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These notes arose as an attempt to conceptualise the ‘symplectic Majorana–Weyl
condition’ in 5+1 dimensions; but have turned into a general discussion of spinors.
Spinors play a crucial role in supersymmetry. Part of their versatility is that they
come in many guises: ‘Dirac’, ‘Majorana’, ‘Weyl’, ‘Majorana–Weyl’, ‘symplectic
Majorana’, ‘symplectic Majorana–Weyl’, and their ‘pseudo’ counterparts. The tra-
ditional physics approach to this topic is a mixed bag of tricks using disparate
aspects of representation theory of finite groups. In these notes we will attempt to
provide a uniform treatment based on the classification of Clifford algebras, a work
dating back to the early 60s and all but ignored by the theoretical physics com-
munity. Recent developments in superstring theory have made us re-examine the
conditions for the existence of different kinds of spinors in spacetimes of arbitrary
signature, and we believe that a discussion of this more uniform approach is timely
and could be useful to the student meeting this topic for the first time or to the
practitioner who has difficulty remembering the answer to questions like “when do
symplectic Majorana–Weyl spinors exist?”

The notes are organised as follows. The first section discusses real and quater-
nionic representations (of a group, say) in terms of complex representations with
extra structure and in particular makes the connection to the existence of complex
bilinear forms. Section 2 recapitulates some of the discussion in Section 1 in terms
of matrices. This is useful for explicit calculations as well as to bring home some of
the abstract discussion of Section 1. Section 3 discusses Clifford algebras and their
representations. It includes the classification of real Clifford algebras as well as a
method to build explicit realisations of Clifford algebras in higher dimensions in
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terms of Pauli matrices; although these realisations are not always the most useful
for the problem at hand. Section 4 makes contact with the physics treatment of
Clifford algebras; in particular it contains some brief discussion of complex Clifford
algebras and serves to contrast the traditional approach to the Majorana condi-
tion with the approach advocated here. Section 5 contains lots of examples. Two
more sections are planned: section 6 will discuss the theory behind the possible
inner products for spinors, whereas section 7 will contain many examples and some
applications to physics.

Two remarks before we start. Firstly, these notes are very preliminary. If this
were software it would be a pre-release alpha version. In particular, they are not
yet meant for widespread circulation. And lastly, a remark on notation. True to
tradition, physicists and mathematicians do not quite agree on what to call repre-
sentations of Clifford algebras and their associated Spin groups: whereas physicists
found it useful to confuse the two and use the word ‘spinor’ interchangeably for
both, mathematicians, in their infinite wisdom, introduced the concept of ‘pinor’ to
denote irreducible representations of the Clifford algebra (in fact, of the Pin group)
leaving ‘spinor’ to denote the irreducible representations of the Spin group. I cannot
bring myself to choose one nomenclature over the other: while I find it confusing
to use spinor for both, I cannot divorce myself of the physics notation which these
notes hope to reconcile. I have therefore decided, when faced with a conflict, to
use sans-serif type to distinguish the physics usage from the more uniform usage I
have tried to adhere to. I follow closely the treatment in [LM89] and in particular
[Har90]. Other references of interest are [Wan89], [KT83] and [vN83].

1. Complex, real and quaternionic representations

In this section we try to understand real and quaternionic representations as
complex representations with extra structure. The extra structure will manifest it-
self in the existence of nondegenerate invariant complex-bilinear forms. Throughout
these notes all vector spaces and representations are finite-dimensional.

Fix once and for all a group G throughout the remainder of this section. We
are interested ultimately in real semisimple Lie groups which are not necessarily
compact (e.g., Spin(5, 1)). All we will assume is that every representation has an
invariant non-degenerate sesquilinear form. We will call such forms “hermitian”
but no assumption is made on positive-definiteness.

Definition 1. Let V be a vector space over k = R, C or H.1 By a hermitian form
on V we mean an R-bilinear form 〈−,−〉 : V × V → k such that for all v1, v2 ∈ V
and λ ∈ k:

• 〈v1, v2λ〉 = 〈v1, v2〉λ; and

• 〈v1, v2〉 = 〈v2, v1〉.
In particular this implies that 〈v1λ, v2〉 = λ〈v1, v2〉.

Let V be a representation of G over k = R,C or H, by which we mean a rep-
resentation of G in terms of k-linear maps. If G is a finite group, a compact Lie
group or more generally a semisimple Lie group, then V has a G-invariant non-
degenerate hermitian form in the above sense. For G finite or compact Lie, this
can be proven as follows: pick any positive-definite hermitian form and average
over the group to obtain a form which is G-invariant. Because we started with a
positive-definite form, the averaged hermitian form remains positive-definite as it
is a “sum” of positive-definite forms. If G is semisimple but noncompact, the result

1By a quaternionic vector space we mean a right H-module; that is, quaternions act on the
right. In this way they don’t interfere with quaternionic matrices acting on the left.
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still holds, but the proof is more involved. The same is true for representations
of Clifford algebras, because a Clifford algebra is (almost) the group algebra of a
finite group. Since the semisimple noncompact groups we will be dealing with are
Spin groups of some Clifford algebra, their representations will admit an invariant
hermitian metric.

Definition 2. Let V be a complex vector space. We say that a linear map ϕ : V →
V is a real (resp. quaternionic) structure if ϕ obeys the following two conditions:

• ϕ is conjugate linear: ϕ(λv) = λϕ(v) for all λ ∈ C and v ∈ V ; and
• ϕ2 = 1 (resp. ϕ2 = −1).

Lemma 1. Let V be a complex vector space and c : V → V be a real structure. Then
V = V+⊕V− where V± are isomorphic real vector spaces; equivalently V ∼= C⊗V+.

Proof. Since c obeys c2 = 1, its has eigenvalues ±1. Let V = V+ ⊕ V− denote the
decomposition of V into eigenspaces of c. Because c is not complex linear but only
conjugate linear, V± are not complex subspaces but only real subspaces. In fact, if
v ∈ V+ so that c(v) = v, iv ∈ V−: c(iv) = −ic(v) = −iv. Hence i : V+ → V− is an
isomorphism, and V = V+ ⊕ iV+ ∼= C⊗ V+. �

A real structure in a complex vector space is nothing but a notion of complex
conjugation. Every complex vector space V admits many real structures. They are
constructed in the following way. Let (vi) be a complex basis for V . Let V0 denote
the real vector space spanned by (vi). Then define c : V → V as follows: c(vi) = vi
and extend to all of V conjugate linearly: c(

∑
i λivi) =

∑
i λivi.

On the other hand a quaternionic structure in a complex vector space V , as the
name suggests, allows us to define a left action of H on V . Let J : V → V be a
quaternionic structure. Then J2 = −1 and Ji = −iJ . Therefore if q = a + bj,
a, b ∈ C, is a quaternion and v ∈ V , we can define v q = av + bJ(v). Unlike
real structures, not every complex vector space admits a quaternionic structure: its
complex dimension must be even. (Compare with the notion of a complex structure
in a real vector space.)

Definition 3. Let V be a complex representation of G. We say that V is of real
(resp. quaternionic) type if V possesses a G-invariant real (resp. quaternionic)
structure.

It turns out that the existence of real or quaternionic structures is intimately
related to the existence of nondegenerate complex bilinear forms.

Theorem 1. A complex representation V of G is of real (resp. quaternionic) type if
and only if V admits a nondegenerate symmetric (resp. antisymmetric) G-invariant
complex bilinear form B : V × V → C.

Proof. Let B : V × V → C be given satisfying the following conditions:

• B is nondegenerate, complex bilinear and G-invariant; and
• B(v1, v2) = εB(v2, v1) where ε = ±1.

Choose a G-invariant hermitian form 〈−,−〉 on V and define ϕ : V → V by

B(v1, v2) = 〈ϕ(v1), v2〉 , for all v1, v2 ∈ V .

It follows that ϕ is conjugate linear, G-invariant and an isomorphism. (The proof
is left as an exercise for the reader.) We would like to use ϕ to define the real
or quaternionic structure that we are after, but for this ϕ2 should be ε1. It will
turn out that this is not true, but will be true after rescaling. Using the symmetry
properties of B we see that:

〈ϕ(v1), v2〉 = B(v1, v2) = εB(v2, v1) = ε〈ϕ(v2), v1〉 = ε〈v1, ϕ(v2)〉 .
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Applying this twice we find that

〈ϕ2(v1), v2〉 = ε〈ϕ(v1), ϕ(v2)〉 = 〈v1, ϕ2(v2)〉 .

This implies that the form 〈〈−,−〉〉 : V × V → C defined by

〈〈v1, v2〉〉 = ε〈v1, ϕ2(v2)〉

is hermitian and positive-definite. That is, 〈〈v1, v2〉〉 = 〈〈v2, v1〉〉 and 〈〈v, v〉〉 ≥ 0.
This implies that the operator µ = εϕ2 has positive real eigenvalues. We now try
to rescale µ in such a way that the resulting operator is 1. Because ϕ is conjugate
linear, µ is complex linear, whence V can be split into a direct sum of complex
eigenspaces of µ:

V =
⊕
λ∈R
λ>0

Vλ .

The action of both G and ϕ preserve each Vλ. Now define ν : V → V by letting
ν = 1√

λ
1 on Vλ. This makes sense since λ is a positive real number. Notice that

νϕ = ϕν and that µ ν2 = 1. Also ν is G-invariant since it is a scalar on each G-
invariant subspace Vλ. Then we simply define J = νϕ. It is G-invariant, conjugate
linear since ϕ is, and it obeys J2 = νϕνϕ = ν2ϕ2 = ε1. Thus J is the required
structure map.

Conversely, suppose that V has a G-invariant structure map J : V → V satisfying
J2 = ε1. We want to show that V has the required bilinear form. If ε = 1, then
V ∼= C ⊗ V+ where V+ is a real representation of G. By our hypothesis on G,
V+ admits a G-invariant symmetric nondegenerate R-bilinear form. We can extend
this by complex linearity to a nondegenerate G-invariant symmetric C-bilinear form
on V . This is the required bilinear form. On the other hand, if ε = −1, then V
becomes a quaternionic vector space with j ∈ H acting via J. By our assumption
on G, V carries a G-invariant nondegenerate hermitian form 〈−,−〉 with values in
H. Let us write for all v1, v2 ∈ V

〈v1, v2〉 = H(v1, v2) + jB(v1, v2) ,

where H and B are complex-valued and G-invariant. We now use the fact that
〈v1, v2〉 = 〈v2, v1〉, to show that H is hermitian and B is antisymmetric:

H(v1, v2) + jB(v1, v2) = 〈v1, v2〉

= 〈v2, v1〉

= H(v2, v1) + jB(v2, v1)

= H(v2, v1) +B(v2, v1)j

= H(v2, v1)−B(v2, v1)j

= H(v2, v1)− jB(v2, v1) .

Similarly, using that 〈λv1, v2〉 = λ〈v1, v2〉 for λ ∈ H, we find that B is C-bilinear.
Indeed, if λ ∈ C:

H(λv1, v2) + jB(λv1, v2) = 〈λv1, v2〉
= λ〈v1, v2〉
= λH(v1, v2) + λjB(v1, v2)

= λH(v1, v2) + jλB(v1, v2) .

Finally we must show that B is nondegenerate. Assume that v0 ∈ V is such
that for all v ∈ V , B(v0, v) = 0. Then for all v, 〈v0, v〉 = H(v0, v) ∈ C. But
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〈v0, jv〉 = j〈v0, v〉, whence 〈v0, v〉 = 0. Since 〈−,−〉 is nondegenerate, v0 = 0.
Hence B is nondegenerate. �

Corollary 1. Let G1 and G2 be two groups of the kind discussed in these notes.
For i = 1, 2, let Vi be a complex representation of Gi of quaternionic type. Then
the tensor product V = V1 ⊗ V2 is a complex representation of G = G1 ×G2 of real
type.

Proof. Let Bi denote the nondegenerate antisymmetric bilinear form on Vi whose
existence is guaranteed by the theorem. On V = V1⊗V2 define B by B(v1⊗v2, w1⊗
w2) = B1(v1, w1)B2(v2, w2). Then B is G-invariant, nondegenerate, C-bilinear and
symmetric. By the theorem V is of real type. �

2. Some basis-dependent formulae

Since the previous section may have been a little too abstract, let us exhibit some
of the relevant formulae after having chosen a basis. If V is a vector space over k, a
choice of basis is equivalent to an isomorphism V ∼= kn for some n = dimk V . Under
such an isomorphism, a vector v ∈ V is represented by a n-tuple v of elements of
k and k-linear transformations will be represented by n × n matrices with entries
in k. In particular if V is a representation of G, to every element g ∈ G there
corresponds an invertible matrix g.

Other objects are also represented by matrices. Let 〈−,−〉 be a hermitian form.
Relative to our chosen basis, it is represented by a hermitian matrix A:

〈u, v〉 = ut ·A · v ,

where A
t

= A. Notice that with these conventions

〈uλ, v〉 = λ〈u, v〉 , 〈u, vλ〉 = 〈u, v〉λ and 〈u, vλ〉 = 〈v, u〉 .

If G leaves 〈−,−〉 invariant, then for all g ∈ G,

gt ·A · g = A .

Similarly, a k-bilinear form B is represented by a matrix B:

B(u, v) = ut ·B · v ,

which is symmetric or antisymmetric if B is; that is, if B(u, v) = εB(v, u), then
Bt = εB accordingly. Again if G preserves B, then for all g ∈ G,

gt ·B · g = B .

Notice however that although these inner products are represented by matrices,
they do not transform like linear transformations under a change of basis. That
means in particular, that even when a linear transformation and a bilinear form,
say, may agree as matrices in a given basis, this is not an invariant statement. Care
should be exercised.

How about the real and quaternionic structures? Let V ∼= Cn be a complex vector
space with a chosen hermitian metric 〈−,−〉 represented by a hermitian matrix A.
Let B denote the nondegenerate C-bilinear form represented by a matrixB obeying
Bt = εB. Let J : V → V denote the associated structure map. Because J is only
conjugate linear, it will not be represented by an n× n complex matrix. Therefore
we will have to work with an underlying real basis. Any complex vector space V of
complex dimension n can be understood as a real vector space VR of real dimension
2n with a linear map I : VR → VR obeying I2 = −1. Such a map is called a complex
structure. Working in a real basis for V means working with a basis for VR; that
is, an isomorphism VR

∼= R2n. Given a C-basis (vj) for V , a natural R-basis is given
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by (vj , ivj). In this basis the complex structure is represented by the (2n×2n) real
matrix

IR =

(
0 −1
1 0

)
;

whereas the matrices A and B are represented by

AR =

(
A −iA
iA A

)
and BR =

(
B iB
iB −B

)
,

We are finally in a position to describe the matrix representing the real/quaternionic
structure. By definition, B(u, v) = 〈J(u), v〉. Taking the conjugate of this iden-
tity and using the hermiticity of 〈−,−〉 and the ε-symmetry of B, we see that

〈v, J(u)〉 = εB(v, u). In the chosen basis, this identity becomes

vt ·A · J · u = εvt ·B · u .

Introducing the real matrices defined above and using the fact that the identity
holds for all u and v, we find that:

AR · JR = εBR ,

where we have used the fact that in a real basis u = u. This equation determines JR

uniquely in terms of AR and BR because AR and BR are invertible by hypothesis.
Moreover, because J is a conjugate linear map, the matrix JR anticommutes with
the complex structure JR ·IR = −IR ·JR. This constraints JR to take the following
form:

JR =

(
J1 J2

J2 −J1

)
,

where J1 and J2 are the matrices representing the real and imaginary parts of the
map J, respectively. Using the block forms of AR and BR and using the fact that
A is hermitian we find the following expression for J ≡ J1 + iJ2:

J =
(
B ·A−1

)t
. (1)

3. Clifford algebras and their spinors

Our ultimate aim in these notes it to apply the preceding discussion in the
context of representations of complex Clifford algebras. It is in this light that the
concept of Majorana spinors makes the most mathematical sense (at least to me).
But before doing so, we have to collect a few facts about real Clifford algebras
and their representations. It is beyond the scope of these notes to give a detailed
account of this topic, so we will content ourselves with mentioning some facts.

Given a real vector space E and a quadratic form q defined on it, there is
associated a Clifford algebra C`(E, q). When the vector space is d-dimensional
and the quadratic form has signature (s, t) with d = s + t, the resulting Clifford
algebra is known as C`(s, t). A model for this (E, q) is given by E = Rd with the
quadratic form given by:

q(x) = x21 + x22 + · · ·+ x2s − x2s+1 − x2s+2 − · · · − x2s+t ,
for x = (x1, x2, . . . , xd). The Clifford algebra C`(s, t) is generated by elements Γa
which obey the identities (notice the sign!):

ΓaΓb + ΓbΓa = −2ηab1 , (2)

where ηab are the entries of the matrix representing the quadratic form. Clifford
algebras are important because we can use them to construct the half-spin repre-
sentations of the Spin groups. At the infinitesimal level, if the Γa are as above,
then

Σab = 1
4 (ΓaΓb − ΓbΓa)
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define a representation of the Lie algebra so(s, t). But in fact, the spin group
Spin(s, t) itself is contained in the Clifford algebra. It is convenient to introduce
a little bit of notation. Consider first the canonical automorphism defined on the
generators by Γa 7→ −Γa. Under the action of this automorphism, the Clifford
algebra decomposes into even and odd subspaces:

C`(s, t) = C`(s, t)even ⊕ C`(s, t)odd ,

where C`(s, t)even (resp. C`(s, t)odd) consists of real linear combinations of products
of an even (resp. odd) number of Γ-matrices. The even subspace is a subalgebra and
as we will see, its representations are intimately linked to those of the corresponding
spin groups.

The Clifford algebra C`(s, t) contains several interesting subgroups. First of all
we have the group of units C`(s, t)× consisting of all the invertible elements of
C`(s, t). Clearly the group of units contains any other group inside C`(s, t). One of
these groups is the Pin group Pin(s, t), defined to be the subgroup of C`(s, t)× gen-
erated by products of elements vi ∈ E whose norm is q(vi) = ±1. The Spin group
Spin(s, t) is the subgroup of Pin(s, t) consisting of those elements in C`(s, t)even:

Pin(s, t) ≡ {v1 v2 · · · vr|q(vi) = ±1}
Spin(s, t) ≡ {v1 v2 · · · v2k|q(vi) = ±1} = Pin(s, t) ∩ C`(s, t)even .

Therefore given a representation of C`(s, t) (resp. C`(s, t)even) we automatically
get a representation of Pin(s, t) (resp. Spin(s, t)). Even if we start with an irre-
ducible representation of C`(s, t), it may not remain irreducible as a representation
of Spin(s, t); although if it is irreducible as a representation of C`(s, t)even it will
remain irreducible under Spin(s, t). Irreducible representations of the Pin group (or
of the Clifford algebra itself) are known are pinor representations whereas those of
the even part of the Clifford algebra are known as spinor representations. A pinor
representation consists of one or two spinor representations.

The Clifford algebras C`(s, t) have been classified. Their structure is periodic in
(s−t) with periodicity 8, as depicted in Table 1, where MatN (k) denotes the algebra
of N×N matrices with entries in k. Notice that in general C`(s, t) 6∼= C`(t, s). This
means that strictly speaking the representations of the Clifford algebras depend on
which metric we choose for the spacetime; that is, whether we use the mostly minus
or mostly plus metrics.

s− t mod 8 C`(s, t) N

0, 6 MatN (R) 2d/2

2, 4 MatN (H) 2(d−2)/2

1, 5 MatN (C) 2(d−1)/2

3 MatN (H)⊕MatN (H) 2(d−3)/2

7 MatN (R)⊕MatN (R) 2(d−1)/2

Table 1. Classification of Clifford algebras.

The classification is not hard to arrive at. It follows after an induction argument
from the following two lemmas. Incidentally, the proof of the first lemma is very
useful when it comes to constructing explicit realisations of Clifford algebras, as we
will have ample opportunity to demonstrate in these notes.
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Lemma 2. The following “periods” hold:

C`(d, 0)⊗ C`(0, 2) ∼= C`(0, d+ 2)

C`(0, d)⊗ C`(2, 0) ∼= C`(d+ 2, 0)

C`(s, t)⊗ C`(1, 1) ∼= C`(s+ 1, t+ 1) .

Proof. To prove the first one, suppose that Γ′1,Γ
′
2, . . .Γ

′
d are Γ-matrices for C`(d, 0):

Γ′aΓ′b + Γ′bΓ
′
a = −2δab1 ;

and let Γ′′1 and Γ′′2 be Γ-matrices for C`(0, 2):

Γ′′aΓ′′b + Γ′′bΓ′′a = 2δab1 .

Then define the following Γ-matrices:

Γa =

{
Γ′a ⊗ Γ′′1Γ′′2 for 1 ≤ a ≤ d,

1⊗ Γ′′a−d for a = d+1, d+2.

It is easy to show that they satisfy

ΓaΓb + ΓbΓa = 2δab1 ,

whence they are Γ-matrices for C`(0, d+ 2). The proof of the second one is entirely
analogous. The last one is a little bit more involved, but it follows the same idea.
Let Γ′1, . . .Γ

′
s and Γ̃′1, . . . , Γ̃

′
t be the Γ-matrices for C`(s, t) and let Γ′′1 and Γ̃′′1 be the

ones for C`(1, 1). Then define:

Γa =

{
Γ′a ⊗ Γ′′1 Γ̃′′1 for 1 ≤ a ≤ s,
1⊗ Γ′′1 for a = s+1;

Γ̃a =

{
Γ̃′a ⊗ Γ′′1 Γ̃′′1 for 1 ≤ a ≤ t,
1⊗ Γ̃′′1 for a = t+1.

These are then Γ-matrices for C`(s+ 1, t+ 1). �

Lemma 3. The low-dimensional Clifford algebras are given by

C`(1, 0) ∼= C C`(0, 1) ∼= R⊕ R

C`(2, 0) ∼= H C`(1, 1) ∼= Mat2(R) C`(0, 2) ∼= Mat2(R)

Proof. This follows from an explicit computation and will be reviewed below when
we discuss the examples. �

Table 1 immediately teaches us about the pinor representations because the
matrix algebra MatN (k), for k = R,H has a unique irreducible representation iso-
morphic to kN , and for k = C is has two irreducible representations: CN and
its complex conjugate. Therefore we see, for example, that in even dimensions
d = s + t, the Clifford algebra has a unique pinor representation P (s, t) which is
real of dimension 2d/2 if s−t=0, 6 (mod 8) (Majorana) and quaternionic of dimen-
sion 2(d−2)/2 if s−t=2, 4 (mod 8) (symplectic Majorana). Alternatively, if d=s+t is
odd, there are two inequivalent pinor representations, distinguished by the value of
the volume element Γd+1 = Γ1Γ2 · · ·Γd, which in odd dimensions commutes with
all the Γ-matrices. The possible values of Γd+1 are determined as follows. Notice
that Γd+1 squares to ±1 depending on the signature:

Γ2
d+1 = (−1)(s−t+1)/21 . (3)

Therefore for s−t=1, 5 (mod 8), Γ2
d+1 = −1 and there are two inequivalent complex

pinor representations P (s, t) and P (s, t) of complex dimension 2(d−1)/2: the Dirac
pinors. They are distinguished by the value of Γd+1: it is i on P (s, t) and −i on
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P (s, t). Similarly, for s−t=3 (mod 8), Γ2
d+1 = +1, and there are two inequivalent

quaternionic pinor representations P (s, t)± of quaternionic dimension 2(d−3)/2 and
distinguished by the value of Γd+1: being ±1 on P (s, t)±. These are the symplectic
Majorana pinors. Finally, for s−t=7 (mod 8) there are two inequivalent real pinor
representations P (s, t)± of real dimension 2(d−1)/2 and distinguished by the value
of Γd+1: being ±1 on P (s, t)±. These are the Majorana pinors.

The situation for the spinor representations is similar but in a sense opposite.
This is because of the fundamental isomorphisms:

C`(s, t)even ∼= C`(s− 1, t) for s ≥ 1

C`(s, t)even ∼= C`(t− 1, s) for t ≥ 1 (4)

which together with Table 1 tell us the structure of the C`(s, t)even. These iso-
morphisms are again easy to prove. Suppose that Γ1, . . . ,Γs and Γs+1, . . . ,Γs+t
generate C`(s, t). Then if s ≥ 1 we can define Γ′a = ΓaΓ1 for 2 ≤ a ≤ d. These
matrices span C`(s, t)even but at the same time are Γ-matrices for C`(s− 1, t). On
the other hand, if t ≥ 1 we can define Γ′a = ΓaΓd for 1 ≤ a ≤ d− 1. These matrices
again span C`(s, t)even but at the same time are Γ-matrices for C`(t− 1, s).

The structure of the C`(s, t)even is summarised in Table 2. Notice that now
C`(s, t)even ∼= C`(t, s)even, whence either choice of metric (mostly plus or mostly
minus) yields the same type of representations. In a sense, the Spin group is a more
intrinsic notion than the Clifford algebra, at least as far as the physics is concerned.

s− t mod 8 C`(s, t)even N

1, 7 MatN (R) 2(d−1)/2

3, 5 MatN (H) 2(d−3)/2

2, 6 MatN (C) 2(d−2)/2

4 MatN (H)⊕MatN (H) 2(d−4)/2

0 MatN (R)⊕MatN (R) 2(d−2)/2

Table 2. Structure of the even subalgebras of a Clifford algebra.

From this table we immediately read that for odd dimensions there is a unique
spinor representation S(s, t) which is real of dimension 2(d−1)/2 for s−t=1, 7 (mod 8),
and quaternionic of quaternionic dimension 2(d−3)/2 for s−t=3, 5 (mod 8). For
even dimensions we have two inequivalent representations (Weyl spinors). This can
again be understood by looking at the volume element or chirality Γd+1. In even
dimensions, Γd+1 anticommutes with the Γ-matrices, whence it commutes with
C`(s, t)even. Therefore it must act like a scalar in any spinor representation. For
even d = s+ t, Γd+1 obeys

Γ2
d+1 = (−1)(s−t)/21 ,

whence if s−t=2, 6 (mod 8), Γ2
d+1 = −1 and if s−t=0, 4 (mod 8), Γ2

d+1 = +1.
Therefore for s−t=2, 6 (mod 8) there are two inequivalent complex spinor represen-

tations S(s, t) and S(s, t) of complex dimension 2(d−2)/2. They are distinguished by

the value of Γd+1: it is i on S(s, t) and −i on S(s, t). Similarly, for s−t=0 (mod 8)
there are two inequivalent real spinor representations S(s, t)± of real dimension
2(d−2)/2 and distinguished by the value of Γd+1: being ±1 on S(s, t)±. These are
the Majorana–Weyl spinors. Finally, for s−t=4 (mod 8) there are two inequivalent
quaternionic spinor representations S(s, t)± of quaternionic dimension 2(d−4)/2 and
distinguished by the value of Γd+1: being ±1 on S(s, t)±. These are the symplectic
Majorana–Weyl spinors.
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The fundamental isomorphisms (4) allowed us to recover C`(s, t)even from C`(s, t)
or, equivalently, the spinor representations from the pinor representations. It turns
out that one can go back, at least in odd dimensions. This is because C`(s, t) ∼=
C`(s, t)even ⊕ Γd+1C`(s, t)even and Γd+1 commutes with all the Γ-matrices. Taking
into account (3) we find that if we know C`(s, t)even we may recover C`(s, t) as
follows:

C`(s, t) ∼=

{
C`(s, t)even ⊗R C for s−t=1, 5 mod 8

C`(s, t)even ⊗R (R⊕ R) for s−t=3, 7 mod 8 .

where Γd+1 gets sent to i in the first case and to (1,−1) in the second case. This
result tells us how to build the pinor representation from the spinor representation.

4. Complex Clifford algebras and the Majorana condition

The Clifford algebras of the previous section are real algebras: we are only
allowed to take real linear combinations of products of Γ-matrices. As physicists we
have no patience with restrictions of this kind and as a result we end up working
with complex Clifford algebras. The immediate simplification is that all complex
Clifford algebras of the same dimension are isomorphic:

C`(s, t)⊗R C ∼= C`(s+ t) for all s, t, (5)

whence the complex Clifford algebra C`(d) are classified according to Table 3.

d mod 2 C`(d) N

0 MatN (C) 2d/2

1 MatN (C)⊕MatN (C) 2(d−1)/2

Table 3. Structure of the complex Clifford algebras.

Just as in the real case, the classification table immediately reveals the structure
of the pinor representations of the complex Clifford algebras. In even dimensions
there is a unique complex representation of dimension 2d/2, whereas in odd dimen-
sions there are two inequivalent complex pinor representations each of dimension
2(d−1)/2. These two representations can again be distinguished by the value of the
volume element Γd+1 = αΓ1Γ2 · · ·Γd, with the complex constant α chosen so that
Γ2
d+1 = 1, which as in the real case commutes with all Γ-matrices.

To understand the spinor representations we look at the even subalgebra of C`(d).
From the isomorphisms (4) and (5) it follows that

C`(d)even ∼= C`(d− 1) .

For convenience we record this in Table 4, which tells us that in odd dimensions
there is a unique spinor representation of dimension 2(d−1)/2, whereas in even di-
mensions there are two spinor representations of dimension 2(d−2)/2, distinguished
by the value of Γd+1 which now commutes with C`(d)even.

d mod 2 C`(d)even N

0 MatN (C)⊕MatN (C) 2(d−2)/2

1 MatN (C) 2(d−1)/2

Table 4. The even subalgebra of a complex Clifford algebra.
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Therefore the advantage of complexifying the Clifford algebras is that their struc-
ture, and hence their representation theory, becomes more uniform. Of course this
simplification comes at a price, precisely because we are not really interested in
complex Clifford algebras and some machinery has to be developed in order to
recover the finer structure that the complexification has hid. This machinery is
precisely the traditional approach to Majorana spinors.

Let P denote a pinor representation of C`(s, t)⊗R C. As advertised, P possesses
a nondegenerate hermitian form 〈−,−〉 which satisfies in addition the following
“invariance” requirement:

〈Γa · ψ1, ψ2〉 = δ〈ψ1,Γa · ψ2〉 ,
for all ψ1, ψ2 ∈ P and all Γa, and where δ is a sign. Choosing a basis and letting A
denote the hermitian matrix which represents 〈−,−〉, we can rewrite this condition
as follows:

Γ
t

a = δA · Γa ·A−1 .
We now digress in order to prove that representations of Clifford algebras are

unitarisable. This will follow from the result mentioned in Section 1 about finite
groups, once we identify the Clifford algebra with (a quotient of) a group algebra.
The group in question is the finite group generated by a choice of Γ-matrices. Let
(Γa) satisfy the Clifford algebra (2). Let G denote the group generated by ±Γa and
±1 subject to the relations coming from (2). If d = s+ t, then G has order 2d+1. It
is called the Clifford group. The Clifford algebra is almost the group algebra of G:
it is the quotient of the group algebra of G by the relation 1 + (−1) = 0. In other
words, not every representation of G will extend to a representation of the Clifford
algebra. It will do so if and only if −1 acts like −1. However every representation
of the Clifford algebra does give rise to a representation of the Clifford group. In
particular every such representation being unitarisable implies the same for the
representations of the Clifford algebra. It follows from (2) that Γ2

a = −ηaa1. This
together with the fact that we can choose the Γa unitary, means that we can take
them to obey

Γ
t

a = σaΓa where σa = −ηaa.

Therefore we have that A satisfies

σaΓa ·A = δA · Γa .
In other words A δ-commutes with the timelike Γ-matrices and δ-anticommutes
with the spacelike Γ-matrices. We can solve these equations for A in terms of
Γ-matrices and in fact we obtain up to a complex scalar multiple:

A =

{
Γ1Γ2 · · ·Γt for δ = (−1)t−1;

Γt+1Γt+2 · · ·Γt+s for δ = (−1)s.

The phase of the multiple can be fixed so that A is hermitian. In fact with the
above choices:

A
t

=

{
(−1)t(t−1)/2A for δ = (−1)t−1;

(−1)s(s+1)/2A for δ = (−1)s.

We will not fix the phase explicitly, but simply note that it can be done. Whichever
choice of δ we make and whichever hermiticity propertyA obeys, 〈−,−〉 is Spin(s, t)-
invariant:

〈Σab · ψ1, ψ2〉 = −〈ψ1,Σab · ψ2〉 .
We record for later use that

A2 =

{
(−1)t(t+1)/21 for δ = (−1)t−1;

(−1)s(s−1)/21 for δ = (−1)s.
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In particular we notice that A is nondegenerate. The choice of A (and hence δ) is
inconsequential; although the first choice (A = Γ1Γ2 · · ·Γt) has been traditionally
favoured by physicists.

Next we want to investigate whether this complex representation admits a real
or quaternionic structure which is similarly invariant under the action of the Spin
group. From Theorem 1 such a structure is equivalent to an invariant nondegenerate
complex bilinear form B satisfying

B(Γa · ψ1, ψ2) = τB(ψ1,Γa · ψ2) ,

where τ is a sign and which in addition obeys B(ψ1, ψ2) = εB(ψ2, ψ1) depending
on whether it is a real (ε = +1) or quaternionic (ε = −1) structure. In the chosen
basis, B is represented by a matrix B which obeys

Γta = τB · Γa ·B−1 . (6)

As in the case of δ, the sign τ may be forced upon us; but any value of τ guarantees
that B is Spin(s, t)-invariant:

B(Σab · ψ1, ψ2) = −B(ψ1,Σab · ψ2) .

The signs ε and τ are not independent: they can be related to the signature (s, t)
of the spacetime in the following way (a trick apparently due to Joel Scherk). First
of all notice that from (6) it follows that

(B · Γa)t = ετB · Γa .
In turn this means that the matrices B · Γa1Γa2 · · ·Γap for 1 ≤ a1 < a2 < · · · <
ap ≤ d are also either symmetric or antisymmetric depending on ε, τ and s and
t. But taking all those matrices together we span the complete matrix algebra in
the appropriate dimension. Counting how many matrices are antisymmetric and
comparing to the expected number 1

2n(n− 1) we obtain a relation. We will not go
into any more detail and instead refer the interested reader to [KT83].

Definition 4. Let P be a pinor representation of a complexified Clifford algebra.
We say that P is Majorana (resp. symplectic Majorana) if P admits a real (resp.
quaternionic) structure J. A pinor ψ ∈ P is said to be Majorana if it satisfies
J(ψ) = ψ.

To make contact with the traditional definition of Majorana spinors, simply notice
the following. The condition J(ψ) = ψ means that for all pinors ψ′, B(ψ,ψ′) =
〈J(ψ), ψ′〉 = 〈ψ,ψ′〉; or in the chosen basis,

ψt ·B · ψ′ = ψ
t ·A · ψ′ .

Since this is true for all ψ′ ∈ P we see that ψ ∈ P is Majorana if and only if

ψt ·B = ψ
t ·A .

The right-hand side of this equation defines the Dirac conjugate of the pinor ψ
whereas the left-hand side defines the Majorana conjugate. Then a pinor ψ is Ma-
jorana if and only if its Dirac and Majorana conjugates agree—the traditional defi-
nition. Of course, traditionally B is the charge conjugation matrix and is usually
written C.

If P possesses a quaternionic structure, we cannot impose the Majorana condition
J(ψ) = ψ, because J2 = −1 forces ψ = 0; but all is not lost. We can consider spinors
with flavour in some quaternionic representation V of some group G. Then from
Corollary 1, we know that the representation P⊗V of Spin(s, t)×G is real, with real
structure J⊗ equal to the tensor product of the quaternionic structures of P and
V . It then makes sense to impose the condition J⊗(ψ) = ψ on a pinor ψ ∈ P ⊗ V .
Pinors satisfying this reality condition are known as symplectic Majorana spinors.
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5. Examples

To illustrate the remarks in the previous two sections, let us now work out
some examples. We start in one dimension and move our way up to the currently
fashionable case of twelve dimensions, calling at 2, 3, 4, 6, 10 and 11 dimensions
along the way. The first two cases will also serve to prove Lemma 3.

One dimension. This one is easy. We either have Γ2
1 = 1 in the case of C`(0, 1)

or Γ2
1 = −1 in the case of C`(1, 0). In the latter case, Γ1 is a complex structure and

C`(1, 0) ∼= C, whereas in the former C`(0, 1) ∼= R ⊕ R. This proves the first line of
Lemma 3.

Two dimensions. Together with the somewhat trivial case in one dimension, the
two-dimensional Clifford algebras are the basic building blocks of the theory, so it
pays to understand them well. We have to consider three signatures: (2, 0), (1, 1)
and (0, 2).

We start with (1, 1) and adopt the physics convention of numbering the Γ-
matrices starting at 0. We need two matrices satisfying Γ2

0 = +1 and Γ2
1 = −1. A

possible choice is

Γ0 = σ1 =

(
0 1
1 0

)
and Γ1 = iσ2 =

(
0 1
−1 0

)
.

The volume element Γ3 = Γ0Γ1 is given by

Γ3 = −σ3 =

(
−1 0
0 1

)
.

Because the Γ-matrices are real and 2 × 2, we see that C`(1, 1) ∼= Mat2(R) in
agreement with Lemma 3. The even subalgebra is generated by 1 and Γ3, which here
squares to 1, hence the even subalgebra is that of diagonal matrices: C`(1, 1)even ∼=
R ⊕ R in agreement with Table 2. The pinors are Majorana (2-component, real)
whereas the spinors are Majorana–Weyl (1-component, real).

We continue with the signature (0, 2). In this case we need matrices Γ1 and Γ2

which anticommute and square to 1. A possible choice is

Γ1 = σ1 =

(
0 1
1 0

)
and Γ2 = σ3 =

(
1 0
0 −1

)
.

Again these matrices are real, whence C`(0, 2) ∼= Mat2(R) in agreement with Lemma
3. The volume element is now:

Γ3 = −iσ2 =

(
0 −1
1 0

)
,

which squares to −1. This means that the even subalgebra, being generated by 1
and Γ3 is now isomorphic to C. Therefore, although the pinors are again Majorana
(2-component, real), the spinors are simply Weyl (1-component, complex). Weyl
spinors of opposite chirality are complex conjugate.

Finally we discuss the euclidean signature (2, 0). A possible choice for Γ-matrices
is given by

Γ1 = iσ1 =

(
0 i
i 0

)
and Γ2 = iσ2 =

(
0 1
−1 0

)
.

The matrices are not real. In fact, how could they? The Clifford algebra is generated
by two anticommuting complex structures, hence it has to be the quaternion algebra
H. Indeed an explicit isomorphism is: (1, i, j, k) = (1,Γ1,Γ2,Γ3), with Γ3 = Γ1Γ2

the volume element:

Γ3 = −iσ3 =

(
−i 0
0 i

)
.
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The even subalgebra is generated by 1 and Γ3, which is a complex structure, hence
C`(2, 0)even ∼= C, in agreement with the table. Hence in two-dimensions, euclidean
pinors are Dirac (2-component complex, but secretly a quaternion), whereas spinors
are as in (0, 2) case: complex Weyl. According to Theorem 1 if the representation
is quaternionic, there is an antisymmetric bilinear form lurking around somewhere.
In the above realisation, it is given by Γ2.

Three dimensions. We will only look at the euclidean case. In this case, the
spin group is Spin(3) ∼= SU(2) and the spinor representation is the complex two-
dimensional representation. We know since infancy that SU(2) has only one spin- 12
representation up to equivalence, hence this cannot be the end of the story. In
other words, if the representation were truly complex, then the complex conjugate
representation would furnish us with a second inequivalent spin- 12 representation.
According to Table 2 we see that C`(3, 0)even ∼= Mat1(H) = H, whence the rep-
resentation is quaternionic. According to Theorem 1, a quaternionic structure is
equivalent to an antisymmetric complex bilinear form and, indeed, SU(2) leaves in-
variant the ε-symbol. To find the explicit expression for the quaternionic structure,
we follow the procedure indicated in Section 2; that is, we use (1) for J . We need
to determine A and B. In this case, SU(2) leaves invariant the canonical hermitian
metric on C2 which is represented by A = 1. Similarly, B is given by the ε-symbol;
that is, B = iσ2 ∈ Mat2(C). Therefore, using (1), we find J = −iσ2 which obeys
J2 = −1 as expected.

Four dimensions. We now come to the ur-example: Minkowski spacetime in the
mostly minus metric. The associated Clifford algebra is C`(1, 3) ∼= Mat4(R). The
pinor space is therefore isomorphic to R4. These are the Majorana spinors. How
about the spinors? From Table 2 we see that C`(1, 3)even ∼= Mat2(C), which can
be understood as follows. For this signature the volume element Γ5 is a complex
structure, and C`(1, 3)even is defined as the subalgebra of C`(1, 3) which commutes
with Γ5. In other words, those matrices in Mat4(R) which commute with the
complex structure: but these are precisely Mat2(C) ⊂ Mat4(R). At any rate, the
spinors now come in two inequivalent complex two-dimensional representations.
These correspond to the so-called dotted and undotted SL(2,C) ∼= Spin(1, 3) spinors:
the (0, 12 ) and ( 1

2 , 0) representations; which are indeed inequivalent. We can give
an explicit realisation for the Γ-matrices by exploiting Lemma 2. We find that

Γ0 = 1⊗ iσ2 Γ1 = σ1 ⊗ σ3 Γ2 = σ3 ⊗ σ3 Γ3 = 1⊗ σ1 ,

which, being manifestly real, provide a Majorana representation for the Γ-matrices.
In the spirit of Theorem 1 we ought to look for a symmetric bilinear form B which
is responsible for having a real structure. What makes the Majorana representation
special is that since the Γ-matrices are already real, the matrix representing the
bilinear form is the identity.

How about the mostly plus metric? From the table we read C`(3, 1) ∼= Mat2(H),
whence there is a unique quaternionic two-dimensional pinor representation. This is
the familiar Dirac spinor, although the quaternionic structure is seldom emphasised
(but see below). How about the spinors in this case? There is no difference between
3+1 and 1+3—there never is at the level of Spin groups—since again C`(3, 1)even ∼=
Mat2(C). An explicit representation for the Γ-matrices is given by:

Γ0 = 1⊗ σ1 Γ1 = −iσ1 ⊗ σ3 Γ2 = −iσ2 ⊗ σ3 Γ3 = 1⊗ iσ2 ,

which is unitarily related to the more familiar one:

Γ̃0 = 1⊗ σ1 Γ̃1 = σ1 ⊗ iσ2 Γ̃2 = σ2 ⊗ iσ2 Γ̃3 = σ3 ⊗ iσ2 .
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According to Theorem 1, a quaternionic structure is equivalent to an invariant
antisymmetric bilinear form in the pinor space thought of as a four-dimensional
complex vector space. After choosing a basis for the pinors, this form is represented
by a 4 × 4 complex matrix B: B(ψ1, ψ2) = ψt1 · B · ψ2 for all pinors ψ1, ψ2.
Invariance under the Clifford algebra is equivalent to B(Γaψ1,Γaψ2) = B(ψ1, ψ2).
Which means that Γta · B · Γa = B. From the above explicit realisation, we see
that Γ0 and Γ1 are symmetric, whereas Γ2 and Γ3 are antisymmetric. Therefore B
must anticommute with Γ1 and commute with Γ0, Γ2 and Γ3. In other words, B ∝
Γ0Γ2Γ3. One checks that Bt = −B as expected. In the above basis B = −iσ1⊗1.

The four-dimensional case teaches us something: strictly speaking there are no
Majorana spinors in 3+1 dimensions. There are, however, pseudo-Majorana spinors
– a nebulous concept best kept undisturbed. Let us simply remark that pseudo-
Majorana spinors exist for C`(s, t) if and only if Majorana spinors exist for C`(t, s).

Let us now look at the euclidean signature (4, 0). From the table C`(4, 0) ∼=
Mat2(H). We can think of Mat2(H) ⊂ Mat4(C) as the subalgebra commuting with
a quaternionic structure. An explicit realisation is given by

Γ1 = −σ1 ⊗ iσ3 Γ2 = −σ3 ⊗ iσ3 Γ3 = 1⊗ iσ1 Γ4 = 1⊗ iσ2 .
In this realisation all Γ-matrices are antihermitian, and symmetric except for Γ4

which, being real, is antisymmetric. This means that the antisymmetric bilinear
form guaranteed by Theorem 1 is represented in the above realisation by Γ4.

Finally we consider (2, 2). From the table, C`(2, 2) ∼= Mat4(R) again, whence
the pinors are Majorana. An explicit realisation is given by

Γ1 = −σ1 ⊗ σ3 Γ2 = 1⊗ σ1 Γ3 = −iσ2 ⊗ σ3 Γ4 = 1⊗ iσ2 ,
which is again a Majorana realisation, since all the Γ-matrices are real. Spinors are
Majorana–Weyl (2-component real), because C`(2, 2)even ∼= Mat2(R)⊕Mat2(R).

Six dimensions. Moving up in dimensions, we next stop to consider six-dimensional
Minkowski spacetime. In this case there is no difference between the two met-
rics, since s−t=4 (mod 8) = −4 (mod 8). From the classification we see that
C`(5, 1) ∼= Mat4(H), whence there is a unique pinor representations, which is quater-
nionic of dimension 4. These are the expected 8-component Dirac spinors but with
an under-emphasised quaternionic structure. As for spinors there are two inequiv-
alent spinor representations, distinguished by chirality. They are quaternionic of
dimension 2. These will be the building blocks for the symplectic Majorana–Weyl
spinors we’re after. It follows from Lemma 2 that C`(5, 1) ∼= C`(4, 0) ⊗ C`(1, 1),

whence if {Γ̂a} are Γ-matrices for C`(4, 0), then we have

Γ0 = 1⊗ σ1 Γ1 = −Γ̂1 ⊗ σ3 Γ2 = −Γ̂2 ⊗ σ3
Γ3 = −Γ̂3 ⊗ σ3 Γ4 = −Γ̂4 ⊗ σ3 Γ5 = 1⊗ iσ2 .

Using the explicit representation of C`(4, 0) that we found above we see that the
antisymmetric bilinear form responsible for the quaternionic structure is given by
Γ0Γ4Γ5, which in this realisation is −1⊗ iσ2⊗1. As expected, it is antisymmetric.

Let us now consider euclidean space. From the classification we see that C`(6, 0) ∼=
Mat8(R) whence pinors are 8-component Majorana spinors. As for spinors we no-
tice that C`(6, 0)even ∼= Mat4(C) so that they are four-component complex. Indeed
there is an accidental isomorphism Spin(6) ∼= SU(4) under which the two spinor
representations become the fundamental representation of SU(4) and its conju-
gate representation. Let us call these representations S± with S+

∼= S̄−. Dirac
spinors transform according to the reducible complex representation S+⊕S−, which
is clearly the complexification of a real representation under which the Majorana
spinors transform.
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Ten dimensions. Going on to bigger and better things, let’s look at ten dimen-
sional Minkowski spacetime. As in six-dimensions there is no difference between the
two possible metrics as C`(9, 1) ∼= C`(1, 9) ∼= Mat32(R). In other words, the pinor
representation is a 32-component real spinor: the ten-dimensional Majorana spinor.
According to Table 2, there are two inequivalent spinor representations, which are
real and 16-dimensional. These are the positive and negative chirality Majorana–
Weyl spinors. We can use Lemma 2 in order to find an explicit realisation for the Γ-
matrices. According to the lemma, C`(9, 1) ∼= C`(4, 0)⊗C`(0, 2)⊗C`(2, 0)⊗C`(1, 1).
Using the realisations found above for these algebras one comes up with the follow-
ing:

Γ0 = 1⊗ 1⊗ 1⊗ 1⊗ 1 Γ9 = 1⊗ 1⊗ 1⊗ 1⊗ iσ2
Γ8 = −1⊗ 1⊗ 1⊗ iσ2 ⊗ σ3 Γ7 = −1⊗ 1⊗ 1⊗ iσ1 ⊗ σ3
Γ6 = 1⊗ 1⊗ σ3 ⊗ iσ3 ⊗ σ3 Γ5 = 1⊗ 1⊗ σ1 ⊗ iσ3 ⊗ σ3
Γ4 = −1⊗ iσ2 ⊗ iσ2 ⊗ iσ3 ⊗ σ3 Γ3 = −1⊗ iσ1 ⊗ iσ2 ⊗ iσ3 ⊗ σ3
Γ2 = σ3 ⊗ iσ3 ⊗ iσ2 ⊗ iσ3 ⊗ σ3 Γ1 = σ1 ⊗ iσ3 ⊗ iσ2 ⊗ iσ3 ⊗ σ3 .

The symmetric bilinear form is given by B = Γ4Γ5Γ6Γ7, which in this realisation
is given by B = 1⊗ iσ2 ⊗ 1⊗ iσ2 ⊗ 1, which is real and symmetric.

Eleven dimensions. Now to be really modern, we look at eleven and twelve-
dimensions. In eleven dimensions and as far as the pinor representations are con-
cerned, it does matter which metric we choose, because C`(10, 1) ∼= Mat32(C) but
C`(1, 10) ∼= Mat32(R) ⊕Mat32(R). In other words, in the mostly plus metric, the
pinors are 32-component complex; whereas in the mostly minus metric, the pinors
are real and have 32 components. This is similar to what happened in four dimen-
sions. The mostly minus metric admits Majorana spinors whereas the mostly plus
metric admits pseudo Majorana spinors. Of course, as far as the spinor representa-
tion is concerned, there is only one and it is 32-component real. This is the spinorial
representation under which the supercharge in eleven-dimensional supergravity trans-
forms. Upon dimensional reduction to ten-dimensions, it yields two Majorana–Weyl
spinors: one of each chirality. (More about this below.)

Twelve dimensions. Finally, we come to twelve dimensions and signature (10, 2)—
the choice of metric being irrelevant again. From the classification we see that
C`(10, 2) ∼= Mat64(R) and there is a unique real 64-dimensional pinor representa-
tion. This is a Majorana spinor in 10+2. On the other hand this representation
breaks up into two spinor representations of different chiralities: the 32-component
Majorana–Weyl spinors in 10+2.

...and back! Having come all the way up to twelve dimensions, it is hard not to
lose one’s balance and come tumbling back down again. We shall do so under the
fancy guise of dimensional reduction. The main observation is that C`(s, t) contains
C`(s′, t′) as a subalgebra whenever s′ ≤ s and t′ ≤ t. We can therefore start with a
(s)pinor of C`(s, t) and see how it breaks up under C`(s′, t′) for successively smaller
values of s′ + t′. In able hands, this procedure teaches us quite a lot about the
interrelations between different supersymmetric theories.

It may be easier to read this subsection while staring at Table 5. Being “F-
isically” motivated, we will start with a spinor of C`(2, 10), the choice of chirality
being irrelevant. We mean, of course, a spinor of the even subalgebra, but we trust
this can safely remain implicit. As we have just seen this is 32-component and
real. A supersymmetry generator in 2+10 dimensions would be such a spinor and
we would call such supersymmetry algebra N=(1, 0) or N=(0, 1) depending on the
choice of chirality. Because C`(2, 10)even ∼= C`(1, 10), this very spinor becomes one
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s+ t d s− t mod 8 Pinors Spinors

2 + 10 12 0 R64 R32 ⊕ R32

1 + 10 11 7 R32 ⊕ R32 R32

1 + 9 10 0 R32 R16 ⊕ R16

1 + 8 9 1 C16 R16

1 + 7 8 2 H8 C8

1 + 6 7 3 H4 ⊕ H4 H4

1 + 5 6 4 H4 H2 ⊕ H2

1 + 4 5 5 C4 H2

1 + 3 4 6 R4 C2

1 + 2 3 7 R2 ⊕ R2 R2

1 + 1 2 0 R2 R⊕ R

1 + 0 1 1 C R

Table 5. Dimensional reduction data.

of the two inequivalent pinors of C`(1, 10) – which one we get depending on the orig-
inal choice of chirality in 2+10 dimensions. The supercharge in N=1 supergravity
in 1+10 dimensions transforms under this pinor representation.

As mentioned before in the subsection on eleven dimensions, under C`(1, 9) this
pinor representation becomes a pair of spinors: one of each chirality. This corre-
sponds to N=(1, 1) supergravity (or type IIA) in 1+9 dimensions. Chiral super-
gravities are of course also possible: N=(2, 0) (or type IIB); but they don’t seem
to arise as dimensional reduction. In 1+9 dimensions we also have N=(1, 0) super-
symmetric Yang–Mills. This can be obtained from 2+10 but this is sadly beyond
the scope of these notes at present.

We now go briefly though the other dimensions of interest. In 1+5 dimensions su-
persymmetries are Weyl spinors; so that in principle we have the possibility of having
chiral supersymmetries. In 1+3 dimensions, supersymmetries are Majorana spinors.
In 1+1 dimensions supersymmetries are again Majorana–Weyl spinors and we once
again have the possibility of chiral supersymmetry. Finally in 1+0 dimensions su-
persymmetries are Majorana. Every chiral supersymmetry in 1+1 dimensions gives
rise to a supersymmetry in 1+0 dimensions; whereas each supersymmetry in 1+3
dimensions gives rise to (2, 2) supersymmetry in 1+1 dimensions. In turn every
chiral supersymmetry in 1+5 dimensions gives rise to 2 supersymmetries in 1+3
dimensions; and finally each chiral supersymmetry in 1+9 dimensions gives rise to
(1, 1) supersymmetry in 1+5 dimensions. If we use the notation (p, q)s+t or Ns+t
to refer to (p, q) or N supersymmetry in s + t dimensions, we have the following
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chains of dimensional reductions:

11+10  (1, 1)1+9  (2, 2)1+5  81+3  (16, 16)1+1  321+0

(1, 0)1+9  (1, 1)1+5  41+3  (8, 8)1+1  161+0

(1, 0)1+5  21+3  (4, 4)1+1  81+0

11+3  (2, 2)1+1  41+0

(1, 0)1+1  11+0

d = 12 � ♦ � � � ♦ � � � ♦ � � �

11 ♦ � ♦ � ♦ �

10 ♦ � � � ♦ � � � ♦ � �

9 � ♦ � ♦ �

8 � � � ♦ � � � ♦ �

7 � ♦ � ♦

6 � � ♦ � � � ♦

5 ♦ � ♦

4 � ♦ � � �

3 ♦ �

2 ♦ � �

1 �

t= 0 1 2 3 4 5 6 7 8 9 10 11 12

� Majorana ♦ symplectic Majorana

� Majorana–Weyl � symplectic Majorana–Weyl
Table 6. Table of spinor types as a function of (d, t).

d = 12 � � � ♦ � � � ♦ � � � ♦ �

11 � ♦ � ♦ � ♦

10 � � ♦ � � � ♦ � � � ♦

9 � ♦ � ♦ �

8 � ♦ � � � ♦ � � �

7 ♦ � ♦ �

6 ♦ � � � ♦ � �

5 ♦ � ♦

4 � � � ♦ �

3 � ♦

2 � � ♦

1 �

s= 0 1 2 3 4 5 6 7 8 9 10 11 12

� Majorana ♦ symplectic Majorana

� Majorana–Weyl � symplectic Majorana–Weyl
Table 7. Table of spinor types as a function of (d, s).
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Summary. From the Tables we can see at a glance in which spacetimes we have
Majorana spinors (i.e., real pinors), symplectic Majorana spinors (i.e., quaternionic
pinors), and for which we have Majorana–Weyl spinors (i.e., real spinors) and sym-
plectic Majorana–Weyl spinors (i.e., quaternionic spinors). We have Majorana spinors
for s−t=0, 6, 7 (mod 8), whereas only for s−t=0 (mod 8) do we have Majorana–
Weyl spinors. Similarly, only for s−t=2, 3, 4 (mod 8) do we have symplectic Majorana
spinors whereas for symplectic Majorana–Weyl spinors we have to restrict ourselves
to s−t=4 (mod 8). We could repeat this paragraph interchanging s and t and in-
serting a ‘pseudo’ before every spinor type and still arrive at a true result, but we
will resist the temptation. Some of these results are summarised in Tables 6 and 7.
In Table 6, t refers to the number of timelike coordinates in a mostly plus metric;
whereas in Table 7, s denotes the number of timelike coordinates in a mostly minus
metric. Both tables are consistent with the notation in these notes—I have simply
included them both for convenience. Notice that for even dimensions we always
have either Majorana or symplectic Majorana spinors.

It is worth pointing out that according to Table 2 it is sometimes possible
to reduce the size of the spinors (that is, as representations of the Spin group)
in ways that are not reflected in the above tables. For example, when s−t=1
(mod 8), it is possible to have real spinors, even though pinors are complex. Holo-
nomy cognoscenti will immediately recall that the unique half-spin representation
of Spin(9) is real and sixteen-dimensional; whereas pinors in 9+0 dimensions are
complex sixteen-dimensional. Evidently the real and imaginary parts of the pinors
transform into each other under the even subalgebra C`(9, 0)even, whereas the in-
dividual Γ-matrices mix them. In other words, there is a C`(9, 0)even-invariant real
structure in the pinor representation, which however is not invariant under the full
Clifford algebra. A similar situation arises for s−t=5 (mod 8), when there is a
C`(s, t)even-invariant quaternionic structure. Spinors in these signatures are thus
quaternionic, whereas the pinors remain complex.
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