
M342 PDE: THE DIVERGENCE THEOREM

MICHAEL SINGER

1. STATEMENT OF THE DIVERGENCE THEOREM

Let R be a bounded open subset ofRn with smooth (or piecewise smooth) boundary
∂R. Let X = (X1, . . . ,Xn) be a smooth vector field defined inRn, or at least inR∪∂R. Let
n be the unit outward-pointing normal of∂R. Then the divergence theorem states:

Z
R

divX dV =
Z

∂R
X ·ndA(1)

where

divX = ∇ ·X =
∂X1

∂x1
+

∂X2

∂x2
+ · · ·+ ∂Xn

∂xn
,

dV is the element of volume inRn anddA is the element of surface area on∂R.

1.1. Suitable domains. Examples of suitable bounded domainsR include: ifn= 1, inter-
vals(a,b); if n = 2, rectangles{a1< x< b1,a2< y< b2}, discs, and pieces of discs such
as half-discs, quarter-discs etc.; ifn = 3, boxes{a1 < x< b1,a2 < y< b2,a3 < z< b3},
balls, half-balls, etc. We shall seldom go beyond 3 dimensions in this course.

1.2. Construction of n and ndA. If n = 1 andR = (a,b), then vectors are just real
numbers andn =−1 atx = a and= +1 atx = b.

If n = 2, the normal is got by rotating the tangent vector through 90◦ (in the correct
direction so that it points out!). The quantityt dscan be written(dx,dy) along the surface,
so that

ndA := nds= (dy,−dx).(2)

Heret is the tangent vector along the boundary curve andds is the element of arc-length.
If n = 3, then we have to decide how the boundary ofR is to be described. You may

recall that if∂R is described as a level-set of a function of 3 variables (i.e.∂R = {x :
F(x) = 0}), then a vector pointing in the direction ofn is gradF. We shall use the case
whereF = z− f (x,y) andRcorresponds to the inequalityz< f (x,y). Then

n =
(− fx,− fy,1)

(1+ f 2
x + f 2

y )1/2
, dA= (1+ f 2

x + f 2
y )1/2dxdy.(3)

Hence the quantityndA is simplerthan eithern or dAseparately:

ndA= (− fx,− fy,1)dxdy.(4)
1
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2. THE DIVERGENCE THEOREM IN1 DIMENSION

In this case, vectors are just numbers and so a vector field is just a functionf (x).
Moreover, div= d/dx and the divergence theorem (ifR= [a,b]) is just the fundamental
theorem of calculus: Z b

a
(d f/dx)dx= f (b)− f (a)

3. THE DIVERGENCE THEOREM IN2 DIMENSIONS

Let Rbe a 2-dimensional bounded domain with smooth boundary and letC = ∂Rbe its
boundary curve. Recall Green’s theorem states:Z

R
(∂xQ−∂yP)dxdy=

Z
C

Pdx+Qdy.

This is the same as the two dimensional divergence theorem if we take the vector field
(X1,X2) with X1 = Q andX2 =−P. For then it readsZ

R
divX dxdy=

Z
R
(∂xX1 +∂yX2)dxdy=

Z
C
−X2dx+X1dy

=
Z

C
(X1,X2) · (dy,−dx) =

Z
∂R

X ·nds

where we have used (2).

4. THE DIVERGENCE THEOREM IN3 DIMENSIONS

We shall give a ‘proof’ of this theorem in stages.

4.1. The divergence theorem for a box.Consider the boxR= {a1 < x< b1,a2 < y<
b2,a3< z< b3}. Let u be a function ofx = (x,y,z). For each fixed(y,z) the fundamental
theorem of calculus givesZ b1

a1

ux(x)dx= u(b1,y,z)−u(a1,y,z)

Now integrating with respect toy andz,Z
R

fx(x)dV =
Z

S1

[ f (b1,y,z)− f (a1,y,z)]dxdy,(5)

whereS1 = {a2< y< b2, a3< z< b3}. This is just the divergence theorem for the vector
field X = (u,0,0)! To see this, note divX = ∂1 f for this vector field, so the LHS of (5) is
certainly

R
RdivX dV. Now ∂R is a union of six rectangles in parallel pairs

S11 = {x = a1,a2< y< b2, a3 < z< b3}, S12 = {x = b1,a2< y< b2, a3< z< b3},
parallel to the(y,z)-plane,

S21 = {a1< x< b1,y = a2, a3 < z< b3}, S22 = {a1< x< b1,y = b2, a3< z< b3},
parallel to the(x,z)-plane, and

S31 = {a1< x< b1,a2< y< b2, z= a3}, S32 = {a1< x< b1,a2< y< b2, z= b3},
parallel to the(x,y)-plane. It looks complicated, and a diagram would tell the story much
better. Draw one for yourself. Moreover we have that

n =−i onS11,n = i onS12,
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n =−j onS21,n = j onS22,

n =−k onS31,n = k onS32.

So forX = (u,0,0), X ·n = 0 on the four facesS21,S22,S31,S32, whereas

X ·n =−u(a1,y,z) onS11, X ·n = u(b1,y,z) onS12.

This is precisely the combination of signs on the RHS of (5), so that this really is the
divergence theorem forX = (u,0,0) and thisR.

In precisely analogous fashion, the divergence theorem forX = (0,v,0) and forX =
(0,0,w) is verified. Adding these results, we obtain the divergence theorem for the box,
with any vector fieldX = (u,v,w).

4.2. Cutting lemma. Consider now a bounded domainR decomposed as a union of 2
subdomainsR1 andR2, with a common interfaceS0. Typical example: an apple cut in
half. Let∂R= Sand writeS= S1∪S2, so that

∂R1 = S1∪S0, ∂R2 = S2∪S0.

Let the normal ofS1 be denotedn1, the normal ofS2 be denotedn2 and the normal of
S0, pointing into R2 be denotedn0. (Draw a picture.) In particular, theoutward drawn
normal ofR1 is equal ton0 alongS0 and theoutward drawnnormal ofR2 is equal to−n0
alongS0.

We claim that if the divergence theorem holds for the piecesR1 andR2, then it holds
for R. To see this, letX be a smooth vector field, and apply the divergence theorem forR1
andR2, taking careful note of the sign ofn0 as in the previous paragraph. We getZ

R1

divX dV =
Z

S1

X ·ndA+
Z

S0

X ·n0dA,
Z

R2

divX dV =
Z

S2

X ·ndA−
Z

S0

X ·n0dA.

Adding, the contributions fromS0 cancel out and soZ
R

divX dV =
Z

R1

divX dV +
Z

R2

divX dV =
Z

S1

X ·ndA+
Z

S2

X ·ndA=
Z

S
X ·ndA,

just as required.

4.3. Dissection argument.With the aid of the divergence theorem for boxes and the
cutting lemma, one can imagine proving the divergence theorem by slicing a given domain
R into small boxes. We know the divergence theorem for boxes, so by the cutting lemma,
we know it for any domain that can be cut up into boxes. But most domains have a curved
boundary, so the whole ofR is unlikely to be a union of boxes. It is not uncommon to argue
that by taking the boxes to be smaller and smaller you can approximate any reasonable
domainR better and better, and hence taking some sort of limit, the divergence theorem
follows for any such domain.

If you are not satisfied with this argument, read on.

4.4. Divergence theorem for regions with a curved boundary.LetD⊂R2 be a bounded
domain with piecewise smooth boundary∂D, and consider the region

R= {(x,y,z) ∈R3 : (x,y) ∈D,0< z< f (x,y)}(6)

where f is a smooth function inD that is continuous up to∂D. We shall prove the diver-
gence theorem for this regionR.
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The motivation for considering this kind ofR is that it is intuitively plausible that any
reasonable domain inR3 can be split up as a union of subdomains each of which is either
a box or one like (6). By ‘like’ here, I mean that you may have to permute the roles of
x, y andz in the definition. For example, ifD were itself a rectangle, thenR would be a
box with 5 flat sides and one curved side. The flat sides are given by the vertical planes
through the sides ofD, plus the bottom facez = 0. The curved side corresponds to the
surfacez= f (x,y).

In general the boundary ofRconsists of 3 pieces,S0, S1 andS2, say, where the bottom
face

S0 = {(x,y,0) : (x,y) ∈D}, ndA=−k dxdy(7)

the ‘vertical’ side

S1 = {(x,y,z) : (x,y) ∈ ∂D,0≤ z≤ f (x,y)}, ndA= (dydz,−dxdz,0)(8)

and the top face

S2 = {(x,y, f (x,y)) : (x,y) ∈ D}, ndA= (− fx,− fy,1)dxdy.(9)

In (8) and (9) we have used (2) and (4).S1 may naturally consist of several pieces, but for
the purposes of the proof it is enough to think of∂Ras consisting ofS0, S1 andS2.

We shall now prove the divergence theorem forR. We shall do it for vector fields
X = (0,0,u) andX = (v,0,0). The argument for a vector field withx- andz-coordinates
zero is very similar to that for(v,0,0) and will be omitted. The general result follows by
addition, just as for the box.

The easiest case isX = (0,0,u). Then divX = uz, and
Z

R
divX dV =

Z
D

[Z f (x,y)

z=0
uzdz

]
dxdy=

Z
D

u(x,y, f (x,y))dxdy−
Z

D
u(x,y,0)dxdy.

Now X ·n = 0 in this case overS1. So, taking into account (7) and (9), this equation can
be rewritten as Z

R
divX dV =

Z
S0

X ·ndA+
Z

S2

X ·ndA=
Z

∂R
X ·ndA.

Now we consider the caseX = (v,0,0). Pickw so that

∂zw(x,y,z) = v(x,y,z).(10)

We have divX = vx = ∂x∂zw = ∂z∂xw. Hence
Z

R
divX dV =

Z
D

[Z f (x,y)

z=0
∂z∂xwdz

]
dxdy(11)

=
Z

D
[wx(x,y, f (x,y))−wx(x,y,0)]dxdy.

We will use Green’s theorem to turn this into a boundary integral, but note first that
wx(x,y, f (x,y)) the partial derivative ofwwith respect tox, evaluated at the point(x,y, f (x,y)),
is not the same as[w(x,y, f (x,y))]x, the partial derivative ofw(x,y, f (x,y)) with respect to
x! In fact, using the chain rule and (10),

∂x[w(x,y, f (x,y))] = wx(x,y, f (x,y)) +wz(x,y, f (x,y)) fx

= wx(x,y, f (x,y)) +v(x,y, f (x,y)) fx.
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Substituting this into (11), we getZ
D

[wx(x,y, f (x,y))−wx(x,y,0)]dxdy(12)

=
Z

D
[∂x[w(x,y, f (x,y))−w(x,y,0)]−v(x,y, f (x,y)) fx]dxdy.

The second term here is just
R

S2
X ·ndA, by (9). We apply Green’s theorem to the other

term, gettingZ
D

∂x[w(x,y, f (x,y))−w(x,y,0)]dxdy=
Z

∂D
[w(x,y, f (x,y))−w(x,y,0)]dy

=
Z

∂D

Z f (x,y)

z=0
v(x,y,z)dydz.

We recognize this as
R

S1
X ·ndA. Putting all the pieces together we find at last:Z

R
divX dV =

Z
∂R

X ·ndA

for X = (v,0,0). Here we have also used the fact that
R

S0
X · ndA = 0 sinceX · n is

identically zero onS0.
The method for a vector field of the formX = (0,w,0) is exactly analogous to the argu-

ment we’ve just seen, with∂y replacing∂x at the appropriate places, and the corresponding
modification of Green’s theorem. As indicated, the theorem now follows by considering
a general vector fieldX = (X1,X2,X3) as the sum

X = (X1,0,0) +(0,X2,0) +(0,0,X3).

5. CONSEQUENCES: GREEN’ S IDENTITIES

The divergence theorem is important in PDE because it allows one to integrate by
parts. To state the fundamental result, letR be a bounded domain with piecewise smooth
boundary as before, and letu be a smooth function andX a smooth vector field inR
(continuous up to∂R). By Exercise (6.5),

div(uX) = gradu ·X +udivX.

We integrate this overR, applying the divergence theorem to the LHS:Z
∂R

uX ·ndA=
Z

R
(gradu ·X +udivX)dV.(13)

Although this does not have a fancy name, it is every bit as important as Green’s first and
second identities, (14) and (16) below.

5.1. Green’s first identity. TakingX = gradv in (13), wherev is another suitable func-
tion in R, we obtain Z

∂R
u

∂v
∂n

dA=
Z

R
gradu ·gradvdV+

Z
R

v∆udV(14)

where
∂v
∂n

= vn = directional derivative ofv in directionn = n ·gradv.(15)

Equation (14) is known asGreen’s first identity.
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5.2. Green’s second identity. If we swapu andv around in (14), then the first term on
the RHS does not change. Subtracting these two versions of (14), we obtain

Z
R
(u∆v−v∆u)dV =

Z
∂R

(
u

∂v
∂n
−v

∂u
∂n

)
dA.(16)

(The process by which (16) was derived from (14) is an example ofsymmetrization.) This
is Green’s second identityand is a basic tool in the study of∆.

5.3. Inner-product-space interpretation. Let C∞(R) stand for the space of smooth (in-
finitely differentiable) functions onR, such that all derivatives are continuous up to∂R.
Let C∞(R,R3) stand for the space of all smooth vector fields onR, again with all deriva-
tives continuous up to∂R. Make these into infinite-dimensional inner-product spaces by

〈u,v〉=
Z

R
uvdV, (u,v∈C∞(R))

and

〈X,Y〉=
Z

R
X ·Y dV, (X,Y ∈C∞(R,R3)).

Then grad, div and∆ define linear operators

grad :C∞(R)→C∞(R,R3), div : C∞(R,R3)→C∞(R), ∆ : C∞(R)→C∞(R).

The identity (13) becomes

〈gradu,X〉+ 〈u,divX〉=
Z

∂R
uX ·ndA.(17)

In particular, grad and−div are adjoint to each other on any subspace which guarantees
the vanishing of the boundary term. For example, the subspaces of functions vanishing
on ∂R, or the subspace of vector fields such thatX ·n = 0 on∂R.

Similarly, (14) becomes

〈gradu,gradv〉+ 〈∆u,v〉=
Z

∂R
vundA(18)

and (16) becomes

〈∆u,v〉−〈u,∆v〉=
Z

∂R
(uvn−unv)dA.(19)

From this we obtain the self-adjointness of∆ on suitable subspaces ofC∞(R), for example
the subspace of functions which satisfy Dirichlet or Neumann boundary conditions.

6. EXERCISES ON THE DIVERGENCE THEOREM

6.1. Write downn when

1. R= {x2 +y2 < a2} ⊂ R2},
2. R= {(x− p)2 +(y−q)2< a2} ⊂ R2},
3. R= {x2 +y2 +z2 < a2} ⊂R3},
4. R= {(x− p)2 +(y−q)2 +(z− r)2< a2} ⊂ R3}.

[Hint: sketch these sets and think geometrically. Use general formulae only if all else
fails.]
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6.2. Consider the pieceS of the planex+ y+ z = 1 cut off by the coordinate planes,
so S= {(x,y,z) : x+ y+ z = 1,x≥ 0,y≥ 0,z≥ 0}. Let R be the 3-dimensional region
bounded by the coordinate planes andS, R= {(x,y,z) : x+y+z≤ 1,x≥ 0,y≥ 0,z≥ 0}.

1. Sketch (or get maple to sketch?)SandR.
2. Show how to parameterizeSas a graphz= f (x,y) where the real-valued functionf

is defined in some regionD of the(x,y)-plane. Don’t forget to specifyD as well as
f .

3. Write down the area elementdA in terms ofdxdy. Write down also the two unit
normal vectors toS.

4. Calculate
R

SdA. What is the interpretation of this integral? Can you check it using
elementary geometry?

5. Calculate
R

Si ·ndA, wheren is the choice of normal that points away from the origin.
Can you give the values of

R
Sj · ndA and

R
Sk · ndA without any further detailed

calculation?
6. Calculate

R
R dV and check your answer using the formula for the volume of a pyra-

mid. Use the divergence theorem to deduce the value ofZ
∂R

xi ·ndA.

6.3. LetB = {(x,y,z) :−1≤ x≤ 1,−1≤ y≤ 1,−1≤ z≤ 1} be the cube with centre at
the origin and of side 2. Calculate directly, and using the divergence theorem,Z

∂B
i ·ndA,

Z
∂B

xi ·ndA,
Z

∂B
x2i ·ndA.

6.4. Let
X(x,y,z) = (sin(yz),ex2

cosz+y,yex4−y5−z).
What is

R
SX ·ndA if S is the unit spherex2 + y2 + z2 = 1 andn is the normal pointing

away from the origin? [Hint:X is very complicated, but very little work is needed to
answer this question.]

6.5. Letu be a smooth function andX be a smooth vector field inR3. Show that

div(uX) = gradu ·X +udivX.

6.6. Letx = (x,y,z) andr = (x2 +y2 +z2)1/2. Compute:
1. divx;
2. gradφ(r);
3. div(x/rn). (6.5).

6.7. Leta> 0 and letS= {x2+y2+z2 = a2} be the sphere of radiusa, centre the origin.
Let n = x/a be the outward-pointing normal atS. Show that ifX = x/r3, thenZ

S
X ·ndA= 4π.

What is div(x/r3)? Why do these results not contradict the divergence theorem?


