
Chapter 2

Complex Analysis

In this part of the course we will study some basic complex analysis. This is
an extremely useful and beautiful part of mathematics and forms the basis
of many techniques employed in many branches of mathematics and physics.
We will extend the notions of derivatives and integrals, familiar from calculus,
to the case of complex functions of a complex variable. In so doing we will
come across analytic functions, which form the centerpiece of this part of the
course. In fact, to a large extent complex analysis is the study of analytic
functions. After a brief review of complex numbers as points in the complex
plane, we will first discuss analyticity and give plenty of examples of analytic
functions. We will then discuss complex integration, culminating with the
generalised Cauchy Integral Formula, and some of its applications. We then
go on to discuss the power series representations of analytic functions and
the residue calculus, which will allow us to compute many real integrals and
infinite sums very easily via complex integration.

2.1 Analytic functions

In this section we will study complex functions of a complex variable. We
will see that differentiability of such a function is a non-trivial property,
giving rise to the concept of an analytic function. We will then study many
examples of analytic functions. In fact, the construction of analytic functions
will form a basic leitmotif for this part of the course.

2.1.1 The complex plane

We already discussed complex numbers briefly in Section 1.3.5. The emphasis
in that section was on the algebraic properties of complex numbers, and
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although these properties are of course important here as well and will be
used all the time, we are now also interested in more geometric properties of
the complex numbers.

The set C of complex numbers is naturally identified with the plane R2.
This is often called the Argand plane.

Given a complex number z = x+i y, its real and imag- 6

-

z = x + iy
y

x

7
inary parts define an element (x, y) of R2, as shown in
the figure. In fact this identification is one of real vec-
tor spaces, in the sense that adding complex numbers
and multiplying them with real scalars mimic the simi-
lar operations one can do in R2. Indeed, if α ∈ R is real,
then to α z = (α x) + i (α y) there corresponds the pair
(α x, α y) = α (x, y). Similarly, if z1 = x1 + i y1 and z2 = x2 + i y2 are com-
plex numbers, then z1 + z2 = (x1 + x2) + i (y1 + y2), whose associated pair
is (x1 + x2, y1 + y2) = (x1, y1) + (x2, y2). In fact, the identification is even
one of euclidean spaces. Given a complex number z = x + i y, its modulus
|z|, defined by |z|2 = zz∗, is given by

√
x2 + y2 which is precisely the norm

‖(x, y)‖ of the pair (x, y). Similarly, if z1 = x1 + i y1 and z2 = x2 + i y2,
then Re(z∗1z2) = x1x2 + y1y2 which is the dot product of the pairs (x1, y1)
and (x2, y2). In particular, it follows from these remarks and the triangle
inequality for the norm in R2, that complex numbers obey a version of the
triangle inequality:

|z1 + z2| ≤ |z1|+ |z2| . (2.1)

Polar form and the argument function

Points in the plane can also be represented using polar coordinates, and
this representation in turn translates into a representation of the complex
numbers.

Let (x, y) be a point in the plane. If we define r =

θ
r 7

z = reiθ √
x2 + y2 and θ by θ = arctan(y/x), then we can write

(x, y) = (r cos θ, r sin θ) = r (cos θ, sin θ). The complex
number z = x + i y can then be written as z = r (cos θ +
i sin θ). The real number r, as we have seen, is the modulus
|z| of z, and the complex number cos θ + i sin θ has unit
modulus. Comparing the Taylor series for the cosine and

sine functions and the exponential functions we notice that cos θ+i sin θ = eiθ.
The angle θ is called the argument of z and is written arg(z). Therefore we
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have the following polar form for a complex number z:

z = |z| ei arg(z) . (2.2)

Being an angle, the argument of a complex number is only defined up to the
addition of integer multiples of 2π. In other words, it is a multiple-valued
function. This ambiguity can be resolved by defining the principal value
Arg of the arg function to take values in the interval (−π, π]; that is, for any
complex number z, one has

−π < Arg(z) ≤ π . (2.3)

Notice, however, that Arg is not a continuous function: it has a discontinuity
along the negative real axis. Approaching a point on the negative real axis
from the upper half-plane, the principal value of its argument approaches π,
whereas if we approach it from the lower half-plane, the principal value of
its argument approaches −π. Notice finally that whereas the modulus is a
multiplicative function: |zw| = |z||w|, the argument is additive: arg(z1 z2) =
arg(z1) + arg(z2), provided that we understand the equation to hold up to
integer multiples of 2π. Also notice that whereas the modulus is invariant
under conjugation |z∗| = |z|, the argument changes sign arg(z∗) = − arg(z),
again up to integer multiples of 2π.

Some important subsets of the complex plane

We end this section with a brief discussion of some very important subsets
of the complex plane. Let z0 be any complex number, and consider all those
complex numbers z which are a distance at most ε away from z0. These
points form a disk of radius ε centred at z0. More precisely, let us define the
open ε-disk around z0 to be the subset Dε(z0) of the complex plane defined
by

Dε(z0) = {z ∈ C | |z − z0| < ε} . (2.4)

Similarly one defines the closed ε-disk around z0 to be the subset

D̄ε(z0) = {z ∈ C | |z − z0| ≤ ε} , (2.5)

which consists of the open ε-disk and the circle |z − z0| = ε which forms its
boundary. More generally a subset U ⊂ C of the complex plane is said to be
open if given any z ∈ U , there exists some positive real number ε > 0 (which
can depend on z) such that the open ε-disk around z also belongs to U . A set
C is said to be closed if its complement Cc = {z ∈ C | z 6∈ C}—that is, all
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those points not in C—is open. One should keep in mind that generic subsets
of the complex plane are neither closed nor open. By a neighbourhood of a
point z0 in the complex plane, we will mean any open set containing z0. For
example, any open ε-disk around z0 is a neighbourhood of z0.

� Let us see that the open and closed ε-disks are indeed open and closed, respectively. Let
z ∈ Dε(z0). This means that |z− z0| = δ < ε. Consider the disk Dε−δ(z). We claim that
this disk is contained in Dε(z0). Indeed, if |w − z| < ε− δ then,

|w − z0| = |(w − z) + (z − z0)| (adding and subtracting z)

≤ |w − z|+ |z − z0| (by the triangle inequality (2.1))

< ε− δ + δ

= ε .

Therefore the disk Dε(z0) is indeed open. Consider now the subset D̄ε(z0). Its complement
is the subset of points z in the complex plane such that |z− z0| > ε. We will show that it
is an open set. Let z be such that |z− z0| = η > ε. Then consider the open disk Dη−ε(z),
and let w be a point in it. Then

|z − z0| = |(z − w) + (w − z0)| (adding and subtracting w)

≤ |z − w|+ |w − z0| . (by the triangle inequality (2.1))

We can rewrite this as

|w − z0| ≥ |z − z0| − |z − w|
> η − (η − ε) (since |z − w| = |w − z| < η − ε)

= ε .

Therefore the complement of D̄ε(z0) is open, whence D̄ε(z0) is closed.

We should remark that the closed disk D̄ε(z0) is not open, since any open disk around a
point z at the boundary of D̄ε(z0)—that is, for which |z− z0| = ε—contains points which
are not included in Dε(z0).

Notice that it follows from this definition that every open set is made out of the union of
(a possibly uncountable number of) open disks.

2.1.2 Complex-valued functions

In this section we will discuss complex-valued functions.
We start with a rather trivial case of a complex-valued function. Suppose

that f is a complex-valued function of a real variable. That means that if x is
a real number, f(x) is a complex number, which can be decomposed into its
real and imaginary parts: f(x) = u(x)+ i v(x), where u and v are real-valued
functions of a real variable; that is, the objects you are familiar with from
calculus. We say that f is continuous at x0 if u and v are continuous at x0.

� Let us recall the definition of continuity. Let f be a real-valued function of a real variable.
We say that f is continuous at x0, if for every ε > 0, there is a δ > 0 such that |f(x) −
f(x0)| < ε whenever |x − x0| < δ. A function is said to be continuous if it is continuous
at all points where it is defined.
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Now consider a complex-valued function f of a complex variable z. We
say that f is continuous at z0 if given any ε > 0, there exists a δ > 0 such
that |f(z)− f(z0)| < ε whenever |z − z0| < δ. Heuristically, another way of
saying that f is continuous at z0 is that f(z) tends to f(z0) as z approaches
z0. This is equivalent to the continuity of the real and imaginary parts of f
thought of as real-valued functions on the complex plane. Explicitly, if we
write f = u+ i v and z = x+ i y, u(x, y) and v(x, y) are real-valued functions
on the complex plane. Then the continuity of f at z0 = x0 + i y0 is equivalent
to the continuity of u and v at the point (x0, y0).

“Graphing” complex-valued functions

Complex-valued functions of a complex variable are harder to visualise than
their real analogues. To visualise a real function f : R → R, one simply
graphs the function: its graph being the curve y = f(x) in the (x, y)-plane.
A complex-valued function of a complex variable f : C → C maps complex
numbers to complex numbers, or equivalently points in the (x, y)-plane to
points in the (u, v) plane. Hence its graph defines a surface u = u(x, y) and
v = v(x, y) in the four-dimensional space with coordinates (x, y, u, v), which
is not so easy to visualise. Instead one resorts to investigating what the
function does to regions in the complex plane. Traditionally one considers
two planes: the z-plane whose points have coordinates (x, y) corresponding
to the real and imaginary parts of z = x + i y, and the w-plane whose points
have coordinates (u, v) corresponding to w = u + i v. Any complex-valued
function f of the complex variable z maps points in the z-plane to points
in the w-plane via w = f(z). A lot can be learned from a complex function
by analysing the image in the w-plane of certain sets in the z-plane. We
will have plenty of opportunities to use this throughout the course of these
lectures.

� With the picture of the z- and w-planes in mind, one can restate the continuity of a
function very simply in terms of open sets. In fact, this was the historical reason why the
notion of open sets was introduced in mathematics. As we saw, a complex-valued function
f of a complex variable z defines a mapping from the complex z-plane to the complex
w-plane. The function f is continuous at z0 if for every neighbourhood U of w0 = f(z0)
in the w-plane, the set

f−1(U) = {z | f(z) ∈ U}
is open in the z-plane. Checking that both definitions of continuity agree is left as an
exercise.

2.1.3 Differentiability and analyticity

Let us now discuss differentiation of complex-valued functions. Again, if f =
u + i v is a complex-valued function of a real variable x, then the derivative
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of f at the point x0 is defined by

f ′(x0) = u′(x0) + i v′(x0) ,

where u′ and v′ are the derivatives of u and v respectively. In other words,
we extend the operation of differentiation complex-linearly. There is nothing
novel here.

Differentiability and the Cauchy–Riemann equations

The situation is drastically different when we consider a complex-valued func-
tion f = u+i v of a complex variable z = x+i y. As is calculus, let us attempt
to define its derivative by

f ′(z0) ≡ lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
. (2.6)

The first thing that we notice is that ∆z, being a complex number, can
approach zero in more than one way. If we write ∆z = ∆x + i ∆y, then we
can approach zero along the real axis ∆y = 0 or along the imaginary axis
∆x = 0, or indeed along any direction. For the derivative to exist, the answer
should not depend on how ∆z tends to 0. Let us see what this entails. Let
us write f = u + i v and z0 = x0 + i y0, so that

f(z0) = u(x0, y0) + i v(x0, y0)

f(z0 + ∆z) = u(x0 + ∆x, y0 + ∆y) + i v(x0 + ∆x, y0 + ∆y) .

Then

f ′(z0) = lim
∆x→0
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y
,

where

∆u(x0, y0) = u(x0 + ∆x, y0 + ∆y)− u(x0, y0)

∆v(x0, y0) = v(x0 + ∆x, y0 + ∆y)− v(x0, y0) .

Let us first take the limit ∆z → 0 by first taking ∆y → 0 and then ∆x → 0;
in other words, we let ∆z → 0 along the real axis. Then

f ′(z0) = lim
∆x→0

lim
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y

= lim
∆x→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x

=
∂u

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

.
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Now let us take the limit ∆z → 0 by first taking ∆x → 0 and then ∆y → 0;
in other words, we let ∆z → 0 along the imaginary axis. Then

f ′(z0) = lim
∆y→0

lim
∆x→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y

= lim
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

i ∆y

= −i
∂u

∂y

∣∣∣∣
(x0,y0)

+
∂v

∂y

∣∣∣∣
(x0,y0)

.

These two expressions for f ′(z0) agree if and only if the following equations
are satisfied at (x0, y0):

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (2.7)

These equations are called the Cauchy–Riemann equations.
We say that the function f is differentiable at z0 if f ′(z0) is well-defined

at z0. For a differentiable function f we have just seen that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

We have just shown that a necessary condition for f to be differentiable at
z0 is that its real and imaginary parts obey the Cauchy–Riemann equations
at (x0, y0). Conversely, it can be shown that this condition is also sufficient
provided that the the partial derivatives of u and v are continuous.

We say that the function f is analytic in a neighbourhood U of z0 if it is
differentiable everywhere in U . We say that a function is entire if it is analytic
in the whole complex plane. Often the terms regular and holomorphic are
used as synonyms for analytic.

For example, the function f(z) = z is entire. We can check this either by
verifying the Cauchy–Riemann equations or else simply by noticing that

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

z0 + ∆z − z0

∆z

= lim
∆z→0

∆z

∆z
= lim

∆z→0
1

= 1 ;
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whence it is well-defined for all z0.
On the other hand, the function f(z) = z∗ is not differentiable anywhere:

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

z∗0 + (∆z)∗ − z∗0
∆z

= lim
∆z→0

(∆z)∗

∆z
;

whence if we let ∆z tend to zero along real values, we would find that f ′(z0) =
1, whereas if we would let ∆z tend to zero along imaginary values we would
find that f ′(z0) = −1. We could have reached the same conclusion via
the Cauchy–Riemann equations with u(x, y) = x and v(x, y) = −y, which
violates the first of the Cauchy–Riemann equations.

It is important to realise that analyticity, unlike differentiability, is not
a property of a function at a point, but on an open set of points. The
reason for this is to able to eliminate from the class of interesting functions,
functions which may be differentiable at a point but nowhere else. Whereas
this is a rarity in calculus1, it is a very common occurrence for complex-
valued functions of a complex variables. For example, consider the function
f(z) = |z|2. This function has u(x, y) = x2 + y2 and v(x, y) = 0. Therefore
the Cauchy–Riemann equations are only satisfied at the origin in the complex
plane:

∂u

∂x
= 2x =

∂v

∂y
= 0 and

∂v

∂x
= 0 = −∂u

∂y
= −2y .

Relation with harmonic functions

Analytic functions are intimately related to harmonic functions. We say that
a real-valued function h(x, y) on the plane is harmonic if it obeys Laplace’s
equation:

∂2h

∂x2
+

∂2h

∂y2
= 0 . (2.8)

In fact, as we now show, the real and imaginary parts of an analytic function
are harmonic. Let f = u + i v be analytic in some open set of the complex

1Try to come up with a real-valued function of a real variable which is differentiable
only at the origin, for example.
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plane. Then,

∂2u

∂x2
+

∂2u

∂y2
=

∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y

=
∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x
(using Cauchy–Riemann)

=
∂2v

∂x ∂y
− ∂2v

∂y ∂x

= 0 .

A similar calculation shows that v is also harmonic. This result is important
in applications because it shows that one can obtain solutions of a second
order partial differential equation by solving a system of first order partial
differential equations. It is particularly important in this case because we
will be able to obtain solutions of the Cauchy–Riemann equations without
really solving these equations.

Given a harmonic function u we say that another harmonic function v is
its harmonic conjugate if the complex-valued function f = u+i v is analytic.
For example, consider the function u(x, y) = xy−x+y. It is clearly harmonic
since

∂u

∂x
= y − 1 and

∂u

∂y
= x + 1 ,

whence
∂2u

∂x2
=

∂2u

∂y2
= 0 .

By a harmonic conjugate we mean any function v(x, y) which together with
u(x, y) satisfies the Cauchy–Riemann equations:

∂v

∂x
= −∂u

∂y
= −x− 1 and

∂v

∂y
=

∂u

∂x
= y − 1 .

We can integrate the first of the above equations, to obtain

v(x, y) = −1
2
x2 − x + ψ(y) ,

for ψ an arbitrary function of y which is to be determined from the second
of the Cauchy–Riemann equations. Doing this one finds

ψ′(y) = y − 1 ,

which is solved by ψ(y) = 1
2
y2 − y + c, where c is any constant. Therefore,

the function f = u + i v becomes

f(x, y) = xy − x + y + i (−1
2
x2 + 1

2
y2 − x− y + c) .
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We can try to write this down in terms of z and z∗ by making the substitutions
x = 1

2
(z + z∗) and y = −i 1

2
(z − z∗). After a little bit of algebra, we find

f(z) = −iz2 − (1 + i) z + i c .

Notice that all the z∗ dependence has dropped out. We will see below that
this is a sign of analyticity.

2.1.4 Polynomials and rational functions

We now start to build up some examples of analytic functions. We have
already seen that the function f(z) = z is entire. In this section we will
generalise this to show that so is any polynomial P (z). We will also see that
ratios of polynomials are also analytic everywhere but on a finite set of points
in the complex plane where the denominator vanishes.

There are many ways to do this, but one illuminating way is to show
that complex linear combinations of analytic functions are analytic and that
products of analytic functions are analytic functions. Let f(z) be an analytic
function on some open subset U ⊂ C, and let α be a complex number. Then
it is easy to see that the function α f(z) is also analytic on U . Indeed, from
the definition (2.6) of the derivative, we see that

(α f)′(z0) = α f ′(z0) , (2.9)

which exists whenever f ′(z0) exists.
Let f(z) and g(z) be analytic functions on the same open subset U ⊂ C.

Then the functions f(z) + g(z) and f(z)g(z) are also analytic. Again from
the definition (2.6) of the derivative,

(f + g)′(z0) = f ′(z0) + g′(z0) (2.10)

(f g)′(z0) = f ′(z0) g(z0) + f(z0) g′(z0) , (2.11)

which exist whenever f ′(z0) and g′(z0) exist.

� The only tricky bit in the above result is that we have to make sure that f and g are
analytic in the same open set U . Normally it happens that f and g are analytic in
different open sets, say, U1 and U2 respectively. Then the sum f(z) + g(z) and product
f(z) g(z) are analytic in the intersection U = U1 ∩ U2, which is also open. This is easy to
see. Let us assume that U is not empty, otherwise the statement is trivially satisfied. Let
z ∈ U . This means that z ∈ U1 and z ∈ U2. Because each Ui is open there are positive
real numbers εi such that Dεi (z) lies inside Ui. Let ε = min(ε1, ε2) be the smallest of the
εi. Then Dε(z) ⊆ Dεi (z) ⊂ Ui for i = 1, 2. Therefore Dε(z) ⊂ U , and U is open.

It is important to realise that only finite intersections of open sets will again be open in
general. Consider, for example, the open disks D1/n(0) of radius 1/n about the origin,
for n = 1, 2, 3, . . .. Their intersection consists of the points z with |z| < 1/n for all
n = 1, 2, 3, . . .. Clearly, if z 6= 0 then there will be some positive integer n for which
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|z| > 1/n. Therefore the only point in the intersection of all the D1/n(0) is the origin
itself. But this set is clearly not open, since it does not contain any open disk with nonzero
radius. More generally, sets consisting of a finite number of points are never open; although
they are closed.

Therefore we see that (finite) sums and products of analytic functions
are analytic with the same domain of analyticity. In particular, sums and
products of entire functions are again entire. As a result, from the fact
that the function f(z) = z is entire, we see that any polynomial P (z) =∑N

n=0 an zn of finite degree N is also an entire function. Indeed, its derivative
is given by

P ′(z0) =
N∑

n=1

n an zn−1
0 ,

as follows from the above formulae for the derivatives of sums and products.
We will see later on in the course that to some extent we will be able

to describe all analytic functions (at least locally) in terms of polynomials,
provided that we allow the polynomials to have arbitrarily high degree; in
other words, in terms of power series.

There are two more constructions which start from analytic functions and
yield an analytic function: quotients and composition. Let f(z) and g(z) be
analytic functions on some open subset U ⊂ C. Then the quotient f(z)/g(z)
is continuous away from the zeros of g(z), which can be shown (see below) to
be an open set. If g(z0) 6= 0, then from the definition of the derivative (2.6),
it follows that

(
f

g

)′
(z0) =

f ′(z0) g(z0)− f(z0) g′(z0)

g(z0)2
.

� To see that the subset of points z for which g(z) 6= 0 is open, we need only realise that
this set is the inverse image g−1({0}c) under g of the complement of 0. The result then
follows because the complement of 0 is open and g is continuous, so that g−1(open) is
open.

By a rational function we mean the ratio of two polynomials. Let P (z)
and Q(z) be two polynomials. Then the rational function

R(z) =
P (z)

Q(z)

is analytic away from the zeros of Q(z).

� We have been tacitly assuming that every (non-constant) polynomial Q(z) has zeros. This
result is known as the Fundamental Theorem of Algebra and although it is of course intu-
itive and in agreement with our daily experience with polynomials, its proof is surprisingly
difficult. There are three standard proofs: one is purely algebraic, but it is long and ar-
duous, one uses algebraic topology and the other uses complex analysis. We will in fact
see this third proof later on in Section 2.2.6.
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Finally let g(z) be analytic in an open subset U ⊂ C and let f(z) be
analytic in some open subset containing g(U), the image of U under g. Then
the composition f ◦ g defined by (f ◦ g)(z) = f(g(z)) is also analytic in U .
In fact, its derivative can be computed using the chain rule,

(f ◦ g)′(z0) = f ′(g(z0)) g′(z0) . (2.12)

� You may wonder whether g(U) is an open set, for U open and g analytic. This is indeed
true: it is called the open mapping property of analytic functions. We may see this later
on in the course.

It is clear that if f and g are rational functions so will be its composition
f ◦ g, so one only ever constructs new functions this way when one of the
functions being composed is not rational. We will see plenty of examples of
this as the lectures progress.

Another look at the Cauchy–Riemann equations

Finally let us mention an a different way to understand the Cauchy–Riemann
equations, at least for the case of rational functions. Notice that the above
polynomials and rational functions share the property that they do not de-
pend on z∗ but only on z. Suppose that one is given a rational function
where the dependence on x and y has been made explicit. For example,

f(x, y) =
x− 1− i y

(x− 1)2 + y2
.

In order to see whether f is analytic one would have to apply the Cauchy–
Riemann equations, which can get rather messy when the rational function
is complicated. It turns out that it is not necessary to do this. Instead one
can try to re-express the function in terms of z and z∗ by the substitutions

x =
z + z∗

2
and y =

z − z∗

2i
.

Then, the rational function f(x, y) is analytic if and only if the z∗ dependence
cancels. In the above example, one can see that this is indeed the case.
Indeed, rewriting f(x, y) in terms of z and z∗ we see that

f(x, y) =
z∗ − 1

zz∗ − z − z∗ + 1
=

1

z − 1
,

whence the z∗ dependence has dropped out. We therefore expect that the
Cauchy–Riemann equations will be satisfied. Indeed, one has that

u(x, y) =
x− 1

(x− 1)2 + y2
and v(x, y) =

−y

(x− 1)2 + y2
,
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and after some algebra,

∂u

∂x
=
− (x− 1)2 + y2

(
(x− 1)2 + y2

)2 =
∂v

∂y

∂u

∂y
=

−2 (x− 1) y(
(x− 1)2 + y2

)2 = −∂v

∂x
.

The reason this works is the following. Let us think formally of z and z∗ as
independent variables for the plane, like x and y. Then we have that

∂f

∂z∗
=

∂f

∂(x− i y)
=

∂f

∂x
+ i

∂f

∂y
.

Let us break up f into its real and imaginary parts: f(x, y) = u(x, y) +
i v(x, y). Then,

∂f

∂z∗
=

∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+

∂u

∂y

)
.

Therefore we see that the Cauchy–Riemann equations are equivalent to the
condition

∂f

∂z∗
= 0 . (2.13)

2.1.5 The complex exponential and related functions

There are many other analytic functions besides the rational functions. Some
of them are related to the exponential function.

Let z = x+i y be a complex number and define the complex exponential
exp(z) (also written ez) to be the function

exp(z) = exp(x + i y) ≡ ex (cos y + i sin y) .

We will first check that this function is entire. Decomposing it into real and
imaginary parts, we see that

u(x, y) = ex cos y and v(x, y) = ex sin y .

It is easy to check that the Cauchy–Riemann equations (2.7) are satisfied
everywhere on the complex plane:

∂u

∂x
= ex cos y =

∂v

∂y
and

∂v

∂x
= ex sin y = −∂u

∂y
.
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Therefore the function is entire and its derivative is given by

exp′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + i ex sin y

= exp(z) .

The exponential function obeys the following addition property

exp(z1 + z2) = exp(z1) exp(z2) , (2.14)

which has as a consequence the celebrated De Moivre’s Formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) ,

obtained simply by noticing that exp(i nθ) = exp(i θ)n.
The exponential is also a periodic function, with period 2π i. In fact from

the periodicity of trigonometric functions, we see that exp(2π i) = 1 and
hence, using the addition property (2.14), we find

exp(z + 2π i) = exp(z) . (2.15)

This means that the exponential is not one-to-one, in sharp contrast with the
real exponential function. It follows from the definition of the exponential
function that

exp(z1) = exp(z2) if and only if z1 = z2 + 2π i k for some integer k.

We can divide up the complex plane into horizontal strips of height 2π in
such a way that in each strip the exponential function is one-to-one. To see
this define the following subsets of the complex plane

Sk ≡ {x + i y ∈ C | (2k − 1)π < y ≤ (2k + 1)π} ,

for k = 0,±1,±2, . . ., as shown in Figure 2.1.
Then it follows that if z1 and z2 belong to the same set Sk, then exp(z1) =

exp(z2) implies that z1 = z2. Each of the sets Sk is known as a fundamental
region for the exponential function. The basic property satisfied by a funda-
mental region of a periodic function is that if one knows the behaviour of the
function on the fundamental region, one can use the periodicity to find out
the behaviour of the function everywhere, and that it is the smallest region
with that property. The periodicity of the complex exponential will have as
a consequence that the complex logarithm will not be single-valued.
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π
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Figure 2.1: Fundamental regions of the complex exponential function.

Complex trigonometric functions

We can also define complex trigonometric functions starting from the complex
exponential. Let z = x + i y be a complex number. Then we define the
complex sine and cosine functions as

sin(z) ≡ eiz − e−iz

2i
and cos(z) ≡ eiz + e−iz

2
.

Being linear combinations of the entire functions exp(±iz), they themselves
are entire. Their derivatives are

sin′(z) = cos(z) and cos′(z) = − sin(z) .

The complex trigonometric functions obey many of the same properties
of the real sine and cosine functions, with which they agree when z is real.
For example,

cos(z)2 + sin(z)2 = 1 ,

and they are periodic with period 2π. However, there is one important
difference between the real and complex trigonometric functions: whereas
the real sine and cosine functions are bounded, their complex counterparts
are not. To see this let us break them up into real and imaginary parts:

sin(x + i y) = sin x cosh y + i cos x sinh y

cos(x + i y) = cos x cosh y − i sin x sinh y .
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We see that the appearance of the hyperbolic functions means that the com-
plex sine and cosine functions are not bounded.

Finally, let us define the complex hyperbolic functions. If z = x + i y,
then let

sinh(z) ≡ ez − e−z

2
and cosh(z) ≡ ez + e−z

2
.

In contrast with the real hyperbolic functions, they are not independent from
the trigonometric functions. Indeed, we see that

sinh(iz) = i sin(z) and cosh(iz) = cos(z) . (2.16)

Notice that one can also define other complex trigonometric functions:
tan(z), cot(z), sec(z) and csc(z) in the usual way, as well as their hyperbolic
counterparts. These functions obey many other properties, but we will not
review them here. Instead we urge you to play with these functions until you
are familiar with them.

2.1.6 The complex logarithm

This section introduces the logarithm of a complex number. We will see that
in contrast with the real logarithm function which is only defined for posi-
tive real numbers, the complex logarithm is defined for all nonzero complex
numbers, but at a price: the function is not single-valued. This has to do
with the periodicity (2.15) of the complex exponential or, equivalently, with
the multiple-valuedness of the argument arg(z).

In this course we will use the notation ‘log’ for the natural logarithm,
not for the logarithm base 10. Some people also use the notation ‘ln’ for the
natural logarithm, in order to distinguish it from the logarithm base 10; but
we will not be forced to do this since we will only be concerned with the
natural logarithm.

By analogy with the real natural logarithm, we define the complex loga-
rithm as an inverse to the complex exponential function. In other words, we
say that a logarithm of a nonzero complex number z, is any complex number
w such that exp(w) = z. In other words, we define the function log(z) by

w = log(z) if exp(w) = z . (2.17)

From the periodicity (2.15) of the exponential function it follows that if
w = log(z) so is w + 2π i k for any integer k. Therefore we see that log(z) is
a multiple-valued function. We met a multiple-valued function before: the

88



argument function arg(z). Clearly if θ = arg(z) then so is θ + 2π k for any
integer k. This is no accident: the imaginary part of the log(z) function is
arg(z). To see this, let us write z in polar form (2.2) z = |z| exp(i arg(z))
and w = log(z) = u + i v. By the above definition and using the addition
property (2.14), we have

exp(u + i v) = eu ei v = |z| ei arg(z) ,

whence comparing polar forms we see that

eu = |z| and ei v = ei arg(z) .

Since u is a real number and |z| is a positive real number, we can solve the
first equation for u uniquely using the real logarithmic function, which in
order to distinguish it from the complex function log(z) we will write as Log:

u = Log |z| .

Similarly, we see that v = arg(z) solves the second equation. So does v+2π k
for any integer k, but this is already taken into account by the multiple-
valuedness of the arg(z) function. Therefore we can write

log(z) = Log |z|+ i arg(z) , (2.18)

where we see that it is a multiple-valued function as a result of the fact that
so is arg(z). In terms of the principal value Arg(z) of the argument function,
we can also write the log(z) as follows:

log(z) = Log |z|+ i Arg(z) + 2π i k for k = 0,±1,±2, . . ., (2.19)

which makes the multiple-valuedness manifest.
For example, whereas the real logarithm of 1 is simply 0, the complex

logarithm is given by

log(1) = Log |1|+ i arg(1) = 0 + i 2π k for any integer k.

As promised, we can now take the logarithm of negative real numbers. For
example,

log(−1) = Log | − 1|+ i arg(−1) = 0 + i π + i 2π k for any integer k.

The complex logarithm obeys many of the algebraic identities that we
expect from the real logarithm, only that we have to take into account its
multiple-valuedness properly. Therefore an identity like

log(z1 z2) = log(z1) + log(z2) , (2.20)
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for nonzero complex numbers z1 and z2, is still valid in the sense that having
chosen a value (out of the infinitely many possible values) for log(z1) and for
log(z2), then there is a value of log(z1 z2) for which the above equation holds.
Or said in a different way, the identity holds up to integer multiples of 2π i
or, as it is often said, modulo 2π i:

log(z1 z2)− log(z1)− log(z2) = 2π i k for some integer k.

Similarly we have

log(z1/z2) = log(z1)− log(z2) , (2.21)

in the same sense as before, for any two nonzero complex numbers z1 and z2.

Choosing a branch for the logarithm

We now turn to the discussion of the analyticity properties of the complex
logarithm function. In order to discuss the analyticity of a function, we need
to investigate its differentiability, and for this we need to be able to take
its derivative as in equation (2.6). Suppose we were to try to compute the
derivative of the function log(z) at some point z0. Writing the derivative as
the limit of a quotient,

log′(z0) = lim
∆z→0

log(z0 + ∆z)− log(z0)

∆z
,

we encounter an immediate obstacle: since the function log(z) is multiple-
valued we have to make sure that the two log functions in the numerator tend
to the same value in the limit, otherwise the limit will not exist. In other
words, we have to choose one of the infinitely many values for the log function
in a consistent way. This way of restricting the values of a multiple-valued
function to make it single-valued in some region (in the above example in
some neighbourhood of z0) is called choosing a branch of the function. For
example, we define the principal branch Log of the logarithmic function to
be

Log(z) = Log |z|+ i Arg(z) ,

where Arg(z) is the principal value of arg(z). Af first sight it might seem
that this notation is inconsistent, since we are using Log both for the real
logarithm and the principal branch of the complex logarithm. So let us make
sure that this is not the case. If z is a positive real number, then z = |z|
and Arg(z) = 0, whence Log(z) = Log |z|. Hence at least the notation is
consistent. The function Log(z) is single-valued, but at a price: it is no
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longer continuous in the whole complex plane, since Arg(z) is not continuous
in the whole complex plane. As explained in Section 2.1.1, the principal
branch Arg(z) of the argument function is discontinuous along the negative
real axis. Indeed, let z± = −x±i ε where x and ε are positive numbers. In the
limit ε → 0, z+ and z− tend to the same point on the negative real axis from
the upper and lower half-planes respectively. Hence whereas limε→0 z± = −x,
the principal value of the logarithm obeys

lim
ε→0

Log(z±) = Log(x)± i π ,

so that it is not a continuous function anywhere on the negative real axis, or
at the origin, where the function itself is not well-defined. The non-positive
real axis is known as a branch cut for this function and the origin is known
as a branch point.

Let D denote all the points in the complex plane except

D

•
for those which are real and non-positive; in other words,
D is the complement of the non-positive real axis. It is easy
to check that D is an open subset of the complex plane and
by construction, Log(z) is single-valued and continuous for
all points in D. We will now check that it is analytic there
as well. For this we need to compute its derivative. So let

z0 ∈ D be any point in D and consider w0 = Log(z0). Letting ∆z = z − z0,
we can write the derivative of w = Log(z) at z0 in the following form

Log′(z0) = lim
z→z0

w − w0

z − z0

= lim
z→z0

1
z−z0

w−w0

= lim
w→w0

1
z−z0

w−w0

,

where to reach the second line we used the fact that w = w0 implies z = z0

(single-valuedness of the exponential function), and to reach the third line
we used the continuity of Log(z) in D to deduce that w → w0 as z → z0.
Now using that z = ew we see that what we have here is the reciprocal of
the derivative of the exponential function, whence

Log′(z0) = lim
w→w0

1
ew−ew0

w−w0

=
1

exp′(w0)
=

1

exp(w0)
=

1

z0

.

Since this is well-defined everywhere but for z0 = 0, which does not belong
to D, we see that Log(z) is analytic in D.
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Other branches

The choice of branch for the logarithm is basically that, a choice. It is
certainly not the only one. We can make the logarithm function single-
valued in other regions of the complex plane by choosing a different branch
for the argument function.

For example, another popular choice is to consider the function Arg0(z)
which is the value of the argument function for which

0 ≤ Arg0(z) < 2π .

This function, like Arg(z), is single-valued but discontinuous; however the
discontinuity is now along the positive real axis, since approaching a positive
real number from the upper half-plane we would conclude that its argument
tends to 0 whereas approaching it from the lower half-plane the argument
would tend to 2π. We can therefore define a branch Log0(z) of the logarithm
by

Log0(z) = Log |z|+ i Arg0(z) .

This branch then has a branch cut along the non-negative real axis, but it is
continuous in its complement D0 as shown in Figure 2.2. The same argument
as before shows that Log0(z) is analytic in D0 with derivative given by

Log′0(z0) =
1

z0

for all z0 in D0.

D0 Dτ

• •

Figure 2.2: Two further branches of the logarithm.

There are of course many other branches. For example, let τ be any real
number and define the branch Argτ (z) of the argument function to take the
values

τ ≤ Argτ (z) < τ + 2π .

This gives rise to a branch Logτ (z) of the logarithm function defined by

Logτ (z) = Log |z|+ i Argτ (z) ,
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which has a branch cut emanating from the origin and consisting of all those
points z with arg(z) = τ modulo 2π. Again the same arguments show that
Logτ (z) is analytic everywhere on the complement Dτ of the branch cut, as
shown in Figure 2.2, and its derivative is given by

Log′τ (z0) =
1

z0

for all z0 in Dτ .

The choice of branch is immaterial for many properties of the logarithm,
although it is important that a choice be made. Different applications may
require choosing one branch over another. Provided one is consistent this
should not cause any problems.

As an example suppose that we are faced with computing the derivative
of the function f(z) = log(z2 + 2iz + 2) at the point z = i. We need to
choose a branch of the logarithm which is analytic in a region containing a
neighbourhood of the point i2 + 2i i + 2 = −1. The principal branch is not
analytic there, so we have to choose another branch. Suppose that we choose
Log0(z). Then, by the chain rule

f ′(i) =
2z + 2i

z2 + 2iz + 2

∣∣∣∣
z=i

=
2 i + 2 i

i2 + 2i2 + 2
= −4 i .

Any other valid branch would of course give the same result.

2.1.7 Complex powers

With the logarithm function at our disposal, we are able to define complex
powers of complex numbers. Let α be a complex number. The for all z 6= 0,
we define the α-th power zα of z by

zα ≡ eα log(z) = eα Log |z|+i α arg(z) . (2.22)

The multiple-valuedness of the argument means that generically there will
be an infinite number of values for zα. We can rewrite the above expression
a little to make this manifest:

zα = eα Log |z|+i α Arg(z)+i α 2π k = eα Log(z)ei α 2π k ,

for k = 0,±1,±2, . . ..
Depending on α we will have either one, finitely many or infinitely many

values of exp(i 2π α k). Suppose that α is real. If α = n is an integer then
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so is α k = nk and exp(i 2π α k) = exp(i 2π nk) = 1. There is therefore only
one value for zn. This is as we expect, since in this case we have

zn =





1 for n = 0,

z z · · · z︸ ︷︷ ︸
n times

for n > 0,

1
z−n for n < 0.

If α = p/q is a rational number, where we have chosen the integers p and
q to have no common factors (i.e., to be coprime), then zp/q will have a
finite number of values. Indeed consider exp(i 2π kp/q) as k ranges over the
integers. It is clear that this exponential takes the same values for k and for
k + q:

ei 2π (k+q)p/q = ei 2π (k(p/q)+p) = ei 2π k(p/q)+i 2π p = ei 2π kp/q ,

where we have used the addition and periodicity properties (2.14) and (2.15)
of the exponential function. Therefore zp/q will have at most q distinct values,
corresponding to the above formula with, say, k = 0, 1, 2, . . . , q − 1. In fact,
it will have precisely q distinct values, as we will see below. Finally, if α
is irrational, then zα will possess an infinite number of values. To see this
notice that if there are integers k and k′ for which ei α 2π k = ei α 2π k′ , then
we must have that ei α 2π (k−k′) = 1, which means that α (k − k′) must be an
integer. Since α is irrational, this can only be true if k = k′.

For example, let us compute 11/q. According to the formula,

11/q = eLog(1)/q ei 2π (k/q) = ei 2π (k/q) ,

as k ranges over the integers. As discussed above only the q values k =
0, 1, 2, . . . , q − 1 will be different. The values of 11/q are known as q-th
roots of unity. They each have the property that their q-th power is equal
to 1: (11/q)q = 1, as can be easily seen from the above expression. Let
ω = exp(i 2π/q) correspond to the k = 1 value of 11/q. Then the q-th roots
of unity are given by 1, ω, ω2, . . . , ωq−1, and there are q of them. The q-th
roots of unity lie in the unit circle |z| = 1 in the complex plane and define
the vertices of a regular q-gon. For example, in Figure 2.3 we depict the q-th
roots of unity for q = 3, 5, 7, 11.

Let z be a nonzero complex number and suppose that we are after its
q-th roots. Writing z in polar form z = |z| exp(i θ), we have

z1/q = |z|1/q ei θ/qωk for k = 0, 1, 2, . . . , q − 1.

In other words the q different values of z1/q are obtained from any one value
by multiplying it by the q powers of the q-th roots of unity. If p is any integer,
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Figure 2.3: Some roots of unity.

we can then take the p-th power of the above formula:

zp/q = |z|p/q ei p θ/qωpk for k = 0, 1, 2, . . . , q − 1.

If p and q are coprime, the ωpk for k = 0, 1, 2, . . . , q− 1 are different. Indeed,
suppose that ωpk = ωpk′ , for k and k′ between 0 and q−1. Then ωp(k−k′) = 1,
which means that p(k − k′) has to be a multiple of q. Because p and q are
coprime, this can only happen when k = k′. Therefore we see that indeed a
rational power p/q (with p and q coprime) of a complex number has precisely
q values.

Let us now consider complex powers. If α = a + i b is not real (so that
b 6= 0), then zα will always have an infinite number of values. Indeed, notice
that the last term in the following expression takes a different value for each
integer k:

ei α 2π k = ei (a+i b) 2π k = ei 2π k ae−2π k b .

For examples, let us compute ii. By definition,

ii = ei log(i) = ei (Log(i)+i 2π k) = ei (iπ/2+i 2π k) = e−π/2 e−2π k ,

for k = 0.± 1,±2, . . ., which interestingly enough is real.

Choosing a branch for the complex power

Every branch of the logarithm gives rise to a branch of zα. In particular we
define the principal branch of zα to be exp(α Log(z)). Since the exponential
function is entire, the principal branch of zα is analytic in the domain D
where Log(z) is analytic. We can compute its derivative for any point z0 in
D using the chain rule (2.12):

d

dz

(
eα Log(z)

)∣∣
z=z0

= eα Log(z0) α

z0

.

Given any nonzero z0 in the complex plane, we can choose a branch of the
logarithm so that the function zα is analytic in a neighbourhood of z0. We
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can compute its derivative there and we see that the following equation holds

d

dz
(zα)|z=z0

= α zα
0

1

z0

,

provided that we use the same branch of zα on both sides of the equation.
One might be tempted to write the right-hand side of the above equation

as α zα−1
0 , and indeed this is correct, since the complex powers satisfy many

of the identities that we are familiar with from real powers. For example,
one can easily show that for any complex numbers α and β

zα zβ = zα+β ,

provided that the same branch of the logarithm, and hence of the complex
power, is chosen on both sides of the equation. Nevertheless, there is one
identity that does not hold. Suppose that α is a complex number and let
z1 and z2 be nonzero complex numbers. Then it is not true that zα

1 zα
2 and

(z1 z2)
α agree, even if, as we always should, we choose the same branch of

the complex power on both sides of the equation.
We end this section with the observation that the function zz is analytic

wherever the chosen branch of the logarithm function is defined. Indeed,
zz = exp(z log(z)) and its principal branch can is defined to be the function
exp(z Log(z)), which as we now show is analytic in D. Taking the derivative
we see that

d

dz

(
ez Log(z)

)∣∣
z=z0

= ez0 Log(z0) (Log(z0) + 1) ,

which exists everywhere on D. Again a similar result holds for any other
branch provided we are consistent and take the same branches of the loga-
rithm in both sides of the following equation:

d

dz
(zz)|z=z0

= zz0
0 (log(z0) + 1) .

2.2 Complex integration

Having discussed differentiation of complex-valued functions, it is time to
now discuss integration. In real analysis differentiation and integration are
roughly speaking inverse operations. We will see that something similar
also happens in the complex domain; but in addition, and this is unique to
complex analytic functions, differentiation and integration are also roughly
equivalent operations, in the sense that we will be able to take derivatives
by performing integrals.
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2.2.1 Complex integrals

There is a sense in which the integral of a complex-valued function is a trivial
extension of the standard integral one learns about in calculus. Suppose that
f is a complex-valued function of a real variable t. We can decompose f(t)
into its real and imaginary parts f(t) = u(t) + i v(t), where u and v are now
real-valued functions of a real variable. We can therefore define the integral∫ b

a
f(t) dt of f(t) on the interval [a, b] as

∫ b

a

f(t) dt =

∫ b

a

u(t) dt + i

∫ b

a

v(t) dt ,

provided that the functions u and v are integrable. We will not develop
a formal theory of integrability in this course. You should nevertheless be
aware of the fact that whereas not every function is integrable, a continuous
function always is. Hence, for example, if f is a continuous function in the
interval [a, b] then the integral

∫ b

a
f(t) dt will always exist, since u and v are

continuous and hence integrable.
This integral satisfies many of the properties that real integrals obey. For

instance, it is (complex) linear, so that if α and β are complex numbers and
f and g are complex-valued functions of t, then

∫ b

a

(α f(t) + β g(t)) dt = α

∫ b

a

f(t) dt + β

∫ b

a

g(t) dt .

It also satisfies a complex version of the Fundamental Theorem of Calculus.
This theorem states that if f(t) is continuous in [a, b] and there exists a
function F (t) also defined on [a, b] such that Ḟ (t) = f(t) for all a ≤ t ≤ b,
where Ḟ (t) ≡ dF

dt
, then

∫ b

a

f(t) dt =

∫ b

a

dF (t)

dt
dt = F (b)− F (a) . (2.23)

� This follows from the similar theorem for real integrals, as we now show. Indeed, let us
decompose both f and F into real and imaginary parts: f(t) = u(t) + i v(t) and F (t) =
U(t)+ i V (t). Then since F is an antiderivative Ḟ (t) = U̇(t)+ i V̇ (t) = f(t) = u(t)+ i v(t),
whence U̇(t) = u(t) and V̇ (t) = v(t). Therefore, by definition

Z b

a
f(t) dt =

Z b

a
u(t) dt + i

Z b

a
v(t) dt

= U(b)− U(a) + i (V (b)− V (a))

= U(b) + i V (b)− (U(a) + i V (a))

= F (b)− F (a) ,

where to reach the second line we used the real version of the fundamental theorem of
calculus for the real and imaginary parts of the integral.
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A final useful property of the complex integral is that
∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣ ≤
∫ b

a

|f(t)| dt . (2.24)

This result makes sense intuitively because in integrating f(t) one might
encounter cancellations which do not occur while integrating the non-negative
quantity |f(t)|.

� This last property follows from the similar property of real integrals. Let us see this. Write

the complex integral
R b

a f(t) dt in polar form:

Z b

a
f(t) dt = R ei θ ,

where

R =

����
Z b

a
f(t) dt

���� .

On the other hand,

R =

Z b

a
e−i θf(t) dt .

Write e−i θf(t) = U(t) + i V (t) where U(t) and V (t) are real-valued functions. Then
because R is real,

R =

Z b

a
U(t) dt .

But now,

U(t) = Re
�
e−i θf(t)

�
≤
���e−i θf(t)

��� = |f(t)| .

Therefore, from the properties of real integrals,

Z b

a
U(t) dt ≤

Z b

a
|f(t)| dt ,

which proves the desired result.

2.2.2 Contour integrals

Much more interesting is the integration of complex-valued functions of a
complex variable. We would like to be able to make sense out of something
like ∫ z1

z0

f(z) dz ,

where z0 and z1 are complex numbers. We are immediately faced with a
difficulty. Unlike the case of an interval [a, b] when it is fairly obvious how
to go from a to b, here z0 and z1 are points in the complex plane and there
are many ways to go from one point to the other. Therefore as it stands,
the above integral is ambiguous. The way out of this ambiguity is to specify
a path joining z0 to z1 and then integrate the function along the path. In
order to do this we will have to introduce some notation.
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The integral along a parametrised curve

Let z0 and z1 be two points in the complex plane. One has an intuitive notion
of what one means by a curve joining z0 and z1. Physically, we can think
of a point-particle moving in the complex plane, starting at some time t0 at
the point z0 and ending at some later time t1 at the point z1. At any given
instant in time t0 ≤ t ≤ t1, the particle is at the point z(t) in the complex
plane. Therefore we see that a curve joining z0 and z1 can be defined by
a function z(t) taking points t in the interval [t0, t1] to points z(t) in the
complex plane in such a way that z(t0) = z0 and z(t1) = z1. Let us make
this a little more precise. By a (parametrised) curve joining z0 and z1 we
shall mean a continuous function z : [t0, t1] → C such that z(t0) = z0 and
z(t1) = z1. We can decompose z into its real and imaginary parts, and this
is equivalent to two continuous real-valued functions x(t) and y(t) defined
on the interval [t0, t1] such that x(t0) = x0 and x(t1) = x1 and similarly for
y(t): y(t0) = y0 and y(t1) = y1, where z0 = x0 + i y0 and z1 = x1 + i y1.
We say that the curve is smooth if its velocity ż(t) is a continuous function
[t0, t1] → C which is never zero.

Let Γ be a smooth curve joining z0 to z1, and let f(z) be a complex-valued
function which is continuous on Γ. Then we define the integral of f along
Γ by

∫

Γ

f(z) dz ≡
∫ t1

t0

f(z(t)) ż(t) dt . (2.25)

By hypothesis, the integrand, being a product of continuous functions, is
itself continuous and hence the integral exists.

Let us compute some examples. Consider the function f(z) = x2 + i y2

integrated along the smooth curve parametrised by z(t) = t+i t for 0 ≤ t ≤ 1.
As shown in Figure 2.4 this is the straight line segment joining the origin and
the point 1+i. Decomposing z(t) = x(t)+i y(t) into real and imaginary parts,
we see that x(t) = y(t) = t. Therefore f(z(t)) = t2 + i t2 and ż(t) = 1 + i.
Putting it all together, using complex linearity of the integral and performing
the elementary real integral, we find the following result

∫

Γ

f(z) dz =

∫ 1

0

(t2 + i t2)(1 + i) dt =

∫ 1

0

(1 + i)2 t2 dt = 2i
t3

3

∣∣∣∣
1

0

=
2i

3
.

Consider now the function f(z) = 1/z integrated along the smooth curve
Γ parametrised by z(t) = R exp(i 2π t) for 0 ≤ t ≤ 1, where R 6= 0. As
shown in Figure 2.4, the resulting curve is the circle of radius R centred about
the origin. Here f(z(t)) = (1/R) exp(−i 2π t) and ż(t) = 2π iR exp(i 2π t).
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Figure 2.4: Two parametrised curves.

Putting it all together we obtain
∫

Γ

f(z) dz =

∫ 1

0

2π i Rei 2π t

Rei 2π t
dt = 2π i

∫ 1

0

dt = 2π i . (2.26)

Notice that the result is independent of the radius. This is in sharp contrast
with real integrals, which we are used to interpret physically in terms of area.
In fact, the above integral behaves more like a charge than like an area.

Finally let us consider the function f(z) ≡ 1 along any smooth curve Γ
parametrised by z(t) for 0 ≤ t ≤ 1. It may seem that we do not have enough
information to compute the integral, but let us see how far we can get with
the information given. The integral becomes

∫

Γ

f(z) dz =

∫ 1

0

ż(t) dt .

Using the complex version of the fundamental theorem of calculus, we have
∫ 1

0

ż(t) dt = z(1)− z(0) ,

independent of the actual curve used to join the two points! Notice that this
integral is therefore not the length of the curve as one might think from the
notation.

The length of a curve and a useful estimate

The length of the curve can be computed, but the integral is not related to
the complex dz but the real |dz|. Indeed, if Γ is a curve parametrised by
z(t) = x(t) + i y(t) for t ∈ [t0, t1], consider the real integral

∫

Γ

|dz| ≡
∫ t1

t0

|ż(t)| dt

=

∫ t1

t0

√
ẋ(t)2 + ẏ(t)2 dt ,
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which is the integral of the infinitesimal line element
√

dx2 + dy2 along the
curve. Therefore, the integral is the (arc)length `(Γ) of the curve:

∫

Γ

|dz| = `(Γ) . (2.27)

This immediately yields a useful estimate on integrals along curves, analogous
to equation (2.24). Indeed, suppose that Γ is a curve parametrised by z(t)
for t ∈ [t0, t1]. Then,

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ =

∣∣∣∣
∫ t1

t0

f(z(t)) ż(t) dt

∣∣∣∣

≤
∫ t1

t0

|f(z(t))| |ż(t)| dt (using (2.24))

≤ max
z∈Γ

|f(z)|
∫ t1

t0

|ż(t)| dt .

But this last integral is simply the length `(Γ) of the curve, whence we have

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤
∫

Γ

|f(z)| |dz| ≤ max
z∈Γ

|f(z)| `(Γ) . (2.28)

Results of this type are the bread and butter of analysis and in this part of
the course we will have ample opportunity to use this particular one.

Some further properties of the integrals along a curve

We have just seen that one of the above integrals does not depend on the
actual path but just on the endpoints of the contour. We will devote the next
two sections to studying conditions for complex integrals to be independent
of the path; but before doing so, we discuss some general properties of the
integrals

∫
Γ
f(z) dz.

The first important property is that the integral is complex linear. That
is, if α and β are complex numbers and f and g are functions which are
continuous on Γ, then

∫

Γ

(α f(z) + β g(z)) dz = α

∫

Γ

f(z) dz + β

∫

Γ

g(z) dz .

The proof is routine and we leave it as an exercise.
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The first nontrivial property is that the integral
∫
Γ
f(z) dz does not de-

pend on the actual parametrisation of the curve Γ. In other words, it is
a “physical” property of the curve itself, meaning the set of points Γ ⊂ C
together with the direction along the curve, and not of the way in which we
go about traversing them.

� The only difficult thing in showing this is coming up with a mathematical statement to
prove. Let z(t) for t0 ≤ t ≤ t1 and z′(t) for t′0 ≤ t ≤ t′1 be two smooth parametrisations
of the same curve Γ. This means that z(t0) = z′(t′0) and z(t1) = z′(t′1). We will say that
the parametrisations z(t) and z′(t) are equivalent if there exists a one-to-one differentiable
function λ : [t′0, t′1] → [t0, t1] such that z′(t) = z(λ(t)). In particular, this means that
λ(t′0) = t0 and λ(t′1) = t1. (It is possible to show that this is indeed an equivalence
relation.)

The condition of reparametrisation invariance of
R
Γ f(z) dz can then be stated as follows.

Let z and z′ be two equivalent parametrisations of a curve Γ. Then for any function f(z)
continuous on Γ, we have

Z t′1

t′0
f(z′(t)) ż′(t) dt =

Z t1

t0

f(z(t)) ż(t) dt .

Let us prove this.

Z t′1

t′0
f(z′(t)) ż′(t) dt =

Z t′1

t′0
f(z(λ(t))) ż(λ(t)) dt

=

Z λ(t′1)

λ(t′0)
f(z(λ))

dz(λ)

dλ
dλ

=

Z t1

t0

f(z(λ))
dz(λ)

dλ
dλ ,

which after changing the name of the variable of integration from λ to t (Shakespeare’s
Theorem!), is seen to agree with

Z t1

t0

f(z(t)) ż(t) dt .

Because of reparametrisation invariance, we can always parametrise a
curve in such a way that the initial time is t = 0 and the final time is
t = 1. Indeed, let z(t) for t0 ≤ t ≤ t1 be any smooth parametrisation of a
curve Γ. Then define the parametrisation z′(t) = z(t0 + t(t1 − t0)). Clearly,
z′(0) = z(t0) and z′(1) = z(t1), and moreover ż′(t) = (t1− t0)ż(t0 + t(t1− t0))
hence z′ is also smooth.

Now let us notice that parametrised curves Γ have a natural notion of
direction: this is the direction in which we traverse the curve. Choosing a
parametrisation z(t) for 0 ≤ t ≤ 1, as we go from z(0) to z(1), we trace the
points in the curve in a given order, which we depict by an arrowhead on
the curve indicating the direction along which t increases, as in the curves
in Figure 2.4. A curve with such a choice of direction is said to be directed.
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Given any directed curve Γ, we let −Γ denote the directed curve with the
opposite direction; that is, with the arrow pointing in the opposite direction.
The final interesting property of the integral

∫
Γ
f(z) dz is that

∫

−Γ

f(z) dz = −
∫

Γ

f(z) dz . (2.29)

� To prove this it is enough to find two parametrisations for Γ and −Γ and compute the
integrals. By reparametrisation independence it does not matter which parametrisations
we choose. If z(t) for 0 ≤ t ≤ 1 is a parametrisation for Γ, then z′(t) = z(1 − t) for
0 ≤ t ≤ 1 is a parametrisation for −Γ. Indeed, z′(0) = z(1) and z′(1) = z(0) and they
trace the same set of points. Let us compute:

Z

−Γ
f(z) dz =

Z 1

0
f(z′(t)) ż′(t) dt

= −
Z 1

0
f(z(1− t)) ż(1− t) dt

=

Z 0

1
f(z(t′)) ż(t′) dt′

= −
Z 1

0
f(z(t′)) ż(t′) dt′

= −
Z

Γ
f(z) dz .

Piecewise smooth curves and contour integrals

Finally we have to generalise the integral
∫
Γ
f(z) dz to curves which are not

necessarily smooth, but which are made out of smooth curves. Curves can
be composed: if Γ1 is a curve joining z0 to z1 and Γ2 is a curve joining z1

to z2, then we can make a curve Γ joining z0 to z2 by first going to the
intermediate point z1 via Γ1 and then from there via Γ2 to our destination
z2. The resulting curve Γ is still continuous, but it will generally fail to be
smooth, since the velocity need not be continuous at the intermediate point
z1, as shown in the figure.

However such curve is piecewise smooth: which

•
z0

•
z1

•
z2

Γ1

Γ2

-
µ

means that it is made out of smooth components by
the composition procedure just outlined. In terms of
parametrisations, if z1(t) and z2(t), for 0 ≤ t ≤ 1, are
smooth parametrisations for Γ1 and Γ2 respectively,
then

z(t) =

{
z1(2t) for 0 ≤ t ≤ 1

2

z2(2t− 1) for 1
2
≤ t ≤ 1

is a parametrisation for Γ. Notice that it is well-defined and continuous at
t = 1

2
precisely because z1(1) = z2(0); however it need not be smooth there
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since ż1(1) 6= ż2(0) necessarily. We can repeat this procedure and construct
curves which are not smooth but which are made out of a finite number of
smooth curves: one curve ending where the next starts. Such a piecewise
smooth curve will be called a contour from now on. If a contour Γ is made
out of composing a finite number of smooth curves {Γj} we will say that each
Γj is a smooth component of Γ.

Let Γ be a contour with n smooth components {Γj} for j = 1, 2, . . . , n.
If f(z) is a function continuous on Γ, then the contour integral of f along
Γ is defined as
∫

Γ

f(z) dz =
n∑

j=1

∫

Γj

f(z) dz =

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz + · · ·+
∫

Γn

f(z) dz ,

with each of the
∫

Γi
f(z) dz is defined by (2.25) relative to any smooth para-

metrisation.

2.2.3 Independence of path

In this section we will investigate conditions under which a contour integral
only depends on the endpoints of the contour, and not not the contour itself.
This is necessary preparatory material for Cauchy’s integral theorem which
will be discussed in the next section.

We will say that an open subset U of the complex plane is connected,
if every pair of points in U can be joined by a contour. A connected open
subset of the complex plane will be called a domain.

�� What we have called connected here is usually called path-connected. We can allow
ourselves this abuse of notation because path-connectedness is easier to define and it can
be shown that the two notions agree for subsets of the complex plane.

Fundamental Theorem of Calculus: contour integral version

First we start with a contour integral version of the fundamental theorem of
calculus. Let D be a domain and let f : D → C be a continuous complex-
valued function defined on D. We say that f has an antiderivative in D if
there exists some function F : D → C such that

F ′(z) =
dF (z)

dz
= f(z) .

Notice that F is therefore analytic in D. Now let Γ be any contour in D with
endpoints z0 and z1. If f has an antiderivative F on D, the contour integral
is given by ∫

Γ

f(z) dz = F (z1)− F (z0) . (2.30)

104



Let us first prove this for Γ a smooth curve, parametrised by z(t) for
0 ≤ t ≤ 1. Then

∫

Γ

f(z) dz =

∫ 1

0

F ′(z(t))ż(t)dt =

∫ 1

0

dF (z(t))

dt
dt .

Using the complex version of the fundamental theorem of calculus (2.23), we
see that ∫

Γ

f(z) dz = F (z(1))− F (z(0)) = F (z1)− F (z0) .

Now we consider the general case: Γ a contour with smooth components
{Γj} for j = 1, 2, . . . , n. The curve Γ1 starts in z0 and ends in some inter-
mediate point τ1, Γ2 starts in τ1 and ends in a second intermediate point τ2,
and so so until Γn which starts in the intermediate point τn−1 and ends in
z1. Then

∫

Γ

f(z)dz =
n∑

j=1

∫

Γj

f(z) dz

=

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz + · · ·+
∫

Γn

f(z) dz

= F (τ1)− F (z0) + F (τ2)− F (τ1) + · · ·+ F (z1)− F (τn−1)

= F (z1)− F (z0) ,

where we have used the definition of the contour integral and the result
proven above for each of the smooth components.

This result says that if a function f has an antiderivative, then its contour
integrals do not depend on the precise path, but only on the endpoints. Path
independence can also be rephrased in terms of closed contour integrals. We
say that a contour is closed if its endpoints coincide. The contour integral
along a closed contour Γ is sometimes denoted

∮
Γ

when we wish to emphasise
that the contour is closed.

The path-independence lemma

As a corollary of the above result, we see that if Γ is a closed contour in some
domain D and f : D → C has an antiderivative in D, then∮

Γ

f(z) dz = 0 .

This is clear because if the endpoints coincide, so that z0 = z1, then F (z1)−
F (z0) = 0.

In fact, let f : D → C be a continuous function on some domain D. Then
the following three statements are equivalent:
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(a) f has an antiderivative F in D;

(b) The closed contour integral
∮

Γ
f(z) dz vanishes for all closed contours

Γ in D; and

(c) The contour integrals
∫

Γ
f(z) dz are independent of the path.

We shall call this result the Path-independence Lemma.
We have already proven that (a) implies (b) and (c). We will now show

that in fact (b) and (c) are equivalent.
Let Γ1 and Γ2 be any two contours in D sharing the

•
z0

•
z1Γ1

Γ2

µ

µ

same initial and final endpoints: z0 and z1, say. Then
consider the contour Γ obtained by composing Γ1 with
−Γ2. This is a closed contour with initial and final
endpoint z0. Therefore, using (2.29) for the integral
along −Γ2,

∮

Γ

f(z) dz =

∫

Γ1

f(z) dz +

∫

−Γ2

f(z) dz

=

∫

Γ1

f(z) dz −
∫

Γ2

f(z) dz ,

whence
∮

Γ
f(z) dz = 0 if and only if

∫
Γ1

f(z) dz =
∫

Γ2
f(z) dz. This shows

that (b) implies (c). Now we prove that, conversely, (c) implies (b). Let Γ
be any closed contour with endpoints z1 = z0. By path-independence, we
can evaluate the integral by taking the trivial contour which remains at z0

for all 0 ≤ t ≤ 1. This parametrisation is strictly speaking not smooth since
ż(t) = 0 for all t, but the integrand f(z(t))ż(t) = 0 is certainly continuous, so
that the integral exists and is clearly zero. Hence

∮
Γ
f(z) dz = 0 for all closed

contours Γ. Alternatively, we can pick any point τ in the contour not equal
to z0 = z1. We can think of the contour as made out of two contours: Γ1 from
z0 to τ and Γ2 from τ to z1 = z0. We can therefore go from z0 = z1 to τ in two
ways: one is along Γ1 and the other one is along −Γ2. Path-independence
says that the result is the same:

∫

Γ1

f(z) dz =

∫

−Γ2

f(z) dz = −
∫

Γ2

f(z) dz ,

where we have used equation (2.29). Therefore,

0 =

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz =

∫

Γ

f(z) dz .
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Finally we finish the proof of the path-independence lemma by showing
that (c) implies (a); that is, if all contour integrals are path-independence,
then the function f has an antiderivative. The property of path-independence
suggests a way to define the antiderivative. Let us fix once and for all a point
z0 in the domain D. Let z be an arbitrary point in D. Because D is connected
there will be a contour Γ joining z0 and z. Define a function F (z) by

F (z) ≡
∫

Γ

f(ζ) dζ ,

where we have changed notation in the integral (Shakespeare’s Theorem
again) not to confuse the variable of integration with the endpoint z of the
contour. By path-independence this integral is independent of the contour
and is therefore well-defined as a function of the endpoint z. We must now
check that it is an antiderivative for f .

The derivative of F (z) is computed by

F ′(z) = lim
∆z→0

1

∆z

[∫

Γ′
f(ζ) dζ −

∫

Γ

f(ζ) dζ

]
,

where Γ′ is any contour from z0 to z+∆z. Since we are interested in the limit
of ∆z → 0, we can assume that ∆z is so small that z+∆z is contained in some
open ε-disk about z which also belongs to D.2 This means that the straight-
line segment Γ′′ from z to z + ∆z belongs to D. By path-independence we
are free to choose the contour Γ′, and we exercise this choice by taking Γ′ to
be the composition of Γ with this straight-line segment Γ′′. Therefore,

∫

Γ′
f(ζ) dζ −

∫

Γ

f(ζ) dζ =

∫

Γ

f(ζ) dζ +

∫

Γ′′
f(ζ) dζ −

∫

Γ

f(ζ) dζ

=

∫

Γ′′
f(ζ) dζ ,

whence

F ′(z) = lim
∆z→0

1

∆z

∫

Γ′′
f(ζ) dζ .

We parametrise the contour Γ′′ by ζ(t) = z + t∆z for 0 ≤ t ≤ 1. Then we

2In more detail, since D is open we know that there exists some ε > 0 small enough
so that Dε(z) belongs to D. We then simply take |∆z| < ε, which we can do since we are
interested in the limit ∆z → 0.
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have

F ′(z) = lim
∆z→0

1

∆z

∫ 1

0

f(z + t∆z) ζ̇(t) dt

= lim
∆z→0

1

∆z

∫ 1

0

f(z + t∆z) ∆z dt

= lim
∆z→0

∫ 1

0

f(z + t∆z) dt .

One might be tempted now to simply sneak the limit inside the integral, use
continuity of f and obtain

F ′(z)
?
=

∫ 1

0

lim
∆z→0

f(z + t∆z) dt =

∫ 1

0

f(z) dt = f(z) ,

which would finish the proof. However sneaking the limit inside the integral
is not always allowed since integration itself is a limiting process and limits
cannot always be interchanged.

� A simple example showing that the order in which one takes limits matters is the following.
Consider the following limit

lim
n→∞
m→∞

m + n

m
.

We can take this limit in two ways. On the one hand,

lim
n→∞ lim

m→∞
m

m + n
= lim

n→∞ 1 = 1 ;

yet on the other

lim
m→∞ lim

n→∞
m

m + n
= lim

m→∞ 0 = 0 .

Nevertheless, as we sketch below, in this case interchanging the limits
turns out to be a correct procedure due to the continuity of the integrand.

� We want to prove here that indeed

lim
∆z→0

Z 1

0
f(z + t∆z) dt = f(z) .

We do this by showing that in this limit, the quantity

�Z 1

0
f(z + t∆z) dt

�
− f(z) =

Z 1

0
[f(z + t∆z)− f(z)] dt

goes to zero. We will prove that its modulus goes to zero, which is clearly equivalent. By
equation (2.24), we have

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� ≤
Z 1

0
|f(z + t∆z)− f(z)| dt .
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By continuity of f we know that given any ε > 0 there exists a δ > 0 such that

|f(z + t∆z)− f(z)| < ε whenever |∆z| < δ .

Since we are taking the limit ∆z → 0, we can take |∆z| < δ, whence

lim
∆z→0

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� ≤ lim
∆z→0

Z 1

0
|f(z + t∆z)− f(z)| dt <

Z 1

0
ε dt = ε ,

for any ε > 0, where we have used equation (2.24) to arrive at the last inequality. Hence,

lim
∆z→0

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� = 0 ,

so that

lim
∆z→0

Z 1

0
[f(z + t∆z)− f(z)] dt = 0 .

2.2.4 Cauchy’s Integral Theorem

We have now laid the groundwork to be able to discuss one of the key results
in complex analysis. The path-independence lemma tells us that a continuous
function f : D → C in some domain D has an antiderivative if and only if
all its closed contour integrals vanish. Unfortunately it is impractical to
check this hypothesis explicitly, so one would like to be able to conclude the
vanishing of the closed contour integrals some other way. Cauchy’s integral
theorem will tell us that, under some conditions, this is true if f is analytic.
These conditions refer to the topology of the domain, so we have to first
introduce a little bit of notation.

Let us say that a contour is simple if it has no self-intersections. We
define a loop to be a closed simple contour. We start by mentioning the
celebrated Jordan curve lemma, a version of which states that any loop in
the complex plane separates the plane into two domains with the loop as
common boundary: one of which is bounded and is called the interior and
one of which is unbounded and is called the exterior.

�� This is a totally obvious statement and as most such statements extremely hard to prove,
requiring techniques of algebraic topology.

We say that a domain D is simply-connected if the interior domain
of every loop in D lies wholly in D. Hence for example, a disk is simply
connected, while a punctured disk is not: any circle around the puncture
contains the puncture in its interior, but this has been excised from the disk.
Intuitively speaking, a domain is simply-connected if any loop in the domain
can be continuously shrunk to a point without any point of the loop ever
leaving the domain.
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We are ready to state the Cauchy Integral Theorem: Let D ⊂ C be a
simply-connected domain and let f : D → C be an analytic function, then
for any loop Γ, the contour integral vanishes:

∮

Γ

f(z)dz = 0 .

As an immediate corollary of this theorem and of the path-independence
lemma, we see that an analytic function in a simply-connected domain has
an antiderivative, which is itself analytic in D.

We will actually prove a slightly weaker version of the theorem which
requires the stronger hypothesis that f ′(z) be continuous in D. Recall that
analyticity only requires f ′(z) to exist. The proof uses a version of Green’s
theorem which is valid in the complex plane. This theorem states that if
V (x, y) = P (x, y) dx + Q(x, y) dy is a continuously differentiable vector field
in a simply-connected domain D in the complex plane, and if Γ is any posi-
tively oriented loop in D, then the line integral of V along Γ can be written
as the area integral of the function ∂Q

∂x
− ∂P

∂y
on the interior Int(Γ) of Γ:

∮

Γ

(P (x, y) dx + Q(x, y) dy) =

∫∫

Int(Γ)

(
∂Q

∂x
− ∂P

∂y

)
dx dy . (2.31)

We will sketch a proof of this theorem below; but now let us use it to prove
the Cauchy Integral Theorem. Let Γ be a loop in a simply-connected domain
D in the complex plane, and let f(z) be a function which is analytic in D.
Computing the contour integral, we find

∮

Γ

f(z) dz =

∫

Γ

(u(x, y) + i v(x, y)) (dx + i dy)

=

∫

Γ

(u(x, y) dx− v(x, y) dy) + i

∫

Γ

(v(x, y) dx + u(x, y) dy) .

By hypothesis, f ′(z) is continuous, which means that the vector fields u dx−
v dy and v dx+u dy are continuously differentiable, whence we can use Green’s
Theorem (2.31) to deduce that

∮

Γ

f(z) dz =

∫∫

Int(Γ)

(
−∂v

∂x
− ∂u

∂y

)
dx dy +

∫∫

Int(Γ)

(
∂u

∂x
− ∂v

∂y

)
dx dy ,

which vanishes by the Cauchy–Riemann equations (2.7).
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� Here we will sketch a proof of Green’s Theorem (2.31). The strategy will be the following.
We will approximate the interior of the loop by tiny squares (plaquettes) in such a way
that the loop itself is approximated by the straight line segments which make up the edges
of the squares. As the size of the plaquettes decreases, the approximation becomes better
and better. In the picture we have illustrated this by showing three approximations to the
unit disk. For each we show the value of the length ` of the contour and of the area A of
its interior.

A = 2.9952
` = 9.6

A = 2.9952
` = 7.68

A = 3.1104
` = 7.68

A = π
` = 2π

· · ·

In fact, it is a simple matter of careful bookkeeping to prove that in the limit,

ZZ

Int(Γ)

= lim
size→0

X

plaquettes Π

ZZ

Int(Π)

.

Similarly for the contour integral,

I

Γ
= lim

size→0

X

plaquettes Π

I

Π
.

To see this notice that the contour integrals along internal edges common to two adjacent
plaquettes cancel because of equation (2.29) and the fact that we integrated twice along
them: once for each plaquette but in the opposite orientation, as shown in the picture
below. Therefore we only receive contributions from the external edges. Since the region
is simply-connected this means that boundary of the region covered by the plaquettes.

Π1

-

6

¾

? Π2

-

6

¾

?

Π3

-

6

¾

?Π4

-

6

¾

?

Π

-

6

¾

?

In the notation of the picture, then, one has

I

Π1

+

I

Π2

+

I

Π3

+

I

Π4

=

I

Π
.

Therefore it is sufficient to prove formula (2.31) for the special case of one plaquette. To
this effect we will choose our plaquette Π to have size ∆x×∆y and whose lower left-hand
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corner is at the point (x0, y0):

•
(x0, y0)

•
(x0 + ∆x, y0)

•(x0, y0 + ∆y) •(x0 + ∆x, y0 + ∆y)

Π

-

6

¾

?

Performing the contour integral we have for V (x, y) = P (x, y) dx + Q(x, y) dy,

I

Π
V (x, y) =

Z (x0+∆x,y0)

(x0,y0)
V (x, y) +

Z (x0+∆x,y0+∆y)

(x0+∆x,y0)
V (x, y)

+

Z (x0,y0+∆y)

(x0+∆x,y0+∆y)
V (x, y) +

Z (x0,y0)

(x0,y0+∆y)
V (x, y) .

Along the first and third contour integrals the value of y is constant, whereas along the
second and fourth integrals it is the value of x which is constant. Taking this into account,
we can rewrite the integrals as follows

I

Π
V (x, y) =

Z x0+∆x

x0

P (x, y0) dx +

Z y0+∆y

y0

Q(x0 + ∆x, y) dy

+

Z x0

x0+∆x
P (x, y0 + ∆y) dx +

Z y0

y0+∆y
Q(x0, y) dy .

Exchanging the limits of integration in the third and fourth integrals, and picking up a
sign in each, we can rewrite the integrals as follows:

I

Π
V (x, y)

=

Z y0+∆y

y0

[Q(x0 + ∆x, y)−Q(x0, y)] dy −
Z x0+∆x

x0

[P (x, y0 + ∆y)− P (x, y0)] dx .

But now we make use of the facts that

Q(x0 + ∆x, y)−Q(x0, y) =

Z x0+∆x

x0

∂Q(x, y)

∂x
dx

P (x, y0 + ∆y)− P (x, y0) =

Z y0+∆y

y0

∂P (x, y)

∂y
dy ;

whence the integrals become

I

Π
V (x, y) =

Z y0+∆y

y0

Z x0+∆x

x0

∂Q(x, y)

∂x
dx dy −

Z x0+∆x

x0

Z y0+∆y

y0

∂P (x, y)

∂y
dy dx

=

Z x0+∆x

x0

Z y0+∆y

y0

�
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

�
dx dy

=

ZZ

Int(Π)

�
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

�
dx dy ,

which proves the formula for the plaquette Π.
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Deforming the contour without changing the integral

The Cauchy Integral Theorem has a very important consequence for the com-
putation of contour integrals. It basically says that contours can be moved
about (or deformed) without changing the result of the integral, provided
that in doing so we never cross a point where the integrand ceases to be
analytic. Let us illustrate this with a few examples.

Let us compute the contour integral

C

E

I¾
∮

E

1

z
dz ,

where E is the positively-oriented ellipse x2 + 4y2 = 1
depicted in the figure. Earlier we computed the same
integral around a circular contour C of radius 1, cen-

tred at the origin, and we obtained∮

C

1

z
dz = 2π i .

We will argue, using the Cauchy Integral Theorem, that we get the same
answer whether we integrate along E or along C. Consider the two domains
in the interior of the circle C but in the exterior of the ellipse E. The
integrand is analytic everywhere in the complex plane except for the origin,
which lies outside these two regions. The Cauchy Integral Theorem says that
the contour integral vanishes along either of the two contours which make up
the boundary of these domains. Let us be more explicit and let us call these
contours Γ± as in the figure below.

••

Γ−

••

Γ+

-
¾

¾
-

Then it is clear that∮

C

1

z
dz =

∮

Γ+

1

z
dz +

∮

Γ−

1

z
dz +

∮

E

1

z
dz .

Since the interior Γ± is simply-connected and the integrand 1
z

is analytic in
and on Γ±, the Cauchy Integral Theorem says that∮

Γ±

1

z
dz = 0 ,

113



whence ∮

E

1

z
dz =

∮

C

1

z
dz = 2π i .

In other words, we could deform the contour from E to C without altering
the result of the integral because in doing so we do not pass over any point
where the integrand ceases to be analytic.

Let us illustrate this with another example, which generalises this one.
Let Γ be any positively-oriented loop in the complex plane, let z0 be any
complex number which does not lie on Γ, and consider the following contour
integral ∮

Γ

1

z − z0

dz .

We must distinguish two possibilities: z0 is in the interior of Γ or in the
exterior. In the latter case, the integral is zero because the integrand is
analytic everywhere but at z0, hence if z0 lies outside Γ, Cauchy’s Integral
Theorem applies. On the other hand, if z0 is in the interior of Γ we expect that
we should obtain a nonzero answer—after all, if Γ were the circle |z − z0| =
R > 0, then the same calculation as in (2.26) yields a value of 2π i for the
integral. In fact, as we will now show this is the answer we get for any
positively-oriented loop containing z0 in its interior.

In Figure 2.5 we have depicted the contour Γ and a circular contour C
of radius r about the point z0. We have also depicted two pairs of points
(P1, P2) and (P3, P4): each pair having one point in each contour, as well as
straight line segments joining the points in each pair.

•z0

Γ

C

•P4 •
P3

•
P1

•
P2

¾

I

Figure 2.5: The contours Γ and C and some special points.

Now consider the following loop Γ1 starting and ending at P1, as illus-
trated in Figure 2.6. We start at P1 and go to P4 via the top half of Γ, call
this, Γ+; then we go to P3 along the straight line segment joining them, call
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it −γ34; then to P2 via the upper half of C in the negative sense, call it −C+;
and then back to P1 via the straight line segment joining P2 and P1, call it
−γ12. The interior of this contour is simply-connected and does not contain
the point z0. Therefore Cauchy’s Integral Theorem says that

∮

Γ1

1

z − z0

dz =

(∫

Γ+

+

∫

−γ34

+

∫

−C+

+

∫

−γ12

)
1

z − z0

dz

=

(∫

Γ+

−
∫

γ34

−
∫

C+

−
∫

γ12

)
1

z − z0

dz

= 0 ,

from where we deduce that∫

Γ+

1

z − z0

dz =

(∫

γ34

+

∫

C+

+

∫

γ12

)
1

z − z0

dz .

•• • •• •• • ••

Γ2

Γ1

Γ+

Γ−

¾

-

-−C+

¾
−C−

-
−γ34

-
−γ12

¾γ34 ¾γ12

Figure 2.6: The contours Γ1 and Γ2.

Similarly consider the loop Γ2 starting and ending at P4. We start at P4

and go to P1 along the lower half of Γ, call it Γ−; then we go to P2 along
γ12; then to P3 via the lower half of the circular contour in the negative
sense −C−; and then finally back to P4 along γ34. By the same argument
as above, the interior of Γ2 is simply-connected and z0 lies in its exterior
domain. Therefore by the Cauchy Integral Theorem,

∮

Γ2

1

z − z0

dz =

(∫

Γ−
+

∫

γ34

+

∫

−C−
+

∫

−γ12

)
1

z − z0

dz

=

(∫

Γ−
+

∫

γ34

−
∫

C−
+

∫

−γ12

)
1

z − z0

dz

= 0 ,

from where we deduce that∫

Γ−

1

z − z0

dz =

(
−

∫

γ34

+

∫

C+

−
∫

γ12

)
1

z − z0

dz .
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Putting the two results together, we find that
∫

Γ

1

z − z0

dz =

∫

Γ+

1

z − z0

dz +

∫

Γ−

1

z − z0

dz

=

∫

C+

1

z − z0

dz +

∫

C−

1

z − z0

dz

=

∫

C

1

z − z0

dz

= 2π i .

In summary, we find that if Γ is any positively-oriented loop in the complex
plane and z0 a point not in Γ, then

∫

Γ

1

z − z0

dz =

{
2π i for z0 in the interior of Γ; and

0 otherwise.
(2.32)

In the following section we will generalise this formula in a variety of ways.

2.2.5 Cauchy’s Integral Formula

In this section we present several generalisations of the formula (2.32). Let
f(z) be analytic in a simply-connected domain D, and let Γ be a positively-
oriented loop in D. Let z0 be any point in the interior of Γ. Then the Cauchy
Integral Formula reads

f(z0) =
1

2π i

∮

Γ

f(z)

z − z0

dz . (2.33)

This is a remarkable formula. It says that an analytic function in a simply-
connected domain is determined by its behaviour on the boundary. In other
words, if two analytic functions f(z) and g(z) agree on the boundary of a
simply-connected domain they agree everywhere in the domain.

�� Cauchy’s Integral Formula is a mathematical analogue of a notion that is very much in
vogue in today’s theoretical physics, namely ‘holography’. You all know what the idea of
an optical hologram is: it is a two-dimensional film which contains enough information to
reconstruct (optically) a three-dimensional object. In theoretical physics, holography is
exemplified in the celebrated formula of Beckenstein–Hawking for the entropy of a black
hole. On the one hand, we know from Boltzmann’s formula that the entropy of a statistical
mechanical system is a measure of the density of states of the system. The black-hole
entropy formula says that the entropy is a black hole is proportional to the area of the
horizon. In simple terms, the horizon of the black hole is the surface within which light
can no longer escape the gravitational attraction of the black hole. The entropy formula
is holographic because it tells us that the degrees of freedom of a three-dimensional object
like a black hole is determined from the properties of a two-dimensional system: the
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horizon, just like with the optical hologram. The “Holographic Principle” roughly states
that any theory of quantum gravity, i.e., a theory which can explain the microscopic
origin of the entropy of the black hole, must be able to explain the entropy formula and
hence be holographic. The Cauchy Integral Formula is holographic in the sense that an
analytic function in the plane (which is two-dimensional) is determined by its behaviour
on contours (which are one-dimensional).

Notice that by equation (2.32), we have that

f(z0) =
1

2π i

∮

Γ

f(z0)

z − z0

dz ,

whence we will have proven the Cauchy Integral Formula if we can show that
∮

Γ

f(z)− f(z0)

z − z0

dz = 0 .

As a first step in proving this result, let us use the Cauchy Integral Theorem
to conclude that the above integral can be computed along a small circle Cr

of radius r about z0 without changing its value:
∮

Γ

f(z)− f(z0)

z − z0

dz =

∮

Cr

f(z)− f(z0)

z − z0

dz .

Moreover since the radius of the circle does not matter, we are free to take
the limit in which the radius goes to zero, so that:

∮

Γ

f(z)− f(z0)

z − z0

dz = lim
r→0

∮

Cr

f(z)− f(z0)

z − z0

dz .

Let us parametrise Cr by z(t) = z0 + r exp(2π i t) for t ∈ [0, 1]. Then

∮

Cr

f(z)− f(z0)

z − z0

dz =

∫ 1

0

f(z)− f(z0)

re2π i t
2π i re2π i t dt

= 2π i

∫ 1

0

(f(z)− f(z0)) dt .

Let us estimate the integral. Using (2.24) we find
∣∣∣∣
∫ 1

0

(f(z)− f(z0)) dt

∣∣∣∣ ≤
∫ 1

0

|f(z)− f(z0)| dt ≤ max
|z−z0|=r

|f(z)− f(z0)| .

Because f is continuous at z0—that is, f(z) → f(z0) as z → z0—the limit as
r → 0 of |f(z)− f(z0)| is zero, whence

lim
r→0

∮

Cr

f(z)− f(z0)

z − z0

dz = 0 .
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� Formally, continuity of f at z0 says that given any ε > 0 there is a δ > 0 such that
|f(z) − f(z0)| < ε whenever |z − z0| < δ. Since we are interested in the limit r → 0, we
can always take δ small enough so that |f(z) − f(z0)| is smaller than any ε. Therefore,
limr→0 |f(z)− f(z0)| = 0.

Now let us do something “deep.” We will change notation in the Cauchy
Integral Formula (2.33) and rewrite it as

f(z) =
1

2π i

∮

Γ

f(ζ)

ζ − z
dζ .

All we have done is change the name of the variable of integration (Shake-
speare’s Theorem again!); but as a result we have obtained an integral repre-
sentation of an analytic function which suggests a way to take its derivative
simply by sneaking the derivative inside the integral:

f ′(z)
?
=

1

2π i

∮

Γ

f(ζ)

(ζ − z)2
dζ

f ′′(z)
?
=

2

2π i

∮

Γ

f(ζ)

(ζ − z)3
dζ

...

f (n)(z)
?
=

n!

2π i

∮

Γ

f(ζ)

(ζ − z)n+1
dζ .

Of course such manipulations have to be justified, and we will see that indeed
this is correct. Given that we are going to spend the effort in justifying this
procedure, let us at least get something more out of it.

Integral representation for analytic functions

We already have at our disposal quite a number of analytic functions: rational
functions, exponential and related functions, logarithm and complex powers.
To some extent these are complex versions of functions with which we are
familiar from real calculus. In this section we will learn of yet another way
of constructing analytic functions. Functions constructed in this way usually
do not have names, since anonymity is the fate which befalls most functions.
But by the same token, this means that the method below is a powerful
way to construct new analytic functions, or to determine that a function is
analytic.

Let g be a function which is continuous in some contour Γ which need
not be closed. Let z be any complex number not contained in Γ, and define
the following function:

G(z) =

∫

Γ

g(ζ)

ζ − z
dζ . (2.34)
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We claim that G(z) is analytic except possible on Γ, and

G′(z) =

∫

Γ

g(ζ)

(ζ − z)2
dζ . (2.35)

This generalises the above discussion in two important ways: g need not be
analytic (just continuous) and the contour need not be closed.

To see if G(z) is analytic we need to investigate whether the derivative
G′(z) exists and is well-defined. By definition,

G′(z) = lim
∆z→0

G(z + ∆z)−G(z)

∆z

= lim
∆z→0

1

∆z

∫

Γ

(
g(ζ)

ζ − z −∆z
− g(ζ)

ζ − z

)
dζ

= lim
∆z→0

1

∆z

∫

Γ

g(ζ)∆z

(ζ − z −∆z)(ζ − z)
dζ

= lim
∆z→0

∫

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ .

Again, we would be done if we could simply take the limit inside the integral:

G′(z)
?
=

∫

Γ

lim
∆z→0

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ =

∫

Γ

g(ζ)

(ζ − z)2
dζ .

This can be justified (see below), so we are allowed to do so and recover what
we were after. The formula (2.34) defines an integral representation for the
analytic function G(z).

� Let us show that one can take the limit inside the integral, so that

lim
∆z→0

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ =

Z

Γ

g(ζ)

(ζ − z)2
dζ .

Equivalently we would like to show that in the limit ∆z → 0, the difference

Z

Γ

�
g(ζ)

(ζ − z −∆z)(ζ − z)
− g(ζ)

(ζ − z)2

�
dζ

vanishes. We can rewrite this difference as

∆z

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ ,

which we would like to vanish as ∆z → 0. By equation (2.24), we have that

����
Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤
Z

Γ

����
g(ζ)

(ζ − z −∆z)(ζ − z)2

���� |dζ|

= max
ζ∈Γ

����
g(ζ)

(ζ − z −∆z)(ζ − z)2

���� `(Γ) ,
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where we have used equation (2.27) for the length `(Γ) of the contour.

Since g(ζ) is continuous on Γ, |g(ζ)| is bounded there: |g(ζ)| ≤ M , for some positive real
M .

δ
¾

¾
Γ

•z
•
z + ∆z

Because z is not on Γ, any point ζ on Γ is at least a certain distance δ from z: |ζ−z| ≥ δ > 0,
as shown in the above figure. Now by the triangle inequality (2.1),

|ζ − z| = |ζ − z −∆z + ∆z| ≤ |ζ − z −∆z|+ |∆z| ,

whence
|ζ − z −∆z| ≥ |ζ − z| − |∆z| .

Since we are taking the limit ∆z → 0, we can choose |∆z| ≤ 1
2
δ so that

|ζ − z −∆z| ≥ δ − 1
2
δ = 1

2
δ .

Therefore putting it all together we find that

����
Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤
2M`(Γ)

δ3
.

Therefore

lim
∆z→0

����∆z

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤ lim
∆z→0

|∆z|2M`(Γ)

δ3
= 0 .

� This is as good a place as any to mention another way of writing the triangle inequality
(2.1), which is sometimes more useful and which was used above:

|z + w| ≥ |z| − |w| . (2.36)

To obtain the second version of the triangle inequality from the first we simply make the
following substitution: z1 + z2 = z, and z2 = −w, so that z1 = z + w. Then we find from
the (2.1), that |z| ≤ |z + w|+ | − w| = |z + w|+ |w|, which is can be rewritten as (2.36).

The same argument shows that if we define

H(z) =

∫

Γ

g(ζ)

(ζ − z)n
dζ , (2.37)

where n is a positive integer, then H is analytic and its derivative is given
by

H ′(z) = n

∫

Γ

g(ζ)

(ζ − z)n+1
dζ . (2.38)
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The generalised Cauchy Integral Formula

This has as an important consequence: if f is analytic in a neighbourhood
of z0, then so are all its derivatives f (n). To prove this simply notice that
if f is analytic in a neighbourhood of z0, there is some ε > 0 such that f is
analytic in and on the circle C of radius ε centred at z0; that is, the closed
disk |ζ − z0| ≤ ε. Therefore for any z in the interior of the circle—that is,
such that |z − z0| < ε—we have the Cauchy Integral representation

f(z) =
1

2π i

∮

C

f(ζ)

ζ − z
dζ .

But this integral representation is of the form (2.34), whence its derivative
is given by the analogue of equation (2.35):

f ′(z) =
1

2π i

∮

C

f(ζ)

(ζ − z)2
dζ .

But this is of the general form (2.37) (with n = 2), whence by the above
results, f ′(z) is an analytic function and its derivative is given by the analogue
of (2.38):

f ′′(z) =
2

2π i

∮

C

f(ζ)

(ζ − z)3
dζ ,

which again follows the pattern (2.37). Continuing in this fashion we deduce
that f ′, f ′′, ... are analytic in the open ε-disk about z0.

In summary, an analytic function is infinitely differentiable, its derivatives
being given by the generalised Cauchy Integral Formula:

f (n)(z) =
n!

2π i

∮

Γ

f(ζ)

(ζ − z)n+1
dζ . (2.39)

Notice that if we put n = 0 in this formula, define 0! = 1 and understand
the zeroth derivative f (0) as the function f itself, then this is precisely the
Cauchy Integral Formula.

� Infinite differentiability of harmonic functions.

The generalised Cauchy Integral Formula can also be turned around in or-
der to compute contour integrals. Hence if f is analytic in and on a positively
oriented loop Γ, and if z0 is a point in the interior of Γ, then

∮

Γ

f(z)

(z − z0)n+1
dz =

2π i

n!
f (n)(z0) . (2.40)
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For example, let us compute the following contour integral

∮

Γ

e5z

z3
dz ,

where Γ is the positively oriented unit circle |z| = 1. This integral is of the
form (2.40) with n = 2, f(z) = e5z, which is entire and hence, certainly
analytic in and on the contour, and with z0 = 0, which lies in the interior of
the contour. Therefore by (2.40) we have

∮

Γ

e5z

z3
dz = 2π i

1

2!

d2

dz2

(
e5z

)∣∣∣∣
z=0

= 2π i
1

2!
25 = 25π i .

Let us consider a more complicated example. Let us compute the contour
integral ∫

Γ

2z + 1

z(z − 1)2
dz ,

where Γ is the contour depicted in Figure 2.7. Two things prevent us from ap-
plying the generalised Cauchy Integral Formula: the contour is not a loop—
indeed it is not simple—and the integrand is not of the form g(z)/(z − z0)

n

where g(z) is analytic inside the contour. This last problem could be solved
by rewriting the integrand using partial fractions:

2z + 1

z(z − 1)2
=

3

(z − 1)2
− 1

z − 1
+

1

z
. (2.41)

However we are still faced with a contour which is not simple.

• •0 +1 • •0 +1

¾- Γ

µª

Γ1Γ0

Figure 2.7: The contour Γ and an equivalent pair of contours {Γ0, Γ1}.

This problem can be circumvented by noticing that the smooth contour Γ
can be written as a piecewise smooth contour with two smooth components:
both starting and ending at the point of self-intersection of Γ. The first such
contour is the left lobe of Γ, which is a negatively oriented loop about z = 0,
and the second is the right lobe of Γ, which is a positively oriented loop
about z = 1. Because the integrand is analytic everywhere but at z = 0 and
z = 1, the Cauchy Integral Theorem tells us that we get the same result by

122



integrating around the circular contours Γ0 and Γ1 in Figure 2.7. In other
words,

∫

Γ

2z + 1

z(z − 1)2
dz =

∮

Γ0

2z + 1

z(z − 1)2
dz +

∮

Γ1

2z + 1

z(z − 1)2
dz .

We can now evaluate this in either of two ways. Using the partial fraction
decomposition (2.41) of the integrand, one finds

∮

Γ0

2z + 1

z(z − 1)2
dz =

∮

Γ0

1

z
dz = −

∮

−Γ0

1

z
dz = −2π i ,

∮

Γ1

2z + 1

z(z − 1)2
dz =

∮

Γ1

3

(z − 1)2
dz −

∮

Γ1

1

z − 1
dz = 0− 2π i = −2π i ;

whence ∫

Γ

2z + 1

z(z − 1)2
dz = −4π i .

Alternatively we notice that

∮

Γ0

2z + 1

z(z − 1)2
dz =

∮

Γ0

2z+1
(z−1)2

z
dz = −2π i ,

where we have used the fact that 2z+1
(z−1)2

is analytic in and on Γ0 and the
Cauchy Integral Formula after taking into account that Γ0 is negatively ori-
ented. Similarly, one has

∮

Γ1

2z + 1

z(z − 1)2
dz =

∮

Γ1

2z+1
z

(z − 1)2
dz = 2π i

d

dz

(
2z + 1

z

)∣∣∣∣
z=1

= −2π i ,

where we have used that 2z+1
z

is analytic in and on Γ1, and the generalised
Cauchy Integral formula (with n = 1). Therefore again

∫

Γ

2z + 1

z(z − 1)2
dz = −4π i .

Morera’s Theorem

Finally we discuss a converse of the Cauchy Integral Theorem, known as
Morera’s Theorem. Suppose that f is continuous in a domain D and has
an antiderivative F in D. This means that F is analytic, and by what we
have just shown, so is f(z) = F ′(z). Therefore we have just shown that if
f(z) is continuous with an antiderivative, then f is analytic. Now from the
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path independence lemma, f has an antiderivative if and only if all its loop
integrals in D vanish: ∮

Γ

f(z)dz = 0 .

Therefore we arrive at Morera’s Theorem which states that: if f(z) is con-
tinuous in D and all the loop integrals of f(z) in D vanish, then f is analytic.
This theorem will be of use in Section 2.3.

2.2.6 Liouville’s Theorem and its applications

The generalised Cauchy Integral Formula is one of the cornerstones of com-
plex analysis, as it has a number of very useful corollaries. An immediate ap-
plication of the generalised Cauchy Integral Formula is the so-called Cauchy
estimates for the derivatives of an analytic function. These estimates will
play an important role in the remainder of this section.

Suppose that f(z) is analytic in some domain D containing a circle C
of radius R centred about z0. Suppose moreover that |f(z)| ≤ M for all z
on the circle C. We can then use the generalised Cauchy Integral Formula
(2.39) to obtain a bound for the derivatives of f at z0:

|f (n)(z0)| =
∣∣∣∣

n!

2π i

∮

C

f(z)

(z − z0)n+1
dz

∣∣∣∣ ≤
n!

2π

∮

C

|f(z)|
|z − z0|n+1

|dz| ,

where we have used (2.28) to arrive at the inequality. On the circle, |z−z0| =
R and |f(z)| ≤ M , whence

|f (n)(z0)| ≤ n!

2π

M

Rn+1

∮

C

|dz| ,

which, using that the length of the contour is 2π R, can be rewritten neatly
as

|f (n)(z0)| ≤ n! M

Rn
. (2.42)

This inequality is known as the Cauchy estimate.
As an immediate corollary of this estimate suppose that f is analytic in

whole complex plane (i.e., that f is an entire function) and that it is bounded,
so that |f(z)| ≤ M for all z. Then from the Cauchy estimate, at any point
z0 in the complex plane, its derivative is bounded by |f ′(z0)| ≤ M/R. But
because the function is entire, we can take R as large as we wish. Now
given any number ε > 0, however small, there is always an R large enough
for which M/R < ε, so that |f ′(z0)| < ε. Therefore |f ′(z0)| = 0, whence
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f ′(z0) = 0. Since this is true for all z0 in the complex plane, we have proven
Liouville’s theorem:

a bounded entire function is constant.

This does not violate our experience since the only entire functions we have
met are polynomials and the exponential and functions we can make out
of them by multiplication, linear combinations and compositions, and these
functions are all clearly not bounded.

Indeed, suppose that P (z) is a polynomial of order N ; that is,

P (z) = zN + aN−1z
N−1 + · · ·+ a1z + a0 .

Then intuitively, for large z we expect that P (z) should go as zN , since
the largest power dominates the other ones. The precise statement, to be
proven below, is that there exists R > 0 large enough such that for |z| ≥ R,
|P (z)| ≥ c|z|N , where 0 < c < 1 depends on R in such a way that as R tends
to ∞, c tends to 1.

� Let P (z) be the above polynomial and let A ≥ 1 denote the largest of the moduli of
coefficients of the polynomial: A = max{|a0|, |a1|, . . . , |aN−1|, 1}. Then let us rewrite
the polynomial as P (z) = zN

�
1 + aN−1/z + · · · a0/zN

�
. Now by the triangle inequality

(2.36),

���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1−
���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� .

Using the triangle inequality again,

���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≤
���aN−1

z

���+ · · ·+
��� a1

zN−1

���+
��� a0

zN

���

≤ A

|z| + · · ·+ A

|z|N−1
+

A

|z|N .

Now take |z| ≥ 1 so that |z|N ≥ |z|N−1 ≥ · · · ≥ |z|. Then,

���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≤ NA

|z| .

Therefore, ���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1− NA

|z| .

Hence if we take z such that |z| ≥ R ≥ NA ≥ 1, then

���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1− NA

R
=

R−NA

R
.

Finally then,

|P (z)| = |z|N
���1 +

aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ R−NA

R
|z|N .

Hence c = (R−NA)/R < 1 and as R →∞, c → 1.
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We are now able to prove the Fundamental Theorem of Algebra which
states that

every nonconstant polynomial has at least one zero.

Indeed, let P (z) be a polynomial and suppose that it does not have any zeros.
Then 1/P (z) is an entire function. If we manage to prove that this function
is bounded, then we can use Liouville’s theorem and conclude that 1/P (z),
and hence P (z), would have to be constant. So let us try to prove that it is
bounded. Without loss of generality we can assume that the polynomial has
the form P (z) = zN + aN−1z

N−1 + · · ·+ a1z + a0 for some N . Let R be such
that |z| ≥ R, |P (z)| ≥ c|z|N , where 0 < c < 1. Then, for |z| ≥ R,

∣∣∣∣
1

P (z)

∣∣∣∣ =
1

|P (z)| ≤
1

c|z|N ≤ 1

cRN
.

While for |z| ≤ R, then the function 1/P (z), being continuous, is bounded
in this disk by some M = max|z|≤R 1/|P (z)|. Therefore 1/|P (z)| is bounded
above for all z by the largest of M and 1/(cRN). Hence 1/P (z) is bounded.

�� I have always found this proof of the Fundamental Theorem of Algebra quite remarkable.
It is compelling evidence in favour of the vision of mathematics as a coherent whole, that
a purely algebraic statement like the Fundamental Theorem of Algebra can be proven in
a relatively elementary fashion using complex analysis. I hope that as physicists we can
be forgiven the vanity of thinking that this unity of mathematics stems from it being the
language of nature.

2.3 Series expansions for analytic functions

This section ushers in the second half of this part of the course. The pur-
pose of this section is to learn about the series representations for analytic
functions. We will see that every function analytic in a disk can be approxi-
mated by polynomials: the partial sums of its Taylor series. Similarly every
function analytic in a punctured disk can be described by a Laurent series,
a generalisation of the notion of a power series, where we also allow for neg-
ative powers. This will allow us to discuss the different types of singularities
that an analytic function can have. This section is organised as follows: we
start with a study of sequences and series of complex numbers and of complex
functions and of different notions of convergence and methods of establishing
convergence. We will then show that a function analytic in the neighbour-
hood of a point can be approximated there by a power series: its Taylor
series. We will then discuss power series and prove that every power series
converges to an analytic function in its domain of convergence, and in fact is
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the Taylor series of that function. Therefore the power series representation
of an analytic function is unique. We then introduce Laurent series: which
allows us to represent analytic functions around an isolated singularity. We
also prove that they are unique in a sense. We end the section with a dis-
cussion of the different isolated singularities which an analytic function can
have.

2.3.1 Sequences and Series

In this section we discuss sequences and series and the rudiments of the
theory of convergence. This is necessary groundwork to be able to discuss
the Taylor and Laurent series representations for analytic functions.

Sequences

By a sequence we mean an infinite set {z0, z1, z2, z3, . . . } of complex num-
bers. It is often denoted {zn} where the index is understood to run over the
non-negative integers. Intuitively, a sequence {zn} converges to a complex
number z if as n increases, zn remains ever closer to z. A precise definition
is the following. A sequence {zn} is said to converge to z (written zn → z
or limn→∞ zn = z) if given any ε > 0, there exists an integer N , which may
depend on ε, such that for all n ≥ N , |zn− z| < ε. In other words, the “tail”
of the sequence remains arbitrary close to z provided we go sufficiently far
into it. A sequence which converges to some point is said to be convergent.
Convergence is clearly a property only of the tail of the sequence, in the sense
that two sequences which differ only in the first N terms (any finite N) but
are identical afterwards will have the same convergence properties.

For example, the sequence {zn = 1/n} clearly converges to 0: |zn| = 1/n
and we can make this as small as we like by taking n as large as needed.

A sequence {zn} is said to satisfy the Cauchy criterion (or be a Cauchy
sequence) if it satisfies the following property: given any ε > 0 there exists
N (again, depending on ε) such that |zn − zm| < ε for all n,m ≥ N . This
criterion simply requires that the elements in the sequence remain ever closer
to each other, not that they should converge to any point. Clearly, if a
sequences converges it is Cauchy: simply notice that adding and subtracting
z,

|zn − zm| = |(zn − z)− (zm − z)| ≤ |zn − z|+ |zm − z|
by the triangle inequality (2.1). Hence if we want zn and zm to remain within
ε of each other for n,m larger than some N , we need just choose N such that
|zn − z| < ε/2 for all n ≥ N .
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� What is a relatively deep result, is that every Cauchy sequence is convergent. This is
essentially the fact that the complex numbers are complete. To prove this requires a more
careful axiomatisation of the real number system than we have time for.

Series

By a series we mean a formal sum

c0 + c1 + c2 + · · ·+ cj + · · ·

of complex numbers, cj, called the coefficients. We say formal since just
because we can write something down does not mean it makes any sense: it
does not make much sense to add an infinite number of terms. What does
make sense is the following: define the n-th partial sum

Sn ≡
n∑

j=0

cj = c0 + c1 + · · ·+ cn−1 + cn .

This defines a sequence {Sn}. Then we can analyse the limit as n → ∞
of this sequence. If one exists, say Sn → S, then we say that the series
converges to or sums to S, and we write

S =
∞∑

j=0

cj .

Otherwise we say that the series is divergent. Applying the Cauchy criterion
to the sequence of partial sums, we see that a necessary condition for the
convergence of a series is that the sequence of coefficients converge to 0.
Indeed, if {Sn} is convergent, it is Cauchy, whence given any ε > 0, there
exists N such that for all n,m ≥ N , |Sn − Sm| < ε. Taking m = n − 1, we
see that ∣∣∣∣∣

n∑
j=0

cj −
n−1∑
j=0

cj

∣∣∣∣∣ = |cn| < ε ,

for every n ≥ N . Therefore the sequence {cj} converges to 0. We can
summarise this as follows

If
∞∑

j=0

cj converges, then lim
j→∞

cj = 0 .

This is a necessary criterion for the convergence of a series, so it can be
used to conclude that a series is divergent, but not to conclude that it is
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convergent. For example, consider the series

∞∑
j=0

j

2j + 1
. (2.43)

It is clearly divergent because j/(2j + 1) → 1
2
. On the other hand consider

the series (we start at j = 1 for obvious reasons)

∞∑
j=1

1

j
. (2.44)

Now the coefficients do converge to zero, but this series is actually divergent.
One way to see this is to notice that for every n ≥ 1,

n∑
j=1

1

j
=

n∑
j=1

∫ j+1

j

dx

j
>

n∑
j=1

∫ j+1

j

dx

x
=

∫ n+1

1

dx

x
= log(n + 1) ,

and limn→∞ log(n + 1) = ∞. On the other hand, the series

∞∑
j=1

1

j2

does converge. One can argue in a similar style. Notice that for j ≥ 2,

1

j2
=

∫ j

j−1

dx

j2
<

∫ j

j−1

dx

x2
=

1

j(j − 1)
.

Hence, for all n ≥ 2,

n∑
j=1

1

j2
= 1 +

n∑
j=2

1

j2
< 1 +

n∑
j=2

∫ j

j−1

dx

x2
= 1 +

∫ n

1

dx

x2
= 2− 1

n
,

so that in the limit,
∞∑

j=1

1

j2
< 2 .

Indeed, we will be able to compute this sum very easily using contour inte-
gration and it will turn out that

∑∞
j=1

1
j2 = π2

6
' 1.6449341. Similarly, one

can show in the same way that the series

∞∑
j=1

1

jp

converges for any p > 1. In fact, p can be any real number.
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Establishing convergence

There are two useful tests for establishing the convergence of a series. The
first one is known as the Comparison Test: Suppose that

∑∞
j=0 Mj is a

convergent series whose coefficients are non-negative real numbers: Mj ≥ 0.
Let

∑∞
j=0 cj be such that |cj| ≤ Mj for all sufficiently large j. Then

∑∞
j=0 cj

also converges.

� Prove the Comparison Test.

Of course, in order to apply this test we need to have some examples
of convergent series to compare with. We have already seen the series∑∞

j=1 1/jp, for p > 1, but perhaps the most useful series we will come across

is the geometric series
∑∞

j=0 cj, where c is some complex number. To inves-

tigate the convergence of this series, simply notice that |cj| = |c|j and hence
the coefficient sequence {cj} converges to 0 if and only if |c| < 1. Thus we
let |c| < 1 from now on. We proceed as follows:

(1− c)Sn = (1− c)(1 + c + · · ·+ cn) = 1− cn+1 ,

whence

Sn =
1− cn+1

1− c
or Sn − 1

1− c
= − cn+1

1− c
.

Therefore taking the modulus, we see that

∣∣∣∣Sn − 1

1− c

∣∣∣∣ =
|c|n+1

|1− c| ,

which converges to 0 as n →∞ since |c| < 1. Therefore

∞∑
j=0

cj =
1

1− c
if |c| < 1. (2.45)

As an example, let us consider the following series

∞∑
j=0

3 + 2i

(j + 1)j
. (2.46)

Its coefficient sequence converges to zero. Notice also that

∣∣∣∣
3 + 2i

(j + 1)j

∣∣∣∣ =

√
13

(j + 1)j
<

4

(j + 1)j
.
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Hence for j ≥ 3, ∣∣∣∣
3 + 2i

(j + 1)j

∣∣∣∣ <
1

2j
.

But since 1
2

< 1, the geometric series

∞∑
j=0

1

2j
= 2

converges. Hence by the comparison test, the original series (2.46) converges
as well.

A further convergence criterion is the Ratio Test: Let
∑∞

j=0 cj be such
that the limit

L ≡ lim
j→∞

∣∣∣∣
cj+1

cj

∣∣∣∣
exists. Then if L < 1 the series converges, and if L > 1 the series diverges.
(Alas, if L = 1 we cannot conclude anything.)

� Prove the Ratio Test.

The Ratio Test does not contradict our experience so far: for the geomet-
ric series L = |c|, and we certainly needed |c| < 1 for convergence. Moreover
in this case L ≥ 1 implies divergence. Similarly, the series (2.44) has L = 1,
so that the test tells us nothing. The same goes for the series (2.43). Notice
that there are series for which the Ratio Test cannot even be applied, since
the limit L may not exist.

Sequences and series of functions: uniform convergence

Our primary interest in series and sequences being the construction of an-
alytic functions, let us now turn our attention to the important case of se-
quences and series of functions . Consider a sequence {fn} whose elements
are functions fn(z) defined on some domain in the complex plane. For a
fixed point z we can study the sequence of complex numbers {fn(z)} and
analyse its convergence. If it does converge, let us call the limit f(z); that
is, fn(z) → f(z). This procedure defines a function f for those z such that
the sequence {fn(z)} converges. If this is the case we say that the sequence
{fn} converges pointwise to f . Now suppose that each fn is continuous (or
analytic) will f be continuous (or analytic)? It turns out that pointwise
convergence is too weak in order to guarantee that the limit function shares
some of these properties of the fn.
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For instance, it is easy to cook up a pointwise limit of analytic functions
which is not even continuous. Consider the functions fn(z) = exp(−nz2).
Clearly these functions are analytic for each n. Let us now consider the
functions restricted to the real axis: z = x, and consider the limit function
f(x). For all n, fn(0) = 1, whence in the limit f(0) = 1. On the other hand,
let x 6= 0. Then given any ε > 0, however small, there will be N such that
exp(−nx2) < ε for n ≥ N . Hence

f(x) =

{
1 for x = 0;

0 otherwise.

In other words, the limit function has a discontinuity at the origin. Conti-
nuity would require f(0) = 0. To understand what is going on here, notice
that to make fn(x) < ε we require that

e−nx2

< ε =⇒ n >
log(1/ε)

x2
,

as can be easily seen by taking the logarithm of both sides of the first in-
equality. Hence as x becomes smaller, the value of n has to be larger and
larger to the extent that in the limit as x → 0, there is no n for which this
is the case.

The above “post mortem” analysis prompts the following definition. A
sequence of functions {fn} is said to converge to a function f uniformly in
a subset U if given any ε > 0 there exists an N such that for all n ≥ N ,

|fn(z)− f(z)| < ε for all z ∈ U .

In other words, N can depend on ε but not on z.
Similarly one says that a series of functions

∞∑
j=0

fj(z) ,

converges pointwise or uniformly if the sequence of partial sums does.
To show that this definition takes care of the kind of pathologies encoun-

tered above, let us first of all prove that the uniform limit of continuous
functions is again continuous. Indeed, let {fn(z)} be a sequence of functions
which are continuous at z0, and let it converge to a function f(z) uniformly
in a neighbourhood of z0. We claim that f(z) is continuous at z0. This
means that given any ε > 0, there exists δ > 0 such that |f(z) − f(z0)| < ε

132



whenever |z − z0| < δ. To prove this we will employ a device known as the
ε/3 trick . Let us rewrite |f(z)− f(z0)| as follows

|f(z)− f(z0)| = |f(z)− fn(z) + fn(z)− fn(z0) + fn(z0)− f(z0)|
≤ |f(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− f(z0)| ,

by the triangle inequality. Now, because fn(z) → f(z) uniformly, we can
choose n above so large that |f(z) − fn(z)| < ε/3 for all z, so in particular
for z = z0. Similarly, because fn(z) is continuous at z0, there exists δ such
that |fn(z)− fn(z0)| < ε/3 whenever |z − z0| < δ. Therefore,

|f(z)− f(z0)| < ε/3 + ε/3 + ε/3 = ε .

In other words, we have shown that

the uniform limit of continuous functions is continuous.

Similarly we will see that the uniform limit of analytic functions is an-
alytic. Uniform convergence is sufficiently strong to allow us to manipulate
sequences of functions naively and yet sufficiently weak to allow for many
examples. For instance we will see that if a series converges uniformly to a
function, then the series can be differentiated and integrated termwise and
it will converge to the derivative or integral of the limit function.

In practice, the way one checks that a sequence {fn} of functions con-
verges uniformly in U to a function f is to write

fn(z) = f(z) + Rn(z)

and then to see whether the remainder Rn(z) can be made arbitrarily small
for some large enough n independently of z in U . Let us see this for the
geometric series:

∞∑
j=0

zj . (2.47)

The partial sums are the functions

fn(z) =
n∑

j=0

zj = 1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
.

We claim that this geometric series converges uniformly to the function 1/(1−
z) on every closed disk |z| ≤ R with R < 1. Indeed, we have the following
estimate for the remainder:∣∣∣∣fn(z)− 1

1− z

∣∣∣∣ =
|z|n+1

|1− z| ≤
Rn+1

|1− z| .
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Now, using the triangle inequality (2.36),

|z − 1| = |1− z| ≥ 1− |z| whence
1

|1− z| ≤
1

1− |z| ≤
1

1−R
.

In other words, ∣∣∣∣fn(z)− 1

1− z

∣∣∣∣ =
|z|n+1

|1− z| ≤
Rn+1

1−R
.

This bound is independent of z and can be made as small as desired since
R < 1, whence the convergence is uniform.

Another way to check for uniform convergence is the Weierstrass M-
test, which generalises the Comparison Test. Suppose that

∑∞
j=0 Mj is a

convergent series with real non-negative terms Mj ≥ 0. Suppose further
that for all z in some subset U of the complex plane and for all sufficiently
large j, |fj(z)| ≤ Mj. Then the series

∑∞
j=0 fj(z) converges uniformly in U .

(Notice that the Comparison Test is obtained as a special case, when fj(z)
are constant functions.)

� Proof of the Weierstrass M-test.

Using the Weierstrass M-test we can prove the uniform convergence of the
geometric series on any closed disk |z| ≤ R < 1. Indeed, notice that |zj| =
|z|j ≤ Rj and that since R < 1, the geometric series

∑∞
j=0 Rj converges.

2.3.2 Taylor series

In this section we will prove the remarkable result that a function analytic
in the neighbourhood of a point can be approximated by a sequence of poly-
nomials, namely by its Taylor series. Moreover we will see that convergence
is uniform inside the largest open disk over which the function is analytic.

The Taylor series of a function is the result of successive approximations
of the function by polynomials. Suppose that f(z) is analytic in a neigh-
bourhood of z0. Then as we saw in Section 2.2.5 f is infinitely differentiable
around z0. Let us then write down a polynomial function fn such that it
agrees with f at z0 up to an including its n-th derivative. In other words,
f

(j)
n (z0) = f (j)(z0) for j = 0, 1, . . . , n. The polynomial function of least order

which satisfies this condition is

fn(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + · · ·+ f (n)(z0)

n!
(z − z0)

n .
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The sequence {fn}, if it converges, does so to the Taylor series around z0 of
the function f :

∞∑
j=0

f (j)(z0)

j!
(z − z0)

j . (2.48)

(If z0 = 0 this series is also called the Maclaurin series of f .)
We will now prove the following important result: Let f(z) be analytic

in the disk |z − z0| < R centred at z0. Then the Taylor series for f around
z0 converges to f(z) for all z in the disk and moreover the convergence is
uniform on any closed subdisk |z − z0| ≤ r < R.

The proof uses the generalised Cauchy Integral For-

•z0

•z
•ζ

ª r
?

ρ

R

R

I
Γ mula with an appropriate choice of contour, as shown

in the diagram. Let Γ denote the positively oriented
circle centred at z0 with radius ρ where r < ρ < R.
By hypothesis, f is analytic in and on the contour Γ,
whence for any z satisfying |z − z0| ≤ r, we have the
Cauchy Integral Formula:

f(z) =
1

2π i

∮

Γ

f(ζ)

ζ − z
dζ .

Now we rewrite the integrand:

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0

ζ−z0

,

and use the geometric series to write

1

1− z−z0

ζ−z0

=
∞∑

j=0

(
z − z0

ζ − z0

)j

,

which is valid because |z− z0| = r < ρ = |ζ − z0|. Putting it all together, we
have

1

ζ − z
=

∞∑
j=0

(z − z0)
j

(ζ − z0)j+1
.

Inserting it into the Cauchy Integral Formula,

f(z) =
1

2π i

∮

Γ

∞∑
j=0

f(ζ)

(ζ − z0)j+1
(z − z0)

j dζ .
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Now we would be tempted to interchange the order of the integral and the
summation and arrive at

f(z)
?
=

∞∑
j=0

[
1

2π i

∮

Γ

f(ζ)

(ζ − z0)j+1
dζ

]
(z − z0)

j

=
∞∑

j=0

f (j)(z0)

j!
(z − z0)

j ,

where we have used the generalised Cauchy Integral Formula. This manip-
ulation turns out to be allowed, but doing it this way we do not see the
uniform convergence. This is done with more care below.

� Let us prove the Taylor series theorem carefully. It is not hard, but it takes a bit more
bookkeeping. Rather than using the geometric series in its entirety, let us use its n-th
partial sum:

1

1− z−z0
ζ−z0

=
nX

j=0

�
z − z0

ζ − z0

�j

+

�
z−z0
ζ−z0

�n+1

1− z−z0
ζ−z0

,

whence

1

ζ − z
=

nX

j=0

(z − z0)j

(ζ − z0)j+1
+

�
z−z0
ζ−z0

�n+1

ζ − z
.

Into the Cauchy Integral Formula, we have

f(z) =
1

2π i

I

Γ
f(ζ)

2
64

nX

j=0

(z − z0)j

(ζ − z0)j+1
+

�
z−z0
ζ−z0

�n+1

ζ − z

3
75 dζ .

Now this is only a finite sum, so by linearity we can integrate it term by term. Using the
generalised Cauchy Integral Formula we have

f(z) =
nX

j=0

f (j)(z0)

j!
(z − z0)j + Rn(z) ,

where

Rn(z) ≡ 1

2π i

I

Γ

f(ζ)

ζ − z

�
z − z0

ζ − z0

�n+1

dζ .

In other words,

f(z)−
nX

j=0

f (j)(z0)

j!
(z − z0)j = Rn(z) ,

whence in order to prove uniform convergence of the Taylor series, we only have to show
that we can make |Rn(z)| as small as desired for all z by simply taking n sufficiently large.
Let us estimate |Rn(z)|. Using (2.28)

|Rn(z)| ≤ 1

2π

I

Γ

|f(ζ)|
|ζ − z|

����
z − z0

ζ − z0

����
n+1

|dζ| .

We now use that |z − z0| ≤ r, |ζ − z0| = ρ, |f(ζ)| ≤ M for some M , `(Γ) = 2π ρ, and the
triangle inequality (2.36),

|ζ − z| = |(ζ − z0)− (z − z0)| ≥ |ζ − z0| − |z − z0| ≥ ρ− r ,
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whence
1

|ζ − z| ≤
1

ρ− r
.

Therefore,

|Rn(z)| ≤ ρ M

ρ− r

�
r

ρ

�n+1

.

This is what we wanted, because the right-hand side does not depend on z and can be
made as small as desired by taking n large, since r/ρ < 1. This proves uniform convergence
of the Taylor series.

Notice that this result implies that the Taylor series will converge to
f(z) everywhere inside the largest open disk, centred at z0, over which f is
analytic.

As an example, let us compute the Taylor series for the functions Log z
around z0 = 1 and also 1/(1 − z) around z0 = 0. The derivatives of the
principal branch of the logarithm are:

dj Log z

dzj
= (−1)j+1(j − 1)!

1

zj
.

Evaluating at z = 1 and constructing the Taylor series, we have

Log z =
∞∑

j=1

(−1)j+1

j
(z − 1)j .

This series is valid for |z − 1| < 1 which is the largest open disk centred at
z = 1 over which Log z is analytic, as seen in Figure 2.8. Similarly,

•
1

•0 •
1•

Figure 2.8: Analyticity disks for the Taylor series of Log z and 1/(1− z).

dj

dzj

1

1− z
=

j!

(1− z)j+1
,

whence evaluating at z = 0 and building the Taylor series we find the geo-
metric series

1

1− z
=

∞∑
j=0

zj ,
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which is valid for |z| < 1 since that is the largest open disk around the origin
over which 1/(1− z) is analytic, as seen in Figure 2.8. Now notice something
remarkable. We have two a priori different series representations for the
function 1/(1− z) around the origin: one is the Taylor series and another is
the geometric series. Yet we have shown that these series are the same. This
is not a coincidence and we will see in Section 2.3.3 that series representations
for analytic functions are unique: they are all essentially Taylor series.

Basic properties of Taylor series

Taking the derivative of the Taylor series for Log z about z0 = 1 term by
term, we find the series

∞∑
j=1

(−1)j+1

(z − 1)j−1 =
∞∑

j=0

(−1)j (z − 1)j =
∞∑

j=0

(1− z)j .

This is a geometric series which for |z − 1| < 1 converges to

1

1− (1− z)
=

1

z
,

which is precisely the derivative of Log z. This might not seem at all remark-
able, but it is. There is no reason a priori why the termwise differentiation
of an infinite series which converges to a function f(z), should converge to
the derivative f ′(z) of the function. This is because there are two limits
involved: the limit in the definition of the derivative and the one which we
take to approach the function f(z), and we know from previous experience
that the order in which one takes limits matters in general. On the other
hand, what we have just seen is that for the case of the Log z function, these
two limits commute; that is, they can be taken in any order. It turns out
that this is not just a property of Log z but indeed of any analytic function.

To see this recall that we saw in Section 2.2.5 that if a function f(z) is
analytic in a disk |z − z0| < R, then so are all its derivatives. In particular
f(z) and f ′(z) have Taylor series in the disk which converge uniformly on
any closed subdisk. The Taylor series for f ′(z) is given by equation (2.48)
applied to f ′ instead of f :

∞∑
j=0

(f ′)(j)(z0)

j!
(z − z0)

j .

But notice that the j-th derivative of f ′ is just the (j + 1)-st derivative of f :
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(f ′)(j) = f (j+1). Therefore we can rewrite the above Taylor series as

∞∑
j=0

f (j+1)(z0)

j!
(z − z0)

j . (2.49)

On the other hand, differentiating the Taylor series (2.48) for f termwise, we
get

∞∑
j=0

f (j)(z0)

j!
j (z − z0)

j−1 =
∞∑

j=1

f (j)(z0)

(j − 1)!
(z − z0)

j−1

=
∞∑

k=0

f (k+1)(z0)

k!
(z − z0)

k ,

where we have reindexed the last sum by introducing k = j − 1. Finally,
Shakespeare’s Theorem tells us that this last series is the same as the one
in equation (2.49). In other words, we have proven that if f(z) is analytic
around z0, the Taylor series for f ′(z) around z0 is obtained by termwise
differentiation of the Taylor series for f(z) around z0.

Similarly one can show that Taylor series have additional properties. Let
f(z) and g(z) be analytic around z0. That means that there is some disk
|z − z0| < R in which the two functions are analytic. Then as shown in
Section 2.1.4, αf(z), for α any complex number, and f(z) + g(z) are also
analytic in the disk. Then one can show

• The Taylor series for αf(z) is the series obtained by multiplying each
term in the Taylor series for f(z) by α:

∞∑
j=0

α f (j)(z0)

j!
(z − z0)

j .

• The Taylor series of f(z) + g(z) is the series obtained by adding the
terms for the Taylor series of f(z) and g(z):

∞∑
j=0

f (j)(z0) + g(j)(z0)

j!
(z − z0)

j .

These results follow from equations (2.9) and (2.10).
Finally, let f(z) and g(z) be analytic in a disk |z − z0| < R around z0.

We also saw in Section 2.1.4 that their product f(z)g(z) is analytic there.
Therefore it has a Taylor series which converges uniformly in any closed
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subdisk. What is the relation between this series and the Taylor series for
f(z) and g(z)? Let us compute the first couple of terms. We have that the
first few derivatives of fg are

(fg)(z0) = f(z0)g(z0) (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0)

(fg)′′(z0) = f ′′(z0)g(z0) + 2f ′(z0)g
′(z0) + f(z0)g

′′(z0) ,

so that the first few terms of the Taylor series for fg are

f(z0)g(z0) + (f ′(z0)g(z0) + f(z0)g
′(z0)) (z − z0)

+
f ′′(z0)g(z0) + 2f ′(z0)g

′(z0) + f(z0)g
′′(z0)

2
(z − z0)

2 + · · ·

Notice that this can be rewritten as follows:
(

f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + · · ·
)

×
(

g(z0) + g′(z0)(z − z0) +
g′′(z0)

2
(z − z0)

2 + · · ·
)

,

which looks like the product of the first few terms in the Taylor series of
f and g. Appearances do not lie in this case and one can show that the
Taylor series for the product fg of any two analytic functions is the product
of their Taylor series, provided one defines the product of the Taylor series
appropriately.

� Let us see this. To save some writing let me write the Taylor series for f(z) as
P∞

j=0 aj(z−
z0)j and for g(z) as

P∞
j=0 bj(z − z0)j . In other words, I have introduced abbreviations

aj = f (j)(z0)/j! and bj = g(j)(z0)/j!. The Cauchy product of these two series is defined
by multiplying the series formally and collecting terms with the same power of z − z0. In
other words,

0
@
∞X

j=0

aj(z − z0)j

1
A×

0
@
∞X

j=0

bj(z − z0)j

1
A =

X

j=0

cj(z − z0)j ,

where

cj =
∞X

k,`=0
k+`=j

akb` =

jX

k=0

akbj−k =

jX

k=0

f (k)(z0)

k!

g(j−k)(z0)

(j − k)!
.

On the other hand, the Taylor series for fg can be written an

∞X

j=0

(fg)(j)(z0)

j!
(z − z0)j ,

where one can use the generalised Leibniz rule to obtain

(fg)(j)(z0) =

jX

k=0

�j

k

�
f (k)(z0)g(j−k)(z0) ,
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where
�j
k

�
is the binomial coefficient

�j

k

�
=

j!

k!(j − k)!
.

Therefore the Taylor series for fg can be written as

∞X

j=0

1

j!

jX

k=0

�j

k

�
f (k)(z0)g(j−k)(z0) (z − z0)j

=
∞X

j=0

jX

k=0

1

k!(j − k)!
f (k)(z0)g(j−k)(z0) (z − z0)j =

∞X

j=0

cj(z − z0)j ,

with the cj being the same as above.

2.3.3 Power series

Taylor series are examples of a more general type of series, called power series,
whose study is the purpose of this section. We will see that power series are
basically always the Taylor series of some analytic function. This shows that
series representations of analytic functions are in some sense unique, so that
if we manage to cook up, by whatever means, a power series converging to
a function in some disk, we know that this series will be its Taylor series of
the function around the centre of the disk.

By a power series around z0 we mean a series of the form

∞∑
j=0

aj (z − z0)
j ,

and where {aj} are known as the coefficients of the power series. A power
series is clearly determined by its coefficients and by the point z0. Given a
power series one can ask many questions: For which z does it converge? Is
the convergence uniform? Will it converge to an analytic function? Will the
power series be a Taylor series?

We start the section with the following result, which we will state without
proof. It says that to any power series

∑∞
j=0 aj (z − z0)

j one can associate a
number 0 ≤ R ≤ ∞, called the radius of convergence, depending only on
the coefficients {aj}, such that the series converges in the disk |z − z0| < R,
uniformly on any closed subdisk, and the series diverges in |z − z0| > R.

� Introduce lim sup, root test and the proof of this theorem.

One can actually give a formula for the number R in terms of the coef-
ficients {aj} but we will not do so here in general. Instead we will give a
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formula which is valid only in those cases when the Ratio Test can be used.
Recall that the Ratio Test says that if the limit

L ≡ lim
j→∞

∣∣∣∣
cj+1

cj

∣∣∣∣ (2.50)

exists, then the series
∑∞

j=0 cj converges for L < 1 and diverges for L > 1.
In the case of a power series, we have

L = lim
j→∞

∣∣∣∣
aj+1(z − z0)

j+1

aj(z − z0)j

∣∣∣∣ = lim
j→∞

∣∣∣∣
aj+1

aj

∣∣∣∣ |z − z0| .

Therefore convergence is guaranteed if L < 1, which is equivalent to

|z − z0| < lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣

and divergence is guaranteed for L > 1, which is equivalent to

|z − z0| > lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣ .

Therefore if the limit (2.50) exists, we have that the radius of convergence is
given by

R = lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣ . (2.51)

Notice that this agrees with our experience with the geometric series (2.47),
which is clearly a power series around the origin. Since all the coefficients are
equal, the limit exists and R = 1, which is precisely the radius of convergence
we had established previously.

Power series are Taylor series

We are now going to prove the main result of this section: that a power series
is the Taylor series of the functions it approximates. This is a very useful
result, because it says that in order to compute the Taylor series of a function
it is enough to produce any power series which converges to that function.
The proof will follow two steps. The first is to show that a power series
converges to an analytic function and the second step will use the Cauchy
Integral formula to relate the coefficients of the power series with those of
the Taylor series. The first step will itself require two preliminary results,
which we state in some more generality.
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Suppose that {fn} is a sequence of continuous functions which converges
uniformly to a function f(z) in the closed disk |z − z0| ≤ R. Let Γ be
any contour (not necessarily closed) inside the disk, and let ` be the length
of the contour. Then we claim that the sequence

∫
Γ
fn(z) dz converges to

the integral
∫
Γ
f(z) dz. To see this, let ε > 0. Then because of uniform

convergence, there exists N depending only on ε such that for all n ≥ N ,
one has |f(z)− fn(z)| < ε/` for all z in the disk. Then

∣∣∣∣
∫

Γ

f(z) dz −
∫

Γ

fn(z) dz

∣∣∣∣ =

∣∣∣∣
∫

Γ

(f(z)− fn(z)) dz

∣∣∣∣
≤ max

z∈Γ
|f(z)− fn(z)| ` (using (2.28))

< (ε/`)` = ε .

Now suppose that the sequence {fn} is the sequence of partial sums of some
infinite series of functions. Then the above result says that one can integrate
the series termwise, since for any partial sum, the integral of the sum is
the sum of the integrals. In other words, when integrating an infinite series
which converges uniformly in some region U along any contour in U , we can
interchange the order of the summation and the integration.

Now suppose that the functions {fn} are not just continuous but actually
analytic, and let Γ be any loop; that is, a closed simple contour. Then by
the Cauchy Integral Theorem,

∮
Γ
fn(z) dz = 0, whence by what we have just

shown ∮

Γ

f(z) dz = lim
n→∞

∮

Γ

fn(z) dz = 0 .

Therefore by Morera’s theorem, f(z) is also analytic. Therefore we have
shown that

the uniform limit of analytic functions is analytic.

In particular, let
∑∞

j=0 aj(z− z0)
j be a power series with circle of conver-

gence |z − z0| = R > 0. Since each of the partial sums, being a polynomial
function, is analytic in the disk (in fact, in the whole plane), the limit is also
analytic in the disk. In other words, a power series converges to an analytic
function inside its disk of convergence.

Now that we know that
∑∞

j=0 aj(z − z0)
j defines an analytic function,

call it f(z), in its disk of convergence, we can compute its Taylor series and
compare it with the original series. The Taylor series of f(z) around z0 has
coefficients given by the generalised Cauchy Integral Formula:

f (j)(z0)

j!
=

1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz ,
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where Γ is any positively oriented loop inside the disk of convergence of the
power series which contains the point z0 in its interior. Because the power
series converges uniformly, we can now substitute the power series for f(z)
inside the integral and compute the integral termwise:

f (j)(z0)

j!
=

1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz

=
∞∑

k=0

1

2π i

∮

Γ

ak
(z − z0)

k

(z − z0)j+1
dz

=
∞∑

k=0

ak
1

2π i

∮

Γ

(z − z0)
k−j−1 dz .

But now, from the generalised Cauchy Integral Formula,

∮

Γ

(z − z0)
k−j−1 dz =

{
2π i if j = k, and

0 otherwise.
(2.52)

Therefore, only one term contributes to the
∑

k, namely the term with k = j,
and hence we see that

f (j)(z0)

j!
= aj .

In other words, the power series is the Taylor series. Said differently, any
power series is the Taylor series of a function analytic in the disk of conver-
gence |z − z0| < R.

For example, let us compute the Taylor series of the function

1

(z − 1)(z − 2)

in the disk |z| < 1. This is the largest disk centred at the origin where we
could hope to find a convergent power series for this function, since it has
singularities at z = 1 and z = 2. The naive solution to this problem would
be to take derivatives and evaluate them at the origin and build the Taylor
series this way. However from our discussion above, it is enough to exhibit
any power series which converges to this function in the specified region. We
use partial fractions to rewrite the function as a sum of simple fractions:

1

(z − 1)(z − 2)
=

1

1− z
− 1

2− z
.

Now we use geometric series for each of them. For the first fraction we have

1

1− z
=

∞∑
j=0

zj valid for |z| < 1;
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whereas for the second fraction we have

−1

2− z
=

−1/2

1− (z/2)
= −1

2

∞∑
j=0

zj

2j
= −

∞∑
j=0

zj

2j+1
,

which is valid for |z| < 2, which contains the region of interest. Therefore,
putting the two series together,

1

(z − 1)(z − 2)
=

∞∑
j=0

(
1− 1

2j+1

)
zj , for |z| < 1.

2.3.4 Laurent series

In the previous section we saw that any function which is analytic in some
neighbourhood of a point z0 can be approximated by a power series (its Taylor
series) about that point. How about a function which has a “mild” singularity
at z0? For example, how about a function of the form g(z)/(z − z0)? Might
we not expect to be able to approximate it by some sort of power series?
It certainly could not be a power series of the type we have been discussing
because these series are analytic at z0. There is, however, a simple yet useful
generalisation of the notion of power series which can handle these cases.
These series are known as Laurent series and consist of a sum of two power
series.

A Laurent series about the point z0 is a sum of two power series one
consisting of positive powers of z − z0 and the other of negative powers:

∞∑
j=0

aj(z − z0)
j +

∞∑
j=1

a−j(z − z0)
−j .

Laurent series are often abbreviated as

∞∑
j=−∞

aj(z − z0)
j,

but we should keep in mind that this is only an abbreviation: conceptually
a Laurent series is the sum of two independent power series.

A Laurent series is said to converge if each of the power series converges.
The first series, being a power series in z− z0 converges inside some circle of
convergence |z − z0| = R, for some 0 ≤ R ≤ ∞. The second series, however,
is a power series in w = 1/(z − z0). Hence it will converge inside a circle of
convergence |w| = R′; that is, for |w| < R′. If we let R′ = 1/r, then this
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condition translates into |z − z0| > r. In other words, such a Laurent series
will converge in an annulus: r < |z − z0| < R. (Of course for this to make
sense, we need r < R. If this is not the case, then the Laurent series does
not converge anywhere.)

It turns out that the results which are valid for Taylor series have gener-
alisations for Laurent series. The first main result that we will prove is that
any function analytic in an open annulus r < |z−z0| < R centred at z0 has a
Laurent series around z0 which converges to it everywhere inside the annulus
and uniformly on closed sub-annuli r < R1 ≤ |z − z0| ≤ R2 < R. Moreover
the coefficients of the Laurent series are given by

aj =
1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz , for j = 0,±1,±2, . . .,

where Γ is any positively oriented loop lying in the annulus and containing
z0 in its interior.

Notice that this result generalises the result proven in Section 2.3.2 for
functions analytic in the disk. Indeed, if f(z) were analytic in |z − z0| <
R, then by the Cauchy Integral Theorem and the above formula for aj, it
would follow that that a−j = 0 for j = 1, 2, . . ., and hence that the Laurent
series is the Taylor series. Notice also that the Laurent series is a nontrivial
generalisation of the Taylor series in that the coefficients a−j for j = 1, 2, . . .
are not just simply derivatives of the function, but rather require contour
integration.

•z0

•z

¾r

ª
R

?
R1

R R2

•¾ρ1

?
ρ2

I
Γ •z

I
Γ2

IΓ1

- ¾•Q •P

Figure 2.9: Contours Γ, Γ1 and Γ2.

In order to follow the logic of the proof, it will be convenient to keep Figure
2.9 in mind. The left-hand picture shows the annuli r < R1 ≤ |z − z0| ≤
R2 < R and the contour Γ. The right-hand picture shows the equivalent
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contours Γ1 and Γ2, circles with radii ρ1 and ρ2 satisfying the inequalities
r < ρ1 < R1 and R2 < ρ2 < R.

Consider the closed contour C, starting and ending at the point P in the
Figure, and defined as follows: follow Γ2 all the way around until P again,
then go to Q via the ‘bridge’ between the two circles, then all the way along
Γ1 until Q, then back to P along the ‘bridge.’ This contour encircles the
point z once in the positive sense, hence by the Cauchy Integral Formula we
have that

f(z) =
1

2π i

∮

C

f(ζ)

ζ − z
dζ .

On the other hand, because the ‘bridge’ is traversed twice in opposite direc-
tions, their contribution to the integral cancels and we are left with

f(z) =
1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ +

1

2π i

∮

Γ2

f(ζ)

ζ − z
dζ .

We now treat each integral at a time.
The integral along Γ2 can be treated mutatis mutandis as we did the

similar integral in the proof of the Taylor series theorem in Section 2.3.2. We
simply quote the result:

1

2π i

∮

Γ2

f(ζ)

ζ − z
dζ =

∞∑
j=0

aj(z − z0)
j ,

where

aj =
1

2π i

∮

Γ2

f(ζ)

(ζ − z0)j+1
dζ =

f (j)(z0)

j!
. (2.53)

Moreover the series converges uniformly in the closed disk |z − z0| ≤ R2, as
was shown in that section.

The integral along Γ1 can be treated along similar lines, except that
because |z − z0| > |ζ − z0|, we must expand the integrand differently. We
will be brief, since the idea is very much the same as what was done for the
Taylor series. We start by rewriting 1/(ζ − z) appropriately:

1

ζ − z
=

1

(ζ − z0)− (z − z0)
= − 1

z − z0

1

1− ζ−z0

z−z0

.

Let us write this now as a geometric series:

1

ζ − z
= − 1

z − z0




n∑
j=0

(
ζ − z0

z − z0

)j

+

(
ζ−z0

z−z0

)n+1

1− ζ−z0

z−z0


 ;
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whence
1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

m+1∑
j=1

a−j(z − z0)
−j + Sn(z) ,

where

a−j = − 1

2π i

∮

Γ1

f(ζ)

(ζ − z0)−j+1
dζ , (2.54)

and where

Sn(z) =
1

2π i

∮

Γ1

f(ζ)

ζ − z

(ζ − z0)
n+1

(z − z0)n+1
dζ .

Now, for ζ in Γ1 we have that |ζ − z0| = ρ1 and from the triangle inequality
(2.36), that |ζ− z| ≥ R1−ρ1. We also note that |z− z0| ≥ R1. Furthermore,
f(ζ), being continuous, is bounded so that |f(ζ)| ≤ M for some M and all ζ
on Γ1. Therefore using (2.28) and the above inequalities,

|Sn(z)| ≤ M ρ1

R1 − ρ1

(
ρ1

R1

)n+1

,

which is independent of z and, because ρ1 < R1, can be made arbitrarily small
by choosing n large. Hence Sn(z) → 0 as n →∞ uniformly in |z− z0| ≥ R1,
and

1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

∞∑
j=1

a−j(z − z0)
−j ,

where the a−j are still given by (2.54). In other words,

1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

∞∑
j=1

a−j(z − z0)
−j ,

and the series converges uniformly to the integral for |z − z0| ≤ R1. In
summary, we have that proven that f(z) is approximated by the Laurent
series

f(z) =
∞∑

j=−∞
aj(z − z0)

j ,

everywhere on r < |z − z0| < R and uniformly on any closed sub-annulus,
where the coefficients aj are given by (2.53) for j ≥ 0 and by (2.54) for j < 0.

We are almost done, except that in the statement of the theorem the
coefficients aj are given by contour integrals along Γ and what we have shown
is that they are given by contour integrals along Γ1 or Γ2. But notice that
the integrand in (2.53) is analytic in the domain bounded by the contours Γ
and Γ2; and similarly for the integrand in (2.54) in the region bounded by
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the contours Γ and Γ1. Therefore we can deform the contours Γ1 and Γ2 to
−Γ and Γ respectively, in the integrals

a−j = − 1

2π i

∮

Γ1

f(ζ)

(ζ − z0)−j+1
dζ =

1

2π i

∮

Γ

f(ζ)

(ζ − z0)−j+1
dζ

aj =
1

2π i

∮

Γ2

f(ζ)

(ζ − z0)j+1
dζ =

1

2π i

∮

Γ

f(ζ)

(ζ − z0)j+1
dζ ,

which proves the theorem.

Laurent series are unique

We saw in Section 2.3.3 that any power series is the Taylor series of the ana-
lytic function it converges to. In other words, the power series representation
of an analytic function is unique (in the domain of convergence of the series,
of course). Since Laurent series are generalisations of the Taylor series and
agree with them when the function is analytic not just in the annulus but in
fact in the whole disk, we might expect that the same is true and that the
Laurent series representation of a function analytic in an annulus should also
be unique. This turns out to be true and the proof follows basically from
that of the uniqueness of the power series.

More precisely, one has the following result. Let

∞∑
j=0

cj(z − z0)
j and

∞∑
j=1

c−j(z − z0)
−j

be any two power series converging in |z − z0| < R and |z − z0| > r, respec-
tively, with R > r. Then there is a function f(z) analytic in the annulus
r < |z − z0| < R, such that

∞∑
j=0

cj(z − z0)
j +

∞∑
j=1

c−j(z − z0)
−j

is its Laurent series. We shall omit the proof, except to notice that this
follows from the uniqueness of the power series applied to each of the series
in turn.

� Do this in detail.

This is a very useful result because it says that no matter how we obtain
the power series, their sum is guaranteed to be the Laurent series of the
analytic function in question. Let us illustrate this in order to compute the
Laurent series of some functions.
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For example, let us compute the Laurent series of the rational function
(z2−2z+3)(z−2) in the region |z−1| > 1. Let us first rewrite the numerator
as a power series in (z − 1):

z2 − 2z + 3 = (z − 1)2 + 2 .

Now we do the same with the denominator:

1

z − 2
=

1

(z − 1)− 1
=

1

z − 1

1

1− 1
z−1

,

where we have already left it in a form which suggests that we try a geometric
series in 1/(z−1), which converges in the specified region |z−1| > 1. Indeed,
we have that in this region,

1

z − 1

1

1− 1
z−1

=
1

z − 1

∞∑
j=0

1

(z − 1)j
=

∞∑
j=0

1

(z − 1)j+1
.

Putting the two series together,

z2 − 2z + 3

z − 2
=

(
(z − 1)2 + 2

) ∞∑
j=0

1

(z − 1)j+1

= (z − 1) + 1 +
∞∑

j=0

3

(z − 1)j+1
.

By the uniqueness of the Laurent series, this is the Laurent series for the
function in the specified region.

As a final example, consider the function 1/(z −

•0 •1 •2
I

II

III
1)(z − 2). Let us find its Laurent expansions in the
regions: |z| < 1, 1 < |z| < 2 and |z| > 2, which we
have labelled I, II and III in the figure. We start by
decomposing the function into partial fractions:

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

In region I, we have the following geometric series:

− 1

z − 1
=

1

1− z
=

∞∑
j=0

zj valid for |z| < 1; and

1

z − 2
=

−1
2

1− (z/2)
= −1

2

∞∑
j=0

(z

2

)j

=
∞∑

j=0

−1

2j+1
zj valid for |z| < 2.
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Therefore in their common region of convergence, namely region I, we have
that

1

(z − 1)(z − 2)
=

∞∑
j=0

(
1− 1

2j+1

)
zj .

In region II, the first of the geometric series above is not valid, but the
second one is. Because in region II, |z| > 1, this means that |1/z| < 1,
whence we should try and use a geometric series in 1/z. This is easy:

− 1

z − 1
= −1

z

1

1− (1/z)
= −1

z

∞∑
j=0

(
1

z

)j

=
∞∑

j=0

−1

zj+1
valid for |z| > 1.

Therefore in region II we have that

1

(z − 1)(z − 2)
=

∞∑
j=0

−1

zj+1
+

∞∑
j=0

−1

2j+1
zj .

Finally in region III, we have that |z| > 2, so that we will have to find
another series converging to 1/(z−2) in this region. Again, since now |2/z| <
1 we should try to use a geometric series in 2/z. This is once again easy:

1

z − 2
=

1

z

1

1− (2/z)
=

1

z

∞∑
j=0

(
2

z

)j

=
∞∑

j=0

2j

zj+1
valid for |z| > 2.

Therefore in region III we have that

1

(z − 1)(z − 2)
=

∞∑
j=0

(−1 + 2j
) 1

zj+1
.

Again by the uniqueness of the Laurent series, we know that these are the
Laurent series for the function in the specified regions.

2.3.5 Zeros and Singularities

As a consequence of the existence of power and Laurent series representations
for analytic functions we are able to characterise the possible singularities
that an analytic function can have, and this is the purpose of this section.

A point z0 is said to be a singularity for a function f(z), if f ceases to
be analytic at z0. Singularities can come in two types. One says that a a
point z0 is an isolated singularity for a function f(z), if f is analytic in some
punctured disk around the singularity; that is, in 0 < |z − z0| < R for some
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R > 0. We have of course already encountered isolated singularities; e.g.,
the function 1/(z − z0) has an isolated singularity at z0. In fact, we will
see below that the singularities of a rational function are always isolated.
Singularities need not be isolated, of course. For example, any point −x in
the non-positive real axis is a singularity for the principal branch Log z of the
logarithm function which is not isolated, since any disk around −x, however
small, will contain other singularities. In this section we will concentrate
on isolated singularities. We will see that there are three types of isolated
singularities, distinguished by the behaviour of the function as it approaches
the singularity. Before doing so we will discuss the singularities of rational
functions. As these occur at the zeros of the denominators, we will start by
discussing zeros.

Zeros of analytic functions

Let f(z) be analytic in a neighbourhood of a point z0. This means that there
is an open disk |z − z0| < R in which f is analytic. We say that z0 is a zero
of f if f(z0) = 0. More precisely we say that z0 is a zero of order m, for
m = 1, 2, . . ., if

f(z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 but f (m)(z0) 6= 0.

(A zero of order m = 1 is often called a simple zero.) Because f(z) is
analytic in the disk |z − z0| < R, it has a power series representation there:
namely the Taylor series:

f(z) =
∞∑

j=0

f (j)(z0)

j!
(z − z0)

j .

But because z0 is a zero of order m, the first m terms in the Taylor series
vanish, whence

f(z) =
∞∑

j=m

f (j)(z0)

j!
(z − z0)

j = (z − z0)
mg(z) ,

where g(z) has a power series representation

g(z) =
∞∑

j=0

f (j+m)(z0)

(j + m)!
(z − z0)

j

in the disk, whence it is analytic there and moreover, by hypothesis, g(z0) =
f (m)(z0)/m! 6= 0. It follows from this that the zeros of an analytic function
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are isolated. Because g(z) is analytic, and hence continuous, in the disk
|z − z0| < R and g(z0) 6= 0, it means that there is a disk |z − z0| < ε < R in
which g(z) 6= 0, and hence neither is f(z) = (z − z0)

m g(z) zero there.
Now let P (z)/Q(z) be a rational function. Its singularities will be the

zeroes of Q(z) and we have just seen that these are isolated, whence the
singularities of a rational function are isolated.

Isolated singularities

Now let z0 be an isolated singularity for a function f(z). This means that f
is analytic in some punctured disk 0 < |z − z0| < R, for some R > 0. The
punctured disk is a degenerate case of an open annulus r < |z − z0| < R,
corresponding to r = 0. By the results of the previous section, we know that
f(z) has a Laurent series representation there. We can distinguish three
types of singularities depending on the Laurent expansion:

f(z) =
∞∑

j=−∞
aj(z − z0)

j .

Let us pay close attention to the negative powers in the Laurent expansion:
we can either have no negative powers—that is, aj = 0 for all j < 0; a
finite number of negative powers—that is, aj = 0 for all but a finite number
of j < 0; or an infinite number of negative powers—that is, aj 6= 0 for an
infinite number of j < 0. This trichotomy underlies the following definitions:

• We say that z0 is a removable singularity of f , if the Laurent expansion
of f around z0 has no negative powers; that is,

f(z) =
∞∑

j=0

aj(z − z0)
j .

• We say that z0 is a pole of order m for f , if the Laurent expansion of
f around z0 has aj for all j < −m and a−m 6= 0; that is powers; that
is,

f(z) =
a−m

(z − z0)m
+ · · ·+ a0 + a1(z − z0) + · · · with a−m 6= 0.

A pole of order m = 1 is often called a simple pole.

• Finally we say that z0 is an essential singularity of f if the Laurent
expansion of f around z0 has an infinite number of nonzero terms with
negative powers of (z − z0).
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The different types of isolated singularities can be characterised by the
way the function behaves in the neighbourhood of the singularity. For a
removable singularity the function is clearly bounded as z → z0, since the
power series representation

f(z) =
∞∑

j=0

aj(z − z0)
j = a0 + a1(z − z0) + · · ·

certainly has a well-defined limit as z → z0: namely, a0. This is not the same
thing as saying that f(z0) = a0. If this were the case, then the function would
not have a singularity at z0, but it would be analytic there as well. Therefore,
removable singularities are due to f being incorrectly or “peculiarly” defined
at z0. For example, consider the following bizarre-looking function:

f(z) =

{
ez for z 6= 0;

26 at z = 0.

This function is clearly analytic in the punctured plane |z| > 0, since it agrees
with the exponential function there, which is an entire function. This means
that in the punctured plane, f(z) has a power series representation which
agrees with the Taylor series of the exponential function:

f(z) =
∞∑

j=0

1

j!
zj .

However this series has the limit 1 as z → 0, which is the value of the
exponential for z = 0, and this does not agree with the value of f there.
Hence the function has a singularity, but one which is easy to cure: we simply
redefine f at the origin so that f(z) = exp(z) throughout the complex plane.
Other examples of removable singularities are

sin z

z
=

1

z

(
z − z3

3!
+

z5

5!
− · · ·

)
= 1− z2

3!
+

z4

5!
− · · · ; (2.55)

and
z2 − 1

z − 1
=

1

z − 1

(
(z − 1)2 + 2(z − 1)

)
= (z − 1) + 2 .

Of course in this last example we could have simply noticed that z2 − 1 =
(z − 1)(z + 1) and simplified the rational function to z + 1 = (z − 1) + 2.
In summary, at a removable singularity the function is bounded and can be
redefined at the singularity so that the new function is analytic there, in
effect removing the singularity.
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In contrast, a pole is a true singularity for the function f . Indeed, around
a pole z0 of order m, the Laurent series for f looks like

f(z) =
1

(z − z0)m
h(z) ,

where h(z) has a series expansion around z0 given by

h(z) =
∞∑

j=0

aj−m(z − z0)
j = a−m + a−m+1(z − z0) + · · ·

This means that h(z) has at most a removable singularity at z0. We have
already seen many examples of functions with poles throughout these lec-
tures, so we will not give more examples. Let us however pause to discuss
the singularities of a rational function.

Let f(z) = P (z)/Q(z) be a rational function. Then we claim that f(z)
has either a pole or a removable singularities at the zeros of Q(z). Let us be
a little bit more precise. Suppose that z0 is a zero of Q(z0), and assume that
it is a zero of order m. This means that

Q(z) = (z − z0)
m q(z) ,

where q(z) is an analytic function around z0 and such that q(z0) 6= 0. If z0 is
not a zero of P (z), then z0 is a pole of f of order m. If z0 is a zero of order
k of P (z), then we have that

P (z) = (z − z0)
k p(z) ,

where p(z) is analytic and p(z0) 6= 0. Therefore we have that

f(z) =
(z − z0)

k p(z)

(z − z0)m q(z)
=

1

(z − z0)m−k

p(z)

q(z)
;

whence f(z) has a pole of order m−k if m > k and has a removable singularity
otherwise.

How about essential singularities? A result known as Picard’s Theorem
says that a function takes all possible values (with the possible exception of
one) in any neighbourhood of an essential singularity. This is a deep result in
complex analysis and one we will not even attempt to prove. Let us however
verify this for the function f(z) = exp(1/z). This function is analytic in
the punctured plane |z| > 0 since the exponential function is entire. For
any finite w we have seen that the exponential function has a power series
expansion:

ew =
∞∑

j=0

1

j!
wj .
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Therefore for |z| > 0, we have that

e1/z =
∞∑

j=0

1

j!

1

zj
,

whence z0 = 0 is an essential singularity. According to Picard’s theorem,
the function exp(1/z) takes every possible value (except possibly one) in any
neighbourhood of the origin. Clearly, the value 0 is never attainable, but we
can easily check that any other value is obtained. Let c 6= 0 be any nonzero
complex number, and let us solve for those z such that exp(1/z) = c. The
multiple-valuedness of the logarithm says that there are infinitely many such
z, satisfying:

1

z
= log(c) = Log |c|+ i Arg(c) + 2π i k ,

for k = 0,±1 ± 2, . . ., whose moduli are given by

|z| = Log |c| − i Arg(c)− 2π i k

(Log |c|)2 + (Arg(c) + 2π k)2
,

which can be as small as desired by taking k as large as necessary. Therefore
in any neighbourhood of the origin, there are an infinite number of points for
which the function exp(1/z) takes as value a given nonzero complex number.

2.4 The residue calculus and its applications

We now start the final section of this part of the course. It is the culmination
of a lot of hard work and formalism but one which is worth the effort and
the time spent developing the necessary vocabulary. In this section we will
study the theory of residues. The theory itself is very simple and is basically
a matter of applying what we have learned already in the appropriate way.
Most of the sections are applications of the theory to the computation of real
integrals and infinite sums. These are problems which are simple to state in
the context of real calculus but whose solutions (at least the elementary ones)
take us to the complex plane. In a sense they provide the simplest instance of
a celebrated phrase by the French mathematician Hadamard, who said that
the shortest path between two real truths often passes by a complex domain.

2.4.1 The Cauchy Residue Theorem

Let us consider the behaviour of an analytic function around an isolated
singularity. To be precise let z0 be an isolated singularity for an analytic
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function f(z). The function is analytic in some punctured disk 0 < |z−z0| <
R, for some R > 0, and has a Laurent series there of the form

f(z) =
∞∑

j=−∞
aj(z − z0)

j .

Consider the contour integral of the function f(z) along a positively oriented
loop Γ contained in the punctured disk and having the singularity z0 in its
interior. Because the Laurent series converges uniformly, we can integrate
the series term by term:

∮

Γ

f(z) dz =
∞∑

j=−∞
aj

∮

Γ

(z − z0)
j dz .

From the (generalised) Cauchy Integral Formula or simply by deforming the
contour to a circle of radius ρ < R, we have that (c.f., equation (2.52))

∮

Γ

(z − z0)
j dz =

{
2π i for j = −1, and

0 otherwise;

whence only the j = −1 term contributes to the sum, so that
∮

Γ

f(z) dz = 2π i a−1 .

This singles out the coefficient a−1 in the Laurent series, and hence we give
it a special name. We say that a−1 is the residue of f at z0, and we write
this as Res(f ; z0) or simply as Res(z0) when f is understood.

For example, consider the function z exp(1/z). This function has an es-
sential singularity at the origin and is analytic everywhere else. The residue
can be computed from the Laurent series:

ze1/z = z

∞∑
j=0

1

j!

1

zj
=

∞∑
j=0

1

j!

1

zj−1
= z + 1 +

1

2z
+ · · · ,

whence the residue is given by Res(0) = 1
2
.

It is often not necessary to calculate the Laurent expansion in order to
extract the residue of a function at a singularity. For example, the residue
of a function at a removable singularity vanishes, since there are no negative
powers in the Laurent expansion. On the other hand, if the singularity
happens to be a pole, we will see that the residue can be computed by
differentiation.
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Suppose, for simplicity, that f(z) has a simple pole at z0. Then the
Laurent series of f(z) around z0 has the form

f(z) =
a−1

z − z0

+ a0 + a1(z − z0) + · · · ,

whence the residue can be computed by

Res(f ; z0) = lim
z→z0

(z − z0) f(z)

= lim
z→z0

(
a−1 + a0(z − z0) + a1(z − z0)

2 + · · · )

= a−1 + 0 .

For example, the function f(z) = ez/z(z + 1) has simple poles at z = 0 and
z = −1; therefore,

Res(f ; 0) = lim
z→0

z f(z) = lim
z→0

ez

z + 1
= 1

Res(f ;−1) = lim
z→−1

(z + 1) f(z) = lim
z→−1

ez

z
= −1

e
.

Suppose that f(z) = P (z)/Q(z) where P and Q are analytic at z0 and Q
has a simple zero at z0 whereas P (z0) 6= 0. Clearly f has a simple pole at z0,
whence the residue is given by

Res(f ; z0) = lim
z→z0

(z − z0)
P (z)

Q(z)
= lim

z→z0

P (z)
Q(z)−Q(z0)

z−z0

=
P (z0)

Q′(z0)
,

where we have used that Q(z0) = 0 and the definition of the derivative, which
exists since Q is analytic at z0.

We can use this to compute the residues at each singularity of the function
f(z) = cot z. Since cot z = cos z/ sin z, the singularities occur at the zeros of
the sine function: z = nπ, n = 0,±1,±2, . . .. These zeros are simple because
sin′(nπ) = cos(nπ) = (−1)n 6= 0. Therefore we can apply the above formula
to deduce that

Res(f ; nπ) =
cos z

(sin z)′

∣∣∣∣
z=nπ

=
cos(nπ)

cos(nπ)
= 1 .

This result will be crucial for the applications concerning infinite series later
on in this section.

Now suppose that f has a pole of order m at z0. The Laurent expansion
is then

f(z) =
a−m

(z − z0)m
+ · · ·+ a−1

z − z0

+ a0 + a1(z − z0) + · · ·
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Let us multiply this by (z − z0)
m to obtain

(z − z0)
m f(z) = a−m + · · ·+ a−1(z − z0)

m−1 + a0(z − z0)
m + · · · ,

whence taking m− 1 derivatives, we have

dm−1

dzm−1
[(z − z0)

m f(z)] = (m− 1)! a−1 + m! a0(z − z0) + · · · .

Finally if we evaluate this at z = z0, we obtain (m−1)! a−1, which then gives
a formula for the residue of f at a pole of order m:

Res(f ; z0) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
[(z − z0)

m f(z)] . (2.56)

For example, let us compute the residues of the function

f(z) =
cos z

z2(z − π)3
.

This function has a pole of order 2 at the origin and a pole of order 3 at
z = π. Therefore, applying the above formula, we find

Res(f ; 0) = lim
z→0

1

1!

d

dz

[
z2f(z)

]

= lim
z→0

d

dz

[
cos z

(z − π)3

]

= lim
z→0

[ − sin z

(z − π)3
− 3 cos z

(z − π)4

]

= − 3

π4
,

Res(f ; π) = lim
z→π

1

2!

d2

dz2

[
(z − π)3f(z)

]

= lim
z→π

1

2

d2

dz2

[cos z

z2

]

= lim
z→π

1

2

[
6 cos z

z4
+

4 sin z

z3
− cos z

z2

]

= −6− π2

2π4
.

We are now ready to state the main result of this section, which con-
cerns the formula for the integral of a function f(z) which is analytic on a

159



positively-oriented loop Γ and has only a finite number of isolated singulari-
ties {zk} in the interior of the loop. Because of the analyticity of the function,
and using a contour deformation argument, we can express the integral of
f(z) along Γ as the sum of the integrals of f(z) along positively-oriented
loops Γk, each one encircling one of the isolated singularities. But we have
just seen that the integral along each of these loops is given by 2π i times the
residue of the function at the singularity. In other words, we have

∮

Γ

f(z) dz =
∑

k

∮

Γk

f(z) dz =
∑

k

2π i Res(f ; zk) .

In other words, we arrive at the Cauchy Residue Theorem, which states that
the integral of f(z) along Γ is equal to 2π i times the sum of the residues of
the singularities in the interior of the contour:

∮

Γ

f(z) dz = 2π i
∑

singularities
zk∈Int Γ

Res(f ; zk) .

For example, let us compute the integral
∮

Γ

1− 2z

z(z − 1)(z − 3)
dz ,

along the positively oriented circle of radius 2: |z| = 2. The integrand f(z)
has simple poles at z = 0, z = 1 and z = 2, but only the first two lie in the
interior of the contour. Thus by the residue theorem,

∮

Γ

1− 2z

z(z − 1)(z − 3)
dz = 2π i [Res(f ; 0) + Res(f ; 1)] ,

and

Res(f ; 0) = lim
z→0

z f(z)

= lim
z→0

(1− 2z)

(z − 1)(z − 3)

=
1

3
,

Res(f ; 1) = lim
z→1

(z − 1) f(z)

= lim
z→1

(1− 2z)

z(z − 3)

=
1

2
;
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so that ∮

Γ

1− 2z

z(z − 1)(z − 3)
dz = 2π i

(
1

3
+

1

2

)
=

5π i

3
.

�� Notice something curious. Computing the residue at z = 3, we find,

Res(f ; 3) = lim
z→3

(z − 3) f(z)

= lim
z→3

(1− 2z)

z(z − 1)

=
−5

6
;

whence the sum of all three residues is 0. This can be explained by introducing the
Riemann sphere model for the extended complex plane, and thus noticing that a contour
which would encompass all three singularities can be deformed to surround the point at
infinity but in the opposite sense. Since the integrand is analytic at infinity, the Cauchy
Integral Theorem says that the integral is zero, but (up to factors) this is equal to the
sum of the residues.

2.4.2 Application: trigonometric integrals

The first of the applications of the residue theorem is to the computation of
trigonometric integrals of the form

∫ 2π

0

R(cos θ, sin θ) dθ ,

where R is a rational function of its arguments and such that it is finite in the
range 0 ≤ θ ≤ 2π. We want to turn this into a complex contour integral so
that we can apply the residue theorem. One way to do this is the following.
Consider the contour Γ parametrised by z = exp(iθ) for θ ∈ [0, 2π]: this is
the unit circle traversed once in the positive sense. On this contour, we have
z = cos θ + i sin θ and 1/z = cos θ − i sin θ. Therefore we can solve for cos θ
and sin θ in terms of z and 1/z as follows:

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
.

Similarly, dz = d exp(iθ) = iz dθ, whence dθ = dz
iz

. Putting it all together we
have that

∫ 2π

0

R(cos θ, sin θ) dθ =

∮

Γ

1

iz
R

(
z + 1

z

2
,
z − 1

z

2i

)
dz ,
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which is the contour integral of a rational function of z, and hence can be
computed using the residue theorem:

∫ 2π

0

R(cos θ, sin θ) dθ = 2π
∑

singularities
|zk|<1

Res(f ; zk) , (2.57)

where f(z) is the rational function

f(z) ≡ 1

z
R

(
z + 1

z

2
,
z − 1

z

2i

)
. (2.58)

As an example, let us compute the integral

I =

∫ 2π

0

(sin θ)2

5 + 4 cos θ
dθ .

First of all notice that the denominator never vanishes, so that we can go
ahead. The rational function f(z) given in (2.58) is

f(z) =
1

z

(
1
2i

(
z − 1

z

))2

5 + 41
2

(
z + 1

z

) = −1

4

(z2 − 1)2

z2(2z2 + 5z + 2)
= −1

8

(z2 − 1)2

z2(z + 1
2
)(z + 2)

,

whence it has a double pole at z = 0 and single poles at z = −1
2

and z = −2.
Of these, only the poles at z = 0 and z = −1

2
lie inside the unit disk, whence

I = 2π
[
Res(f ; 0) + Res(f ;−1

2
)
]

.

Let us compute the residues. The singularity at z = 0 is a pole of order 2,
whence by equation (2.56), we have

Res(f ; 0) = lim
z→0

d

dz

[
−1

8

(z2 − 1)2

(z + 1
2
)(z + 2)

]
=

5

16
.

The pole at z = −1
2

is simple, so that its residue is even simpler to compute:

Res(f ;−1/2) = lim
z→−1

2

[
−1

8

(z2 − 1)2

z2(z + 2)

]
= − 3

16
.

Therefore, the integral becomes

I = 2π

(
5

16
− 3

16

)
=

π

4
.
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As a mild check on our result, we notice that it is real whence it is not
obviously wrong.

Let us do another example:

I =

∫ π

0

dθ

2− cos θ
.

This time the integral is only over [0, π], so that we cannot immediately use
the residue theorem. However in this case we notice that because cos(2π −
θ) = cos θ, we have that

∫ 2π

π

dθ

2− cos θ
=

∫ 0

π

d(2π − θ)

2− cos(2π − θ)
= −

∫ 0

π

dθ

2− cos θ
=

∫ π

0

dθ

2− cos θ
.

Therefore,

I = 1
2

∫ 2π

0

dθ

2− cos θ
,

which using equation (2.57) and paying close attention to the factor of 1
2
,

becomes π times the sum of the residues of the function

f(z) =
1

z

1

2− 1
2
(z + 1

z
)

lying inside the unit disk. After a little bit of algebra, we find that

f(z) = − 2

z2 − 4z + 1
= − 2

(z − 2 +
√

3)(z − 2−√3)
.

Of the two simple poles of this function only the one at z = 2−√3 lies inside
the unit disk, hence

Res(f ; 2−
√

3) = lim
z→2−√3

−2

z − 2−√3
=

1√
3

,

and thus the integral becomes

I =
π√
3

.

2.4.3 Application: improper integrals

In this section we consider improper integrals of rational functions and of
products of rational and trigonometric functions.
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Let f(x) be a function of a real variable, which is continuous in 0 ≤ x <
∞. Then by the improper integral

∫∞
0

f(x) dx, we mean the limit

∫ ∞

0

f(x) dx ≡ lim
R→∞

∫ R

0

f(x) dx ,

if such a limit exists. Similarly, if f(x) is continuous in −∞ < x ≤ 0, then

the improper integral
∫ 0

−∞ f(x) dx is defined by the limit

∫ 0

−∞
f(x) dx ≡ lim

r→−∞

∫ 0

r

f(x) dx ,

again provided that it exists. If f(x) is continuous on the whole real line and
both of the above limits exists, we define

∫ ∞

−∞
f(x) dx ≡ lim

R→∞
r→−∞

∫ R

r

f(x) dx . (2.59)

If such limits exist, then we get the same result by symmetric integration:

∫ ∞

−∞
f(x) dx = lim

ρ→∞

∫ ρ

−ρ

f(x) dx . (2.60)

Notice however that the symmetric integral may exist even if the improper
integral (2.59) does not. For example consider the function f(x) = x. Clearly

the integrals
∫∞

0
x dx and

∫ 0

−∞ x dx do not exist, yet because x is an odd

function,
∫ ρ

−ρ
xdx = 0 for all ρ, whence the limit is 0. In cases like this we

say that equation (2.60) defines the Cauchy principal value of the integral,
and we denote this by

p. v.

∫ ∞

−∞
f(x) dx ≡ lim

ρ→∞

∫ ρ

−ρ

f(x) dx .

We stress to point out that whenever the improper integral (2.59) exists it
agrees with its principal value (2.60).

Improper integrals of rational functions over (−∞,∞)

Let us consider as an example the improper integral

I = p. v.

∫ ∞

−∞

dx

x2 + 4
= lim

ρ→∞

∫ ρ

−ρ

dx

x2 + 4
.
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The integral for finite ρ can be interpreted as the complex integral of the
function f(z) = 1/(z2 + 4), ∫

γρ

dz

z2 + 4
,

where γρ is the straight line segment on the real axis: y = 0 and −ρ ≤ x ≤ ρ .
In order to use the residue theorem we need to close the contour ; that is, we
must produce a closed contour along which we can apply the residue theorem.
Ot f course, in so doing we are introducing a further integral, and the success
of the method depends on whether the extra integral is computable. We will
see that in this case, the extra integral, if chosen judiciously, vanishes.

Let us therefore complete the contour γρ to a closed

−ρ ρ

• 2i

•−2i
γρ

C+
ρ

-

Icontour. One suggestion is to consider the semicircular
contour C+

ρ in the upper half plane, parametrised by
z(t) = ρ exp(it), for t ∈ [0, π]. Let Γρ be the composi-
tion of both contours: it is a closed contour as shown
in the figure. Then, according to the residue theorem,

∫

Γρ

dz

z2 + 4
=

∫

γρ

dz

z2 + 4
+

∫

C+
ρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk) ;

whence ∫

γρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk)−
∫

C+
ρ

dz

z2 + 4
.

We will now argue that the integral along C+
ρ vanishes in the limit ρ → ∞.

Of course, this is done using (2.28):
∣∣∣∣∣
∫

C+
ρ

dz

z2 + 4

∣∣∣∣∣ ≤
∫

C+
ρ

|dz|
|z2 + 4| . (2.61)

Using the triangle inequality (2.36), we have that on C+
ρ ,

|z2 + 4| ≥ |z2| − 4 = |z|2 − 4 = ρ2 − 4 ,

whence
1

|z2 + 4| ≤
1

ρ2 − 4
.

Plugging this into (2.61), and taking into account that the length of the
semicircle C+

ρ is πρ,
∣∣∣∣∣
∫

C+
ρ

dz

z2 + 4

∣∣∣∣∣ ≤
πρ

ρ2 − 4
→ 0 as ρ →∞.
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Therefore in the limit,
∫

γρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk) .

The function f(z) has poles at z = ±2i, of which only the one at z = 2i lies
inside the closed contour Γρ, for large ρ. Computing the residue there, we
find from (2.56) that

Res(f ; 2i) = lim
z→2i

[
1

z + 2i

]
=

1

4i
,

and hence the integral is given by

I = 2π i
1

4i
=

π

2
.

� There is no reason why we chose to close the contour using the top semicircle C+
ρ instead

of using the bottom semicircle C−ρ parametrised by z(t) = ρ exp(it) for t ∈ [π, 2π]. The

same argument shows that in the limit ρ →∞ the integral along C−ρ vanishes. It is now
the pole at −2i that we have to take into account, and one has that Res(f ;−2i) = −1/4i.
Notice however that the closed contour is negatively-oriented, which produces an extra −
sign from the residue formula, in such a way that the final answer is again

I = −2π i
−1

4i
=

π

2
.

The technique employed in the calculation of the above integral can be
applied in more general situations. All that we require is for the integral
along the large semicircle C+

ρ to vanish and this translates into a condition
on the behaviour of the integrand for large |z|.

We will now show the following general result. Let R(x) = P (x)/Q(x)
be a rational function of a real variable satisfying the following two criteria:

• Q(x) 6= 0; and

• deg Q− deg P ≥ 2.

Then the improper integral of R(x) along the real line is given by considering
the residues of the complex rational function R(z) at its singularities in the
upper half-plane. Being a rational function the only singularities are either
removable or poles, and only these latter ones contribute to the residue. In
summary,

p. v.

∫ ∞

−∞
R(x) dx = 2π i

∑

poles zk
Im(zk)>0

Res(R; zk) . (2.62)
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The proof of this relation follows the same steps as in the computation
of the integral I above. The trick is to close the contour using the upper
semicircle C+

ρ and then argue that the integral along the semicircle vanishes.
This is guaranteed by the the behaviour of R(z) for large |z|.

� Let us do this in detail. The integral to be computed is

I = p. v.

Z ∞

−∞
R(x) dx = lim

ρ→∞

Z ρ

−ρ
R(x) dx = lim

ρ→∞

Z

γρ

R(z) dz .

Closing the contour with C+
ρ to Γρ, we have

Z

γρ

R(z) dz =

I

Γρ

R(z) dz −
Z

C+
ρ

R(z) dz .

The first integral in the right-hand side can be easily dispatched using the residue theorem.
In the limit ρ →∞, one finds

lim
ρ→∞

I

Γρ

R(z) dz = 2π i
X

poles zk
Im(zk)>0

Res(R; zk) .

All that remains then is to show that the second integral vanishes in the limit ρ → ∞.
We can estimate it using (2.28) as usual:

�����
Z

C+
ρ

R(z) dz

����� ≤
Z

C+
ρ

|R(z)| |dz| =
Z

C+
ρ

|P (z)|
|Q(z)| |dz| .

Let the degree of the polynomial P (z) be p and that of Q(z) be q, where by hypothesis
we have that q − p ≥ 2. Recall from our discussion in Section 2.2.6 that for large |z| a
polynomial P (z) of degree N behaves like |P (z)| ∼ c|z|N for some c. Similar considerations
in this case show that the rational function R(z) = P (z)/Q(z) with q = deg Q > deg P = p
obeys

|R(z)| ≤ c

|z|q−p
,

for some constant c independent of |z|. Using this into the estimate of the integral along
C+

ρ , and using that the semicircle has length πρ,

�����
Z

C+
ρ

R(z) dz

����� ≤
cπρ

ρq−p
.

Since q − p ≥ 2, we have that this goes to zero in the limit ρ →∞, as desired.

As an example, let us compute the following integral

I = p. v.

∫ ∞

−∞

x2

(x2 + 1)2
dx .

The integrand is rational and obeys the two criteria above: it is always finite
and the degree of the denominator is 4 whereas that of the numerator is 2,
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whence 4− 2 ≥ 2. In order to compute the integral it is enough to compute
the residues of the rational function

f(z) =
z2

(z2 + 1)2
,

at the poles in the upper half-plane. This function has poles of order 2 at
the points z = ±i, of which only z = +i is in the upper half-plane, hence
from (2.62) we have

I = 2π i lim
z→i

d

dz

[
z2

(z + i)2

]
= 2π i lim

z→i

[
2i z

(z + i)3

]
= 2π i

−i

4
=

π

2
.

Improper integrals of rational and trigonometric functions

The next type of integrals which can be be handled by the method of residues
are of the kind

p. v.

∫ ∞

−∞
R(x) cos(ax) dx and p. v.

∫ ∞

−∞
R(x) sin(ax) dx ,

where R(x) is a rational function which is continuous everywhere in the real
line (except maybe at the zeros of cos(ax) and sin(ax), depending on the
integral), and where a is a nonzero real number.

As an example, consider the integral

I = p. v.

∫ ∞

−∞

cos(3x)

x2 + 4
dx = lim

ρ→∞

∫ ρ

−ρ

cos(3x)

x2 + 4
dx .

From the discussion in the previous section, we are tempted to try to express
the integral over [−ρ, ρ] as a complex contour integral, close the contour and
use the residue theorem. Notice however that we cannot use the function
cos(3z)/(z2 +4) because | cos(3z)| is not bounded for large values of | Im(z)|.
Instead we notice that we can write the integral as the real part of a complex
integral I = Re(I0), where

I0 = lim
ρ→∞

∫ ρ

−ρ

ei3x

x2 + 4
dx .

Therefore let us consider the integral

∫ ρ

−ρ

ei3x

x2 + 4
dx =

∫

γρ

ei3z

z2 + 4
dz ,
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where γρ is the line segment on the real axis from −ρ to ρ. We would like to
close this contour to be able to use the residue theorem, and in such a way
that the integral vanishes on the extra segment that we must add to close it.
Let us consider the upper semicircle C+

ρ . There we have that

∣∣∣∣
ei3z

z2 + 4

∣∣∣∣ =
e−3 Im(z)

|z2 + 4| ≤
e−3 Im(z)

ρ2 − 4
,

where to reach the inequality we used (2.36) as was done above. The function
e−3 Im(z) is bounded above by 1 in the upper half-plane, and in particular along
C+

ρ , hence we have that on the semicircle,
∣∣∣∣

ei3z

z2 + 4

∣∣∣∣ ≤
1

ρ2 − 4
.

Therefore the integral along the semicircle is bounded above by
∣∣∣∣∣
∫

C+
ρ

ei3z

z2 + 4
dz

∣∣∣∣∣ ≤
πρ

ρ2 − 4
→ 0 as ρ →∞.

Therefore we can use the residue theorem to express I0 in terms of the residues
of the function f(z) = exp(i3z)/(z2 +4) at the poles in the upper half-plane.
This function has simple poles at z = ±2i, but only z = 2i lies in the upper
half-plane, whence

I0 = 2π i Res(f ; 2i) = 2π i lim
z→2i

[
ei3z

z + 2i

]
= 2π i

e−6

4i
=

π

2e6
,

which is already real. (One could have seen this because the imaginary part is
the integral of sin(3x)/(x2 +4) which is an odd function and hence integrates
to zero under symmetric integration.) Therefore,

I = Re(I0) =
π

2e6
.

Suppose instead that we had wanted to compute the integral

p. v.

∫ ∞

−∞

e−i3x

x2 + 4
dx .

Of course, now we could do it because this is the complex conjugate of the
integral we have just computed, but let us assume that we had not yet done
the other integral. We would follow the same steps as before, but notice that
now, ∣∣∣∣

e−i3z

z2 + 4

∣∣∣∣ =
e3 Im(z)

|z2 + 4| ,
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which is no longer bounded in the upper half-plane. In this case we would be
forced the close the contour using the lower semicircle C−

ρ , keeping in mind
that the closed contour is now negatively oriented. The lesson to learn from
this is that there is some choice in how to close to contour and that one has
to exercise this choice judiciously for the calculation to work out.

This method of course generalises to compute integrals of the form

p. v.

∫ ∞

−∞
R(x)eiax dx (2.63)

where a is real. Surprisingly the conditions on the rational function R(x) are
now slightly weaker. Indeed, we have the following general result.

Let R(x) = P (x)/Q(x) be a rational function satisfying the following
conditions:

• Q(x) 6= 0,3 and

• deg Q− deg P ≥ 1.

Then the improper integral (2.63) is given by considering the residues of the
function f(z) = R(z)eiaz at its singularities in the upper (if a > 0) or lower
(if a < 0) half-planes. These singularities are either removable or poles, and
again only the poles contribute to the residues. In summary,

p. v.

∫ ∞

−∞
R(x)eiax dx =





2π i
∑

poles zk
Im(zk)>0

Res(f ; zk) if a > 0;

−2π i
∑

poles zk
Im(zk)<0

Res(f ; zk) if a < 0.
(2.64)

This result is similar to (2.62) with two important differences. The first is
that we have to choose the contour appropriately depending on the integrand;
that is, depending on the sign of a. The second one is that the condition on
the rational function is less restrictive than before: now we simply demand
that the degree of Q be greater than the degree of P . This will therefore
require a more refined estimate of the integral along the semicircle, which
goes by the name of the Jordan lemma, which states that

lim
ρ→∞

∫

C+
ρ

eiaz P (z)

Q(z)
dz = 0 ,

whenever a > 0 and deg Q > deg P . Of course an analogous result holds for
a < 0 and along C−

ρ .

3This could in principle be relaxed provided the zeros of Q at most gave rise to remov-
able singularities in the integrand.
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� Let us prove this lemma. Parametrise the semicircle C+
ρ by z(t) = ρ exp(it) for t ∈ [0, π].

Then by (2.25) Z

C+
ρ

eiaz P (z)

Q(z)
dz =

Z π

0
eiaρeit P (ρeit)

Q(ρeit)
ρ i dt .

Let us now estimate the integrand term by term. First we have that

���eiaρeit
��� =

���eiaρ(cos t+i sin t)
��� = e−aρ sin t .

Similarly, since deg Q− deg P ≥ 1, we have that

����
P (ρeit)

Q(ρeit)

���� ≤
c

ρ
,

for ρ large, for some c > 0. Now using (2.24) on the t-integral together with the above
(in)equalities,

�����
Z

C+
ρ

eiaz P (z)

Q(z)
dz

����� =
����
Z π

0
eiaρeit P (ρeit)

Q(ρeit)
ρ i dt

���� ≤ c

Z π

0
e−aρ sin t dt .

We need to show that this latter integral goes to zero in the limit ρ → ∞. First of all
notice that sin t = sin(π − t) for t ∈ [0, π], whence

Z π

0
e−aρ sin t dt = 2

Z π/2

0
e−aρ sin t dt .

Next notice that for t ∈ [0, π/2], sin t ≥ 2t/π. This can be seen pictorially as in the
following picture, which displays the function sin t in the range t ∈ [−π, π] and the function
2t/π in the range t ∈ [0, π/2] and makes the inequality manifest.

π
2

1

sin t

2
π

t

Therefore, Z π/2

0
e−aρ sin t dt ≤

Z π

0
e−2aρ t/π dt =

π

2aρ

�
1− e−2aρπ

�
.

Putting this all together, we see that

�����
Z

C+
ρ

eiaz P (z)

Q(z)
dz

����� ≤
cπ

aρ

�
1− e−2aρπ

�
,

which clearly goes to 0 in the limit ρ →∞, proving the lemma.

As an example, let us compute the integral

I = p. v.

∫ ∞

−∞

x sin x

1 + x2
dx .

171



This is the imaginary part of the integral

I0 = p. v.

∫ ∞

−∞

xeix

1 + x2
dx ,

which satisfies the conditions which permit the use of (2.64) with a = 1 and
R(z) = z/(1 + z2). This rational function has simple poles for z = ±i, but
only z = i lies in the upper half-plane. According to (2.64) then, and letting
f(z) = R(z)eiz, we have

I0 = 2π i Res(f ; i) = 2π i lim
z→i

[
z eiz

z + i

]
= 2π i

ie−1

2i
=

iπ

e
=⇒ I =

π

e
.

Improper integrals of rational functions on (0,∞)

The next type of integrals which can be tackled using the residue theorem
are integrals of rational functions but over the half line; that is, integrals of
the form: ∫ ∞

0

R(x) dx ,

where R(x) is continuous for x ≥ 0. Of course, if R(x) were an even function,
i.e., R(−x) = R(x), then we would have

∫∞
0

R(x) dx = 1
2

∫∞
−∞ R(x) dx, and

we could use the method discussed previously. However for more general
integrands, this does not work and we have to do something different.

The following general result is true. Let R(x) = P (x)/Q(x) be a rational
function of a real variable satisfying the following two conditions

• Q(x) 6= 0; and

• deg Q− deg P ≥ 2.

Further let f(z) = log(z) R(z) with the branch of the logarithm chosen to
be analytic at the poles {zk} of R; for example, we can choose the branch
Log0(z) which has the cut along the positive real axis, since Q(x) has no
zeros there. Then,

∫ ∞

0

R(x) dx = −
∑

poles zk

Res(f ; zk) , for f(z) = log(z) R(z). (2.65)

� The details.
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This same method can be applied to integrals of the form
∫ ∞

a

R(x) dx ,

where the rational function R(x) = P (x)/Q(x) satisfies the same conditions
as above except that now Q(x) 6= 0 only for x ≥ a. In this case we must
consider the function f(z) = log(z − a) R(z).

� Details?

Similarly, since
∫ a

0
=

∫∞
0
− ∫∞

a
, we can use this method to compute

indefinite integrals of rational functions.

2.4.4 Application: improper integrals with poles

Suppose that we want to compute the principal value integral

I = p. v.

∫ ∞

−∞

sin x

x
dx .

This integral should converge: the singularity at x = 0 is removable, as we
saw in equation (2.55), so that the integrand is continuous for all x, and the
rational function 1/x satisfies the conditions of the Jordan Lemma. Following
the ideas in the previous section, we would be write

I = Im(I0) where I0 = p. v.

∫ ∞

−∞

eix

x
dx , (2.66)

and compute I0. However notice that now the integrand of I0 has a pole at
x = 0. Until now we have always assumed that integrands have no poles
along the contour, so the methods developed until now are not immediately
applicable to perform the above integral. We therefore need to make sense
out of integrals whose integrands are not continuous everywhere in the region
of integration.

Let f(x) be a function of a real variable, which is continuous in the
interval [a, b] except for a discontinuity at some point c, a < c < b. Then the
improper integrals of f over the intervals [a, c], [c, b] and [a, b] are defined
by

∫ c

a

f(x) dx ≡ lim
r↘0

∫ c−r

a

f(x) dx ,

∫ b

c

f(x) dx ≡ lim
s↘0

∫ b

c+s

f(x) dx ,
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and ∫ b

a

f(x) dx ≡ lim
r↘0

∫ c−r

a

f(x) dx + lim
s↘0

∫ b

c+s

f(x) dx , (2.67)

provided the appropriate limit(s) exist. We have used the notation r ↘ 0 to
mean that r approaches 0 from above; that is, r > 0 as we take the limit. As
an example, consider the function 1/

√
x integrated on [0, 1]:

∫ 1

0

dx√
x

= lim
s↘0

∫ 1

s

dx√
x

= lim
s↘0

2
√

x
∣∣∣
1

s
= lim

s↘0

[
2− 2

√
s
]

= 2 .

If the limits in (2.67) exist, then we can calculate the integral using sym-
metric integration, which defines the principal value of the integral,

p. v.

∫ b

a

f(x) dx ≡ lim
r↘0

[∫ c−r

a

f(x) dx +

∫ b

c+r

f(x) dx

]
.

However the principal value integral may exist even when the improper in-
tegral does not. Take, for instance,

p. v.

∫ 4

1

dx

x− 2
= lim

r↘0

[∫ 2−r

1

+

∫ 4

2+r

]
dx

x− 2

= lim
r↘0

[
Log |x− 2|

∣∣∣
2−r

1
+ Log |x− 2|

∣∣∣
4

2+r

]

= lim
r↘0

[Log r + Log 2− Log r] = Log 2 ,

whereas it is clear that the improper integral
∫ 4

1
dx

x−2
does not exist.

When the function f(x) is continuous everywhere in the real line except
at the point c we define the principal value integral by

p. v.

∫ ∞

−∞
f(x) dx ≡ lim

ρ→∞
r↘0

[∫ c−r

−ρ

f(x) dx +

∫ ρ

c+r

f(x) dx

]
, (2.68)

provided the limits ρ → ∞ and r ↘ 0 exist independently. In the case of
several discontinuities {ci} we extend the definition of the improper integral
in the obvious way: excising a small symmetric interval (ci−ri, ci +ri) about
each discontinuity and then taking the limits ri ↘ 0 and, if applicable,
ρ →∞.

It turns out that principal value integrals of this type can often be eval-
uated using the residue theorem. The residue theorem applies to closed
contours, so in computing a principal value integral we need to close the
contour, not just ρ to −ρ as in the previous session, but also c− r to c + r.
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•c•
c− r

•
c + r

Sr

- -

-

Figure 2.10: Closing the contour around a singularity.

One way to do this is to consider a small semicircle Sr of radius r around the
singular point c, as in Figure 2.10.

Because we are interested in the limit r ↘ 0, we will have to consider the
integral

lim
r↘0

∫

Sr

f(z) dz .

When the singularity of f(z) at z = c is a simple pole, this integral can be
evaluated using the following result, which we state in some generality.

•
c

Ar

r

θ1 − θ0

•

•ª

¾

Figure 2.11: A small circular arc.

Let f(z) have a simple pole at z = c and let Ar be the circular arc in
Figure 2.11, parametrised by z(θ) = c + r exp(iθ) with θ0 ≤ θ ≤ θ1. Then

lim
r↘0

∫

Ar

f(z) dz = i (θ1 − θ0) Res(f ; c) .

Therefore for the semicircle Sr in Figure 2.10, we have

lim
r↘0

∫

Sr

f(z) dz = −i π Res(f ; c) . (2.69)

� Let us prove this result. Since f(z) has a simple pole at c, its Laurent expansion in a
punctured disk 0 < |z − c| < R has the form

f(z) =
a−1

z − c
+

∞X

k=0

ak(z − c)k ,
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where

g(z) ≡
∞X

k=0

ak(z − c)k

defines an analytic function in the disk |z − c| < R. Now let 0 < r < R and consider the
integral Z

Ar

f(z) dz = a−1

Z

Ar

dz

z − c
+

Z

Ar

g(z) dz .

Because g(z) is analytic it is in particular bounded on some neighbourhood of c, so that
|g(z)| ≤ M for some M and all |z − c| < R. Then we can estimate its integral by using
(2.28): ����

Z

Ar

g(z) dz

���� ≤
Z

Ar

|g(z)| |dz| ≤ M`(Ar) = Mr(θ1 − θ0) ,

whence

lim
r↘0

Z

Ar

g(z) dz = 0 .

On the other hand,

Z

Ar

dz

z − c
=

Z θ1

θ0

rieiθ

reiθ
dθ = i

Z θ1

θ0

dθ = i (θ1 − θ0) .

Therefore

lim
r↘0

Z

Ar

f(z) dz = i (θ1 − θ0)a−1 + 0 = i (θ1 − θ0) Res(f ; c) .

Having discussed the basic theory, let us go back to the original problem:
the computation of the integral I0 given in (2.66):

I0 = lim
ρ→∞
r↘0

[∫ −r

−ρ

eix

x
dx +

∫ ρ

r

eix

x
dx

]
,

which for finite ρ and nonzero r can be understood as a contour integral in
the complex plane along the subset of the real axis consisting of the intervals
[−ρ,−r] and [r, ρ]. In order to use the residue theorem we must close this
contour. The Jordan lemma forces us to join ρ and −ρ via a large semicircle
C+

ρ of radius ρ in the upper half-plane. In order to join −r and r we choose a
small semicircle Sr also in the upper half-plane. The resulting closed contour
is depicted in Figure 2.12.

Because the function is analytic on and inside the contour, the Cauchy
Integral Theorem says that the contour integral vanishes. Splitting this con-
tour integral into its different pieces, we have that

[∫ −r

−ρ

+

∫

Sr

+

∫ ρ

r

+

∫

C+
ρ

]
eiz

z
dz = 0 ,

which remains true in the limits ρ → ∞ and r ↘ 0. By the Jordan lemma,
the integral along C+

ρ vanishes in the limit ρ →∞, whence, using (2.69),

I0 = − lim
r↘0

∫

Sr

eiz

z
dz = lim

r↘0

∫

−Sr

eiz

z
dz = iπ Res(0) = iπ ,
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•0•−r
•
r

Sr

• •−ρ ρ

C+
ρ

- -

-

¾

Figure 2.12: The contour in the calculation of I0 in (2.66).

since the residue of eiz/z at z = 0 is equal to 1. Therefore, we have that

p. v.

∫ ∞

−∞

sin x

x
dx = Im(iπ) = π .

There are plenty of other integrals which can be calculated using the
residue theorem; e.g., integrals involving multi-valued functions. We will not
have time to discuss them all, but the lesson to take home from this cursory
introduction to residue techniques is that when faced with a real integral, one
should automatically think of this as a parametrisation of a contour integral
in the complex plane, where we have at our disposal the powerful tools of
complex analysis.

2.4.5 Application: infinite series

The final section of this part of the course is a beautiful application of the
theory of residues to the computation of infinite sums.

How can one use contour integration in order to calculate sums like the
following one:

∞∑
n=1

1

n2
? (2.70)

The idea is to exhibit this sum as part of the right-hand side of the
Cauchy Residue Theorem. For this we need a function F (z) which has only
simple poles at the integers and whose residue is 1 there. We already met a
function which has an infinite number of poles which are integrally spaced:
the function cot z has simple poles for z = nπ, n = 0,±1,±2, . . . with residues
equal to 1. Therefore the function F (z) = π cot(πz) has simple poles at
z = n, n an integer, and the residue is still 1:

Res(F ; n) = lim
z→n

π cos(πz)

(sin(πz))′
= lim

z→n

π cos(πz)

π cos(πz)
= 1 .
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Now let R(z) = P (z)/Q(z) be any rational function such that deg Q −
deg P ≥ 2. Consider the function f(z) = π cot(πz)R(z) and let us integrate
this along the contour ΓN , for N a positive integer, defined as the positively
oriented square with vertices (N + 1

2
)(1+ i), (N + 1

2
)(−1+ i), (N + 1

2
)(−1− i)

and (N + 1
2
)(1− i), as shown in Figure 2.13. Notice that the contour misses

the poles of π cot(πz). Assuming that N is taken to be large enough, and
since R(z) has a finite number of poles, one can also guarantee that the
contour will miss the poles of R(z).

•
(N + 1

2
)(1 + i)

•
(N + 1

2
)(−1 + i)

•
(N + 1

2
)(−1− i)

•
(N + 1

2
)(1− i)

•N •
N + 1

ΓN
6

¾

?

-

Figure 2.13: The contour ΓN .

Let us compute the integral of the function f(z) along this contour,

∫

ΓN

π cot(πz)R(z) dz ,

in two ways. On the one hand we can use the residue theorem to say that
the integral will be (2πi) times the sum of the residues of the poles of f(z).
These poles are of two types: the poles of R(z) and the poles of π cot(πz),
which occur at the integers. Let us assume for simplicity that R(z) has no
poles at integer values of z, so that the poles of R(z) and π cot(πz) do not
coincide. Therefore we see that

∫

ΓN

π cot(πz)R(z) dz = 2π i




N∑
n=−N

Res(f ; n) +
∑

poles zk of R
inside ΓN

Res(f ; zk)


 .

178



The residue of f(z) at z − n is easy to compute. Since by assumption R(z)
is analytic there and π cot(πz) has a simple pole with residue 1, we see that
around z = n, we have

f(z) = R(z)π cot(πz) = R(z)

(
1

z − n
+ · · ·

)
=

R(z)

z − n
+ h(z) ,

where h(z) is analytic at z = n. Therefore,

Res(f ; n) = lim
z→n

[(z − n)f(z)] = R(n) + 0 ,

and as a result,

∫

ΓN

π cot(πz)R(z) dz = 2π i




N∑
n=−N

R(n) +
∑

poles zk of R
inside ΓN

Res(f ; zk)


 . (2.71)

On the other hand we can estimate the integral for large enough N as
follows. First of all because of the condition on R(z), we have that for large
|z|,

|R(z)| ≤ c

|z|2 .

Similarly, it can be shown that the function π cot(πz) is bounded along the
contour, so that |π cot(πz)| ≤ K for some K independent of N .

� Indeed, notice that

|cot(πz)| =
����
cos(πz)

sin(πz)

���� =
����
eiπz + e−iπz

eiπz − e−iπz

���� =
����
1 + e−2iπz

1− e−2iπz

���� .

Therefore along the segment of the contour parametrised by z(t) = (N + 1
2
) + it for

t ∈ [−N − 1
2
, N + 1

2
], we have that

|cot(πz(t))| =
������
1 + ei2π((N+

1
2
)+it)

1− ei2π((N+
1
2
)+it)

������

=

�����
1− eπ(2N+1) t

1 + eπ(2N+1) t

����� < 1 ;

whereas along the segments of the contour parametrised by z(t) = t − i(N + 1
2
) for

t ∈ [−N − 1
2
, N + 1

2
], we have that

|cot(πz(t))| =
�����
1 + e−iπ(2N+1)(t−i)

1− e−iπ(2N+1)(t−i)

�����

=

��1 + e2πte−π(2N+1)
��

��1− e2πte−π(2N+1)
��

≤ 1 + e−π(2N+1)

1− e−π(2N+1)
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where we have used the triangle inequalities (2.1) on the numerator and (2.36) on the
denominator. But

1 + e−π(2N+1)

1− e−π(2N+1)

is maximised for N = 0, whence it is bounded.

Since the length of the contour ΓN is given by 4(2N +1), equation (2.28)
gives the following estimate for the integral

∣∣∣∣
∫

ΓN

π cot(πz)R(z) dz

∣∣∣∣ ≤
Kc

(N + 1
2
)2

4(2N + 1) ,

which vanishes in the limit N →∞. Therefore, taking the limit N →∞ of
equation (2.71), and using that the left-hand side vanishes, one finds

∞∑
n=−∞

R(n) = −
∑

poles zk of R

Res(f ; zk) .

More generally, if R(z) does have some poles for integer values of z, then we
have to take care not to over-count these poles in the sum of the residues.
We will count them as poles of R(z) and not as poles of π cot(πz), and the
same argument as above yields the general formula:

∞∑
n=−∞
n 6=zk

R(n) = −
∑

poles
zk of R

Res(f ; zk) , for f(z) = π cot(πz) R(z). (2.72)

Let us compute then the sum (2.70). Notice that

∞∑
n=1

1

n2
= 1

2

∞∑
n=−∞

n 6=0

1

n2
.

The function R(z) = 1/z2 has a double pole at z = 0, hence by (2.72)

∞∑
n=1

1

n2
= −1

2
lim
z→0

d

dz
[π cot(πz)] .

Now, the Laurent expansion of π cot(πz) around z = 0 is given by

1

z
− π2 z

3
− π4 z3

45
+ O(z5) , (2.73)

whence ∞∑
n=1

1

n2
= −1

2

[
−π2

3

]
=

π2

6
.
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�� This sum has an interesting history. Its computation was an open problem in the 18th
century for quite some time. It was known that the series was convergent (proven in fact
by one of the Bernoullis) but it was up to Euler to calculate it. His “proof” is elementary
and quite clever. Start with the Taylor series for the sine function:

sin x = x

�
1− x2

3!
+

x4

5!
− · · ·

�
,

and treat the expression in parenthesis as an algebraic equation in x2. Its solutions are
known: n2π2 for n = 1, 2, 3, . . .. Suppose we could factorise the expression in parenthesis:

�
1− x2

π2

��
1− x2

(2π)2

��
1− x2

(3π)2

�
· · ·

= 1− x2

�
1

π2
+

1

(2π)2
+

1

(3π)2
+ · · ·

�
+ O(x4) .

Therefore, comparing the coefficient of x2, we see that

1

3!
=

1

π2
+

1

(2π)2
+

1

(3π)2
+ · · · =

∞X

n=1

1

(nπ)2
,

which upon multiplication by π2 yields the sum.

Similarly, we can compute the sum

∞∑
n=1

1

n4
= −1

2
Res(f ; 0) ,

where f(z) = π cot(πz)/z4, whose Laurent series about z = 0 is can be read
off from (2.73) above:

1

z5
− π2

3z3
− π4

45 z
+ O(z) ,

whence ∞∑
n=1

1

n4
=

π4

90
.

Infinite alternating sums

The techniques above can be extended to the computation of infinite alter-
nating sums of the form

∞∑
n=−∞

(−1)nR(n) ,

where R(z) = P (z)/Q(z) is a rational function with deg Q−deg P ≥ 2. Now
what is needed is a function G(z) which has a simple pole at z = n, for n
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an integer, and whose residue there is (−1)n. We claim that this function is
π csc(πz). Indeed, the Laurent expansion about z = 0 is given by

π csc(πz) =
1

z
+

π2 z

6
+

7 π4 z3

360
+ O(z5) ; (2.74)

whence its residue at 0 is 1. Because of the periodicity csc(π(z + 2k)) =
csc(πz + 2kπ) = csc(πz) for any integer k, this is also the residue about
every even integer. Now from the periodicity csc(π(z + 1)) = csc(πz + π) =
− csc(πz), we notice that the residue at every odd integer is −1. Therefore
we conclude that for G(z) = π csc(πz), Res(G; n) = (−1)n.

The trigonometric identity

(csc(πz))2 = 1 + (cot(πz))2 ,

implies that csc(πz) is also bounded along the contour ΓN , with a bound
which is independent of N just like for cot(πz). Just as was done above for
the cotangent function, we can now prove that the integral of the function
f(z) = π csc(πz)R(z) along ΓN vanishes in the limit N → 0. This proof is
virtually identical to the one given above. Therefore we can conclude that

∞∑
n=−∞
n 6=zk

(−1)nR(n) = −
∑

poles
zk of R

Res(f ; zk) , for f(z) = π csc(πz) R(z).

(2.75)
As an example, let us compute the alternating sums

S1 =
∞∑

n=1

(−1)n

n2
and S2 =

∞∑
n=1

(−1)n

n4
.

For the first sum we have that

S1 = −1
2
Res(f ; 0) ,

where f(z) = π csc(πz)/z2, whose Laurent expansion about z = 0 can be
read off from (2.74):

f(z) =
1

z3
+

π2

6 z
+

7 π4 z

360
+ O(z3) ,

whence the residue is π2/6 and the sum

S1 = −π2

12
.
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For the second sum we also have that

S2 = −1
2
Res(f ; 0) ,

where the function f(z) = π csc(πz)/z4 has now a Laurent series

f(z) =
1

z5
+

π2

6 z3
+

7 π4

360 z
+ O(z1) ,

whence the residue is 7π4/360 and the sum

S2 = −7 π4

720
.

Sums involving binomial coefficients

There are other types of sums which can also be performed or at least es-
timated using residue techniques, particularly sums whose coefficients are
related to the binomial coefficients, as in

∑∞
n=1

(
2n
n

)
R(n). By definition, the

binomial coefficient
(

n
k

)
is the coefficient of zk in the binomial expansion of

(1 + z)n. In other words, using the residue theorem,

(
n

k

)
=

1

2πi

∮

Γ

(1 + z)n

zk+1
dz ,

where Γ is any positively oriented loop surrounding the origin.
Suppose that we wish to compute the sum

S =
∞∑

n=0

(
2n

n

)
1

5n
.

We can substitute the integral representation for the binomial coefficient,

S =
∞∑

m=0

[
1

2πi

∫

Γ

(1 + z)2n

zn+1
dz

]
1

5n
=

1

2πi

∞∑
n=0

∫

Γ

(1 + z)2n

(5z)n

dz

z
.

Now provided that we choose Γ inside the domain of convergence of the series∑∞
n=0

(1+z)2n

(5z)n then we would obtain that by uniform convergence, the integral
of the sum is the sum of the termwise integrals. Being a geometric series, its
convergence is uniform in the region

∣∣∣∣
(1 + z)2

5z

∣∣∣∣ < 1 ,
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so choose the contour Γ inside this region. For definiteness we can choose
the unit circle, since on the unit circle:

∣∣∣∣
(1 + z)2

5z

∣∣∣∣ ≤
4

5
.

In this case, we can interchange the order of the summation and the integra-
tion:

S =
1

2πi

∫

|z|=1

∞∑
n=0

(1 + z)2n

(5z)n

dz

z
=

5

2πi

∫

|z|=1

1

3z − 1− z2
dz .

Now the integral can be performed using the residue theorem. The integrand
has simple poles at (3 ±√5)/2 of which only the (3 −√5)/2 lies inside the
contour. Therefore,

S = 5 Res

(
f ;

3−√5

2

)
where f(z) =

1

3z − 1− z2
.

Computing the residue, we find Res((3−√5)/2) = 1/
√

5, whence S =
√

5.
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