄µσν − σ̄νσµ)α̇

β̇

((σµν)αβ)∗ = −(σ̄µν)β̇
α̇“

(σµν)αβ
”∗

= +(σ̄µν)α̇β̇

(σµν)αβ = (σµν)βα

(σ̄µν)α̇β̇ = (σ̄µν)β̇α̇

(σµ)αβ̇(σ̄ν)β̇γ = ηµνδαγ + (σµν)αγ

(σ̄µ)β̇α(σν)αγ̇ = ηµνδγ̇
β̇

+ (σ̄µν)β̇
γ̇

(σµ)αβ̇(σµ)γδ̇ = 2εαγ ε̄β̇δ̇

σµσ̄νσρ = + iεµνρτστ + ηνρσµ

− ηµρσν + ηµνσρ

σ̄µσν σ̄ρ =− iεµνρτ σ̄τ + ηνρσ̄µ

− ηµρσ̄ν + ηµν σ̄ρ

σµνσρ = + ηνρσµ − ηµρσν

+ iεµνρτστ

σ̄µν σ̄ρ = + ηνρσ̄µ − ηµρσ̄ν

− iεµνρτ σ̄τ

1
2
εµνρτσ

ρτ = + iσµν
1
2
εµνρτ σ̄

ρτ =− iσ̄µν
Tr (σµνσρτ ) = 2 (ηνρηµτ − ηµρηντ

+ iεµνρτ )

(Majorana) ψa =

 
ψα

ψ̄α̇

!

C =

„
εαβ 0

0 ε̄α̇β̇

«
ψ̄a = ψbCba = (ψα,−ψ̄α̇)

χ̄ψ = χaψ
a = −(χψ + χ̄ψ̄)

(ψα)∗ = ψ̄α̇

(ψα)∗ = −ψ̄α̇

γµ =

„
0 −iσµ
iσ̄µ 0

«
γ5 =

„
−i1αβ 0

0 i1α̇
β̇

«
Σµν =

„
1
2
σµν 0
0 1

2
σ̄µν

«

εθ := εαθα

ε̄θ̄ := ε̄α̇θ̄α̇

εσµθ̄ := εα(σµ)αβ̇ θ̄β̇

ε̄σ̄µθ := ε̄α̇(σ̄µ)α̇βθ
β

εσµνθ := εα(σµν)αβθ
β

ε̄σ̄µν θ̄ := ε̄α̇(σ̄µν)α̇
β̇ θ̄β̇

θσµσ̄νε := θα(σµ)αα̇(σ̄ν)α̇βε
β

θ̄σ̄µσν ε̄ := θ̄α̇(σ̄µ)α̇α(σν)αβ̇ ε̄β̇

εθ = +θε

ε̄θ̄ = +θ̄ε̄

ε̄σ̄µθ = −θσµε̄
εσµνθ = −θσµνε

ε̄σ̄µν θ̄ = −θ̄σ̄µν ε̄
θσµσ̄νε = −ηµνθε+ θσµνε

θ̄σ̄µσν ε̄ = +ηµν θ̄ε̄+ θ̄σ̄µν ε̄

(εθ)∗ = +θ̄ε̄ = +ε̄θ̄

(εσµθ̄)∗ = −ε̄σ̄µθ = +θσµε̄

(εσµνθ)∗ = +θ̄σ̄µν ε̄ = −ε̄σ̄µν θ̄

εαθβ = − 1
2
εθ εαβ − 1

8
εσµνθ (σµν)αβ

ε̄α̇θ̄β̇ = − 1
2
ε̄θ̄ ε̄α̇β̇ −

1
8
ε̄σ̄µν θ̄ (σ̄µν)α̇β̇

εαθ̄β̇ = + 1
2
εσµθ̄ (σ̄µ)β̇α

θαθβ = − 1
2
θ2 εαβ

θ̄α̇θ̄β̇ = − 1
2
θ̄2 ε̄α̇β̇

θαθ̄β̇ = − 1
2
θ̄σ̄µθ (σ̄µ)β̇α
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θψ θε = − 1
2
θ2ψε

θ̄ψ̄ θ̄ε̄ = − 1
2
θ̄2ψ̄ε̄

θψ θ̄ε̄ = + 1
2
θσµθ̄ ε̄σ̄

µψ

θψ θσµξ̄ = − 1
2
θ2 ψσµξ̄

θ̄ψ̄ θ̄σ̄µξ = − 1
2
θ̄2 ψ̄σ̄µξ

θ̄σ̄µθ θσν ε̄ = + 1
2
θ2θ̄ε̄ηµν + 1

2
θ2θ̄σ̄µν ε̄

θ̄σ̄µθ θ̄σ̄νε = − 1
2
θ̄2θεηµν + 1

2
θ̄2θσµνε

[Mµν ,Pρ] = + ηνρPµ − ηµρPν
[Mµν ,Mρσ] = + ηνρMµσ − ηµρMνσ

− ηνσMµρ + ηµσMνρ

[Pµ,D] = + Pµ

[Kµ,D] = − Kµ

[Pµ,Kν ] = + 2ηµνD− 2Mµν

[Mµν ,Kρ] = + ηνρKµ − ηµρKν

[Mµν ,Qa] = − (Σµν)a
bQb

[Qa,Qb] = + 2 (γµ)ab Pµ

[Kµ,Qa] = + (γµ)a
bSb

[Mµν , Sa] = − (Σµν)a
bSb

[Pµ, Sa] = − (γµ)a
bQb

[Sa,Sb] = − 2(γµ)abKµ

[Qa, Sb] = + 2CabD− 2(γ5)abR

+ (γµν)abMµν

[R,Qa] = + 1
2
(γ5)a

bQb

[R, Sa] = − 1
2
(γ5)a

bSb

[D,Qa] = − 1
2
Qa

[D, Sa] = + 1
2
Sa

[Mµν ,Qα] = − 1
2

(σµν)α
βQβˆ

Mµν , Q̄α̇
˜

= + 1
2

(σµν)α̇
β̇Q̄β̇ˆ

Qα, Q̄β̇
˜

= + 2i (σ̄µ)β̇α Pµ

eX eY = eZ

Z = X + Y + 1
2
[X,Y ]

+ 1
12

[X, [X,Y ]] + · · ·

∂αθ
β = δα

β ∂̄α̇θ̄
β̇ = δα̇

β̇

∂αθβ = εαβ ∂̄α̇θ̄β̇ = ε̄α̇β̇

∂αθ
2 = 2θα ∂̄α̇θ̄

2 = 2θ̄α̇

∂2θ2 = −4 ∂̄2θ̄2 = −4

Qα := ∂α + i(σµ)αα̇θ̄
α̇∂µ

Q̄α̇ := ∂̄α̇ + i(σ̄µ)α̇αθ
α∂µ

[Qα, Q̄α̇] = +2i(σ̄µ)α̇α∂µ

Dα := ∂α − i(σµ)αα̇θ̄
α̇∂µ

D̄α̇ := ∂̄α̇ − i(σ̄µ)α̇αθ
α∂µ

[Dα, D̄α̇] = −2i(σ̄µ)α̇α∂µ

U := θσµθ̄∂µ = −θ̄σ̄µθ∂µ

Dα = eiU∂αe
−iU

D̄α̇ = e−iU ∂̄α̇e
iU

Qα = e−iU∂αe
iU

Q̄α̇ = eiU ∂̄α̇e
−iU
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D̄α̇Φ = 0

Φ = e−iU
ˆ
φ+ θχ+ θ2F

˜
Φ = φ+ θχ+ θ2F + iθ̄σ̄µθ∂µφ

− i
2
θ2θ̄σ̄µ∂µχ+ 1

4
θ2θ̄2�φ

V̄ = V

eV 7→ e−Λ̄eV e−Λ

D̄α̇Λ = 0 DαΛ̄ = 0

In WZ gauge:

V = θ̄σ̄µθvµ + θ̄2θλ+ θ2θ̄λ̄+ θ2θ̄2D

Wα := − 1

8g
D̄2e−2g VDαe

2g V

W α̇ := − 1

8g
D2e−2g V D̄α̇e

2g V

D̄α̇Wα = 0 DαW α̇ = 0

DαWα = D̄α̇W α̇

L =

Z
d2θd2θ̄

“
Φ̄e2g VΦ + TrµV

”
+

»Z
d2θ Tr 1

4
WαWα + c.c.

–
+

»Z
d2θW (Φ) + c.c.

–
W (Φ) = aIΦ

I + 1
2
mIJΦIΦJ

+ 1
3
λIJKΦIΦJΦK
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