
M341 Ordinary Differential Equations
(Autumn 2000/Spring 2001)

Answers to selected problems

Here are answers and some solutions to selected problems.

1.4 These systems decouple:

(a) x(t) = (k1e
t, k2e

t, k3e
t),

(b) x(t) = (k1e
t, k2e

−2t, k3), and

(c) x(t) = (k1e
t, k2e

−2t, k3e
2t).

1.5 (a, b, c) = (1, 1, 3).

1.7 This is very similar to the case n = 1 discussed in the lecture. Since the
matrix is diagonal, the equation decouples into n equations: x′i = aixi for
i = 1, . . . , n where the ai are the diagonal entries of A. We now apply the
result for n = 1 derived in the lecture. The unique solution is

xi(t) = xi(0)eait .

1.8 From the previous problem, the most general solution of this equation is
xi(t) = xi(0)eait, where the ai are the diagonal entries of A. A necessary
and sufficient condition that all solutions satisfy limt→∞ x(t) = 0 is that
limt→∞ eait = 0 for all i, which in turn force the ai to be negative (or, if
complex, to have negative real parts).

1.10 (b) Any solutions u, v such that u(0) and v(0) are linearly independent.

2.1 A force field F given by F (x, y) = (Fx, Fy) is conservative if and only Fx =
∂V/∂x and Fy = ∂V/∂y, for some function V :

� 2 → �
. A necessary (and

in this case sufficient) condition for this to be the case is the commutativity
of the partial derivatives: ∂Fx/∂y = ∂Fy/∂x. Clearly (a) and (c) satisfy
this, but (b) does not.

For (a), we have that (∂V/∂x, ∂V/∂y) = (x2, 2y2). Therefore (up to a
constant of integration) V (x, y) = 1

3x
3 + 2

3y
3.

Similarly for (c), (∂V/∂x, ∂V/∂y) = (−x, 0), so that (again up to a con-
stant) V (x, y) = − 1

2x
2.

2.4 (c) is gradient with function U(x, y) = (x2 − y2)/2. It is also hamiltonian
with function H(x, y) = −xy.

2.6 The vector field F (x, y) = (Fx, Fy) is gradient if Fx = ∂U/∂x and Fy =
∂U/∂y for some function U . A necessary (and sufficient in this case)
condition for the existence of U is that ∂Fx/∂y = ∂Fy/∂x. Applying
this to the vector field in the problem, this condition implies b = c. The
function U is then given (up to a constant) by U(x, y) = 1

2ax
2+bxy+ 1

2dy
2.

On the other hand, F (x, y) = (Fx, Fy) is hamiltonian if Fx = ∂H/∂y
and Fy = −∂H/∂x for some function H . A necessary (and sufficient)
condition for the existence of H is that ∂Fx/∂x+ ∂Fy/∂y = 0. Applying
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this to the vector field in the problem, this condition implies a = −d. The
hamiltonian function is (up to a constant) H(x, y) = 1

2 by
2 + axy − 1

2cx
2.

Finally, it is both gradient and hamiltonian if both a = −d and b = c:
F (x, y) = (ax+ by, bx− ay).

2.7 Although it was not asked, we first show that any two points on the sphere
SR of radius R in

� n can be joined by a curve on the sphere. Indeed, let
x and y be two points on SR; i.e., ‖x‖ = ‖y‖ = R. Let c : [0, 1] → � n

be the curve in
� n defined by c(t) = ty + (1 − t)x. This is a straight line

joining x and y. Suppose first that c(t) does not pass by the origin. Now,
consider the new curve γ : [0, 1] → � n given by

γ(t) =
Rc(t)

‖c(t)‖ .

Clearly ‖γ(t)‖ = R for all t, hence it is a curve on the sphere, and moreover
γ(0) = c(0) = x and γ(1) = c(1) = y. If c(t) passes by the origin, just
deform it a little so that it does not (it will stop being a straight line, but
that’s OK) and define γ in the same way. Alternatively, pick a third point
z on the sphere and join x to z and z to y by the above method. (The
curve γ(t) can be interpreted geometrically as the projection of the curve
c(t) onto the sphere. Indeed, imagine a source of light at the origin and a
spherical screen at radius R. Then γ(t) is the projection onto that screen
of the straight line c(t). This makes sense provided that c(t) does not pass
through the origin.)

To show that V is constant on the sphere SR we will show that it takes the
same value on any two points. Let x, y be any two points on the sphere
and let γ : [0, 1] → � n be any curve on the sphere SR joining them. Since
γ lies on the sphere, ‖γ(t)‖ = R for all t. We will show that the potential
V is constant along γ, whence it takes the same value at x and at y. Since
x and y are arbitrary, we are done.

Let V ◦ γ : [0, 1] → �
be the composition t 7→ V (γ(t)). Differentiating

with respect to t we find

dV (γ(t))

dt
= 〈gradV (γ(t)), γ′(t)〉 (by the chain rule)

= −〈F (γ(t)), γ′(t)〉 (since F = − gradV )

= −h(γ(t)) 〈γ(t), γ ′(t)〉 (since F is central)

= − 1
2h(γ(t))

d

dt
‖γ(t)‖2 (by the Leibniz rule)

= 0 , (since ‖γ(t)‖2 = R2 for all t.)

2.8 The hamiltonian functions are as follows:

(a) H(x, y) = 1
2y

2 + (x− 1)2,

(b) H(x, y) = x2 − xy + y2,

(c) H(x, y) = x2 − 3xy + y2, and

(d) H(x, y) = 1
2 (x− y)2.
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2.9 The gradient functions are the negative of the hamiltonian functions in
the previous exercise.

3.1 (a) (x(t), y(t)) = (0, 3e2t).

(b) First of all, because the initial conditions are given at t = 1, it is
convenient to define x(t) = x1(t + 1) and y(t) = x2(t + 1). In this
way the initial value problem becomes

(

x′

y′

)

=

(

2 1
1 1

)(

x
y

) (

x(0)
y(0)

)

=

(

1
1

)

.

The characteristic polynomial of the matrix A defining the vector
field is pA(λ) = λ2 − 3λ + 1, whose roots are λ± = 1

2 (3 ±
√

5).
The eigenvectors corresponding to these eigenvalues are found to be,
respectively, v± = ( 1

2 (1 ±
√

5), 1). Let S−1 denote the matrix whose
columns are v− and v+ respectively. One has

S =
1√
5

(

−1 1
2 (
√

5 + 1)

1 1
2 (
√

5 − 1)

)

and S−1 =

(

1
2 (1 −

√
5) 1

2 (1 +
√

5)
1 1

)

.

As discussed in Lecture, (x(t), y(t)) is found by
(

x(t)
y(t)

)

= S−1

(

eλ−t 0
0 eλ+t

)

S

(

1
1

)

,

which after a little bit of simplification becomes

x(t) = e3t/2
(

cosh
√

5
2 t+ 3√

5
sinh

√
5

2 t
)

y(t) = e3t/2
(

cosh
√

5
2 t+ 1√

5
sinh

√
5

2 t
)

.

Finally we solve for x1 and x2 by shifting t to t− 1.

3.2 A =

(

1 1
2 0

)

.

3.4 The eigenvalues should be positive.

3.6 (b) b > 0 and therefore c < b2/4.

3.7 (a,c) The general solution of this system will be a linear combination

x(t) = c1e
λt

(

1
0

)

+ c2e
µt

(

1
1

)

.

If c1 = c2 = 0, the solution curve is constant: x(t) = 0 for any choice of λ
and µ. From now on assume that this is not the case.

If 0 < λ < µ, limt→∞ ‖x(t)‖ is unbounded. If c2 6= 0, the solution curves
asymptotically become straight lines with direction ±(1, 1), whereas if
c2 = 0 the solutions are straight lines with direction ±(1, 0) for all t.

If λ < µ < 0, then limt→∞ ‖x(t)‖ = 0. As t → ∞, the solution curves
approach the origin along the ±(1, 1) directions provided that c2 6= 0. If
c2 = 0, then the solution curves are straight lines coming from the ±(1, 0)
directions.

The phase portraits can be gleaned from the plots of the vector fields
which are appended to these solutions.
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3.8 By complex conjugating the characteristic polynomial, prove that if λ is
a root, then so is its complex conjugate λ̄.

3.9 (d) The characteristic polynomial of A is pA(λ) = λ2 −2λ+5, whence the
roots are λ± = 1± 2i, where i =

√
−1, with eigenvectors (±i, 1). Forming

(the inverse of) the diagonalising matrix S−1 and inverting to find S, we
obtain

S−1 =

(

i −i
1 1

)

=⇒ S =
1

2

(

−i 1
i 1

)

.

The solution of the initial value problem is therefore

x(t) = S−1

(

etei2t 0
0 ete−i2t

)

S

(

3
−9

)

= 3et

(

cos 2t+ 3 sin 2t
sin 2t− 3 cos 2t

)

.

The phase diagram consists of counterclockwise spirals going away from
the origin, as can be gleaned by the sketch of the vector field shown in the
appended figure.

3.14 (a) Introduce the new basis (1, 0, 0), (0,−
√

2,
√

2) and (1,−2, 1), and
new coordinates (y1, y2, y3) related to the old coordinates (x1, x2, x3)
by

x1 = y1 + y3 x2 = −
√

2y2 − 2y3 x3 =
√

2y2 − y3 .

In the new coordinates the differential equation becomes

y′1 = y1 y′2 = −
√

2y3 y′3 =
√

2y2 ,

whose general solution is

y1 = c3e
t

y2 = c1 cos(
√

2t) + c2 sin(
√

2t)

y3 = −c2 cos(
√

2t) + c1 sin(
√

2t) ,

where (c1, c2, c3) are three arbitrary constants. In terms of the orig-
inal coordinates,

x1 = c3e
t − c2 cos(

√
2t) + c1 sin(

√
2t)

x2 = (2c2 − c1
√

2) cos(
√

2t) − (c2
√

2 + 2c1) sin(
√

2t)

x3 = (c2 + c1
√

2) cos(
√

2t) + (c2
√

2 − c1) sin(
√

2t) .

3.15 Let aij(t) and bij(t) be the (ij) entries of A(t) and B(t). The (ij) entry
of the matrix product is given by

n
∑

k=1

aik(t)bkj(t) .

Since the derivative acts on a matrix entry-wise, the result follows from
linearity of the derivative and the product rule on functions:

(

n
∑

k=1

aik(t)bkj(t)

)′

=
n
∑

k=1

(

a′ik(t)bkj(t) + aik(t)b′kj(t)
)

.
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The second part just follows by taking the derivative of the identity:
AA−1 = I , so that

A′A−1 +A
(

A−1
)′

= 0 ,

which implies the result we wanted to show.

3.22 (a)
x(t) = (c2 − tc1)e

2t

y(t) = c1e
2t

(b)
x(t) = e2t(c1 cos t− c2 sin t)

y(t) = e2t(c2 cos t+ c1 sin t)

3.23 (a)
x(t) = (2t+ 1)e2t

y(t) = −2e2t

(b)
x(t) = 2e2t sin t

y(t) = −2e2t cos t

3.25 Consider the restriction of A to the eigenspace with eigenvalue λ and use
Problem 3.24.

3.29 (a) sink; (b) source; (c) source; (d) none of these; (e) none of these.

3.30 (a) Only if a < −2 are there any values of such k and in this case for
k >

√
−2a.

(b) No values of k.

3.33 Such a T has a real eigenvalue. Now study T on this eigenspace.

3.35 (a) x(t) = 1
17 (−4 cos t+ sin t) − 4

17e
4t + e4tc.

(b) x(t) = − 1
16 (4t+ 1) + 1

16e
4t + e4tc.

(c) x(t) = c1 cos t+ c2 sin t and y(t) = −c1 sin t+ c2 cos t+ 2t.

3.40 The above second-order homogeneous equation is equivalent to the first-
order system x′ = Ax where

x = (s, s′) and A =

(

0 1
−b −a

)

.

The characteristic polynomial of A is

pA(λ) = λ2 + aλ+ b ,

whose roots are given by

−a±
√
a2 − 4b

2
.

Introduce the discriminant ∆ = a2 − 4b. We must distinguish several
cases:
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∆ > 0. There are two distinct real roots λ < µ, say. The general
solution takes the form

s(t) = c1e
λt + c2e

µt = eλt
(

c1 + c2e
(µ−λ)t

)

.

Clearly the equation s(t) = 0 has at most one solution.

∆ = 0. In this case there is one real root, λ = −a/2 which is repeated.
Because A is never diagonal, the system describes an improper node,
whence the general solution takes the form

s(t) = eλt (c1 + c2t) .

The equation s(t) = 0 has again at most one solution.

∆ < 0. In this case there are two distinct complex conjugate eigen-
values: α± iβ, say, with β 6= 0. The general solution is given by

s(t) = eαt (c1 cosβt+ c2 sinβt) .

In this case the equation s(t) = 0 has always an infinite number of
solutions, due to the periodicity of the trigonometric functions.

Therefore the answers are:

(a) a2 ≥ 4b

(b) a2 ≥ 4b

(c) a2 < 4b

3.42 a = 0 and b > 0 and the period is
√
b/2π.

4.1 (a) f(x) = x+ 2 and x0(t) = 2. Then

x1(t) = 2 +

∫ t

0

f(x0(s))ds = 2 +

∫ t

0

4ds = 2 + 4t .

Iterating,

x2(t) = 2 +

∫ t

0

(4 + 4s)ds = 2 + 4t+ 2t2 .

Once again,

x3(t) = 2 +

∫ t

0

(4 + 4s+ 2s2)ds = 2 + 4t+ 2t2 + 2
3 t

3 ;

whence by induction

xn(t) = 4

(

1 + t+
t2

2!
+ · · · + tn

n!

)

− 2 .

Hence
x(t) = lim

n→∞
xn(t) = 4e2t − 2 .
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(b) Here x0(t) = 0, x1(t) =
∫ t

0
0ds = 0 and, in fact, xn(t) = 0 for all n,

whence in the limit x(t) = 0.

(c) x(t) = t−3.

(e) Integrate the equation

x′(s) = 1/(2x(s))

from s = 1 to s = t to obtain

x(t) = 1 +

∫ t

1

ds

2x(s)
.

To set up the Picard iteration scheme, let x0(t) = 1 be the constant
function. Then

x1(t) = 1 +

∫ t

1

ds

2
=

1 + t

2
.

Similarly,

x2(t) = 1 +

∫ t

1

ds

1 + s
= 1 + log ((1 + t)/2) .

The next term is already not an elementary function.

This equation is separable and the solution is x(t) =
√
t, valid for

t ≥ 0.

4.2 If detA = 0, then there there is a nonzero vector v such that Av = 0.
Every point in the line containing v is a critical point. Clearly they are
not isolated.

4.8 Each of these systems is linear and has an isolated critical point, so the
classification that we arrived at in lecture applies. Recall that if we write
the system in matrix form:

x′ = Ax ,

then we can identify the type of critical point from the values of the trace
τ and the determinant ∆ of the matrix A.

(a) In this case τ = 5, ∆ = 6. In this case τ 2 > 4∆, whence we are below
the critical parabola. This means we have an unstable node.

(b) We have τ = 4, ∆ = 3, so that again τ 2 > 4∆. Again we have an
unstable node.

(c) Now τ = 0, ∆ = −1. Again τ 2 > 4∆, so we are below the critical
parabola. This means we have an unstable saddle point.

(d) In this case τ = 0, ∆ = 9. In this case τ 2 < 4∆, whence we are above
the critical parabola. This means we have a stable centre.

(e) In this case τ = −6, ∆ = 9. We are on the critical parabola, since
τ2 = 4∆. Because the matrix is not proportional to the identity
matrix, we have a stable improper node.

(f) Finally, we find τ = 6, ∆ = 18, and τ 2 < 4∆, whence we are above
the critical parabola. We have an unstable spiral.
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4.9 We write the equation in matrix form

x′ = Ax+B , with A =

(

a b
c d

)

and B =

(

e
f

)

.

(a) The condition ad 6= bc says that A is invertible; hence there is a
unique critical point x0 given by

x0 = −A−1B .

(b) Introducing x̄ := x− x0, we can write the above system as

x̄ = Ax̄ .

Notice that the same matrix A appears as in the original system;
hence ā = a, b̄ = b, etc. Since A is invertible, the new system has an
isolated critical point at the origin.

(c) This system has

A =

(

2 −2
11 −8

)

and B =

(

10
49

)

.

We check that detA = 6, whence there is an isolated critical point
at

x0 =

(

−3
2

)

.

The trace τ and determinant ∆ of A are given by τ = −6 and ∆ = 6.
This means that τ2 > 4∆, whence it lies below the critical parabola.
This means that the critical point is a stable node.

4.10 (a) If A is symmetric and positive-definite, it is diagonalisable and both
eigenvalues are positive. This means that all equilibria are sources,
hence unstable. We can have a focus or a node.

(b) As before but now both eigenvalues are negative. The equilibria are
sinks, hence asymptotically stable: we can have a focus or a node.

(c) If A is skew-symmetric, and assuming that it is not identically zero,
there is only one possibility: a neutrally stable centre.

(d) If A = B+C where B is symmetric negative-definite, and C is skew-
symmetric (and assumed nonzero), we see that trA = trB < 0, since
C is traceless. At the same time, detA = detB + detC > 0 since
both B and C have positive determinant. As a result all critical
points are stable: one can have a spiral or a node.

4.12 The two systems can be written as follows:
{

x′ = y + εx(x2 + y2)

y′ = −x+ εy(x2 + y2)
,

where ε = 1 for the first system and −1 for the second system. The critical
points are given by the solutions to the system of equations:

{

y + εx(x2 + y2) = 0

−x+ εy(x2 + y2) = 0
.
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Multiplying the first equation by y and the second by x and subtracting
one equation from the other, we obtain x2 + y2 = 0, whence the only
possible critical point is the origin. We notice that the origin is indeed a
critical point. Both systems linearise to the same system:

{

x′ = y

y′ = −x
,

which corresponds to a neutrally stable centre. We now solve the nonlinear
system by introducing polar coordinates: x = r cos θ and y = r sin θ. The
resulting equations decouple:

r′ = εr3 and θ′ = −1 ,

and are solved by

θ(t) = θ(0) − t and r(t) =
r(0)

√

1 − 2εr(0)2t
.

Clearly, if ε = 1, then r(t) increases, whence the critical point is unstable.
On the other hand, if ε = −1, r(t) decreases and the critical point is
stable. Notice that in the unstable case we cannot define the trajectory
for arbitrarily large t; indeed, 0 ≤ t < 1

2r(0)−2. In other words, the vector
field is incomplete, since it reaches the limit point in finite time.

4.14 (a) The equation is clearly equivalent to

{

x′ = y

y′ = −ω2x− 2µy
.

Write it in matrix form

x′ = Ax where A =

(

0 1
−ω2 −2µ

)

.

The trace τ of the matrix is −2µ, whereas the determinant ∆ is
ω2 > 0. Hence A is invertible and therefore there is a unique critical
point at the origin.

(b) The nature of the critical point depends on µ and ω. There are four
cases to consider:

(i) Here µ = 0. Hence τ = 0 and ∆ = ω2. Here τ2 < 4∆, whence
we are above the critical parabola and we have a stable centre.

(i) Here 0 < µ < ω. Therefore τ −−2µ < 0 and ∆ = ω2 > 0. Also
τ2 = 4µ2 < 4∆, so we are above the critical parabola and we
have a stable spiral.

(iii) Here τ2 = 4∆, so we are on the critical parabola, while again
having τ < 0 and δ > 0. The matrix is clearly not proportional
to the identity, so that what we have is a stable improper node.

(iv) Now µ > ω, so that we are below the critical parabola but still
within the zone of stability: so what we have is a stable node.
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4.17 The system
{

x′ = x+ y − x(x2 + y2)

y′ = −x+ y − y(x2 + y2)

has a unique critical point at the origin. Linearising the system there we
see that in matrix form it is given by

x′ = Ax where A =

(

1 1
−1 1

)

.

The trace τ = 2 and the determinant ∆ = 2, whence the critical point is
an unstable node. Nevertheless the nonlinear system has a limit cycle. To
see this notice that multiplying the first equation by x and the second by
y, we obtain that

Ė = 2E(1 −E) , where E = x2 + y2 .

This shows that Ė = 0 when E = 0 and E = 1. The former case corre-
sponds to the critical point, whereas the latter corresponds to the limit
cycle. Notice that when 0 < E < 1, Ė > 0 so that solutions which start
within the unit disk evolve outwards towards the boundary, whereas when
E > 1, Ė < 0 so that solutions which start outside the unit disk evolve
inwards towards the same boundary. We can solve the system in polar co-
ordinates. Noticing that E = r2, we have that ṙ = r(1− r2) and similarly
one obtains that θ̇ = −1. These equations can be integrated to yield:

θ(t) = θ(0) − t and r(t) =
r(0)

√

r(0)2 − (r(0)2 − 1)e−2t
.

Hence we see that if r(0) < 1 the solutions spiral out towards r = 1,
whereas if r(0) > 1 they spiral in towards r = 1.

4.18 Multiply the first equation by x and the second by y and add the two
equations, to obtain

r′ = r
(

3 − er2
)

, where r2 = x2 + y2 .

This says that r′ = 0 when r =
√

log 3, so that this is where expect
the periodic solution. (There is a trivial periodic solution at the origin,
which is the only critical point of the system; but this is not what the
problem asks!) Multiplying the first equation by y and the second by x
and subtracting the two equations results in

θ′ = 1 =⇒ θ(t) = θ(0) + t .

Therefore the unique solution with initial conditions (r(0) =
√

log 3, θ(0))
will have constant r(t) ≡

√
log 3 and will have period 2π.

4.19 This is a conservative system. Multiplying the equation by x′ we notice
that the result is simply Ė where the energy E is given by

E := 1
2 (x′)2 + 1

2x
2 − 1

3λx
3 − x ,
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from where we read off the potential function:

U := 1
2x

2 − 1
3λx

3 − x .

Critical points occur on the x-axis, at the stationary points of the poten-
tial:

dU

dx

∣

∣

∣

∣

x0

= 0 =⇒ x0 =
1 ±

√
1 − 4λ

2λ
.

There are two regimes of interest: 0 < λ < 1
4 and λ > 1

4 . In the latter
regime there are no (real) critical points, whereas in the former there are
two critical points. There are no closed orbits in the case of no critical
points. For 0 < λ < 1

4 , the potential function is a minimum at x− :=
1−

√
1−4λ

2λ and a maximum at x+ := 1+
√

1−4λ
2λ . This means that x− is a

stable centre and x+ is an unstable saddle point. There will be closed
trajectories around the centre.

4.20 (a) If x is a solution to the system x′ = Ax then taking the transpose of
this equation we see that xT is a solution of (xT )′ = xT AT . There-
fore,

Ė = (xTx)′ = (xT )′x+ xTx′ = xTATx+ xTAx

= xT (AT + A)x ,

which vanishes if A is skew-symmetric.

(b) Similarly, if now E = xTMx, then

Ė = (xTMx)′ = (xT )′Mx+ xTMx′

= xTATMx+ xTMAx = xT (ATM +MA)x ,

which, if ATM +MA is negative-definite, implies that Ė < 0. If in
addition M is positive-definite, then E > 0 everywhere except at the
origin x = 0. This means that E is a Liapunov function and (at least
when n = 2) we have seen that the origin is then an asymptotically
stable critical point.

(c) This part of the problem is a simple application of the fact that if
a matrix M is positive or negative-definite (or semi-definite), then
so is STMS for any invertible matrix S. This is very easy to prove.
To be concrete, let us do the positive-definite case. By definition, M
is positive-definite if and only xTMx > 0 for all nonzero vectors x,
hence in particular for vectors x of the form x = Sy, where S in in-
vertible. (Every x is of this form: simply take y = S−1x.) Therefore,
yTSTMSy > 0 for all y, whence STMS is positive-definite.

Let us now apply this fact to solve this part of the problem. By
hypothesis there exists a positive-definite matrix M such that MA+
ATM is negative (semi-)definite. Substituting A = S−1NS into the
previous expression we deduce that

MS−1NS + STNT (S−1)TM

11



is negative (semi-)definite. Since S is invertible, we can rewrite the
above expression as follows

ST
(

(S−1)TMS−1N +NT (S−1)TMS−1
)

S .

Now, by the remarks above negative (semi-)definiteness of the above
matrix is equivalent to the matrix

(S−1)TMS−1N +NT (S−1)TMS−1

being negative (semi-)definite, and by the same token that the matrix
P := (S−1)TMS−1 is positive-definite, since so is M .

(d) The above result simply states that the existence of a Liapunov func-
tion is independent of the coordinates used to write it down. In other
words, to analyse the Liapunov stability of the critical points of a lin-
ear system, we are free to make a linear change of variables to take
the matrix A defining the system to one of the normal forms we clas-
sified in class. We now discuss each normal form N in turn and find
a positive-definite matrix P such that PN +NTP is negative (semi-
)definite. The corresponding Liapunov function is then E = xTPx.

(i) Consider first the case of a diagonalisable matrix with real eigen-
values:

N =

(

λ1 0
0 λ2

)

with λ2 ≤ λ1 < 0.

This matrix is already symmetric and negative-definite. So that
we can take P = I , the identity matrix.

(ii) Consider now the case of a non-diagonalisable matrix with com-
plex eigenvalues:

N =

(

α β
−β α

)

with α ≤ 0.

Notice that N + NT is negative semi-definite, whence we can
again take P = I .

(iii) Finally we consider the case of a non-diagonalisable matrix with
one real eigenvalue with multiplicity 2:

N =

(

λ 0
1 λ

)

with λ < 0.

In this case, we can try the following symmetric matrix

P =

(

µ2 0
0 1

)

=⇒ PN +NTP =

(

2µ2λ 1
1 2λ

)

.

This matrix is negative-definite provided that its determinant is
positive, which requires 2µλ > 1.

4.21 Consider the second order equation

x′′ + κx′ + x = 0 .
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(a) This equation is equivalent to the following system:

{

x′ = y

y′ = −x− κy
,

which is a linear system with a unique critical point at the origin.

(b) Consider E(x, y) = x2 + y2. Its derivative along trajectories is given
by

Ė(x, y) =
∂E

∂x
y +

∂E

∂y
(−x− κy) = 2xy − 2xy − 2κy2 ≤ 0 ,

hence the origin is stable.

(c) We can analyse the stability properties of the origin directly since
the system is linear and has an isolated critical point at the origin.
The matrix defining the system is

A =

(

0 1
−1 −κ

)

,

which has trace τ = −κ and determinant ∆ = 1. We can therefore
recognise four distinct ranges of values of κ ≥ 0:

κ = 0 We have (τ,∆) = (0, 1), so the origin is a centre.

0 < κ < 2 We now have (τ,∆) = (−κ, 1) and κ2 < 4, whence the origin is
a stable spiral.

κ = 2 Here τ2 = 4∆, and we have a stable improper node on the critical
parabola.

κ > 2 Finally we have τ2 > 4∆, whence we are below the critical
parabola but still in the stable region. Therefore the origin is
a stable node.

4.22 (a) Consider the system

{

x′ = −3x3 − y

y′ = x5 − 2y3

Some experimentation leads us to consider the function E(x, y) =
1
6x

6+ 1
2y

2, which vanishes at the origin, is positive-definite everywhere
else and whose derivative along a trajectory is given by

Ė(x, y) = −3x8 − 2y4 ,

which is negative-definite away from the origin. Hence the origin is
an asymptotically stable critical point.

(b) Some experimentation leads us to the function E(x, y) = x2 + y2,
which vanishes at the origin, is positive-definite everywhere else, and
decreases along trajectories:

Ė(x, y) = −4x2 − 2y4 .

Hence by Liapunov stability, the origin is asymptotically stable.
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(c) We now have the system
{

x′ = y2 + xy2 − x3

y′ = −xy + x2y − y3

Again a little experimentation suggests that we try E(x, y) = x2+y2,
which is again decreasing:

Ė(x, y) = −2(x2 + y2)2 .

(d) Finally we have the system
{

x′ = x3y + x2y3 − x5

y′ = −2x4 − 6x3y2 − 2y5

After a little thought we are persuaded to consider the function
E(x, y) = x2 + 1

2y
2, which is clearly a Liapunov function and, in

fact, decreasing:
Ė(x, y) = −2(x3 + y3)2 .

Hence the origin is asymptotically stable.

4.23 The van der Pol equation is equivalent to the following system
{

x′ = y

y′ = −x+ µy(1 − x2)
,

which clearly has an isolated critical point at the origin. The system is
almost linear, so we can try to use linearisation. The linear system is given
by

x′ = Ax with A =

(

0 1
−1 µ

)

,

which has determinant 1 and trace µ. Therefore the linear system will be
unstable for µ > 0, asymptotically stable for µ < 0 and neutrally stable
for µ = 0. Using Poincaré’s theorem, we therefore know that the almost
linear system will be asymptotically stable for µ < 0 and unstable for
µ > 0. For µ = 0, the theorem does not tell us anything, but in this
case, the nonlinear system reduces to the linear one, and therefore it is
neutrally stable.

Alternatively one can use Liapunov (in)stability. Consider the function
E(x, y) = x2 + y2. This function vanishes at the origin and is positive
definite everywhere else on the phase plane. Computing its variation along
a solution curve, we find

Ė(x, y) = 2xy + 2y
(

−x+ µy(1 − x2)
)

= 2µy2(1 − x2) .

Therefore in the punctured unit disk (0 < x2 + y2 < 1), Ė is positive-
definite if µ > 0 and negative-definite if µ < 0. Using the Liapunov
stability and instability theorems we deduce that the origin is unstable
for µ > 0 and asymptotically stable for µ < 0. For µ = 0, Ė = 0 and
the system is stable. Since it reduces to a linear system, we see that it is
indeed neutrally stable.

14



4.24 Consider the system

{

x′ = −y + x f(x, y)

y′ = x+ y f(x, y)
,

where f is continuous and continuously differentiable on some disk D
centred at the origin.

(a) The critical points are the zeros of the vector field characterising the
system:

y = xf(x, y) and yf(x, y) = −x .
Plugging the first equation into the second, we find that x(1+f(x, y)2) =
0, which implies that x = 0 and hence that y = 0, by the first equa-
tion. In other words, the origin is the unique critical point of this
system.

(b) Consider the function E(x, y) = x2+y2. It vanishes at the origin and
is positive-definite everywhere else. Its derivative along a trajectory
is given by

Ė(x, y) = 2(x2 + y2)f(x, y) .

Hence if f(x, y) < 0 in the punctured disk D\{(0, 0)}, then E ′ is
decreasing and by Liapunov stability, the origin is asymptotically
stable.

(Notice that it follows from Liapunov instability that if f(x, y) > 0
in the punctured disk, then the origin would be unstable.)

4.25 For each of these systems, we can read off the equation satisfied by the
radial coordinate r, from the relation rr′ = xx′ + yy′.

(b) The radial equation in this case is

r′ = r sin(1/r) .

This says that there is a critical point at r = 0 and an infinite number
of limit cycles at r = Rn := 1/(nπ). For R2n > r > R2n+1 we see
that r′ > 0, whereas for R2n−1 > r > R2n, r′ < 0. Hence the critical
point is unstable, the limit cycles at r = R2n are stable and the ones
at r = R2n+1 are unstable.

(c) The radial equation is now

r′ = r(r3 − r) = r2(r2 − 1) .

This says that there is a critical point at r = 0 and a limit cycle at
r = 1. For r < 1 we have r′ < 0, whereas for r > 1 we have r′ > 0. In
other words, the critical point is asymptotically stable and the limit
cycle at r = 1 is unstable.

(d) Finally, the radial equation is r′ = sin r, which says that there is
a critical point at r = 0 and limit cycles at r = Rn := nπ. For
R2n−1 < r < R2n, r′ < 0; whereas for R2n < r < R2n+1, r

′ > 0. In
other words, the critical point is unstable, the limit cycles at r = R2n

are unstable, whereas the ones at r = R2n−1 are stable.
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4.26 These equations can be rewritten as a first order equation
{

x′ = u(x, y)

y′ = v(x, y)
.

(a) This equation is equivalent to the system

{

x′ = y

y′ = −y − y5 + 3x3
,

which clearly has a unique critical point at the origin. We notice that
the quantity

∂f

∂x
+
∂g

∂y
= 0 + (−1 − 5y4) < 0 ,

whence by the Bendixson negative criterion, there are no limit cycles
anywhere in the phase plane.

(b) This equation is equivalent to the equation

{

x′ = y

y′ = y(x2 + 1) − x5
,

which has a unique critical point at the origin. The Bendixson nega-
tive criterion says that there are no limit cycles, since the divergence
of the vector field

∂u

∂x
+
∂v

∂y
= 0 + (x2 + 1) > 0

is always positive.

(c) The equivalent equation is now given by

{

x′ = y

y′ = 1 + y2 + x2
.

This system has no critical points, hence it cannot have limit cycles
either.

4.27 (a) Consider the function E(x, y) = 2x2 + y2. It is clearly positive ev-
erywhere but at the origin. Its derivative along trajectories is given
by

Ė(x, y) = 4x(2x− y − 2x3 − 3xy2) + 2y(2x+ 4y − 4y3 − 2x2y)

= 8(x2 + y2)
(

1 − (x2 + y2)
)

.

Therefore Ė(x, y) > 0 when x2 + y2 < 1 and Ė(x, y) < 0 when
x2 + y2 > 1. Consider therefore the region

R =
{

(x, y) | 1
2 ≤ E(x, y) ≤ 2

}

.

It is clearly closed and bounded and contains the unit circle x2+y2 =
1. The unit circle separates R into two regions with the circle as a
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common boundary component to both. If the trajectory starts in the
region inside the unit circle, then Ė > 0 whereas if it starts in the
region outside the unit circle, Ė < 0. Hence the trajectory cannot
leave the region R. If we prove that the region R has no equilibria,
then it would follow from the Poincaré–Bendixson theorem that R
contains a limit cycle.

In fact, the above vector field has only one equilibrium point: at the
origin. To see this we can argue as follows. From the expression
for Ė(x, y) it follows that the only equilibria which are not at the
origin must lie in the unit circle x2 + y2 = 1. Let the vector field
be f(x, y) = (u(x, y), v(x, y)). Then substituting x2 = 1 − y2 in the
equation u(x, y) = 0 we obtain the equation y(1 + xy) = 0. This
means that either y = 0 or 1 + xy = 0. The equation v(x, 0) = 0
forces x = 0, hence the only possible equilibria away from the origin
lie in the intersection of the hyperbola xy = −1 and the unit circle
x2 + y2 = 1, which is empty.

(b) The system is now

{

x′ = 8x− 2y − 4x3 − 2xy2

y′ = x+ 4y − 2y3 − 3x2y
.

Consider the function E(x, y) = x2 + 2y2. Its derivative along tra-
jectories is

E′(x, y) = 2x(8x− 2y − 4x3 − 2xy2) + 4y(x+ 4y − 2y3 − 3x2y)

= 8(x2 + y2)
(

2 − (x2 + y2)
)

.

Therefore E is decreasing for x2 +y2 > 2 and increasing for x2 +y2 <
2. This suggests that we consider the region

R =
{

(x, y) | 3
2 ≤ E(x, y) ≤ 3

}

.

It is clearly closed and bounded and contains the circle x2 + y2 =
2, which separates R into two regions with the circle as common
boundary. If the trajectory starts in the region inside the circle, then
E′ > 0 whereas if it starts in the region outside the circle, E ′ < 0.
Hence the trajectory cannot leave the region R, and again applying
the Poincaré–Bendixson theorem, we conclude that R contains a limit
cycle.

5.1 Tfn
→ δ in the (weak) distributional sense means that for all ϕ ∈ D,

〈Tfn
, ϕ〉 → 〈δ, ϕ〉 = ϕ(0) as real numbers. So we start by comparing them

〈Tfn
, ϕ〉 − 〈δ, ϕ〉 =

∫ ∞

−∞
fn(t)ϕ(t) dt − ϕ(0)

=

∫ ∞

−∞
nf(nt)ϕ(t) dt−

∫ ∞

−∞
f(t)ϕ(0) dt

(s = nt) =

∫ ∞

−∞
f(s) [ϕ(s/n) − ϕ(0)] ds .
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This implies the estimate

|〈Tfn
, ϕ〉 − 〈δ, ϕ〉| ≤

∫ ∞

−∞
|f(s)| |ϕ(s/n) − ϕ(0)| ds .

Now given ε, choose R large enough so that
∫

|s|>R |f(s)|dt < ε. This

is possible because f is absolutely integrable. Similarly, choose δ small
enough so that |ϕ(t)−ϕ(0)| < ε whenever |t| < δ. This is possible because
of continuity of ϕ. Now take N such that N = dR/δe; that is, the smallest
integer greater than or equal to R/δ. Let us rewrite the above estimate as

|〈Tfn
, ϕ〉 − 〈δ, ϕ〉| ≤

∫ R

−R

|f(s)| |ϕ(s/n) − ϕ(0)| ds

+

∫

|s|>R

|f(s)| |ϕ(s/n) − ϕ(0)| ds

For the first term in the right-hand side we have

∫ R

−R

|f(s)| |ϕ(s/n) − ϕ(0)| ds ≤ max
|s|≤R

|ϕ(s/n) − ϕ(0)|
∫ ∞

−∞
|f(s)| ds .

Now for n ≥ N and |s| ≤ R, |s/n| ≤ R/N ≤ δ, whence

max
|s|≤R

|ϕ(s/n) − ϕ(0)| ≤ ε .

Similarly, for the second term we have

∫

|s|>R

|f(s)| |ϕ(s/n) − ϕ(0)| ds

≤ max
s

|ϕ(s/n) − ϕ(0)|
∫

|s|>R

|f(s)| ds

≤ εmax
s

|ϕ(s/n) − ϕ(0)| .

Because f is absolutely integrable,
∫∞
−∞ |f(t)| dt = C for some number C.

Similarly, because ϕ is a test function, it is bounded |ϕ(t)| ≤ K for some
K. Now using the triangle inequality max |ϕ(s/n) − ϕ(0)| ≤ 2K, whence
putting it all together we have

|〈Tfn
, ϕ〉 − 〈δ, ϕ〉| ≤ (C + 2K)ε ,

which can therefore be made as small as desired.

5.2 We need to show that for all test functions ϕ ∈ D,

〈

T ′
f − Tf ′ , ϕ

〉

= 0 .

By definition, 〈Tf ′ , ϕ〉 =
∫

f ′ϕ, whereas

〈

T ′
f , ϕ

〉

= −〈Tf , ϕ
′〉 = −

∫

fϕ′ .

The desired equality follows by integration by parts.
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5.3 Let Ha be the shifted Heaviside step function Ha(t) = H(t − a), and
let THa

be the corresponding regular distribution. By definition, for all
ϕ ∈ D,

〈

T ′
Ha
, ϕ
〉

= −〈THa
, ϕ′〉 = −

∫ ∞

−∞
Ha(t)ϕ′(t)dt

= −
∫ ∞

a

ϕ′(t)dt = −ϕ(t)

∣

∣

∣

∣

∞

a

= ϕ(a) = 〈δa, ϕ〉 ,

where we have used the fact that ϕ has compact support and the definition
of δa. Hence T ′

Ha
= δa.

5.4 Let f be a smooth function and T a distribution. Then we saw that fT
is a distribution. By definition, for all ϕ ∈ D, the derivative of fT is such
that

〈(fT )′, ϕ〉 = −〈fT, ϕ′〉
= −〈T, fϕ′〉
= −〈T, (fϕ)′ − f ′ϕ〉
= 〈T ′, fϕ〉 + 〈T, f ′ϕ〉
= 〈fT ′ + f ′T, ϕ〉 .

5.5 Following the definitions, for all ϕ ∈ D,

〈

fδ(n), ϕ
〉

=
〈

δ(n), fϕ
〉

= (−1)n
〈

δ, (fϕ)(n)
〉

= (−1)n (fϕ)
(n)

(0)

= (−1)n
n
∑

i=0

(

n

i

)

f (i)(0)ϕ(n−i)(0) ,

where we have used the Leibniz (product) rule. Now notice that the right-
hand side is simply

(−1)n
n
∑

i=0

(

n

i

)

f (i)(0)
〈

δ, ϕ(n−i)
〉

=

〈

n
∑

i=0

(−1)i

(

n

i

)

f (i)(0)δ(n−i), ϕ

〉

,

which yields the result. Now we specialise to obtain the two corollaries.
First, if f(t) = tm, then f (i)(0) = 0 unless i = m, and f (m)(0) = m!. This
immediately yields the first corollary. The second follows similarly: if now
f(t) = exp(−λt), then f (m)(0) = (−1)mλm, yielding the second.

5.6 Let f(t) = tk−1/(k − 1)!. Then we have to show that for all ϕ ∈ D,

〈

(f(t)TH)
(k)
, ϕ
〉

= 〈δ, ϕ〉 = ϕ(0) .
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By definition,
〈

(f(t)TH)
(k)
, ϕ
〉

= (−1)k
〈

f(t)TH , ϕ
(k)
〉

= (−1)k
〈

TH , f(t)ϕ(k)
〉

= (−1)k

∫ ∞

0

f(t)ϕ(k)(t) dt .

We now integrate by parts k − 1 times and notice that we do not pick
up any boundary terms because f (i)(0) = 0 for i 6= k − 1. In the end we
obtain

(−1)k(−1)k−1

∫ ∞

0

f (k−1)(t)ϕ′(t) dt = −
∫ ∞

0

ϕ′(t) dt

= −ϕ(t)

∣

∣

∣

∣

∞

0

= ϕ(0) .

5.7 By definition, if T ∈ D′ and for all ϕ ∈ D, we have

〈T ′′, ϕ〉 = 〈T, ϕ′′〉 .
In particular for T = Tf , with f given in the problem, we have

〈Tf , ϕ
′′〉 =

∫ ∞

−∞
f(t)ϕ′′(t) dt

= −
∫ −1

−∞
ϕ′′(t) dt+

∫ 1

−1

t ϕ′′(t) dt+

∫ ∞

1

ϕ′′(y) dt

= ϕ(−1) − ϕ(1)

= 〈δ−1 − δ1, ϕ〉 ,
in the notation of Problem 1. Therefore, we have that

T ′′
f = δ−1 − δ1 .

5.8 These equations are to be interpreted as distributions, of course. The first
equation says that for f(t) = |t|,

〈

T ′
f , ϕ

〉

= −〈Tf , ϕ
′〉

= −
∫ ∞

−∞
|t|ϕ′(t) dt

=

∫ 0

−∞
t ϕ′(t) dt−

∫ ∞

0

t ϕ′(t) dt

= −
∫ 0

−∞
ϕ(t) dt+

∫ ∞

0

ϕ(t) dt ,

where we have integrated by parts and dropped the boundary terms in
order to go from the third to the fourth lines. But notice that
∫ ∞

−∞
(H(t) −H(−t))ϕ(t) dt =

∫ ∞

−∞
H(t)ϕ(t) dt−

∫ ∞

−∞
H(−t)ϕ(t) dt

=

∫ ∞

0

ϕ(t) dt−
∫ 0

−∞
ϕ(t) dt .
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For the second equation we have that for f(t) = exp(−k|t|),
〈

T ′′
f , ϕ

〉

= 〈Tf , ϕ
′′〉

=

∫ 0

−∞
ekt ϕ′′(t) dt+

∫ ∞

0

e−kt ϕ′′(t) dt

= ektϕ′(t)

∣

∣

∣

∣

0

−∞
− kektϕ

∣

∣

∣

∣

0

−∞
+

∫ 0

−∞
k2 ekt ϕ(t) dt

+ e−ktϕ′(t)

∣

∣

∣

∣

∞

0

+ ke−ktϕ

∣

∣

∣

∣

∞

0

+

∫ ∞

0

k2 e−kt ϕ(t) dt

= −2kϕ(0) +

∫ ∞

−∞
k2 e−k|t| ϕ(t) dt

=
〈

−2kδ + k2Tf , ϕ
〉

.

This says that F (t) = −1/2k exp−k|t| is a fundamental solution for the
operator L = D2 − k2. To find the Green’s function we add to it any
function in the kernel of L in such a way that the resulting function G(t)
vanishes for all t < 0. The kernel of L is two-dimensional and has basis
exp±kt. Therefore the most general fundamental solution for L is given
by

− 1
2k e

−k|t| + c1e
−kt + c2e

kt .

Demanding that this function vanish for t < 0 fixes c1 = 0 and c2 = 1/2k,
whence the Green’s function is given by

G(t) =

{

0 for t < 0,
1
k sinh kt for t > 0.

A solution for the inhomogeneous equation Lx = f is then given by the
convolution G?f . For the function in question, since f(s) is only different
from zero for 0 < s < 1, we have to distinguish three regions: t < 0,
0 < t < 1 and t > 1. Clearly for t < 0 the fact that f(s) = 0 for s < 0
means that x(t) = 0. For 0 < t < 1, we have

(G ? f)(t) =

∫ t

0

G(t− s)sds =

∫ t

0

s

k
sinh k(t− s) ds .

Finally for t > 1 we have

(G ? f)(t) =

∫ 1

0

G(t− s)sds =

∫ 1

0

s

k
sinh k(t− s) ds .

Performing the integrals (you are allowed to use Maple if you want to,
although they are easy), a solution to the inhomogeneous equation is given
by

x(t) =











0 t ≤ 0
sinh kt

k3 − t
k2 0 < t ≤ 1

sinh kt
k3 + sinh k(1−t)

k3 − cosh k(1−t)
k2 t > 1

This is plotted below.
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Figure 1: x(t) and f(t) for −1 ≤ t ≤ 3.

5.9 As discussed in lecture, the Green’s function takes the formG(t) = g(t)H(t),
where g(t) is the unique solution to the linear homogeneous ODE Lg = 0
subject to the initial conditions g(0) = 0 and g′(0) = 1. It is trivial to
find g(t). We have to consider three cases

g(t) = 2e−at/2 sinh 1
2

√
a2 − 4bt√

a2 − 4b
for a2 > 4b

g(t) = 2e−at/2 sin 1
2

√
4b− a2t√

4b− a2
for a2 < 4b

g(t) = te−at/2 for a2 = 4b .

In our case, a = b = 1, whence a2 < 4b. The solution of the inhomogeneous
equation is given by the convolution of G and f :

x(t) =

∫ ∞

−∞
G(t− s) f(s) ds

=

∫ ∞

−∞
g(t− s)H(t− s) f(s) ds

=

∫ 1

0

g(t− s)H(t− s) ds

=

∫ 1

0

e−(t−s)/2 sin(t− s)
√

3/2√
3/2

H(t− s) ds .

We must distinguish three regimes t < 0, 0 ≤ t ≤ 1 and t > 1. Clearly
for t < 0 the integrand vanishes, whence so does the integral and x(t) = 0
here. For 0 ≤ t ≤ 1, we have

x(t) =

∫ t

0

e−(t−s)/2 sin(t− s)
√

3/2√
3/2

ds

= 1 − e−t/2

(

cos t
√

3/2 +
1√
3

sin t
√

3/2

)

.
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For t > 1, we have

x(t) =

∫ 1

0

e−(t−s)/2 sin(t− s)
√

3/2√
3/2

ds

= e−(t−1)/2 cos(t− 1)
√

3/2 − e−t/2 cos t
√

3/2

+ e−(t−1)/2 1√
3

sin(t− 1)
√

3/2 − e−t/2 1√
3

sin t
√

3/2 .

A plot of x(t) and f(t) is given below.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 2: x(t) and f(t) for −1 ≤ t ≤ 10.

Although the graph of x(t) seems “pretty smooth”, it is not even twice
differentiable. It is easy to show that x(t) and x′(t) are continuous, but
x′′(t) is not – this follows from the differential equation, which says that
x′′(t) = f(t) − x′(t) − x(t), and the fact that f(t) is not continuous.

5.10 Throughout this problem, ϕ, ψ, χ ∈ D are test functions: smooth with
compact support. The convolution ϕ ? ψ is the function defined by

(ϕ ? ψ)(t) :=

∫ ∞

−∞
ϕ(t− s)ψ(s) ds . (1)

(a) Let suppϕ = [a, b] and suppψ = [c, d]. Then in the expression for
the convolution, the integral will vanish unless c ≤ s ≤ d and a ≤
t− s ≤ b. This means that t ≤ b+ s ≤ b+ d and t ≥ a+ s ≥ a+ c,
whence suppϕ ? ψ = [a+ c, b+ d].

(b) Since ϕ and ψ are smooth, we can take the derivative inside the
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integral:

(ϕ ? ψ)′(t) =

∫ ∞

−∞

d

dt
ϕ(t− s)ψ(s) ds

=

∫ ∞

−∞
ϕ′(t− s)ψ(s) ds

= (ϕ′ ? ψ)(t) .

On the other hand notice that d
dtϕ(t− s) = − d

dsϕ(t− s), whence

(ϕ ? ψ)′(t) = −
∫ ∞

−∞

d

ds
ϕ(t− s)ψ(s) ds

=

∫ ∞

−∞
ϕ(t− s)ψ′(s) ds

= (ϕ ? ψ′)(t) ,

where we have integrated by parts and dropped the boundary terms.

(c) From part (a) we see that ϕ ? ψ has compact support, whereas from
part (b) we see that it is infinitely differentiable. Notice that part
(b) says something stronger: ϕ ? ψ will be infinitely differentiable
provided at least one of ϕ or ψ is. This is why convolution with a
smooth function is known as a smoothing operator.

(d) Change variables in the integral (1): u = t− s, to get:

(ϕ ? ψ)(t) =

∫ ∞

−∞
ϕ(u)ψ(t− u) du = (ψ ? ϕ)(t) ,

by the Shakespeare theorem. Associativity follows similarly:

((ϕ ? ψ) ? χ) (t) =

∫ ∞

−∞
(ϕ ? ψ)(t − s)χ(s) ds

=

∫ ∞

−∞

∫ ∞

−∞
ϕ(t − s− u)ψ(u)χ(s) du ds

(v = u+ s) =

∫ ∞

−∞

∫ ∞

−∞
ϕ(t − v)ψ(v − s)χ(s) ds dv

=

∫ ∞

−∞
ϕ(t− v) (ψ ? χ) (v) dv

= (ϕ ? (ψ ? χ)) (t) .

Now define the inner product of two test functions by:

〈ϕ, ψ〉 :=

∫ ∞

−∞
ϕ(t)ψ(t)dt .

(e) With ϕ∨(t) := ϕ(−t), using equation (1),

(ϕ∨ ? ψ)(0) =

∫ ∞

−∞
ϕ∨(−s)ψ(s) ds

=

∫ ∞

−∞
ϕ(s)ψ(s) ds

= 〈ϕ, ψ〉 .
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(f) We first prove that (ϕ ? ψ)∨ = ϕ∨ ? ψ∨:

(ϕ ? ψ)∨(t) = ϕ ? ψ(−t)

=

∫ ∞

−∞
ϕ(−t− s)ψ(s) ds

(u = −s) =

∫ ∞

−∞
ϕ(−t+ u)ψ(−u) du

=

∫ ∞

−∞
ϕ∨(t− u)ψ∨(u) du

= (ϕ∨ ? ψ∨)(t) .

Now from part (e) and using associativity of the convolution,

〈ϕ ? ψ, χ〉 = ((ϕ ? ψ)∨ ? χ)(0)

= ((ϕ∨ ? ψ∨) ? χ)(0)

= (ϕ∨ ? (ψ∨ ? χ))(0)

= 〈ϕ, ψ∨ ? χ〉 .

5.11 (a) We have to show that for all T ∈ D
′, Φ∗T is both linear and con-

tinuous, so that it is again in D′. Linearity is obvious because Φ is
linear:

〈Φ∗T, c1ϕ1 + c2ϕ2〉 = 〈T,Φ(c1ϕ1 + c2ϕ2)〉
= 〈T, c1Φ(ϕ1) + c2Φ(ϕ2)〉
= c1 〈T,Φ(ϕ1)〉 + c2 〈T,Φ(ϕ2)〉
= c1 〈Φ∗T, ϕ1〉 + c2 〈Φ∗T, ϕ2〉 .

As for continuity, notice that if ϕn → 0 then

〈Φ∗T, ϕn〉 = 〈T,Φ(ϕn)〉 .

Now, Φ continuous implies that Φ(ϕn) → 0; and T continuous implies
that 〈T,Φ(ϕn)〉 → 0. Hence 〈Φ∗T, ϕn〉 → 0 and Φ∗T is continuous.

(b) To show that ∆a and Θb map test functions to test functions, we have
to show that they take smooth functions to smooth functions and that
they take compactly supported functions to compactly supported
functions. That they preserve smoothness if obvious: let (∆aϕ)′ =
a∆aϕ

′ and (Θbϕ)′ = Θbϕ
′. Also, if ϕ has support [c, d], then ∆aϕ

has support [c/a, d/a] (if a > 0) or [d/a, c/a] (if a < 0), and Θbϕ has
support [c+ b, d+ b], and in either case it remains compact.

It remains to show that they are linear and continuous. Linearity is
clear: ∆a(c1ϕ1+c2ϕ2)(t) = (c1ϕ1+c2ϕ2)(at) = c1ϕ1(at)+c2ϕ2(at) =
c1∆aϕ1(t) + c2∆aϕ2(t) = (c1∆aϕ1 + c2∆aϕ2)(t). The same goes for
Θb.

Continuity is also clear. Suppose that ϕm → 0. This means that
there is some R such that ϕm(t) = 0 for |t| > R, and that for each

k, the k-th derivatives ϕ
(k)
m → 0 uniformly. The functions ∆aϕm

vanish for |at| > R or equivalently |t| > R/|a|, so the first condition
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for convergence is satisfied. Notice that (∆aϕm)
(k)

(t) = akϕ
(m)
m (at),

whence (∆aϕm)(k) → 0 uniformly as well. Therefore ∆aϕm → 0.
The same goes for Θb.

(c) Let Tf be a regular distribution. By definition,

〈∆∗
aTf , ϕ〉 = 〈Tf ,∆aϕ〉

=

∫ ∞

−∞
f(t)ϕ(at) dt

=

∫ ∞

−∞
f(u/a)ϕ(u) du/|a|

=
〈

T∆∗

a
f , ϕ

〉

,

where we have let u = at and where

∆∗
af(t) =

1

|a|f(t/a) .

Similarly, by definition

〈Θ∗
bTf , ϕ〉 = 〈Tf ,Θbϕ〉

=

∫ ∞

−∞
f(t)ϕ(t− b) dt

=

∫ ∞

−∞
f(u+ b)ϕ(u) du

=
〈

TΘ∗

b
f , ϕ

〉

,

where we have let u = t− b and where

Θ∗
bf(t) = f(t+ b) .

5.12 Notice that

lim
h→0

1

h
〈Θ∗

hT − T, ϕ〉 = lim
h→0

1

h
〈T,Θbϕ− ϕ〉

=

〈

T, lim
h→0

1

h
(Θbϕ− ϕ)

〉

where we have used continuity of T to pass the limit inside. But now,

lim
h→0

1

h
(Θbϕ− ϕ) (t) = lim

h→0

1

h
(ϕ(t− h) − ϕ(t)) = −ϕ′(t) ,

whence

lim
h→0

1

h
〈Θ∗

hT − T, ϕ〉 = −〈T, ϕ′〉 ,

which is precisely 〈T ′, ϕ〉.

5.13 Let f be a test function which is never negative and still obeys
∫∞
−∞ f(t)dt =

1. Let ϕn := fn ? ϕ. We want to show that ϕn − ϕ→ 0 in D.

This first convergence condition says that ϕn −ϕ have a common support
for all n. Indeed, let suppϕ = [a, b] and supp f = [c, d]. Then supp fn =
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[c/n, d/n], and hence supp fn ? ϕ = [a + c/n, b+ d/n] ⊆ [a+ c, b+ d]. So
it is satisfied.

The second convergence condition says that for fixed k, ϕ
(k)
n → ϕ(k) uni-

formly as n→ ∞. Since ϕ
(k)
n = fn ? ϕ

(k) (see Problem 9 (b)), this second
condition will be satisfied if for every test function ψ, fn?ψ → ψ uniformly
as n→ ∞.

Let R be such that f(s) = 0 for |s| > R. Then fn(s) = 0 for |s| > R/n.
Therefore,

|fn ? ψ(t) − ψ(t)| =

∣

∣

∣

∣

∣

∫ R/n

−R/n

fn(s)ψ(t− s) ds−
∫ R/n

−R/n

fn(s)ψ(t) ds

∣

∣

∣

∣

∣

where we have used that
∫ R/n

−R/n
fn(s) ds = 1. Estimating the integral, we

have

|fn ? ψ(t) − ψ(t)| ≤
∫ R/n

−R/n

fn(s)|ψ(t− s) − ψ(t)| ds

≤ max
|s|≤R/n

|ψ(t− s) − ψ(s)| .

Because test functions have compact support they are uniformly continu-
ous, hence by taking n large enough, we can make |ψ(t−s)−ψ(t)| as small
as desired for |s| ≤ R/n uniformly in t, hence fn ? ψ(t) → ψ(t) uniformly
in t as well.

6.2 The Laplace transform of f(t) is given by

F (s) =

∫ ∞

0

f(t) e−st dt .

Let us break the integral into periods:

F (s) =

(

∫ T

0

+

∫ 2T

T

+

∫ 3T

2T

+ · · ·
)

f(t) e−st dt

=

∞
∑

n=0

∫ nT+T

nT

f(t) e−st dt .

Now, in the n-th integral, let us make the change of variables t = τnT , so
that τ always goes from 0 to T :

F (s) =

∞
∑

n=0

∫ T

0

f(nT + τ) e−s(τ+nT ) dτ .

Using the periodicity of f , so that f(τ + nT ) = f(τ), we have

F (s) =

∞
∑

n=0

∫ T

0

f(τ) e−s(nT+τ) dτ =

∞
∑

n=0

e−snT

∫ T

0

f(τ) e−sτ dτ .

We can now sum the geometric series, which converges provided that
Re(s) > 0, and obtain the desired answer:

F (s) =
1

1 − e−sT

∫ T

0

f(τ) e−sτ dτ .
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As an application consider the function f(t) which is 1 in the intervals
[2n, 2n+ 1] and zero everywhere else. Clearly this is a periodic function
with period 2. Therefore its Laplace transform is given by

F (s) =
1

1 − e−2s

∫ 2

0

f(τ) e−sτ dτ =
1

1 − e−2s

∫ 1

0

e−sτ dτ =
1

s

1 − e−s

1 − e−2s
.

6.3 Following the hint, let us take the Laplace transform of both sides of the
equation. To compute the Laplace transform of the RHS we use linearity
and the convolution theorem, once recognising the second term as the con-
volution h ? f where h(t) = t. Letting F (s) denote the Laplace transform
of f(t), we have

F (s) =
1

s
− 1

s2
F (s) ,

where we have used Table 1 (see Notes) to write down the Laplace trans-
forms of 1 and t, respectively. The above formula exists for all s with
Re(s) > 0 such that F (s) exists. We can now solve the resulting algebraic
equation for F (s) to obtain

F (s) =
s

1 + s2
.

Looking up in the table, we see that this is the Laplace transform of
f(t) = cos t. (One can check that this indeed solves the integral equation.)

6.4 Consider the second order ordinary differential equation

f ′′(t) + ω2f(t) = u(t),

subject to the initial conditions f(0) = f ′(0) = 0. Let us take the Laplace
transform. If let F (s) and U(s) denote the Laplace transforms of f(t) and
u(t), then with the above initial conditions, we find

s2 F (s) + ω2 F (s) = U(s) ,

whence

F (s) =
U(s)

s2 + ω2
=

1

ω
U(s)

ω

s2 + ω2
.

From the Table we see that this is the Laplace transform of the function

f(t) =
1

ω

∫ t

0

u(τ) sinω(t− τ) dτ .

6.6 (a) Consider the function

f(t) = 3 cos 2t− 8e−2t .

By linearity, the Laplace transform F (s) of f(t) is the sum of the
Laplace transforms of each of the terms:

F (s) ≡ L {f(t)} = 3L {cos 2t} − 8L
{

e−2t
}

,
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which can be read from the Table:

L {cos 2t} (s) =
s

s2 + 4
and L

{

e−2t
}

(s) =
1

s+ 2
;

whence

F (s) =
3s

s2 + 4
− 8

s+ 2
.

The transform of the first function is valid for Re(s) > 0 and that
of the second for Re(s) > −2. Therefore they are both valid for
Re(s) > 0.

(c) Consider now the function

f(t) =

{

1 , for t < 1, and

0 , for t ≥ 1.
,

whose Laplace transform is given by

F (s) =

∫ ∞

0

f(t) e−st dt =

∫ 1

0

e−st dt =
1

s

(

1 − e−s
)

.

The transform is valid for all s: the singularity at s = 0 is removable,
since lims→0 F (s) = 1.

(d) Now we have
f(t) = (sin t)2 .

Using a trigonometric identity, (sin t)2 = 1
2 (1 − cos 2t), and linearity

of the Laplace transform, we have that

F (s) ≡ L
{

(sin t)2
}

(s) = 1
2L {1} (s) − 1

2L {cos 2t} (s) ,

which we have already worked out in class:

F (s) = 1
2

1

s
− 1

2

s

s2 + 4
.

Again we have condition Re(s) > 0 from the first transform and
Re(s) > −2 from the second. Hence both are valid whenever Re(s) >
0.

(e) Finally, we have

f(t) =











0 , for t < 1,

1 , for 1 ≤ t ≤ 2, and

0 , for t > 2.

,

whose Laplace transform is given by

F (s) =

∫ ∞

0

f(t) e−st dt =

∫ 2

1

e−st dt =
e−s

s

(

1 − e−s
)

.

Again the transform is valid for all s. Notice that the singularity at
s = 0 is removable, since lims→0 F (s) = 1.
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6.7 (a) Consider

F (s) =
1

s2 + 4
.

Comparing with the list of transforms we saw in class we notice that

F (s) = 1
2

2

s2 + 4
= 1

2 Im
1

s− 2i
,

whence
F (s) = L

{

1
2 Im e2it

}

= L
{

1
2 sin 2t

}

.

(b) Now consider

F (s) =
4

(s− 1)2
.

Comparing with the results in class,

F (s) = 4
1

(s− 1)2
= L

{

4t et
}

.

(c) Now we have

F (s) =
s

s2 + 4s+ 4
=

s

(s+ 2)2
.

Into partial fractions,

F (s) =
s+ 2 − 2

(s+ 2)2
=

1

s+ 2
− 2

(s+ 2)2
.

We can now read off the inverse transforms:

F (s) = L
{

e−2t − 2t e−2t
}

.

(d) Consider now

F (s) =
1

s3 + 3s2 + 2s
=

1

s(s+ 1)(s+ 2)
.

Again we expand into partial fractions:

F (s) = 1
2

1

s
− 1

s+ 1
+ 1

2

1

s+ 2
,

whence we can read off the inverse transforms:

F (s) = L
{

1
2 − e−t + 1

2e
−2t
}

.

(e) Finally we have

F (s) =
s+ 3

s2 + 4s+ 7
.

The denominator factorises as (s+ 2 + i
√

3)(s+ 2 − i
√

3), whence

F (s) =
s+ 3

(s+ 2 + i
√

3)(s+ 2− i
√

3)

=
s+ 2

(s+ 2 + i
√

3)(s+ 2− i
√

3)
+

1

(s+ 2 + i
√

3)(s+ 2 − i
√

3)

=
s+ 2

(s+ 2)2 + (
√

3)2
+

1√
3

√
3

(s+ 2)2 + (
√

3)2
,
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from where we can read off the inverse transforms:

F (s) = L

{

e−2t cos
√

3t+
1√
3
e−2t sin

√
3t

}

= L

{

e−2t

(

cos
√

3t+
1√
3

sin
√

3t

)}

.

6.8 The method is the same in all cases: we take the Laplace transform of the
equation taking into account the initial conditions, solve the corresponding
algebraic equation, and invert back. Consider the following differential
equation

d2f(t)

dt2
+ a1

df(t)

dt
+ a0f(t) = u(t) , (2)

where ai are constants and u(t) is some function. Taking the Laplace
transform of this differential equation we have

(s2F (s) − sf(0) − f ′(0)) + a1 (sF (s) − f(0)) + a0F (s) = U(s) ,

where F (s) = L {f(t)} and U(s) = L {u(t)}. We can solve this algebraic
equation for F (s) in terms of U(s) and the initial conditions

F (s) =
U(s) + (s+ a1)f(0) + f ′(0)

s2 + a1s+ a0
, (3)

which we can then try to invert back. Let us apply this to the following
differential equations.

(a) Consider first the equation

d2f(t)

dt2
− 5

df(t)

dt
+ 6f(t) = 0 ,

subject to the initial conditions f(0) = 1 and f ′(0) = −1. This
equation is of the form (2) with a1 = −5 and a0 = 6 and u(t) = 0.
Therefore into (3) we see that

F (s) =
(s− 5) − 1

s2 − 5s+ 6
=

s− 6

(s− 2)(s− 3)
.

Decomposition into partial fractions, we have

F (s) =
4

s− 2
− 3

s− 3
,

which we recognise as the Laplace transform of the function

f(t) = 4 e2t − 3 e3t .

(b) Consider the following differential equation

d2f(t)

dt2
− df(t)

dt
− 2f(t) = e−t sin 2t , (4)
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Taking the Laplace transform of this differential equation we have

(s2F (s) − sf(0) − f ′(0)) − (sF (s) − f(0)) − 2F (s) = U(s) ,

where F (s) is the Laplace transform of f(t) and U(s) the Laplace
transform of u(t), which is given by

U(s) =
2

(s+ 1)2 + 4
,

whence we find

F (s) =
2

((s+ 1)2 + 4) (s2 − s− 2)
=

2

((s+ 1)2 + 4) (s+ 1)(s− 2)
.

After a little algebra, we can rewrite this into partial fractions,

F (s) =
2

39

1

s− 2
− 1

6

1

s+ 1
+

1

26

3s− 1

(s+ 1)2 + 4

=
2

39

1

s− 2
− 1

6

1

s+ 1
+

1

26

3(s+ 1) − 4

(s+ 1)2 + 4
,

whose last term we can rewrite as

1

26

3(s+ 1) − 4

(s+ 1)2 + 4
=

3

26

s+ 1

(s+ 1)2 + 4
− 1

13

2

(s+ 1)2 + 4
,

which allows us to perform the inverse transform. In fact we can
easily see that

F (s) =
2

39

1

s− 2
− 1

6

1

s+ 1
+

3

26

s+ 1

(s+ 1)2 + 4
− 1

13

2

(s+ 1)2 + 4

is the Laplace transform of the function

f(t) = 2
39 e

2t − 1
6 e

−t + 3
26e

−t cos 2t− 1
13 e

−t sin 2t .

(c) Finally we have

d2f(t)

dt2
− 3

df(t)

dt
+ 2f(t) =











0 , for 0 ≤ t < 3,

1 , for 3 ≤ t ≤ 6, and

0 , for t > 6,

subject to the initial conditions f(0) = f ′(0) = 0. Comparing with
(2) we have a1 = −3 and a0 = 2. The Laplace transform U(s) of the
function u(t) given above, is given by (cf. Problem 1 (e))

U(s) =
1

s

(

e−3s − e−6s
)

.

Into (3), we have that

F (s) =
e−3s − e−6s

s(s2 − 3s+ 2)
=

e−3s − e−6s

s(s− 1)(s− 2)
.
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Into partial fractions we have

F (s) =
(

e−3s − e−6s
)

(

1

2

1

s
− 1

s− 1
+

1

2

1

s− 2

)

.

From the lecture we have that

e−asG(s) = L {θ(t− a) g(t− a)} (s) where G(s) = L {g(t)} (s),

where θ is the Heaviside step function. Therefore we can read off the
function f(t) whose Laplace transform is F (s):

f(t) = θ(t− 3)
(

1
2 − et−3 + 1

2 e
2(t−3)

)

− θ(t− 6)
(

1
2 − et−6 + 1

2 e
2(t−6)

)

,

or equivalently

f(t) =











0 , for t < 3;
1
2 − et−3 + 1

2 e
2(t−3) , for 3 ≤ t ≤ 6; and

et−6 + 1
2e

2(t−6) − et−3 − 1
2e

2(t−3) , for t > 6.

7.1 By definition h(t) = f(t)/g(t), or equivalently g(t)h(t) = f(t), or in terms
of their series expansions:

∞
∑

n=0

ant
n =

( ∞
∑

n=0

bnt
n

)( ∞
∑

n=0

cnt
n

)

=

∞
∑

n=0

(

n
∑

`=0

b`cn−`

)

tn ,

where we have used the Cauchy product of the power series. Comparing
the two series termwise we get the following sequence of relations:

n
∑

`=0

b`cn−` = an for n = 0, 1, . . .

which since b0 6= 0, can be turned into a recurrence relation for the {cn}:

cn =
1

b0

(

an −
n
∑

`=1

b`cn−`

)

.

Notice that only {c0, c1, . . . , cn−1} appear in the right-hand side of the
equation. The first few terms can be easily written down as follows:

c0 =
a0

b0

c1 =
a1b0 − a0b1

b20

c2 =
a2b

2
0 − a1b0b1 + a0b

2
1 − a0b0b2

b30

c3 =
a3b

3
0 − a2b

2
0b1 + a1b0b

2
1 − a0b

3
1 − a1b

2
0b2 + 2a0b0b1b2 − a0b

2
0b3

b40
.
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7.2 By definition of f−1, t = f−1(f(t)). In terms of power series, we have

t =

∞
∑

n=0

bn

( ∞
∑

m=0

amt
m − a0

)n

=

∞
∑

n=0

bn

( ∞
∑

m=1

amt
m

)n

= b0 + b1

∞
∑

n=1

ant
n + b2

∞
∑

`,m=1

a`amt
`+m + b3

∞
∑

`,m,p=1

a`amapt
`+m+p + · · ·

Assuming that a1 6= 0, this allows us to solve for the {bn} in terms of the
{an}:

b0 = 0 b1 =
1

a1
b2 = −a2

a3
1

b3 =
2a2

2 − a1a3

a5
1

.

7.3 For each of these problems we will try a power series solution of the form:

x(t) =

∞
∑

n=0

ant
n ,

for which

x′(t) =

∞
∑

n=0

(n+ 1)an+1t
n and x′′(t) =

∞
∑

n=0

(n+ 1)(n+ 2)an+2t
n .

Inserting these expressions into each of the differential equations, we can
obtain recurrence relations for the coefficients, which have unique solutions
once a0 and a1 are specified.

(a) For x′′ + x′ − tx = 0, one finds the following recurrence relations:

an+2 =
an−1 − (n+ 1)an+1

(n+ 1)(n+ 2)
for n ≥ 0,

with the proviso that a−1 = 0. The power series solutions are ob-
tained by solving these recurrence relations:

x(t) = a0

(

1 + 1
6 t

3 − 1
24 t

4 + 1
120 t

5 + 1
240 t

6 − 1
630 t

7 + · · ·
)

+ a1

(

t− 1
2 t

2 + 1
6 t

3 + 1
24 t

4 − 1
30 t

5 + 1
90 t

6 − 1
1680 t

7 + · · ·
)

.

(b) For (1 + t2)x′′ + 2tx′ − 2x = 0, one finds the following recurrence
relations:

an+2 = −n− 1

n+ 1
an for n ≥ 0.

We notice that the “a1” series truncates immediately, since a3 = 0,
and hence so are all a2k+1, for k > 1. (In fact, it is obvious that
x(t) = t is a solution!) The general solution is then

x(t) = a1t+ a0

(

1 + t2 − 1
3 t

4 + 1
5 t

6 − 1
7 t

8 + · · ·
)

= a1t+ a0

(

1 + t

∞
∑

k=0

(−1)k

2k + 1
t2k+1

)

,

which we should recognise as

x(t) = a1t+ a0

(

1 + t tan−1 t
)

.
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(c) Finally, for x′′ + tx′ + x = 0, we obtain the following recurrence
relations:

an+2 = − an

n+ 2
for n ≥ 0.

These relations can be easily solved to yield the following solution:

x(t) = a0

(

1 +

∞
∑

k=1

(−1)kt2k

2 · 4 · · · 2k

)

+ a1

∞
∑

k=0

(−1)kt2k+1

1 · 3 · · · 2k + 1
.

We can recognise the “a0” series as

1 +

∞
∑

k=1

(−1)kt2k

2 · 4 · · · 2k =

∞
∑

k=0

(−t2)k

2kk!
= e−t2/2 .

7.5 Consider Hermite’s equation:

x′′ − 2tx′ + 2px = 0 ,

where p is a constant.

(a) The coefficients are polynomial in t, and hence they are analytic
everywhere. We therefore conclude that t = 0 is an ordinary point
and that the radius of convergence of analytic solutions is infinite.

(b) The recurrence relation for the coefficients is found as in lecture:

an+2 =
2(n− p)

(n+ 1)(n+ 2)
an .

(c) This relation does not mix the odd and even coefficients, and says
that when p is a non-negative integer ap+2 = 0. Hence if p is even,
then we can obtain a polynomial solution setting a1 = 0 and a0 6= 0
and finding that all a2n+1 = 0 and that a>p = 0. As a result the
series truncates to an even polynomial of order p. Similarly, when p
is odd, we set a0 = 0 and a1 6= 0. We see that all a2n = 0 and that
a>p = 0. Hence the series truncates to an odd polynomial of order p.

(d) Let p be a non-negative integer. If p is even we put a0 = 1 and
a1 = 0, and if p is odd we put a0 = 0 and a1 = 1. In either case
we call the resulting polynomial solution Hp. The first few can be
solved by the recurrence relation:

H0(t) = 1 H1(t) = t

H2(t) = 1 − 2t2 H3(t) = t− 2
3 t

3

H4(t) = 1 − 4t2 + 4
3 t

4 H5(t) = t− 4
3 t

3 + 4
15 t

5 .

(e) Consider the inner product on the space of polynomials:

〈f, g〉 :=

∫ ∞

−∞
e−t2f(t)g(t) dt .
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(i) Let H be the operator Hf(t) = 2tf ′(t) − f ′′(t), and let f, g be
two polynomials.

〈Hf, g〉 =

∫ ∞

−∞
e−t2 (2tf ′(t) − f ′′(t)) g(t) dt

= −
∫ ∞

−∞

(

e−t2f ′(t)
)′
g(t) dt

=

∫ ∞

−∞
e−t2f ′(t)g′(t) dt ,

where in the last line we have integrated by parts and dropped
the boundary terms, since they vanish at ±∞. Now notice that
the above RHS is symmetric in f and g, whence

〈Hf, g〉 − 〈Hg, f〉 = 0 =⇒ 〈Hf, g〉 = 〈f,Hg〉 ,

using the symmetry of the inner product. This shows that H is
self-adjoint.

(ii) Now notice thatHp solves Hermite’s equation for p a nonnegative
integer, and that this can be rewritten as

H ′′
p (t) − 2tH ′

p(t) + 2pHp(t) = 0 ⇐⇒ HHp(t) = 2pHp(t) ,

whence Hp is an eigenfunction of H with eigenvalue 2p.

(iii) Now consider

〈HHp, Hq〉 = 2p 〈Hp, Hq〉
〈Hp,HHq〉 = 2q 〈Hp, Hq〉 .

Since H is self-adjoint, both expressions are the same, so that

2(p− q) 〈Hp, Hq〉 = 0 ,

whence if p 6= q, then Hp and Hq are orthogonal.
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