M342 PDE: THE DIVERGENCE THEOREM

MICHAEL SINGER

1. STATEMENT OF THE DIVERGENCE THEOREM

Let R be a bounded open subset®t with smooth (or piecewise smooth) boundary
OR. LetX = (Xy,...,Xn) be a smooth vector field definedItY, or at least irRUOR. Let
n be the unit outward-pointing normal dR. Then the divergence theorem states:

(1) /dideV:/ X -ndA
R R
where
divx=mo.x =24, %, 0
6x1 aX2 aXn

dV is the element of volume iR" anddA s the element of surface area éR.

1.1. Suitable domains. Examples of suitable bounded domagrisiclude: ifn=1, inter-
vals(a,b); if n= 2, rectangle§a; < x < by,ax <y < by}, discs, and pieces of discs such
as half-discs, quarter-discs etc.nif= 3, boxes{a; < x < by, ap <y < bp,a3 < z< bz},
balls, half-balls, etc. We shall seldom go beyond 3 dimensions in this course.

1.2. Construction of n and ndA If n=1 andR = (a,b), then vectors are just real
numbers anth = —1 atx=aand= +1 atx=Dh.

If n= 2, the normal is got by rotating the tangent vector through(80the correct
direction so that it points out!). The quantitgscan be writter{dx, dy) along the surface,
so that

2 ndA:=nds= (dy, —dx).

Heret is the tangent vector along the boundary curve @sid the element of arc-length.
If n= 3, then we have to decide how the boundanRa$ to be described. You may
recall that ifoR is described as a level-set of a function of 3 variables @R.= {x :
F(x) = 0}), then a vector pointing in the direction ofis grad=. We shall use the case
whereF = z— f(x,y) andR corresponds to the inequality f(x,y). Then
(_ fX? B fyv 1)

_ _ 2 2\1/2
(3) n= ERER dA= (1+ f2+ £2)Y2dxdy

Hence the quantitpdAis simplerthan eithen or dA separately:

(4) ndA= (—fy, —fy,1) dxdy
1
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2. THE DIVERGENCE THEOREM IN1 DIMENSION

In this case, vectors are just numbers and so a vector field is just a furfgton
Moreover, div=d/dx and the divergence theorem Rf= [a, b)) is just the fundamental
theorem of calculus:

/b(df/dx)dx: f(b)— f(a)

3. THE DIVERGENCE THEOREM IN2 DIMENSIONS

Let Rbe a 2-dimensional bounded domain with smooth boundary a@HalR be its
boundary curve. Recall Green’s theorem states:

/R(()XQ—ayP)dxdy:/CdeJery.

This is the same as the two dimensional divergence theorem if we take the vector field
(X1,X2) with X3 = Q andXp = —P. For then it reads

/ divX dxdy— / (3Xa +0yXz) dxdy= / ~Xodx+ Xg dy
R R C

:/(Xl,xz)-(dy,—dx):/ X -nds
C R
where we have used (2).

4. THE DIVERGENCE THEOREM IN3 DIMENSIONS
We shall give a ‘proof’ of this theorem in stages.

4.1. The divergence theorem for a box.Consider the boR= {ag < x< bj,ax <y <
bp,a3 < z< bz}. Letu be a function ok = (x,y,z). For each fixedy, z) the fundamental
theorem of calculus gives

by
| ux)dx= u(br.y.2) - u(ar.%.2)
a

1
Now integrating with respect tpandz,

(5) [ ix00dv = /Sl [ (ba,y,2) — f(as,y,2)|dxdy

whereS; = {ap <y < by, ag < z< bs}. This s just the divergence theorem for the vector
field X = (u,0,0)! To see this, note diX = 9, f for this vector field, so the LHS of (5) is
certainly [rdivX dV. Now dRis a union of six rectangles in parallel pairs

Sn={X=a,aa<y<bpaz<z<bz}, So={x=b,ax<y<bp az<z<bs},
parallel to thely, z)-plane,

S1={aa<x<bpy=ay,az3<z<bz}, So={a1 <x<by,y=bp, a3z <z<bsz},
parallel to the(x, z)-plane, and

Si={aa<x<bja<y<byz=az}, Sso={a1 <x<bjap<y<by z=bs},

parallel to the(x,y)-plane. It looks complicated, and a diagram would tell the story much
better. Draw one for yourself. Moreover we have that

n=—ionSi,n=io0nSpy,
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N=—jonS,n=jonSy,
n=—-konSz;,n=konSs.
So forX = (u,0,0), X - n = 0 on the four face$1, S2, 1, Sz2, whereas
X-n=—-u(ag,y,z) onS1, X-n=u(by,y,z) onSp>.

This is precisely the combination of signs on the RHS of (5), so that this really is the
divergence theorem fof = (u,0,0) and thisR.

In precisely analogous fashion, the divergence theorenXfer(0,v,0) and forX =
(0,0,w) is verified. Adding these results, we obtain the divergence theorem for the box,
with any vector fieldX = (u,v,w).

4.2. Cutting lemma. Consider now a bounded domadecomposed as a union of 2
subdomaingR; andR», with a common interfac&,. Typical example: an apple cut in
half. LetoR= Sand writeS= S U S, so that

R =5 US, OR=SUS.

Let the normal ofS; be denoted, the normal ofS; be denoted, and the normal of
S, pointing into B be denotedhg. (Draw a picture.) In particular, theutward drawn
normal ofRy is equal tong alongS and theoutward drawmormal ofR; is equal to—ng
alongS.

We claim that if the divergence theorem holds for the pidRegand Ry, then it holds
for R. To see this, leX be a smooth vector field, and apply the divergence theorefor
andRy, taking careful note of the sign o as in the previous paragraph. We get

/dideV:/ x-ndA+/ X -nodA / dideV:/ X-ndA—/X-nodA
R]_ S]_ S) R2 SZ S)

Adding, the contributions frorg cancel out and so

/dideV:/ dideV+/ dideV:/ X-ndA+/ X-ndA:/X~ndA
R R]_ R2 S_L SZ S

just as required.

4.3. Dissection argument. With the aid of the divergence theorem for boxes and the
cutting lemma, one can imagine proving the divergence theorem by slicing a given domain
Rinto small boxes. We know the divergence theorem for boxes, so by the cutting lemma,
we know it for any domain that can be cut up into boxes. But most domains have a curved
boundary, so the whole &is unlikely to be a union of boxes. Itis not uncommon to argue
that by taking the boxes to be smaller and smaller you can approximate any reasonable
domainR better and better, and hence taking some sort of limit, the divergence theorem
follows for any such domain.

If you are not satisfied with this argument, read on.

4.4. Divergence theorem for regions with a curved boundary.LetD ¢ R? be a bounded
domain with piecewise smooth bounda@fy, and consider the region

(6) R={(xy,2) €eR3:(x,y)eD,0< z< f(x,y)}

wheref is a smooth function i that is continuous up tdD. We shall prove the diver-
gence theorem for this regidd
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The motivation for considering this kind & is that it is intuitively plausible that any
reasonable domain iR3 can be split up as a union of subdomains each of which is either
a box or one like (6). By ‘like’ here, | mean that you may have to permute the roles of
X, y andzin the definition. For example, D were itself a rectangle, théRwould be a
box with 5 flat sides and one curved side. The flat sides are given by the vertical planes
through the sides dD, plus the bottom face = 0. The curved side corresponds to the
surfacez= f(x,y).

In general the boundary & consists of 3 piece§y, S andS, say, where the bottom
face

(7) S={(xy,0): (x,y) € D}, ndA= —kdxdy

the ‘vertical’ side

(8) S ={(x¥,2): (xy) €0D,0<z< f(x,y)}, ndA= (dydz —dxdz0)
and the top face

9) S={xy f(xy):(xy) € D}, ndA= (—fy, —fy,1)dxdy

In (8) and (9) we have used (2) and (&).may naturally consist of several pieces, but for
the purposes of the proof it is enough to thinlofas consisting o0&, S; andS,.

We shall now prove the divergence theorem For We shall do it for vector fields
X =(0,0,u) andX = (v,0,0). The argument for a vector field with andz-coordinates
zero is very similar to that fofv,0,0) and will be omitted. The general result follows by
addition, just as for the box.

The easiest case ¥= (0,0,u). Then divX = u,, and

f(xy)
/dideV:/ {/ uzdz} dxdy:/ u(x,y,f(x,y))dxdy—/ u(x,y,0)dxdy
R D |/z=0 D D

Now X -n = 0 in this case ove$;. So, taking into account (7) and (9), this equation can
be rewritten as

/dideV:/ X~ndA+/ X~ndA:/ X -ndA
R S S oR

Now we consider the casé= (v,0,0). Pickw so that

(10) o W(X,Y,Z) = V(X,Y,Z).
We have diX = vy = 040,W = 0,0xW. Hence
f(xy)
(11) / divXdV — / { / 6zaxwdz} dxdy
R D |Jz=0

_ /D W%, Y, F(X,Y)) — Wy (X, Y, 0)]dxdy

We will use Green’s theorem to turn this into a boundary integral, but note first that
Wy (X, Y, f(X,y)) the partial derivative ofv with respect tx, evaluated at the poiiix,y, f (X,y)),

is notthe same agwv(x,y, f(X,Y))]x, the partial derivative ofv(x,y, f(x,y)) with respect to

x! In fact, using the chain rule and (10),

Ox[W(X, Y, F(X,¥))] = Wk(X, Y, F(X,Y)) +Wz(X, Y, f(XY)) fx
= WX(X7 yv f (X7 Y)) + V(Xv yv f (X7 Y)) 1:X'
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Substituting this into (11), we get
12) x5 £x.)) = wi(x3.0) cxcly

= [ 1audwox . Fx)) ~wix Y. 0)] = vix . F(xy)) ey

The second term here is jufig, X -ndA, by (9). We apply Green’s theorem to the other
term, getting

/D Ixw(xy, f(xy)) —w(x,y,0)]dxdy= / [W(x,y, f(x,y)) —w(x,y,0)]dy

_// V(X,y,z)dydz
oD

We recognize this afs X -ndA Putting all the pieces together we find at last:

/dideV:/ X -ndA
R R

for X = (v,0,0). Here we have also used the fact thfgtX -ndA= 0 sinceX-n is
identically zero ort.

The method for a vector field of the forkh= (0, w,0) is exactly analogous to the argu-
ment we've just seen, wiidy replacingdy at the appropriate places, and the corresponding
modification of Green’s theorem. As indicated, the theorem now follows by considering
a general vector field = (Xz, X2, X3) as the sum

X = (Xj_, 0, O) + (0, Xo, 0) + (0, 0, Xg).

5. CONSEQUENCES GREEN'S IDENTITIES

The divergence theorem is important in PDE because it allows one to integrate by
parts. To state the fundamental result,Rdie a bounded domain with piecewise smooth
boundary as before, and latbe a smooth function and a smooth vector field iR
(continuous up t@R). By Exercise (6.5),

div(uX) = gradu- X + udivX.
We integrate this oveR, applying the divergence theorem to the LHS:

(13) / uX -ndA = / (gradu- X + udivX) dV.
R R

Although this does not have a fancy name, it is every bit as important as Green'’s first and
second identities, (14) and (16) below.

5.1. Green’s first identity. TakingX = gradv in (13), wherev is another suitable func-
tion in R, we obtain

(14) / Naa— / gradu- gradvdV + / vAudV
oR ON
where
(15) ov =V = directional derivative of in directionn = n - gradv.

an
Equation (14) is known aSreen’s first identity
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5.2. Green’s second identity. If we swapu andv around in (14), then the first term on
the RHS does not change. Subtracting these two versions of (14), we obtain

ov adu
(16) /R(uAv—vAu) dVv = R (u% _Va_n) dA

(The process by which (16) was derived from (14) is an exampmgroimetrizatior) This
is Green’s second identignd is a basic tool in the study Af

5.3. Inner-product-space interpretation. LetC*(R) stand for the space of smooth (in-
finitely differentiable) functions oiir, such that all derivatives are continuous upk

Let C*(R,R®) stand for the space of all smooth vector fieldsRymgain with all deriva-
tives continuous up tdR. Make these into infinite-dimensional inner-product spaces by

(u,v) = /Ruvd\/, (u,veC*(R))
and
(X,Y) :/Rx.vdv, (X,Y € C°(RR3)).
Then grad, div and\ define linear operators
grad :C”(R) — C*(R,R3), div : C°(R,R%) — C*(R), A: C*(R) — C*(R).
The identity (13) becomes

(17) (gradu, X) + (u,divX) = / ux-ndA
R
In particular, grad and-div are adjoint to each other on any subspace which guarantees
the vanishing of the boundary term. For example, the subspaces of functions vanishing
ondR, or the subspace of vector fields such tkah = 0 ondR.
Similarly, (14) becomes

(18) (gradu,gradv>+(Au,v):/a Vi, dA
R
and (16) becomes
(19) <Au,v>—(u,Av):/a (uvh — upv) dA
R

From this we obtain the self-adjointnesgodn suitable subspaces@©f (R), for example
the subspace of functions which satisfy Dirichlet or Neumann boundary conditions.

6. EXERCISES ON THE DIVERGENCE THEOREM

6.1. Write dowm when

1. R={xX*+y? < &} Cc R?},

2. R={(x—p)?+(y—q?<a’} CR?},

3. R={¥+y?+ 72 < a’} C R?},

4. R={(x=p)?+(y-a)*+(z—r)* <a’} CR3}.
[Hint: sketch these sets and think geometrically. Use general formulae only if all else
fails.]
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6.2. Consider the piecB of the planex+y-+z=1 cut off by the coordinate planes,
soS={(x,y,2) : x+y+z=1x>0,y>0,z> 0}. LetR be the 3-dimensional region
bounded by the coordinate planes &&= {(x,y,2) : x+y+z<1,x> 0,y > 0,z> 0}.

1. Sketch (or get maple to sketch®andR.

2. Show how to parameteri&as a graplz = f(x,y) where the real-valued function
is defined in some regidd of the (x,y)-plane. Don't forget to specifip as well as
f.

3. Write down the area elemedf in terms ofdxdy Write down also the two unit
normal vectors t&.

4. Calculate/gdA What is the interpretation of this integral? Can you check it using
elementary geometry?

5. Calculatefsi-ndA, wheren is the choice of normal that points away from the origin.
Can you give the values ofsj - ndA and [sk - ndA without any further detailed
calculation?

6. Calculatefg dV and check your answer using the formula for the volume of a pyra-
mid. Use the divergence theorem to deduce the value of

/ xi-ndA
R

6.3. LetB={(xy,2): —1<x<1-1<y<1 -1<z<1} bethe cube with centre at
the origin and of side 2. Calculate directly, and using the divergence theorem,

/i~ndA / xi - ndA / x%i -ndA
0B 0B 0B

X (%,Y,2) = (sin(y2), e cosz+y,ye ¥’ —2).
What is X -ndAif Sis the unit sphere® +y*+2° = 1 andn is the normal pointing

away from the origin? [Hint:X is very complicated, but very little work is needed to
answer this question.]

6.4. Let

6.5. Letube a smooth function and be a smooth vector field iR3. Show that
div(uX) = gradu- X +udivX.

6.6. Letx=(xy,2) andr = (X2 +y?+72)¥2. Compute:
1. divx;

2. gradp(r);
3. div(x/r"). (6.5).

6.7. Leta>0and letS= {x>+y?+ 7> = a°} be the sphere of radias centre the origin.
Letn = x/a be the outward-pointing normal & Show that ifX = x/r3, then

/X-ndA:4T[.
S

What is div(x/r3)? Why do these results not contradict the divergence theorem?



