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Preface

This the first draft of the Lecture Notes for Mathematical Techniques III (PHY
317), a course offered in the Physics Department of Queen Mary and West-
field College (University of London). These notes are loosely based on pre-
existing notes by Professor John Charap. The notes contain all that is said
in Lecture and sometimes more. The extra bits are typeset in smaller font
and are adorned with one or two “dangerous bend” signs as in the next
paragraphs.

� Most paragraphs like this fill gaps in the main presentation (e.g., proofs, mathematical
remarks,. . . ). They contain material which, although necessary for the logical coherence of
the presentation, may be skipped at a first reading or ignored by the less mathematically
inclined student who is not interested in proofs,. . . . They are not an essential part of the
course, although I believe they are an essential part of the topic.

�� Most paragraphs like this contain material which is generally more advanced than the rest
of the lectures, but which I personally find interesting and have found useful at one time
or other. They are not an essential part of the course, but I have included them in the
hope that some of you might find them interesting enough to make the detour.

Some remarks about notation. Terms which are being defined for the
first time appear in bold sans-serif type. Although the notation will be
introduced as we go, here is a summary of the main notational conventions:

• R and C stand for the sets of real and complex numbers, respectively;

• vector spaces, subspaces,... are denoted by so-called “blackboard bold”
uppercase Latin letters: V, W,. . . ;

• abstract vectors are denoted by bold lowercase Latin letters: v, w,. . . ;

• linear maps are denoted by uppercase Latin letters A, B,. . . , except
for the identity map which is denoted 1.

• column vectors are denoted by sans-serif lowercase Latin letters: v,
w,. . . ;
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• matrices are denoted by sans-serif uppercase Latin letters: A, B,. . . .
The identity matrix will be denoted I.

The notes are not yet complete: in particular many of the asides are still
to be completed, and the introductions have to be rewritten in light of what
they are meant to introduce: they were written in advance in most cases.
Many diagrams are missing, and many more examples and applications need
to be added. The next stage in the development of the notes will consist
in some changes in the visual layout, to break the monotony of the present
style, and to make the exercises and the problems an integral part of the
notes. The solutions, of course, will be available separately.
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Chapter 1

Linear Algebra

In this part of the course we will review some basic linear algebra. The
topics covered include: real and complex vector spaces and linear maps,
bases, matrices, inner products, eigenvalues and eigenvectors. We start from
the familiar setting in two dimensions and introduce the necessary formalism
to be able to work with vectors in an arbitrary number of dimensions. We
end the chapter with a physical application: the study of normal modes of
an oscillatory system.

1.1 Vector spaces

Physics requires both scalar quantities like mass, temperature, charge which
are uniquely specified by its magnitude in some units, e.g., 300◦K, 7 Kg,...
and also vectorial quantities like velocity, force, angular momentum, which
are specified both by a magnitude and a direction.

In the first part of the course we will study the general features shared
by these vectorial quantities. As this is a course in mathematical techniques,
we must abstract what these quantities have in common (the ‘mathematical’
part) while at the same time keeping a pragmatic perspective throughout
(the ‘techniques’ part). This is not a mathematics course, but nevertheless a
certain amount of formalism is needed. Some of you may not have seen formal
definitions before, so we will start by motivating the notion of a vector space.
For definiteness we will consider displacements in two dimensions; that is, in
the plane.
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1.1.1 Displacements in the plane

Every displacement in the plane has an initial or starting point and a final
point. We will only consider displacements which have a common starting
point: the origin.

Any point in the plane is then understood as the final

•
origin

7
u

* v

point of a displacement from the origin. We will depict such
displacements by an arrow starting at the origin and ending
at the final point. We will denote such displacements by
boldfaced letters, like u, v. In lecture it is hard to write in
boldface, so we use the notation ~u, ~v which is not just easier
to write but has the added benefit of being mnemonic, since

the arrow reminds us that it is a displacement. We will say that displacements
like u, v are vectors.

What can one do with vectors?
For example, vectors can be multiplied by real numbers

• *
v

*
2v

¼−v

(the scalars). If λ > 0 is a positive real number and v is a
vector, then λ v is a vector pointing in the same direction
as v but λ times as long as v, e.g., 2v is twice as long as
v but points in the same direction. In the same manner,
−λv is a vector pointing in the direction opposite to v but
λ times as long as v. We call this operation scalar mul-
tiplication. This operation satisfies two properties which are plain to see
from the pictures. The first says that if v is any vector and λ and µ are real
numbers, then λ (µ v) = (λµ) v. The second property is totally obvious from
the picture: 1 v = v.

You should also be familiar from the study of, say, forces, with the fact
that vectors can be added.

Indeed, if u and v are vectors, then their sum u + v is

•
±
u

-
v

>
u + v

•Yu

±
v

µw

6

u + v + w

the diagonal from the origin to the opposite vertex in the
parallelogram defined by u and v, as in the picture. This
operation is called vector addition or simply addition. It
follows from the picture that u + v = v + u, so that we get
the same result regardless of the order in which we add the
vectors. One says that vector addition is commutative.

Vector addition is also associative. This means that, as
can be seen in the picture, when adding three vectors u, v,
and w it does not matter whether we first add u and v and
add w to the result: (u + v) + w or whether we first add
v and w and add the result to u: u + (v + w).
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Another easy property of vector addition is the existence of a vector 0
such that when added to any vector v gives back v again; that is,

0 + v = v for all vectors v.

Clearly the zero vector 0 corresponds to the trivial displacement which starts
and ends at the origin, or in other words, to no displacement at all.

Similarly, given any vector v there is a vector −v which obeys v+(−v) =
0. We will often employ the notation u− v to denote u + (−v).

Finally, notice that scalar multiplication and addition are compatible:
scalar multiplication and addition can be performed in any order:

λ (u + v) = λ u + λ v and (λ + µ) v = λ v + µ v .

The former identity says that scalar multiplication is distributive over vector
addition. Notice that, in particular, it follows that 0 v = 0 for all v.

1.1.2 Displacements in the plane (revisited)

There is no conceptual reason why one should not consider displacements
in space, i.e., in three dimensions, as opposed to the plane. The pictures
get a little harder to draw, but in principle it can still be done with better
draughtsmanship than mine. In physics, though, one needs to work with
vectors in more than three dimensions—in fact, as in Quantum Mechanics,
one often needs to work with vectors in an infinite number of dimensions.
Pictures like the ones above then become of no use, and one needs to develop
a notation we can calculate with.

Let us consider again the displacements in the plane, but this time with
a more algebraic notation.

The first thing we do is to draw two cartesian axes cen-

•

6

-

7v
v2

v1

1

2
tred at the origin: axis 1 and axis 2. Then every displace-
ment v from the origin can be written as an ordered pair
(v1, v2) of real numbers, corresponding to the components
of the displacement v along the cartesian axes, as in the
figure.

Let us define the set

R2 = {(v1, v2) | vi ∈ R for i = 1, 2}

of ordered pairs of real numbers.
The above notation may need some explaining. The notation ‘vi ∈ R’ is

simply shorthand for the phrase ‘vi is a real number;’ whereas the notation
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‘{(v1, v2) | vi ∈ R for i = 1, 2}’ is shorthand for the phrase ‘the set consisting
of pairs (v1, v2) such that both v1 and v2 are real numbers.’

The set R2 is in one-to-one correspondence with the set of displacements,
for clearly every displacement gives rise to one such pair and every such pair
gives rise to a displacement. We can therefore try to guess how to define the
operations of vector addition and scalar multiplication in R2 in such a way
that they correspond to the way they are defined for displacements.

From the pictures defining addition and scalar multiplication, one sees
that if λ ∈ R is a real number, then

λ (v1, v2) = (λ v1, λ v2) , (scalar multiplication)

and also
(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) . (addition)

The zero vector corresponds with no displacement at all, hence it is given
by the pair corresponding to the origin (0, 0). It follows from the addition
rule that

(0, 0) + (v1, v2) = (v1, v2) .

Similarly, −(v1, v2) = (−v1,−v2). In fact it is not hard to show (do it!) that
addition and scalar multiplication obey the same properties as they did for
displacements.

The good thing about this notation is that there is no reason why we
should restrict ourselves to pairs . Indeed, why not consider the set

RN = {(v1, v2, · · · , vN) | vi ∈ R for i = 1, 2, . . . , N} ,

of ordered N-tuples of real numbers? We can define addition and scalar
multiplication in the same way as above:

(addition)

(u1, u2, . . . , uN) + (v1, v2, . . . , vN)

= (u1 + v1, u2 + v2, . . . , uN + vN) ,

(multiplication by scalars)

λ (v1, v2, . . . , vN) = (λ v1, λ v2, . . . , λ vN) for λ ∈ R.

In the homework you are asked to prove that these operations on RN obey the
same properties that displacements do: commutativity, associativity, distrib-
utivity,... These properties can be formalised in the concept of an abstract
vector space.
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1.1.3 Abstract vector spaces

We are finally ready to formalise the observations made above into the de-
finition of an abstract vector space. We say that this is an abstract vector
space, because it does not refer to any concrete example.

A real vector space consists of the following data:

• Two sets:

– the set of vectors, which we shall denote V, and whose elements
we will write as u, v, w, . . . , and

– the set of scalars, which for a real vector space is simply the set
R of real numbers. We will use lowercase Greek letters from the
middle of the alphabet: λ, µ, . . . to represent real numbers.

• Two operations:

– Scalar multiplication, which takes a scalar λ and a vector v and
produces another vector λ v. One often abbreviates this as

scalar multiplication : R× V→ V
(λ, v) 7→ λ v .

– Vector addition, which takes two vectors u and v and produces a
third vector denoted u + v. Again one can abbreviate this as

vector addition : V× V→ V
(u, v) 7→ u + v .

• Eight properties (or axioms):

V1 (associativity) (u + v) + w = u + (v + w) for all u, v and w;

V2 (commutativity) u + v = v + u for all u and v;

V3 There exists a zero vector 0 which obeys 0 + v = v for all v;

V4 For any given v, there exists a vector −v such that v +(−v) = 0;

V5 λ (µ v) = (λµ) v for all v, λ and µ;

V6 1 v = v for all v;

V7 (λ + µ) v = λ v + µ v for all λ and µ and v;

V8 (distributivity) λ (u + v) = λ u + λ v for all λ, u and v.
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This formidable looking definition might at first seem to be something you
had rather forget about. Actually you will see that after using it in practice
it will become if not intuitive at least more sensible. Formal definitions like
this one above are meant to capture the essence of what is being defined.
Every vector space is an instance of an abstract vector space, and it will
inherit all the properties of an abstract vector space. In other words, we can
be sure that any result that we obtain for an abstract vector space will also
hold for any concrete example.

A typical use of the definition is recognising vector spaces. To go about
this one has to identify the sets of vectors and scalars, and the operations of
scalar multiplication and vector addition and then check that all eight axioms
are satisfied. In the homework I ask you to do this for two very different
looking spaces: RN which we have already met, and the set consisting of
real-valued functions on the interval [−1, 1]. In the course of these lectures
we will see many others.

� You may wonder whether all eight axioms are necessary. For example, you may question
the necessity of V4, given V3. Consider the following subset of R2:

{(v1, v2) | vi ∈ R and v2 ≥ 0} ⊂ R2

consisting of pairs of real numbers where the second real number in the pair is non-negative.
In terms of displacements, it corresponds to the upper half-plane. You can check that the
first two axioms V1 and V2 are satisfied, and that the zero vector (0, 0) belongs to this
subset. However −(v1, v2) = (−v1,−v2) whence if v2 is non-negative, −v2 cannot be
non-negative unless v2 = 0. Therefore V4 is not satisfied. In fact, neither are V5, V7 and
V8 unless we restrict the scalars to be non-negative real numbers. A more challenging
exercise is to determine whether V6 is really necessary.

� The zero vector 0 of axiom V3 is unique. To see this notice that if there were another 0′
which also satisfies V3, then

0′ = 0 + 0′ (by V3 for 0)

= 0′ + 0 (by V2)

= 0 . (by V3 for 0′)

Similarly the vector −v in V4 is also unique. In fact, suppose that there are two vectors
u1 and u2 which satisfy: v + u1 = 0 and v + u2 = 0. Then they are equal:

u1 = 0 + u1 (by V3)

= (v + u2) + u1 (by hypothesis)

= v + (u2 + u1) (by V1)

= v + (u1 + u2) (by V2)

= (v + u1) + u2 (by V1)

= 0 + u2 (by hypothesis)

= u2 . (by V3)

9



A final word on notation: although we have defined a real vector space
as two sets, vectors V and real scalars R, and two operations satisfying some
axioms, one often simply says that ‘V is a real vector space’ leaving the other
bits in the definition implicit. Similarly in what follows, and unless otherwise
stated, we will implicitly assume that the scalars are real, so that whenever
we say ‘V is a vector space’ we shall mean that V is a real vector space.

1.1.4 Vector subspaces

A related notion to a vector space is that of a vector subspace. Suppose that
V is a vector space and let W ⊂ V be a subset. This means that W consists of
some (but not necessarily all) of the vectors in V. Since V is a vector space,
we know that we can add vectors in W and multiply them by scalars, but
does that make W into a vector space in its own right? As we saw above
with the example of the upper half-plane, not every subset W will itself be a
vector space. For this to be the case we have to make sure that the following
two axioms are satisfied:

S1 If v and w are vectors in W, then so is v + w; and

S2 For any scalar λ ∈ R, if w is any vector in W, then so is λ w.

If these two properties are satisfied we say that W is a vector subspace of
V. One also often sees the phrases ‘W is a subspace of V’ and ‘W is a linear
subspace of V.’

Let us make sure we understand what these two properties mean. For v
and w in W, v + w belongs to V because V is a vector space. The question
is whether v +w belongs to W, and S1 says that it does. Similarly, if w ∈ W
is a vector in W and λ ∈ R is any scalar, then λ w belongs to V because V is
a vector space. The question is whether λw also belongs to W, and S2 says
that it does.

You may ask whether we should not also require that the zero vector 0
also belongs to W. In fact this is guaranteed by S2, because for any w ∈ W,
0 = 0 w (why?) which belongs to W by S2. From this point of view, it is S2
that fails in the example of the upper half-plane, since scalar multiplication
by a negative scalar λ < 0 takes vectors in the upper half-plane to vectors in
the lower half-plane.

Let us see a couple of examples. Consider the set R3 of ordered triples of
real numbers:

R3 = {(v1, v2, v3) | vi ∈ R for i = 1, 2, 3} ,

and consider the following subsets
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• W1 = {(v1, v2, 0) | vi ∈ R for i = 1, 2} ⊂ R3,

• W2 = {(v1, v2, v3) | vi ∈ R for i = 1, 2, 3 and v3 ≥ 0} ⊂ R3, and

• W3 = {(v1, v2, 1) | vi ∈ R for i = 1, 2} ⊂ R3.

I will leave it to you as an exercise to show that W1 obeys both S1 and S2
whence it is a vector subspace of R3, whereas W2 does not obey S2, and W3

does not obey either one. Can you think of a subset of R3 which obeys S2
but not S1?

1.1.5 Linear independence

In this section we will introduce the concepts of linear independence and basis
for a vector space; but before doing so we must introduce some preliminary
notation.

Let V be a vector space, v1, v2, . . . , vN nonzero vectors in V, and λ1, λ2,
. . . , λN scalars, i.e., real numbers. Then the vector in V given by

N∑
i=1

λi vi := λ1 v1 + λ2 v2 + · · ·+ λN vN ,

is called a linear combination of the {vi}. The set W of all possible linear
combinations of the {v1, v2, . . . , vN} is actually a vector subspace of V, called
the linear span of the {v1,v2, . . . , vN} or the vector subspace spanned by
the {v1, v2, . . . , vN}.

� Recall that in order to show that a subset of a vector space is a vector subspace it is neces-
sary and sufficient to show that it is closed under vector addition and under scalar multipli-
cation. Let us check this for the subset W of all linear combinations of the {v1, v2, . . . , vN}.
Let w1 =

PN
i=1 αi vi and w2 =

PN
i=1 βi vi be any two elements of W. Then

w1 + w2 =
NX

i=1

αi vi +
NX

i=1

βi vi

=
NX

i=1

(αi vi + βi vi) (by V2)

=
NX

i=1

(αi + βi) vi , (by V7)

which is clearly in W, being again a linear combination of the {v1, v2, . . . , vN}. Also, if λ
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is any real number and w =
PN

i=1 αi vi is any vector in W,

λ w = λ
NX

i=1

αi vi

=
NX

i=1

λ (αi vi) (by V8)

=
NX

i=1

(λ αi) vi , (by V5)

which is again in W.

A set {v1,v2, . . . , vN} of nonzero vectors is said to be linearly indepen-
dent if the equation

N∑
i=1

λi vi = 0

has only the trivial solution λi = 0 for all i = 1, 2, . . . , N . Otherwise the
{vi} are said to be linearly dependent.

It is easy to see that if a set {v1,v2, . . . , vN} of nonzero vectors is linearly
dependent, then one of the vectors, say, vi, can be written as a linear combi-
nation of the remaining N−1 vectors. Indeed, suppose that {v1,v2, . . . , vN}
is linearly dependent. This means that the equation

N∑
i=1

λi vi = 0 (1.1)

must have a nontrivial solution where at least one of the {λi} is different
from zero. Suppose, for definiteness, that it is λ1. Because λ1 6= 0, we can
divide equation (1.1) by λ1 to obtain:

v1 +
N∑

i=2

λi

λ1

vi = 0 ,

whence

v1 = −λ2

λ1

v2 − λ3

λ1

v3 − · · · − λN

λ1

vN .

In other words, v1 is a linear combination of the {v2, . . . , vN}. In gen-
eral and in the same way, if λi 6= 0 then vi is a linear combination of
{v1, . . . , vi−1, vi+1, . . . , vN}.

Let us try to understand these definitions by working through some ex-
amples.
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We start, as usual, with displacements in the plane. Every nonzero dis-
placement defines a line through the origin. We say that two displacements
are collinear if they define the same line. In other words, u and v are collinear
if and only if u = λ v for some λ ∈ R. Clearly, any two displacements in
the plane are linearly independent provided they are not collinear, as in the
figure.

Now consider R2 and let (u1, u2) and (v1, v2) be two

• * v

R

nonzero vectors. When will they be linearly independent?
From the definition, this will happen provided that the
equation

λ1 (u1, u2) + λ2 (v1, v2) = (0, 0)

has no other solutions but λ1 = λ2 = 0. This is a system of linear homoge-
neous equations for the {λi}:

u1 λ1 + v1 λ2 = 0

u2 λ1 + v2 λ2 = 0 .

What must happen for this system to have a nontrivial solution? It will turn
out that the answer is that u1v2 = u2v1. We can see this as follows. Multiply
the top equation by u2 and the bottom equation by u1 and subtract to get

(u1v2 − u2v1) λ2 = 0 ,

whence either u1v2 = u2v1 or λ2 = 0. Now multiply the top equation by v2

and the bottom equation by v1 and subtract to get

(u1v2 − u2v1) λ1 = 0 ,

whence either u1v2 = u2v1 or λ1 = 0. Since a nontrivial solution must have
at least one of λ1 or λ2 nonzero, we are forced to have u1v2 = u2v1.

1.1.6 Bases

Let V be a vector space. A set {e1, e2, . . .} of nonzero vectors is said to be a
basis for V if the following two axioms are satisfied:

B1 The vectors {e1, e2, . . .} are linearly independent; and

B2 The linear span of the {be1, e2, . . .} is all of V; in other words, any v in
V can be written as a linear combination of the {e1, e2, . . .}.
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The vectors ei in a basis are known as the basis elements.
There are two basic facts about bases which we mention without proof.

First of all, every vector space has a basis , and in fact, unless it is the trivial
vector space consisting only of 0, it has infinitely many bases. However not
every vector space has a finite basis; that is, a basis with a finite number
of elements. If a vector space does possess a finite basis {e1, e2, . . . , eN}
then it is said to be finite-dimensional. Otherwise it is said to be infinite-
dimensional. We will deal mostly with finite-dimensional vector spaces in
this part of the course, although we will have the chance of meeting some
infinite-dimensional vector spaces later on.

The second basic fact is that if {e1, e2, . . . , eN} and {f 1,f 2, . . . , fM} are
two bases for a vector space V, then M = N . In other words, every basis
has the same number of elements, which is therefore an intrinsic property
of the vector space in question. This number is called the dimension of the
vector space. One says that V has dimension N or that it is N -dimensional.
In symbols, one writes this as dimV = N .

From what we have said before, any two displacements which are non-
collinear provide a basis for the displacements on the plane. Therefore this
vector space is two-dimensional.

Similarly, any (v1, v2) in R2 can be written as a linear combination of
{(1, 0), (0, 1)}:

(v1, v2) = v1 (1, 0) + v2 (0, 1) .

Therefore since {(1, 0), (0, 1)} are linearly independent, they form a basis for
R2. This shows that R2 is also two-dimensional.

More generally for RN , the set given by the N vectors

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}
is a basis for RN , called the canonical basis. This shows that RN has dimen-
sion N .

Let {v1,v2, . . . , vp} be a set of p linearly independent vectors in a vector
space V of dimension N ≥ p. Then they are a basis for the vector subspace
W of V which they span. If p = N they span the full space V, whence they
are a basis for V. It is another basic fact that any set of linearly independent
vectors can be completed to a basis.

One final remark: the property B2 satisfied by a basis guarantees that
any vector v can be written as a linear combination of the basis elements,
but does not say whether this can be done in more than one way. In fact,
the linear combination turns out to be unique.

� Let us prove this. For simplicity, let us work with a finite-dimensional vector space V
with a basis {e1, e2, . . . , eN}. Suppose that a vector v ∈ V can be written as a linear
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combination of the {ei} in two ways:

v =
NX

i=1

viei and v =
NX

i=1

v′iei .

We will show that vi = v′i for all i. To see this consider

0 = v − v

=
NX

i=1

viei −
NX

i=1

v′iei

=
NX

i=1

�
vi − v′i

�
ei .

But because of B1, the {ei} are linearly independent, and by definition this means that
the last of the above equations admits only the trivial solution vi − v′i = 0 for all i. The
numbers {vi} are called the components of v relative to the basis {ei}.

Bases can be extremely useful in calculations with vector spaces. A clever
choice of basis can help tremendously towards the solution of a problem, just
like a bad choice of basis can make the problem seem very complicated. We
will see more of them later, but first we need to introduce the second main
concept of linear algebra, that of a linear map.

1.2 Linear maps

In the previous section we have learned about vector spaces by studying
objects (subspaces, bases,...) living in a fixed vector space. In this section
we will look at objects which relate different vector spaces. These objects
are called linear maps.

1.2.1 Linear maps

Let V and W be two vector spaces, and consider a map A : V→ W assigning
to each vector v in V a unique vector A(v) in W. We say that A is a linear
map (or a homomorphism) if it satisfies the following two properties:

L1 For all v1 and v2 in V, A(v1 + v2) = A(v1) + A(v2); and

L2 For all v in V and λ ∈ R, A(λv) = λA(v).

In other words, a linear map is compatible with the operations of vector
addition and scalar multiplication which define the vector space; that is, it
does not matter whether we apply the map A before or after performing
these operations: we will get the same result. One says that ‘linear maps
respect addition and scalar multiplication.’
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Any linear map A : V→ W sends the zero vector in V to the zero vector
in W. Let us see this. (We will use the notation 0 both for the zero vector in
V and for the zero vector in W as it should be clear from the context which
one we mean.) Let v be any vector in V and let us apply A to 0 + v:

A(0 + v) = A(0) + A(v) ; (by L1)

but because 0 + v = v,

A(v) = A(0) + A(v) ,

which says that A(0) = 0, since the zero vector is unique.

�� Any linear map A : V→ W gives rise to a vector subspace of V, known as the kernel of A,
and written ker A. It is defined as the subspace of V consisting of those vectors in V which
get mapped to the zero vector of W. In other words,

ker A := {v ∈ V | A(v) = 0 ∈ W} .

To check that ker A ⊂ W is really a vector subspace, we have to make sure that axioms S1
and S2 are satisfied. Suppose that v1 and v2 belong to ker A. Let us show that so does
their sum v1 + v2:

A(v1 + v2) = A(v1) + A(v2) (by L1)

= 0 + 0 (because A(vi) = 0)

= 0 , (by V3 for W)

∴ v1 + v2 ∈ ker A .

This shows that S1 is satisfied. Similarly, if v ∈ ker A and λ ∈ R is any scalar, then

A(λ v) = λ A(v) (by L2)

= λ0 (because A(v) = 0)

= 0 , (follows from V7 for W)

∴ λ v ∈ ker A ;

whence S2 is also satisfied. Notice that we used both properties L1 and L2 of a linear map.

There is also a vector subspace, this time of W, associated with A : V → W. It is called
the image of A, and written im A. It consists of those vectors in W which can be written
as A(v) for some v ∈ V. In other words,

im A := {w ∈ W | w = A(v) for some v ∈ V}.

To check that im A ⊂ W is a vector subspace we must check that S1 and S2 are satisfied.
Let us do this. Suppose that w1 and w2 belong to the image of A. This means that there
are vectors v1 and v2 in V which obey A(vi) = wi for i = 1, 2. Therefore,

A(v1 + v2) = A(v1) + A(v2) (by L1)

= w1 + w2 ,

whence w1 + w2 belong to the image of A. Similarly, if w = A(v) belongs to the image
of A and λ ∈ R is any scalar,

A(λ v) = λ A(v) (by L2)

= λ w ,
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whence λ w also belongs to the image of A.

As an example, consider the linear transformation A : R2 → R2 defined by (x, y) 7→
(x− y, y − x). Its kernel and image are pictured below:

• •A−−−−−→

ker A

im A

A linear map A : V → W is said to be one-to-one (or injective or a monomorphism) if
ker A = 0. The reason for the name is the following. Suppose that A(v1) = A(v2). Then
because of linearity, A(v1 − v2) = 0, whence v1 − v2 belongs to the kernel. Since the
kernel is zero, we have that v1 = v2.

Similarly a linear map A : V → W is said to be onto (or surjective or an epimorphism)
if im A = W, so that every vector of W is the image under A of some vector in V. If
this vector is unique, so that A is also one-to-one, we say that A is an isomorphism. If
A : V → W is an isomorphism, one says that V is isomorphic to W, and we write this as
V ∼= W. As we will see below, ‘being isomorphic to’ is an equivalence relation.

Notice that if V is an N -dimensional real vector space, any choice of basis {ei} induces an

isomorphism A : V → RN , defined by sending the vector v =
PN

i=1 vi ei to the ordered
N -tuple made out from its components (v1, v2, . . . , vN ) relative to the basis. Therefore we
see that all N -dimensional vector spaces are isomorphic to RN , and hence to each other.

An important property of linear maps is that once we know how they act
on a basis, we know how they act on any vector in the vector space. Indeed,
suppose that {e1, e2, . . . , eN} is a basis for an N -dimensional vector space
V. Any vector v ∈ V can be written uniquely as a linear combination of the
basis elements:

v =
N∑

i=1

vi ei .

Let A : V→ W be a linear map. Then

A(v) = A

(
N∑

i=1

vi ei

)

=
N∑

i=1

A (vi ei) (by L1)

=
N∑

i=1

vi A (ei) . (by L2)

Therefore if we know A(ei) for i = 1, 2, . . . , N we know A on any vector.

�� The dual space.
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1.2.2 Composition of linear maps

Linear maps can be composed to produce new linear maps. Let A : V → W
and B : U→ V be linear maps connecting three vectors spaces U, V and W.
We can define a third map C : U→ W by composing the two maps:

U B−→ V A−→ W .

In other words, if u ∈ U is any vector, then the action of C on it is defined
by first applying B to get B(u) and then applying A to the result to obtain
A(B(u)). The resulting map is written A◦B, so that one has the composition
rule:

(A ◦B)(u) := A (B(u)) . (1.2)

This new map is linear because B and A are, as we now show. It respects
addition:

(A ◦B)(u1 + u2) = A (B(u1 + u2))

= A (B(u1) + B(u2)) (by L1 for B)

= A (B(u1)) + A (B(u2)) (by L1 for A)

= (A ◦B)(u1) + (A ◦B)(u2) ;

and it also respects scalar multiplication:

(A ◦B)(λ u) = A (B(λu))

= A (λB(u)) (by L2 for B)

= λA (B(u)) (by L2 for A)

= λ (A ◦B)(u) .

Thus A ◦ B is a linear map, known as the composition of A and B. One
usually reads A ◦ B as ‘B composed with A’ (notice the order!) or ‘A pre-
composed with B.’

�� Notice that if A and B are isomorphisms, then so is A ◦ B. In other words, composition
of isomorphisms is an isomorphism. This means that if U ∼= V and V ∼= W, then U ∼= W,
so that the property of being isomorphic is transitive. This property is also symmetric:
if A : V → W is an isomorphism, A−1 : W → V is too, so that V ∼= W implies W ∼= V.
Moreover it is also reflexive, the identity map 1 : V→ V provides an isomorphism V ∼= V.
Hence the property of being isomorphic is an equivalence relation.

1.2.3 Linear transformations

An important special case of linear maps are those which map a vector space
to itself: A : V → V. These linear maps are called linear transformations
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(or endomorphisms). Linear transformations are very easy to visualise in
two dimensions:

• •A−−−−→-
6

j

µ

A linear transformation sends the origin to the origin, straight lines to
straight lines, and parallelograms to parallelograms.

Composition of two linear transformation is another linear transforma-
tion. In other words, we can think of composition of linear transformations
as some sort of multiplication. This multiplication obeys a property remi-
niscent of the associativity V1 of vector addition. Namely, given three linear
transformations A, B and C, then

(A ◦B) ◦ C = A ◦ (B ◦ C) . (1.3)

To see this simply apply both sides of the equation to v ∈ V and use equation
(1.2) to obtain in both cases simply A(B(C(v))). By analogy, we say that
composition of linear transformations is associative. Unlike vector addition,
composition is not commutative; that is, in general, A ◦B 6= B ◦ A.

Let 1 : V → V denote the identity transformation, defined by 1(v) = v
for all v ∈ V. Clearly,

1 ◦ A = A ◦ 1 = A , (1.4)

for any linear transformations A. In other words, 1 is an identity for the
composition of linear transformations. Given a linear transformation A :
V→ V, it may happen that there is a linear transformation B : V→ V such
that

B ◦ A = A ◦B = 1 . (1.5)

If this is the case, we say that A is invertible, and we call B its inverse. We
then write B = A−1.

The composition of two invertible linear transformations is again invert-
ible. Indeed one has

(A ◦B)−1 = B−1 ◦ A−1 .

� To show this we compute
�
B−1 ◦A−1

� ◦ (A ◦B) = B−1 ◦ �A−1 ◦ (A ◦B)
�

(by equation (1.3))

= B−1 ◦ ��A−1 ◦A
� ◦B

�
(by equation (1.3))

= B−1 ◦ (1 ◦B) (by equation (1.5))

= B−1 ◦B (by equation (1.4))

= 1 , (by equation (1.5))
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and similarly

(A ◦B) ◦ (B−1 ◦A−1) = A ◦ �B ◦ �B−1 ◦A−1
��

(by equation (1.3))

= A ◦ ��B ◦B−1
� ◦A−1)

�
(by equation (1.3))

= A ◦ �1 ◦A−1)
�

(by equation (1.5))

= A ◦A−1 (by equation (1.4))

= 1 . (by equation (1.5))

�� This shows that the invertible transformations of a vector space V form a group, called
the general linear group of V and written GL(V).

A group is a set G whose elements are called group elements, together with an operation
called group multiplication and written simply as

group multiplication : G×G → G

(x, y) 7→ xy

satisfying the following three axioms:

G1 group multiplication is associative:

(xy)z = x(yz) for all group elements x, y and z.

G2 there exists an identity element e ∈ G such that

ex = xe = x for all group elements x.

G3 every group element x has an inverse, denoted x−1 and obeying

x−1x = xx−1 = e .

If in addition the group obeys a fourth axiom

G4 group multiplication is commutative:

xy = yx for all group elements x and y,

then we say that the group is commutative or abelian, in honour of the Norwegian math-
ematician Niels Henrik Abel (1802-1829).

When the group is abelian, the group multiplication is usually written as a group addition:
x + y instead of xy. Notice that axioms V1—V4 for a vector space say that, under vector
addition, a vector space is an abelian group.

Groups are extremely important objects in both mathematics and physics. It is an ‘al-
gebraic’ concept, yet its uses transcend algebra; for example, it was using the theory
of groups that quarks were originally postulated in particle physics. The fact that we
now think of quarks as elementary particles and not simply as mathematical construct is
proof of how far group theory has become a part of our description of nature at its most
fundamental.
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1.2.4 The vector space of linear maps

Now we point out that linear maps themselves also form a vector space! In
order to do this, we have to produce the two operations: vector addition and
scalar multiplication, and show that they satisfy the eight axioms V1—V8.
Let A and B be linear maps V→ W, let λ ∈ R be a scalar, and let v ∈ V be
any vector. Then we define the two operations by

(addition)
(A + B)(v) = A(v) + B(v) , (1.6)

(scalar multiplication)

(λA)(v) = λA(v) . (1.7)

Having defined these two operations we must check that the axioms are
satisfied. We leave this as an exercise, except to note that the zero vector
is the transformation which sends every v ∈ V to 0 ∈ W. The rest of the
axioms follow from the fact that W is a vector space.

� This is a general mathematical fact: the space of functions f : X → Y always inherits
whatever algebraic structures Y possesses simply by defining the operations pointwise in
X.

Let L(V,W) denote the vector space of linear maps V → W. What is its
dimension? We will see in the next section when we talk about matrices that
its dimension is given by the product of the dimensions of V and W:

dim L(V,W) = dimV dimW . (1.8)

In particular the space L(V,V) of linear transformations of V has dimension
(dimV)2. We will call this space L(V) from now on.

Because L(V) is a vector space, its elements can be added and as we saw
above, composition allows us to multiply them too. It turns out that these
two operations are compatible:

A ◦ (B + C) = (A ◦B) + (A ◦ C) (1.9)

(A + B) ◦ C = (A ◦ C) + (B ◦ C) . (1.10)

� Let us prove the left and right distributivity properties. Let A, B, and C be linear
transformations of a vector space V and let v ∈ V be an arbitrary vector. Then

(A ◦ (B + C)) (v) = A ((B + C)(v)) (by equation (1.2))

= A (B(v) + C(v)) (by equation (1.6))

= A(B(v)) + A(C(v)) (because A is linear)

= (A ◦B)(v) + (A ◦ C)(v) , (by equation (1.2))
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which proves (1.9). Similarly

((A + B) ◦ C) (v) = (A + B)(C(v)) (by equation (1.2))

= (A(C(v)) + B(C(v)) (by equation (1.6))

= (A ◦ C)(v) + (B ◦ C)(v) , (by equation (1.2))

which proves (1.10).

Composition of linear transformations is also compatible with scalar mul-
tiplication:

(λ A) ◦B = A ◦ (λB) = λ (A ◦B) . (1.11)

�� In fact, we can summarise the properties (1.9), (1.10) and (1.11) in a very simple way
using concepts we have already introduced. Given a linear transformation A of V we will
define two operations on L(V), left and right multiplication by A, as follows:

LA : L(V) → L(V) and RA : L(V) → L(V)

B 7→ A ◦B B 7→ B ◦A .

Then equations (1.9), (1.10) and (1.11) simply say that LA and RA are linear transfor-
mations of L(V)!

�� The vector space L(V) of linear transformations of V together with the operation of com-
position, the identity 1, the distributive properties (1.9) and (1.10), and the condition
(1.11) is an associative algebra with identity.

An algebra is a vector space A together with a multiplication

multiplication : A× A→ A
(A, B) 7→ A B ,

obeying the following axioms, where A, B, C ∈ A and λ ∈ R:

A1 (left distributivity) A (B + C) = A B + A C;

A2 (right distributivity) (A + B) C = A C + B C;

A3 A (λ B) = (λ A) B = λ (A B).

If in addition A obeys the axiom

A4 (identity) There exists 1 ∈ A such that 1A = A1 = A;

then it is an algebra with identity. If instead A obeys the axiom

A5 (associativity) A (B C) = (A B) C;

it is an associative algebra. Finally if it obeys all five axioms, it is an associative algebra
with identity.

It is a general fact that the invertible elements of an associative algebra with identity form
a group.
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1.2.5 Matrices

Matrices are intimately linked to linear maps. Let A : V → W be a linear
map between two finite-dimensional vector spaces. Let {e1, e2, . . . , eN} be
a basis for V and let {f 1,f 2, . . . , fM} be a basis for W. Let us write each
A(ei) as a linear combination of the basis elements {f j}:

A(ei) =
M∑

j=1

Aji f j , (1.12)

where have introduced a real number Aji for each i = 1, 2, . . . , M and j =
1, 2, . . . , M , a total of N M real numbers. Now let v be a vector in V and
consider its image w = A(v) under A. We can expand both v and w as
linear combinations of the respective bases:

v =
N∑

i=1

vi ei and w =
M∑

j=1

wj f j . (1.13)

Let us now express the wj in terms of the vi:

w = A(v)

= A

(
N∑

i=1

vi ei

)
(by the first equation in (1.13))

=
N∑

i=1

A (vi ei) (by L1)

=
N∑

i=1

vi A (ei) (by L2)

=
N∑

i=1

vi

M∑
j=1

Aji f j (by equation (1.12))

=
M∑

j=1

(
N∑

i=1

Aji vi

)
f j , (rearranging the sums)

whence comparing with the second equation in (1.13) we obtain the desired
result:

wj =
N∑

i=1

Aji vi . (1.14)
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To visualise this equation, let us arrange the components {vi} and {wj} of v
and w as ‘column vectors’ v and w, and the real numbers Aji as an M ×N
matrix A. Then equation (1.14) can be written as

w = A v ,

or explicitly as


w1

w2
...

wM


 =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN







v1

v2
...

vN


 .

Therefore the matrix

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN




represents the linear map A : V→ W relative to the bases {ei} and {f j} of V
and W. It is important to stress that the linear map A is more fundamental
than the matrix A. If we choose different basis, the matrix for the linear map
will change (we will see this in detail below), but the map itself does not.
However if we fix bases for V and W, then there is a one-to-one correspondence
between linear maps V→ W and M ×N matrices.

�� The commuting square: linear maps to matrices...

We saw in Section 1.2.4 that the space L(V,W) of linear maps V→ W is
a vector space in its own right. How are the operations of vector addition
and scalar multiplication defined for the matrices? It turns out that they
are defined entry-wise as for real numbers. Let us see this. The matrix
corresponding to the sum of two linear maps A and A′ is given by

(A + A′)(ei) =
M∑

j=1

(A + A′)ji f j .

On the other hand, from equation (1.6) we have that

(A + A′)(ei) = A(ei) + A′(ei)

=
M∑

j=1

Aji f j +
M∑

j=1

A′
ji f j

=
M∑

j=1

(
Aji + A′

ji

)
f j .
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Therefore we see that the matrix of the sum is the sum of the matrices:

(A + A′)ji = Aji + A′
ji ;

or in other words, the sum of two matrices is performed entry-by-entry:




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN


 +




A′
11 A′

12 · · · A′
1N

A′
21 A′

22 · · · A′
2N

...
...

...
A′

M1 A′
M2 · · · A′

MN




=




A11 + A′
11 A12 + A′

12 · · · A1N + A′
1N

A21 + A′
21 A22 + A′

22 · · · A2N + A′
2N

...
...

...
AM1 + A′

M1 AM2 + A′
M2 · · · AMN + A′

MN


 .

Similarly, scalar multiplication is also performed entry-by-entry. If λ ∈ R is
a scalar and A is a linear map, then on the one hand we have

(λA)(ei) =
M∑

j=1

(λA)ji f j ,

but from equation (1.7) we have that

(λ A)(ei) = λA(ei)

= λ

M∑
j=1

Aji f j

=
M∑

j=1

λ Aji f j ,

so that the matrix of λ A is obtained from the matrix of A by multiplying
each entry by λ:

(λA)ji = λAji ;

explicitly,

λ




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN


 =




λ A11 λA12 · · · λA1N

λ A21 λA22 · · · λA2N
...

...
...

λAM1 λAM2 · · · λAMN


 .
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The vector space of M ×N matrices has a ‘canonical’ basis given by the
matrices Eji all of whose entries are zero except for the entry sitting in the
intersection of the jth column and the ith row, which is 1. They are clearly
linearly independent and if A is any matrix with entries Aji then

A =
N∑

i=1

M∑
j=1

AjiEji ,

so that their span is the space of all M × N matrices. Therefore they form
a basis for this space. The matrices Eji are known as elementary matrices.
Clearly there are M N such matrices, whence the dimension of the space of
M ×N matrices, and hence of L(V,W), is M N as claimed in equation (1.8).

Now consider a third vector space U of dimension P and with basis
{g1, g2, . . . , gP}. Then a linear map B : U → V will be represented by
an N × P matrix

B =




B11 B12 · · · B1P

B21 B22 · · · B2P
...

...
...

BN1 BN2 · · · BNP




relative to the chosen bases for U and V; that is,

B(gk) =
N∑

i=1

Bik ei . (1.15)

The composition A◦B : U→ W will now be represented by an M×P matrix
whose entries Cjk are given by

(A ◦B)(gk) =
M∑

j=1

Cjk f j . (1.16)

The matrix of A ◦B can be expressed in terms of the matrices A and B. To

26



see this, let us compute

(A ◦B)(gk) = A(B(gk)) (by equation (1.2))

= A

(
N∑

i=1

Bik ei

)
(by equation (1.15))

=
N∑

i=1

Bik A(ei) (since A is linear)

=
N∑

i=1

Bik

M∑
j=1

Aji f j (by equation (1.12))

=
M∑

j=1

(
N∑

i=1

Aji Bik

)
f j . (rearranging sums)

Therefore comparing with equation (1.16) we see that

Cjk =
N∑

i=1

Aji Bik , (1.17)

which is nothing else but matrix multiplication:




C11 C12 · · · C1P

C21 C22 · · · C2P
...

...
...

CM1 CM2 · · · CMP




=




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN







B11 B12 · · · B1P

B21 B22 · · · B2P
...

...
...

BN1 BN2 · · · BNP


 .

In other words,

the matrix of A ◦B is the matrix product A B.

Let us consider now linear transformations L(V) of an N -dimensional vec-
tor space V with basis {e1, e2, . . . , eN}. Matrices representing linear trans-
formations V → V are now a square N × N matrices. We can add them
and multiply them as we do real numbers, except that multiplication is not
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commutative: for two matrices A and B one has that, in general, AB 6= BA.
Let A be an N ×N matrix. If there exists another matrix B which obeys

A B = B A = I

where I is the identity matrix, then we say that A is invertible. Its inverse
B is written A−1. A matrix which is not invertible is called singular. Clearly
a matrix is singular if and only if its determinant is zero.

A useful fact is that a matrix is invertible if and only if its determinant
is different from zero. This allows us to show that the product of invertible
elements is again invertible. To see this notice that the determinant of a
product is the product of the determinants:

det(A B) = det A det B , (1.18)

and that this is not zero because neither are det A nor det B. In fact, the
inverse of a product A B is given by

(A B)−1 = B−1 A−1 . (1.19)

(Notice the order!)

�� Matrices, just like L(V), form an associative algebra with identity. The algebra of N ×N
real matrices is denoted MatN (R). The invertible elements form a group, which is denoted
GLN (R), the general linear group of RN .

1.2.6 Change of basis

We mentioned above that a linear map is more fundamental than the matrix
representing it relative to a chosen basis, for the matrix changes when we
change the basis but the linear map remains unchanged. In this Section
we will explore how the matrix of a linear map changes as we change the
basis. We will restrict ourselves to linear transformations, but the results
here extend straightforwardly to linear maps between different vector spaces.

Let V be an N -dimensional vector space with basis {ei}, and let A : V→ V
be a linear transformation with matrix A relative to this basis. Let {e′i} be
another basis. We want to know what the matrix A′ representing A relative
this new basis is. By definition, the matrix A′ has entries A′

ji given by

A(e′i) =
N∑

j=1

A′
ji e

′
j . (1.20)
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Because {ei} is a basis, we can express each element e′i of the primed basis
in terms of them:

e′i =
N∑

j=1

Sji ej , (1.21)

for some N2 numbers Sji. We have written this equation in such a way
that it looks as if Sji are the entries of a matrix. This is with good reason.
Let S : V → V be the linear transformation defined by S(ei) = e′i for
i = 1, 2, . . . , N . Then using the explicit expression for e′i we see that

S(ei) =
N∑

j=1

Sji ej ,

so that Sji are indeed the entries of a matrix S relative to the basis {ei}.
We can compute both sides of equation (1.20) separately and compare. The
right-hand side gives

A(e′i) = A

(
N∑

j=1

Sji ej

)
(by equation (1.21))

=
N∑

j=1

Sji A(ej) (since A is linear)

=
N∑

j=1

Sji

N∑

k=1

Akj ek (by equation (1.12))

=
N∑

k=1

N∑
j=1

AkjSji ek . (rearranging sums)

On the other hand, the left-hand side gives

N∑
j=1

A′
ji e

′
j =

N∑
j=1

A′
ji

N∑

k=1

Skj ek (by equation (1.21))

=
N∑

k=1

N∑
j=1

SkjA
′
ji ek . (rearranging sums)

Comparing the two sides, we see that

N∑
j=1

AkjSji =
N∑

j=1

SkjA
′
ji ,
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or in terms of matrices,
A S = S A′ . (1.22)

Now, S is invertible. To see this use the fact that because {e′i} is also a
basis, we can write each ei in terms of the {e′i}:

ei =
N∑

j=1

Tji e
′
j . (1.23)

By the same argument as above, the N2 numbers Tji are the entries of a ma-
trix which, relative to the primed basis, represents the linear transformation
T : V → V defined by T (e′i) = ei. The linear transformations S and T are
mutual inverses:

S(T (e′i)) = S(ei) = e′i and T (S(ei)) = T (e′i) = ei ,

so that T ◦ S = S ◦ T = 1; or in other words, T = S−1.
Therefore, we can multiply both sides of equation (1.22) by S−1 on the

left to obtain

A′ = S−1 A S . (1.24)

The operation above taking A to A′ is called conjugation by S. One says
that the matrices A and A′ are conjugate. (This is not be confused with the
notion of complex conjugation.)

� Change of basis for linear maps.

1.2.7 Matrix invariants

Certain properties of square matrices do not change when we change the
basis; one says that they are invariants of the matrix or, more precisely, of
the linear map that the matrix represents.

For example, the determinant is one such invariant. This can be seen
by computing the determinant to both sides of equation (1.24) and using
equation (1.18), to obtain that det A′ = det A. This implies that also the
property of being invertible is invariant.

Another invariant is the trace of a matrix, defined as the sum of the
diagonal elements, and written tr A. Explicitly, if A is given by

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN
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then its trace tr A is given by

tr A =
N∑

i=1

Aii = A11 + A22 + · · ·+ ANN . (1.25)

A matrix whose trace vanishes is said to be traceless.
The fact that the trace is indeed an invariant, will follow from some

fundamental properties of the trace, which we discuss now. The trace satisfies
the following property:

tr (A B) = tr (B A) . (1.26)

� Let us prove this. Let A, B : V→ V be linear maps with matrices A and B relative to some
fixed basis. The matrix product AB is the matrix of the composition A ◦ B. Computing
the trace of the product, using equations (1.17) and (1.25), we find

tr (AB) =
NX

i=1

NX

j=1

Aij Bji

=
NX

j=1

NX

i=1

Bji Aij (rearranging the sums)

=
NX

i=1

NX

j=1

Bij Aji (relabelling the sums)

= tr (B A) .

The fact which allows us to relabel the summation indices is known as the Shakespeare
Theorem: “a dummy index by any other name...” The modern version of this theorem is
due to Gertrude Stein: “a dummy index is a dummy index is a dummy index.”

It follows from equation (1.26) that

tr (A B C) = tr (C A B) = tr (B C A) , (1.27)

which is often called the cyclic property of the trace. Using this property and
computing the trace to both sides of equation (1.24), we see that tr A′ = tr A,
as claimed. Notice that the trace of the identity N ×N matrix I is tr I = N .

� Because the trace is an invariant, it actually defines a function on the vector space of linear
maps L(V). The trace of a linear map A : V→ V is defined as the trace of any matrix of A
relative to some basis. Invariance says that it does not depend on which basis we choose
to compute it with respect to. As a function tr : L(V) → R, the trace is actually linear. It
is an easy exercise to prove that

tr(A + B) = tr A + trB and tr(λ A) = λ trA .
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There are other properties of a matrix which are not invariant under
arbitrary change of basis; but are nevertheless important. For example, given
a matrix A let its transpose, denoted At, be the matrix whose (i, j) entry
equals the (j, i) entry of A. Explicitly,

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN


 ⇒ At =




A11 A21 · · · AN1

A12 A22 · · · AN2
...

...
. . .

...
A1N A2N · · · ANN


 .

In other words, At is obtained from A by reflecting the matrix on the main
diagonal, and because reflection is an involution, it follows that

(
At

)t
= A . (1.28)

It follows from the expression for At that the diagonal entries are not changed,
and hence that

tr At = tr A . (1.29)

It is also easy to see that

(A B)t = Bt At (1.30)

and also that

(A + B)t = At + Bt and (λA)t = λAt . (1.31)

From the former equation it follows that

(
A−1

)t
=

(
At

)−1
. (1.32)

A less obvious identity is

det At = det A , (1.33)

which follows from the fact that the row expansion of the determinant of At is
precisely the column expansion of the determinant of A. A matrix is said to
be symmetric if At = A. It is said to be antisymmetric or skew-symmetric
if At = −A. Notice that an antisymmetric matrix is traceless, since

tr A = tr At = tr(−A) = − tr A .

32



The converse is of course false: a traceless matrix need not be antisymmetric.
Generic matrices are neither symmetric nor antisymmetric, yet any ma-

trix is the sum of a symmetric matrix and an antisymmetric matrix. Indeed,
adding and subtracting 1

2
At in a clever way, we see that

A = 1
2

(
A + At

)
+ 1

2

(
A− At

)
.

But now, using equations (1.28) and (1.31), we see that 1
2
(A+At) is symmetric

and 1
2
(A− At) antisymmetric.

A matrix O is said to be orthogonal if its transpose is its inverse:

Ot O = O Ot = I .

� The property of being symmetric or antisymmetric is not invariant under arbitrary changes
of basis, but it will be preserved under certain types of changes of basis, e.g., under
orthogonal changes of basis.

1.3 Inner products

Vectors in physics are usually defined as objects which have both a mag-
nitude and a direction. In that sense, they do not quite correspond to the
mathematical notion of a vector as we have been discussing above. In our de-
finition of an abstract vector space as in the discussion which followed, there
is no mention of how to compute the magnitude of a vector. In this section
we will remedy this situation. Geometrically the magnitude of a vector is
simply its length. If we think of vectors as displacement, the magnitude is
the distance away from the origin. In order to define distance we will need
to introduce an inner product or scalar product , as it is often known.

1.3.1 Norms and inner products

Let us start by considering displacements in the plane. The length ‖v‖ of the
displacement v = (v1, v2) is given by the Pythagorean theorem: ‖v‖2 = v2

1 +
v2

2. This length obeys the following properties which are easily verified. First
of all it is a non-negative quantity ‖v‖2 ≥ 0, vanishing precisely for the zero
displacement 0 = (0, 0). If we rescale v by a real number λ: λv = (λ v1, λ v2),
its length rescales by the absolute value of λ: ‖λ v‖ = |λ| ‖v‖. Finally, the
length obeys the so-called triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖. This
is obvious pictorially, since the shortest distance between two points in the
plane is the straight line which joins them. In any case we will prove it later
in much more generality.
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Now consider RN . We can define a notion of length by generalising slightly
what was done above: if (v1, v2, . . . , vN) ∈ RN , then define its length by

‖(v1, v2, . . . , vN)‖ =
√

v2
1 + v2

2 + · · ·+ v2
N .

It again satisfies the same three properties described above.
We can formalise this into the notion of a norm in a vector space. By a

norm in a real vector space V we mean a function ‖ · ‖ : V → R assigning
a real number to every vector in V in such a way that the following three
properties are satisfied for every vector v and w and every scalar λ:

N1 ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0;

N2 ‖λ v‖ = |λ| ‖v‖; and

N3 (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖.
The study of normed vector spaces is an important branch of modern

mathematics (cf., one of the 1998 Fields Medals). In physics, however, it is
fair to say that the more important notion is that of an inner product. If a
norm allows us to calculate lengths, an inner product will allow us to also
calculate angles.

Consider again the case of displacements in two dimensions, or equiva-
lent R2. Let us define now a function which assigns a real number to two
displacements v = (v1, v2) and w = (w1, w2):

〈v,w〉 := v1 w1 + v2 w2 .

This is usually called the dot product and is written v ·w. We will not use
this notation.

Clearly, 〈v, v〉 = ‖v‖2, so that this construction also incorporates a norm.
If we write the displacements using polar coordinates: v = ‖v‖ (cos θ1, sin θ1)
and similarly for w = ‖w‖ (cos θ2, sin θ2), then we can compute:

〈v,w〉 = ‖v‖ ‖w‖ cos (θ1 − θ2) . (1.34)

In other words, 〈·, ·〉 is essentially the angle between the two displacements.
More generally we can consider RN and define its dot product as follows. If
v = (v1, v2, . . . , vN) and w = (w1, w2, . . . , wN), then

〈v,w〉 :=
N∑

i=1

vi wi = v1 w1 + v2 w2 + · · ·+ vN wN .
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The dot product satisfies the following properties. First of all it is symmetric:
〈v,w〉 = 〈w, v〉. It is also linear in the right-hand slot: 〈v,w + w〉 =
〈v,w〉+ 〈v, w〉 and 〈v, λ w〉 = λ 〈v,w〉; and using the symmetry also in the
left-hand slot. It is also important that the function ‖v‖ :=

√
〈v,v〉 is a

norm. The only non-obvious thing is to prove the triangle inequality for the
norm, but we will do this below in all generality. The vector space RN with
the dot product defined above is called N-dimensional Euclidean space,
and is denoted EN . As a vector space, of course, EN = RN , but EN serves to
remind us that we are talking about the vector space with the dot product.
Notice that in terms of column vectors:

v =




v1

v2
...

vN


 and w =




w1

w2
...

wN


 ,

the dot product is given by

〈v, w〉 = vt w =
(
v1 v2 · · · vN

)



w1

w2
...

wN


 =

N∑
i=1

vi wi .

More generally, we define an inner product (or scalar product) on a real
vector space V to be a function 〈·, ·〉 : V × V → R taking pairs of vectors to
real numbers and obeying the following axioms:

IP1 〈v,w〉 = 〈w,v〉;
IP2 〈u, λ v + µ w〉 = λ 〈u,v〉+ µ 〈u,w〉; and

IP3 ‖v‖2 = 〈v,v〉 > 0 for all v 6= 0.

Notice that IP1 and IP2 together imply that 〈λ u + µ v, w〉 = λ 〈u,w〉+
µ 〈v,w〉.

Let {ei} be a basis for V. Because of IP1 and IP2, it is enough to know
what the inner product of any two basis elements is to be know what it is on
any two vectors. Indeed, let v =

∑N
i=1 vi ei and w =

∑N
i=1 wi ei be any two

vectors. Then their inner product is given by

〈v, w〉 = 〈
N∑

i=1

vi ei,

N∑
j=1

vj ej〉

=
N∑

i,j=1

vi wj 〈ei, ej〉 . (using IP1,2)
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In other words, all we need to know in order to compute this are the real
numbers Gij := 〈ei, ej〉. These can be thought of as the entries of a matrix G.
If we think of v as a column vector v in RN whose entries are the components
of v relative to the basis {ei}, and the same for w, we can compute their
inner product using matrix multiplication:

〈v,w〉 = vt G w .

The matrix G is not arbitrary. First of all from IP1 it follows that it is
symmetric:

Gij = 〈ei, ej〉 = 〈ej, ei〉 = Gji .

Furthermore IP3 imposes a strong condition known as positive-definiteness.
We will see at the end of this section what this means explicitly. Let us
simply mention that IP3 implies that the only vector which is orthogonal
to all vectors is the zero vector. This condition is weaker than IP3. It is
often desirable to relax IP3 in terms of this condition. Such inner products
are called non-degenerate. Non-degeneracy means that the matrix G is
invertible, so that its determinant is non-zero.

Here comes a point which confuses many people, so pay attention! Both
inner products and linear transformations are represented by matrices rel-
ative to a basis, but they are very different objects. In particular, they
transform different under a change of basis and this means that even if the
matrices for a linear transformation and an inner product agree numerically
in a given basis, they will generically not agree with respect to a different
basis. Let us see this in detail. Let {e′i} be a new basis, with e′i = S(ei) for
some linear transformation S. Relative to {ei} the linear transformation S
is represented by a matrix S with entries Sji given by equation (1.21). Let G′

denote the matrix describing the inner product in the new basis: its entries
G′

ij are given by

G′
ij = 〈e′i, e′j〉 (by definition)

= 〈
N∑

k=1

Ski ek,

N∑

l=1

Slj el〉 (by equation (1.21))

=
N∑

k,l=1

Ski Slj 〈ek, el〉 (using IP1,2)

=
N∑

k,l=1

Ski Gkl Slj .
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In other words,

G′ = St G S , (1.35)

to be contrasted with the analogous formula (1.24) for the behaviour of the
matrix of a linear transformation under a change of basis.

� Notice, however, that under an orthogonal change of basis, so that S−1 = St, then both
inner products and linear maps transform the same way.

1.3.2 The Cauchy–Schwartz and triangle inequalities

In this section we prove that ‖v‖ =
√
〈v,v〉 is indeed a norm. Because

axioms N1 and N2 are obvious from the axioms of the inner product, all we
really need to prove is the triangle inequality. This inequality will follow
trivially from another inequality called the Cauchy–Schwartz inequality, and
which is itself quite useful. Consider equation (1.34). Because the cosine
function obeys | cos θ| ≤ 1, we can deduce an inequality from equation (1.34).
Namely that for any two displacements v and w in the plane,

|〈v,w〉| ≤ ‖v‖ ‖w‖ ,

with equality if and only if the angle between the two displacements is zero;
in other words, if the displacements are collinear. The above inequality
is called the two-dimensional Cauchy–Schwartz inequality. This inequality
actually holds in any vector space with an inner product (even if it is infinite-
dimensional).

Let v and w be any two vectors in a vector space V with an inner product
〈·, ·〉. Let λ be a real number and let us consider the following inequality:

0 ≤ ‖v − λ w‖2

= 〈v − λ w,v − λw〉 (by definition)

= ‖v‖2 + ‖λ w‖2 − 2〈v, λ w〉 (expanding and using IP1,2)

= ‖v‖2 + λ2‖w‖2 − 2λ 〈v, w〉 . (using IP2)

Now we want to make a clever choice of λ which allows us to partially cancel
the last two terms against each other. This way we can hope to get an
inequality involving only two terms. The clever choice of λ turns out to be
λ = 〈v,w〉/‖w‖2. Inserting this into the above equation and rearranging the
terms a little, we obtain the following inequality

‖v‖2 ≥ 〈v,w〉2
‖w‖2

.
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Taking the (positive) square root and rearranging we arrive at the Cauchy–
Schwartz inequality:

|〈v,w〉| ≤ ‖v‖ ‖w‖ . (1.36)

The triangle inequality now follows easily. Let us expand ‖v + w‖2 as
follows:

‖v + w‖2 = 〈v + w,v + w〉
= ‖v‖2 + ‖w‖2 + 2〈v, w〉 (using IP1,2)

≤ ‖v‖2 + ‖w‖2 + 2|〈v,w〉| (since x ≤ |x|)
≤ ‖v‖2 + ‖w‖2 + 2‖v‖ ‖w‖ (using Cauchy–Schwartz)

= (‖v‖+ ‖w‖)2 .

Taking the (positive) square root we arrive at the triangle inequality:

‖v + w‖ ≤ ‖v‖+ ‖w‖ . (1.37)

1.3.3 Orthonormal bases and Gram–Schmidt

Throughout this section we will let V be an N -dimensional real vector space
with an inner product 〈·, ·〉.

We say that two vectors v and w are orthogonal (written v ⊥ w) if their
inner product vanishes: 〈v,w〉 = 0. Any nonzero vector can be normalised
to have unit norm simply dividing by its norm: v/‖v‖ has unit norm. A
basis {ei} is said to be orthonormal if

〈ei, ej〉 = δij :=

{
1 if i = j

0 otherwise.
(1.38)

In other words, the basis elements in an orthonormal basis are mutually
orthogonal and are normalised to unit norm. Notice that the matrix rep-
resenting the inner product relative to an orthonormal basis is the identity
matrix.

The components of a vector v relative to an orthonormal basis {ei} are
very easy to compute. Let v =

∑N
i=1 vi ei, and take its inner product with
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ej:

〈ej,v〉 = 〈ej,

N∑
i=1

vi ei〉

=
N∑

i=1

vi 〈ej, ei〉 (using IP2)

= vj . (using equation (1.38))

This shows that orthonormal vectors are automatically linearly independent.
Indeed, suppose that {ei} are orthonormal vectors. Then suppose that a
linear combination is the zero vector:

∑
i

λi ei = 0 .

Taking the inner product of both sides of this equality with ej we find, on
the left-hand side λj and on the right-hand side 0, hence λj = 0 and thus the
{ei} are linearly independent.

We now discuss an algorithmic procedure by which any basis can be
modified to yield an orthonormal basis. Let {f i} be any basis whatsoever
for V. We will define iteratively a new basis {ei} which will be orthonormal.
The procedure starts as follows. We define

e1 =
f 1

‖f 1‖
,

which has unit norm by construction. We now define e2 starting from f 2

but making it orthogonal to e1 and normalising it to unit norm. A moment’s
thought reveals that the correct definition is

e2 =
f 2 − 〈f 2, e1〉 e1

‖f 2 − 〈f 2, e1〉 e1‖ .

It has unit norm by construction, and it is clearly orthogonal to e1 because

〈f 2 − 〈f 2, e1〉, e1〉 = 〈f 2, e1〉 − 〈f 2, e1〉 ‖e1‖2 = 0 .

We can continue in this fashion and at each step define ei as f i + · · · di-
vided by its norm, where the omitted terms are a linear combination of the
{e1, e2, . . . , ei−1} defined in such a way that the ei is orthogonal to them.
For a finite-dimensional vector space, this procedure stops in a finite time
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and we are left with an orthonormal basis {ei}. The general formulae for the
ei is

ei =
f i −

∑i−1
j=1〈f i, ej〉 ej

‖f i −
∑i−1

j=1〈f i, ej〉 ej‖
. (1.39)

Notice that this formula is recursive: it defines ei in terms of f i and the
{ej<i}.

� Studying this formula we see that each ei is a linear combination

ei =
iX

j=1

Sjifj , (1.40)

where Sii is positive, since it is given by Sii = 1/‖f i + · · · ‖. Now let S be the linear
transformation defined by S(f i) = ei. Relative to the original basis {f i}, S has a matrix
S with entries Sji defined by

ei =
NX

j=1

Sji fj .

Comparing with equation (1.40) we see that Sji = 0 for j > i, so that all the entries of
S below the main diagonal are zero. We say that S is upper triangular. The condition
Sii > 0 says that the diagonal entries are positive.

We can turn equation (1.39) around and notice that f i is in turn given as a linear combi-
nation of {ej≤i}. The linear transformation T defined by f i = T (ei), which is the inverse
of S, has a matrix T relative to the {ei} basis which is also upper triangular with positive
entries on the main diagonal. Now the matrix G with entries Gij = 〈f i, fj〉 representing
the inner product on the {f i} basis, is now given by

G = Tt T .

In other words, since the {f i} were an arbitrary basis, G is an arbitrary matrix representing
an inner product. We have learned then that this matrix can always be written as a
“square” Tt T, where T is an upper triangular matrix with positive entries in the main
diagonal.

1.3.4 The adjoint of a linear transformation

Throughout this section we will let V be an N -dimensional real vector space
with an inner product 〈·, ·〉.

Let A : V → V be a linear transformation. A linear transformation is
uniquely defined by its matrix elements 〈A(v),w〉. Indeed, if A′ is another
linear transformation with 〈A′(v),w〉 = 〈A(v),w〉 for all v and w, then we
claim that A = A′. To see this notice that

0 = 〈A′(v), w〉 − 〈A(v),w〉
= 〈A′(v)− A(v),w〉 . (using IP1,2)

40



Since this is true for all w, it says that the vector A′(v)−A(v) is orthogonal
to all vectors, and in particular to itself. Therefore it has zero norm and by
IP3 it is the zero vector. In other words, A′(v) = A(v) for all v, which means
that A = A′.

Given a linear transformation A : V → V we define its adjoint relative
to the inner product, as the linear transformation A† : V → V with matrix
elements

〈A†(v),w〉 = 〈v, A(w)〉 . (1.41)

The adjoint operation obeys several properties. First of all, taking adjoint
is an involution:

A†† = A . (1.42)

Moreover it is a linear operation

(λA + µB)† = λA† + µB† , (1.43)

which reverses the order of a composition:

(A ◦B)† = B† ◦ A† . (1.44)

� These properties are easily proven. The method of proof consists in showing that both
sides of each equation have the same matrix elements. For example, the matrix elements
of the double adjoint A†† are given by

〈A††(v), w〉 = 〈v, A†(w)〉 (by equation (1.41))

= 〈A†(w), v〉 (by IP1)

= 〈w, A(v)〉 (by equation (1.41))

= 〈A(v), w〉 ; (by IP1)

whence they agree with the matrix elements of A.

Similarly, the matrix elements of (λ A + µ B)† are given by

〈(λ A + µ B)†(v), w〉 = 〈v, (λ A + µ B)(w)〉 (by equation (1.41))

= λ 〈v, A(w)〉+ µ 〈v, B(w)〉 (using IP2)

= λ 〈A†(v), w〉+ µ 〈B†(v), w〉 (by equation (1.41))

= 〈(λ A† + µ B†)(v), w〉 , (using IP1,2)

which agree with the matrix elements of λ A† + µ B†.

Finally, the matrix elements of (A ◦B)† are given by

〈(A ◦B)†(v), w〉 = 〈v, (A ◦B)(w)〉 (by equation (1.41))

= 〈v, A(B(w))〉 (by equation (1.2))

= 〈A†(v), B(w)〉 (by equation (1.41))

= 〈B†(A†(v)), w〉 (by equation (1.41))

= 〈(B† ◦A†)(v), w〉 , (by equation (1.2))

which agree with the matrix elements of B† ◦A†.
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A linear transformation is said to be symmetric if A† = A. It is said to be
orthogonal if A† ◦A = A◦A† = 1. In particular, orthogonal transformations
preserve inner products:

〈A(v), A(w)〉 = 〈v, A†(A(w))〉 (by equation (1.41))

= 〈v, (A† ◦ A)(w)〉 (by equation (1.2))

= 〈v, w〉 . (since A is orthogonal)

� Notice that in the above we only used the condition A† ◦ A = 1 but not A ◦ A† = 1. In
a finite-dimensional vector space one implies the other, but in infinite dimensional vector
spaces it may happen that a linear transformation which preserves the inner product obeys
A† ◦A = 1 but does not obey A ◦A† = 1. (Maybe an example?)

To justify these names, notice that relative to an orthonormal basis the
matrix of a symmetric transformation is symmetric and the matrix of an
orthogonal transformation is orthogonal, as defined in Section 1.2.7. This
follows because the matrix of the adjoint of a linear transformation is the
transpose of the matrix of the linear transformation.

Let us prove this. Let {ei} be an orthonormal basis and let A : V→ V be
a linear transformation. The matrix A of A relative to this basis has entries
Aij defined by

A(ei) =
N∑

j=1

Aji ej .

The entries Aij are also given by matrix elements:

〈A(ei), ej〉 = 〈
N∑

k=1

Aki ek, ej〉

=
N∑

k=1

Aki 〈ek, ej〉 (using IP1,2)

= Aji . (using equation (1.38))

In other words, relative to an orthonormal basis, we have the following useful
formula:

Aij = 〈ei, A(ej)〉 . (1.45)

From this it follows that the matrix of the adjoint A† relative to this basis
is given by At. Indeed,

A†
ij = 〈A†(ej), ei〉

= 〈ej, A(ei)〉 (using equation (1.41))

= 〈A(ei), ej〉 (using IP1)

= Aji .
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Therefore if A† = A, then A = At, and the matrix is symmetric. Similarly, if
A ◦ A† = A† ◦ A = 1, then At A = A At = I, and the matrix is orthogonal.

Notice that equations (1.42), (1.43) and (1.44) for the linear transforma-
tions are now seen to be consequences of equations (1.28), (1.31) and (1.30)
applied to their matrices relative to an orthonormal basis.

1.3.5 Complex vector spaces

Much of what we have been saying about vector spaces remains true if we
substitute the scalars and instead of real numbers consider complex numbers.
Only the notion of an inner product will have to be changed in order for it to
become useful. Inner products on complex vector spaces will be the subject
of the next section; in this one, we want to emphasise those aspects of vectors
spaces which remain unchanged when we extend the scalars from the real to
the complex numbers.

As you know, complex numbers themselves can be understood as a real
vector space of dimension two; that is, as R2. If z = x + i y is a complex
number with x, y real and i =

√−1, then we can think of z as the pair
(x, y) ∈ R2. Addition of complex numbers corresponds to vector addition in
R2. Indeed, if z = x + i y and w = u + i v then z + w = (x + u) + i (y + v),
which is precisely what we expect from the vector addition (x, y) + (u, v) =
(x + u, y + v). Similarly, multiplication by a real number λ corresponds to
scalar multiplication in R2. Indeed, λ z = (λx)+i (λ y), which is in agreement
with λ (x, y) = (λx, λ y). However the complex numbers have more structure
than that of a mere vector space. Unlike vectors in a general vector space,
complex numbers can be multiplied: if z = x + i y and w = u + i v, then
zw = (xu− yv) + i (xv + yu). Multiplication is commutative: wz = zw.

� In a sense, complex numbers are more like matrices than vectors. Indeed, consider the
2× 2 matrices of the form �

a −b
b a

�
.

If we take the matrix product

�
x −y
y x

� �
u −v
v u

�
=

�
xu− yv −(xv + yu)
xv + yu xu− yv

�
,

we see that we recover the multiplication of complex numbers. Notice that the complex
number i is represented by the matrix

J =

�
0 −1
1 0

�
,

which obeys J2 = −I.

A real matrix J obeying J2 = −I is called a complex structure.
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We now briefly review some basic facts about complex numbers. Although
you should be familiar with the following concepts, I will briefly review them
here just to set the notation. As we have seen complex number can be added
and multiplied. So far that is as with the real numbers, but in addition
there is a notion of complex conjugation: z = x + i y 7→ z∗ = x − i y.
Clearly conjugation is an involution: (z∗)∗ = z. It also obeys (zw)∗ = z∗w∗.
A complex number z is said to be real if it is invariant under conjugation:
z∗ = z. Similarly a complex number is said to be imaginary if z∗ = −z.
Given z = x + i y, z is real if and only if y = 0, whereas z is imaginary if
and only if x = 0. If z = x + i y, x is said to be the real part of z, written
x = Re z, and y is said to be the imaginary part of z, written y = Im z.
Notice that the imaginary part of a complex number is a real number, not
an imaginary number! Given a complex number z, the product zz∗ is real:
(zz∗)∗ = zz∗. It is written |z|2 and it is called the modulus of z. If z = x+i y,
then |z|2 = x2 + y2, which coincides with the squared norm ‖(x, y)‖2 of the
corresponding vector in the plane. Notice that the modulus is multiplicative:
|zw| = |z||w| and invariant under conjugation: |z∗| = |z|.

After this flash review of complex numbers, it is possible to define the
notion of a complex vector space. There is really very little to do. Every-
thing that was said in Sections 1.1 and 1.2 still holds provided we replace
real with complex everywhere. An abstract complex vector space satisfies
the same axioms, except that the scalars are now complex numbers as op-
posed to real numbers. Vector subspaces work the same way. Bases and
linear independence also work in the same way, linear combinations be-
ing now complex linear combinations. The canonical example of a com-
plex vector space is CN , the set of ordered N -tuples of complex numbers:
(z1, z2, . . . , zN), with the operations defined slot-wise as for RN . The canoni-
cal basis {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} still spans CN , but where
we now take complex linear combinations. As a result CN has (complex)
dimension N . If we only allowed ourselves to take real linear combina-
tions, then in order to span CN we would need in addition the N vec-
tors {(i, 0, . . . , 0), (0, i, . . . , 0), . . . , (0, 0, . . . , i)}, showing that as a real vector
space, CN is 2N -dimensional.

Linear maps and linear transformations are now complex linear and ma-
trices and column vectors now have complex entries instead of real entries.
Matrix invariants like the trace and the determinant are now complex num-
bers instead of real numbers. There is one more operation we can do with
complex matrices, and that is to take complex conjugation. If A is a complex
N ×M matrix, then A∗ is the N ×M matrix whose entries are simply the
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complex conjugates of the entries in A. Clearly, for square matrices,

det(A∗) = (det A)∗ and tr(A∗) = (tr A)∗ .

The only significant difference between real and complex vector spaces is
when we introduce inner products, which we do now.

1.3.6 Hermitian inner products

We motivated the introduction of inner products as a way to measure, in
particular, lengths of vectors. The need to compute lengths was motivated
in turn by the fact that the vectorial quantities used in physics have a mag-
nitude as well as a direction. Magnitudes, like anything else that one ever
measures experimentally, are positive (or at least non-negative) real num-
bers. However if were to simply extend the dot product from RN to CN , we
would immediately notice that for z = (z1, z2, . . . , zN) ∈ CN , the dot product
with itself

z · z =
N∑

i=1

zizi ,

gives a complex number, not a real number. Hence we cannot understand
this as a length. One way to generate a positive real number is to define the
following inner product on CN :

〈z,w〉 =
N∑

i=1

z∗i wi ,

where z = (z1, z2, . . . , zN) and w = (w1, w2, . . . , wN). It is then easy to see
that now

〈z,z〉 =
N∑

i=1

z∗i zi =
N∑

i=1

|zi|2 ,

so that this is a non-negative real number, so that it can be interpreted as
a norm. The above inner product obeys the following property, in contrast
with the dot product in RN : it is not symmetric, so rather than IP1 it obeys
〈z,w〉 = 〈w,z〉∗.

This suggests the following definition. A complex valued function 〈·, ·〉 :
V× V→ C taking pairs of vectors to complex numbers is called a hermitian
inner product if the following axioms are satisfied:

HIP1 〈z,w〉 = 〈w,z〉∗;
HIP2 〈x, λ z + µ w〉 = λ 〈x,z〉+ µ 〈x,w〉; and
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HIP3 ‖z‖2 = 〈z,z〉 > 0 for all z 6= 0,

where here λ and µ are complex scalars.
Except for the fact that 〈·, ·〉 is a complex function, the only obvious

difference is HIP1. Using HIP1 and HIP2 we see that

〈λz + µ w,x〉 = 〈x, λ z + µ w〉∗ (by HIP1)

= (λ 〈x, z〉+ µ 〈x, w〉)∗ (by HIP2)

= λ∗ 〈x,z〉∗ + µ∗ 〈x, w〉∗
= λ∗ 〈z, x〉+ µ 〈w,x〉 , (using HIP1)

so that 〈·, ·〉 is complex linear in the second slot but only conjugate linear
in the first. One says that hermitian inner products are sesquilinear, which
means ‘one and a half’ linear.

Just as in the real case, the inner product of any two vectors is determined
by the matrix of inner products relative to any basis. Let {ei} be a basis for
V. Let v =

∑N
i=1 vi ei and w =

∑N
i=1 wi ei be any two vectors. Then their

inner product is given by

〈v,w〉 = 〈
N∑

i=1

vi ei,

N∑
j=1

vj ej〉

=
N∑

i,j=1

v∗i wj 〈ei, ej〉 . (using HIP1,2)

In other words, all we need to know in order to compute this are the complex
numbers Hij := 〈ei, ej〉, which can be thought of as the entries of a matrix H.
If we think of v as a column vector v in CN whose entries are the components
of v relative to the basis {ei}, and the same for w, we can compute their
inner product using matrix multiplication:

〈v, w〉 = (v∗)t H w .

We saw in the real case that the analogues matrix there was symmetric
and positive-definite, reflecting the similar properties of the inner product.
In the complex case, we expect that H should still be positive-definite but
that instead of symmetry it should obey a property based on HIP1. Indeed,
it follows from HIP1 that

Hij = 〈ei, ej〉 = 〈ej, ei〉∗ = H∗
ji .

This means that the matrix H is equal to its conjugate transpose:

H = (H∗)t . (1.46)
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Such matrices are called hermitian. Property HIP3 means that H is positive-
definite, so that in particular it is non-degenerate.

Let us see how H transforms under a change of basis. Let {e′i} be a new
basis, with e′i = S(ei) for some complex linear transformation S. Relative
to {ei} the linear transformation S is represented by a matrix S with entries
Sji given by equation (1.21). Let H′ denote the matrix describing the inner
product in the new basis: its entries H ′

ij are given by

H ′
ij = 〈e′i, e′j〉 (by definition)

= 〈
N∑

k=1

Ski ek,

N∑

l=1

Slj el〉 (by equation (1.21))

=
N∑

k,l=1

S∗ki Slj 〈ek, el〉 (using HIP1,2)

=
N∑

k,l=1

S∗ki Hkl Slj .

In other words,

H′ = (S∗)t H S , (1.47)

to be contrasted with the analogous formula (1.35).
The Cauchy–Schwartz and triangle inequalities are still valid for her-

mitian inner products. The proofs are essentially the same as for the real
case. We will therefore be brief.

In order to prove the Cauchy–Schwarz inequality, we start the following
inequality, which follows from HIP3,

‖v − λw‖2 ≥ 0 ,

and choose λ ∈ C appropriately. Expanding this out using HIP1 and HIP2
we can rewrite it as

‖v‖2 + |λ|2 ‖w‖2 − λ 〈v,w〉 − λ∗ 〈w,v〉 ≥ 0 .

Hence if we choose λ = 〈w,v〉/‖w‖2, we turn the inequality into

‖v‖2 − |〈v, w〉|2
‖w‖2

≥ 0 ,

which can be rewritten as

|〈v, w〉|2 ≤ ‖v‖2 ‖w‖2 .
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Taking square roots (all quantities are positive) we obtain the Cauchy–
Schwarz inequality (1.36).

In order to prove the triangle inequality, we start with

‖v + w‖2 = 〈v + w,v + w〉
= ‖v‖2 + ‖w‖2 + 2 Re〈v, w〉
≤ ‖v‖2 + ‖w‖2 + 2|〈v, w〉| (since Re z ≤ |z| ∀z ∈ C)

≤ ‖v‖2 + ‖w‖2 + 2‖v‖ ‖w‖ (by Cauchy–Schwarz)

= (‖v‖+ ‖w‖)2 ;

whence taking square roots we obtain the triangle inequality (1.37).
The complex analogue of an orthonormal basis is a unitary basis. Explic-

itly, a basis {ei} is said to be unitary if

〈ei, ej〉 = δij :=

{
1 if i = j

0 otherwise.
(1.48)

The components of a vector v relative to a unitary basis {ei} can be com-
puted by taking inner products, just as in the real case. Let v =

∑N
i=1 vi ei,

and take its inner product with ej:

〈ej,v〉 = 〈ej,

N∑
i=1

vi ei〉

=
N∑

i=1

vi 〈ej, ei〉 (using HIP2)

= vj . (using equation (1.48))

This shows that unitary vectors are automatically linearly independent.
One still has the Gram–Schmidt procedure for hermitian inner products.

It works essentially in the same way as in the real case, so we will not spend
much time on this. Consider a basis {f i} for V. Define the following vectors:

ei =
f i −

∑i−1
j=1〈ej,f i〉 ej

‖f i −
∑i−1

j=1〈ej,f i〉 ej‖
.

It is easily checked that they are a unitary basis. First of all each ei is
clearly normalised, because it is defined as a vector divided by its norm; and
moreover if i > j, then ei is clearly orthogonal to ej.

Finally, we discuss the adjoint of a complex linear map relative to a
hermitian inner product. Let A : V → V be a complex linear map. We
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define its adjoint A† by equation (1.41), where now 〈·, ·〉 is a hermitian inner
product. The properties (1.42) and (1.44) still hold, and are proven in exactly
the same way.

Only property (1.43) changes, reflecting the sesquilinear nature of the
inner product. Indeed notice that

〈(λA + µB)† v,w〉 = 〈v, (λA + µB) w〉 (by (1.41))

= λ 〈v, A w〉+ µ 〈v, B w〉 (by HIP2)

= λ 〈A† v,w〉+ µ 〈B† v, w〉 (by (1.41))

=
(
λ∗ 〈w, A† v〉+ µ∗ 〈w, B† v〉)∗ (by HIP1)

= 〈w,
(
λ∗ A† + µ∗ B†) v〉∗ (by HIP2)

= 〈(λ∗ A† + µ∗ B†) v,w〉 ; (by HIP1)

whence

(λA + µB)† = λ∗ A† + µ∗ B† . (1.49)

A complex linear transformation A is said to be hermitian if A† = A,
and it is said to be anti-hermitian (also skew-hermitian) if A† = −A. As in
the real case, the nomenclature can be justified by noticing that the matrix
of a hermitian transformation relative to a unitary basis is hermitian, as
defined in equation (1.46). The proof is similar to the proof of the analogous
statement in the real case. Indeed,

A†
ij = 〈A†(ej), ei〉 (by equation (1.45))

= 〈ej, A(ei)〉 (using equation (1.41))

= 〈A(ei), ej〉∗ (using HIP1)

= A∗
ji . (by equation (1.45))

Therefore if A† = A, then A = (A∗)t, and the matrix is hermitian. Notice
that if A is a hermitian matrix, then i A is antihermitian, hence unlike the
real case, the distinction between hermitian and anti-hermitian is trivial.

Let us say that a linear transformation U is unitary if U †◦U = U ◦U † = 1.
In this case, its matrix U relative to a unitary basis obeys (U∗)t U = U (U∗)t =
I. This means that the conjugate transpose is the inverse,

U−1 = (U∗)t . (1.50)

Not surprisingly, such matrices are called unitary. Finally let us notice that
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just as in the real case, a unitary transformation preserves the inner product:

〈U(v), U(w)〉 = 〈v, U †(U(w))〉 (by equation (1.41))

= 〈v, (U † ◦ U)(w)〉 (by equation (1.2))

= 〈v, w〉 . (since U is unitary)

1.4 The eigenvalue problem and applications

In this section we study perhaps the most important aspect of linear algebra
from a physical perspective: the so-called eigenvalue problem. We mentioned
when we introduced the notion of a basis that a good choice of basis can often
simplify the solution of a problem involving linear transformations. Given
a linear transformation, it is hard to imagine a better choice of basis than
one in which the matrix is diagonal. However not all linear transformations
admit such a basis. Understanding which transformations admit such basis
is an important part of linear algebra; but one whose full solution requires
more machinery than the one we will have available in this course. We will
content ourselves with showing that certain types of linear transformation of
use in physics do admit a diagonal basis. We will finish this section with two
applications of these results: one to mathematics (quadratic forms) and one
to physics (normal modes).

1.4.1 Eigenvectors and eigenvalues

Throughout this section V shall be an N -dimensional complex vector space.
Let A : V → V be a complex linear transformation. Let v ∈ V be a

nonzero vector which obeys

Av = λ v for some λ ∈ C. (1.51)

We say that v is an eigenvector of A with eigenvalue λ. Let {ei} be a basis
for V. Let v be the column vector whose entries are the components vi of v
relative to this basis: v =

∑
i viei; and let A be the matrix representing A

relative to this basis. Then equation (1.51) becomes

A v = λ v . (1.52)

Rewriting this as
(A− λ I) v = 0 ,

we see that the matrix A− λ I annihilates a nonzero vector, whence it must
have zero determinant:

det (A− λ I) = 0 . (1.53)
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Let λ be an eigenvalue of A. The set of eigenvectors of A with eigenvalue
λ, together with the zero vector, form a vector subspace Vλ of V, known as
the eigenspace of A with eigenvalue λ.

� It is easy to prove this: all one needs to show is that Vλ is closed under vector addition
and scalar multiplication. Indeed, let v and w be eigenvectors of A with eigenvalue λ and
let α, β be scalars. Then

A(α v + β w) = α A(v) + β A(w) (by L1,2)

= α λ v + β λ w (by equation (1.51))

= λ (α v + β w) ,

whence α v + β w is also an eigenvector of A with eigenvalue λ.

�� That Vλ is a subspace also follows trivially from the fact that it is the kernel of the linear
transformation A− λ1.

The dimension of the eigenspace Vλ is called the multiplicity of the eigen-
value λ. One says that an eigenvalue λ is non-degenerate if Vλ is one-
dimensional and degenerate otherwise.

A linear transformation A : V → V is diagonalisable if there exists a
basis {ei} for V made up of eigenvectors of A. In this basis, the matrix A
representing A is a diagonal matrix:

A =




λ1

λ2

. . .

λN


 ,

where not all of the λi need be distinct. In this basis we can compute the
trace and the determinant very easily. We see that

tr(A) = λ1 + λ2 + · · ·+ λN =
N∑

i=1

λi

det(A) = λ1λ2 · · ·λN =
N∏

i=1

λi .

Therefore the trace is the sum of the eigenvalues and the determinant is
their product. This is independent of the basis, since both the trace and the
determinant are invariants.

� This has a very interesting consequence. Consider the identity:

NY

i=1

exp(λi) = exp

 
NX

i=1

λi

!
.
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We can interpret this identity as an identity involving the diagonal matrix A:

det (exp(A)) = exp (tr(A)) ,

where the exponential of a matrix is defined via its Taylor series expansion:

exp(A) = I + A + 1
2
A2 + 1

3!
A3 + · · · =

∞X

n=1

1
n!

An ,

so that for a diagonal matrix, it is simply the exponential of its diagonal entries. Now
notice that under a change of basis given by A 7→ A′, where A′ is given by equation (1.24),

exp(A′) =
∞X

n=1

1
n!

(A′)n

=
∞X

n=1

1
n!

(S−1 AS)n (by equation (1.24))

=
∞X

n=1

1
n!

S−1 An S

= S−1 exp(A)S ;

whence because the trace and determinant are invariants

det
�
exp(A′)

�
= exp

�
tr(A′)

�
.

Hence this equation is still true for diagonalisable matrices. In fact, it follows from the
fact (see next section) that diagonalisable matrices are dense in the space of matrices, that
this identity is true for arbitrary matrices:

det (exp(A)) = exp (tr(A)) . (1.54)

This is an extremely useful formula, particularly in quantum field theory and statistical
mechanics, where it is usually applied to define the determinant of infinite-dimensional
matrices.

1.4.2 Diagonalisability

Throughout this section V is an N -dimensional complex vector space.
It turns out that not every linear transformation is diagonalisable, but

many of the interesting ones in physics will be. In this section, which lies
somewhat outside the main scope of this course, we will state the condition
for a linear transformation to be diagonalisable.

Fix a basis for V and let A be the matrix representing A relative to this
basis. Let us define the following polynomial

χA(t) = det (A− t I) , (1.55)
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known as the characteristic polynomial of the matrix A. Under a change of
basis, the matrix A changes to the matrix A′ given by equation (1.24). The
characteristic polynomial of the transformed matrix A′ is given by

χA′(t) = det (A′ − t I)

= det
(
S−1 A S− tI

)
(by equation (1.24))

= det
(
S−1 (A− tI) S

)
(since S−1 I S = I)

= det
(
S−1

)
det (A− t I) det (S) (by equation (1.18))

=
1

det (S)
χA(t) det (S)

= χA(t) .

In other words, the characteristic polynomial is a matrix invariant and hence
is a property of the linear transformation A. We will therefore define the
characteristic polynomial χA(t) of a linear transformation A : V→ V as the
polynomial χA(t) of the matrix which represents it relative to any basis. By
the above calculation it does not depend on the basis.

The characteristic polynomial is a polynomial of order N where N is the
complex dimension of V. Its highest order term is of the form (−1)N tN and
its zeroth order term is the determinant of A, as can be seen by evaluating
χA(t) at t = 0. In other words,

χA(t) = det(A) + · · ·+ (−1)N tN .

Equation (1.53) implies that every eigenvalue λ of A is a root of its char-
acteristic polynomial: χA(λ) = 0. Conversely it is possible to prove that
every root of the characteristic polynomial is an eigenvalue of A; although
the multiplicities need not correspond: the multiplicity of the eigenvalue is
never larger than that of the root.

This gives a method to compute the eigenvalues and eigenvectors of a
linear transformation A. We simply choose a basis and find the matrix A
representing A. We compute its characteristic polynomial and find its roots.
For each root λ we solve the system of linear homogeneous equations:

(A− λ I) v = 0 .

This approach rests on the following general fact, known as the Funda-
mental Theorem of Algebra: every complex polynomial has a root. In fact,
any complex polynomial of order N has N roots counted with multiplic-
ity. In particular, the characteristic polynomial factorises into a product of
monomials:

P (t) = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,
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where all the λi are distinct and where mi ≥ 1 are positive integers. Clearly
each λi is a root and mi is its multiplicity. Each λi is also an eigenvalue of
A, but mi is not necessarily the multiplicity of the eigenvalue λi. Consider
the matrix

A =

(
1 a
0 1

)
,

where a 6= 0 is any complex number. Its characteristic polynomial is given
by

χA(t) = det(A− t I) =

∥∥∥∥
1− t a

0 1− t

∥∥∥∥ = (1− t)2 = 1− 2t + t2 .

Hence the only root of this polynomial is 1 with multiplicity 2. The number
1 is also an eigenvalue of A. For example, an eigenvector v is given by

v =

(
1
0

)
.

However, the multiplicity of the eigenvalue 1 is only 1. Indeed, if it were 2,
this would mean that there are two linearly independent eigenvectors with
eigenvalue 1. These eigenvectors would then form a basis, relative to which
A would be the identity matrix. But if A = I relative to some basis, A′ = I
relative to any other basis, since the identity matrix is invariant under change
of basis. This violates the explicit expression for A above.

A result known as the Cayley–Hamilton Theorem states that any matrix
A satisfies the following polynomial equation:

χA(A) = 0 ,

where 0 means the matrix all of whose entries are zero, and where a scalar
a is replaced by the scalar matrix a I. For example, consider the matrix A
above:

χA(A) = I− 2A + A2

=

(
1 0
0 1

)
− 2

(
1 a
0 1

)
+

(
1 a
0 1

)2

=

(
1 0
0 1

)
−

(
2 2a
0 2

)
+

(
1 2a
0 1

)

=

(
0 0
0 0

)
.

The Cayley–Hamilton theorem shows that any N × N matrix obeys an
N -th order polynomial equation. However in some cases an N × N matrix
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A obeys a polynomial equation of smaller order. The polynomial µA(t) of
smallest order such that

µA(A) = 0 ,

is called the minimal polynomial of the matrix A. One can show that the
minimal polynomial divides the characteristic polynomial. In fact, if the
characteristic polynomial has the factorisation

χA(t) = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,

the minimal polynomial has the factorisation

µA(t) = (λ1 − t)n1(λ2 − t)n2 · · · (λk − t)nk ,

where 1 ≤ ni ≤ mi. The main result in this topic is that a matrix A is diag-
onalisable if and only if all ni = 1. For the non-diagonalisable matrix above,
we see that its characteristic polynomial equals its minimal polynomial, since
A 6= I.

In particular this shows that if all eigenvalues of a linear transformation
are non-degenerate, then the linear transformation is diagonalisable. Given
any matrix, one need only perturb it infinitesimally to lift any degeneracy its
eigenvalues might have. This then implies that the diagonalisable matrices
are dense in the space of matrices; that is, infinitesimally close to any non-
diagonalisable matrix there is one which is diagonalisable. This is key to
proving many identities involving matrices. If an identity of the form f(A) =
0 holds for diagonalisable matrices then it holds for any matrix provided that
f is a continuous function.

Computing the minimal polynomial of a linear transformation is not an
easy task, hence it is in practice not very easy to decide whether or not a
given linear transformation is diagonalisable. Luckily large classes of linear
transformations can be shown to be diagonalisable, as we will now discuss.

1.4.3 Spectral theorem for hermitian transformations

Throughout this section V is an N -dimensional complex vector space with a
hermitian inner product 〈·, ·〉.

Let A : V → V be a hermitian linear transformation: A† = A. We will
show that it is diagonalisable. As a corollary we will see that unitary trans-
formations U : V→ V such that U † ◦U = U ◦U † = 1 are also diagonalisable.
These results are known as the spectral theorems for hermitian and unitary
transformations.

We will first need to show two key results about the eigenvalues and eigen-
vectors of a hermitian transformation. First we will show that the eigenvalues
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of a hermitian transformation are real. Let v be an eigenvector of A with
eigenvalue λ. Then on the one hand,

〈A(v),v〉 = 〈λ v,v〉
= λ∗ 〈v,v〉 ; (by sesquilinearity)

whereas on the other hand,

〈A(v), v〉 = 〈v, A†(v)〉 (by equation (1.41))

= 〈v, A(v)〉 (since A is hermitian)

= 〈v, λ v〉
= λ 〈v, v〉 . (by HIP2)

Hence,
(λ− λ∗) ‖v‖2 = 0 .

Since v 6= 0, HIP3 implies that ‖v‖2 6= 0, whence λ = λ∗.
The second result is that eigenvectors corresponding to different eigenval-

ues are orthogonal. Let v and w be eigenvectors with distinct eigenvalues λ
and µ, respectively. Then on the one hand,

〈A(v), w〉 = 〈λ v,w〉
= λ 〈v,w〉 . (since λ is real)

On the other hand,

〈A(v),w〉 = 〈v, A†(w)〉 (by equation (1.41))

= 〈v, A(w)〉 (since A is hermitian)

= 〈v, µ w〉
= µ〈v,w〉 . (by HIP2)

Hence,
(λ− µ)〈v,w〉 ,

whence if λ 6= µ, v ⊥ w.
Now we need a basic fact: every hermitian transformation has at least

one eigenvalue.

� This can be shown using variational calculus. Consider the expression

f(v) ≡ 〈v, A(v)〉 .
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We claim that f(v) is a real number:

f(v)∗ = 〈v, A(v)〉∗
= 〈A(v), v〉 (by HIP1)

= 〈v, A†(v)〉 (by equation (1.41))

= 〈v, A(v)〉 (since A is hermitian)

= f(v) .

Therefore f defines a continuous quadratic function from V to the real numbers. We would
like to extremise this function. Clearly,

f(α v) = |α|2f(v) ,

and this means that by rescaling v we can make f(v) be as large or as small as we want.
This is not the type of extremisation that we are interested: we want to see in which
direction is f(v) extremal. One way to do this is to restrict ourselves to vectors such that
‖v‖2 = 1. This can be imposed using a Lagrange multiplier λ. Extremising f(v) subject
to the constraint ‖v‖2 = 1, can be done by extremising the expression

I(v, λ) = f(v)− λ (‖v‖2 − 1) .

The variation of I yields the following expression:

δI = 2 〈δv, (A− λ I) v〉 − δλ (‖v‖2 − 1) .

Therefore the variational equations are ‖v‖2 = 1 and

A v = λ v ,

where we have used the non-degeneracy of the inner product and the fact that we want
δI = 0 for all δλ and δv. Therefore this says that the extrema of I are the pairs (v, λ)
where v is a normalised eigenvalue of A with eigenvalue λ. The function I(v, λ) takes the
value I(v, λ) = λ at such a pair; whence the maxima and minima correspond to the largest
and smallest eigenvalues. It remains to argue that the variational problem has solution.
This follows from the compactness of the space of normalised vectors, which is the unit
sphere in V. The function f(v) is continuous on the unit sphere and hence attains its
maxima and minima in it.

We are now ready to prove the spectral theorem. We will first assume
that the eigenvalues are non-degenerate, for ease of exposition and then we
will relax this hypothesis and prove the general result.

Let v1 be a normalised eigenvector of A with eigenvalue λ1. It exists
from the above discussion and it is the only such eigenvector, up to scalar
multiplication, by the non-degeneracy hypothesis. The eigenvalue is real as
we saw above. Choose vectors {e2, e3, . . .} such that {v1, e2, . . .} is a basis
for V and apply the Gram–Schmidt procedure if necessary so that it is a
unitary basis. Let us look at the matrix A of A in such a basis. Because e1

is an eigenvector, one has

〈A(v1), ej〉 = 〈λ1 v1, ej〉 = λ1 〈v1, ej〉 = 0 ,
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and similarly

〈A(ej),v1〉 = 〈ej, A(v1)〉 = 〈ej, λ1 v1〉 = λ1 〈ej,v1〉 = 0 .

Moreover
〈v1, A(v1)〉 = 〈v1, λ1 v1〉 = λ1 ‖e1‖2 = λ1 .

This means that the matrix takes the form



λ1 0 · · · 0
0 A22 · · · A2N
...

...
. . .

...
0 AN2 · · · ANN


 . (1.56)

The submatrix 


A22 · · · A2N
...

. . .
...

AN2 · · · ANN


 ,

is still hermitian, since for i, j = 2, . . . , N ,

Aij = 〈ei, A(ej)〉 = 〈A(ej), ei〉∗ = 〈ej, A(ei)〉∗ = A∗
ji .

Now we can apply the procedure again to this (N − 1)× (N − 1) matrix:
we find a normalised eigenvector v2, which by assumption corresponds to
a non-degenerate eigenvalue λ2. Starting with this eigenvector we build a
unitary basis {v2, e

′
3, . . .} for the (N − 1)-dimensional subspace spanned by

the {e2, e3, . . .}. The submatrix A(N−1) then takes the form analogous to the
one in equation (1.56), leaving an (N−2)×(N−2) submatrix which is again
still hermitian. We can apply the same procedure to this smaller matrix, and
so on until we are left with a 1×1 hermitian matrix, i.e., a real number: λN .
The basis {vi} formed by the eigenvectors is clearly unitary, since each vi

is normalised by definition and is orthogonal to the preceding {vj<i} by the
way they were constructed. The matrix of A relative to this basis is then

A =




λ1

λ2

. . .

λN


 ,

with real eigenvalues λi.
The case with degenerate eigenvalues works along similar lines. We start

with an eigenvalue λ1 and consider the eigenspace Vλ1 . It may be that the
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dimension m1 of Vλ1 is larger than 1. In any case, every vector in Vλ1 is an
eigenvector of A. Use Gram–Schmidt to find a unitary basis {v1,v2, . . . , vm1}
for Vλ1 . Complete this basis to a unitary basis {v1, . . . , vm1 , em1+1, . . . , eN}
for V, which can be done using Gram–Schmidt if necessary again. The matrix
A representing A in this basis is given by

A =







λ1

. . .

λ1







Am1+1,m1+1 · · · Am1+1,N
...

. . .
...

AN,m1+1 · · · ANN







,

where the off-diagonal blocks have vanishing entries because

〈ei, A(vj)〉 = λ1 〈ei,vj〉 = 0 .

The submatrix 


Am1+1,m1+1 · · · Am1+1,N
...

. . .
...

AN,m1+1 · · · ANN




is again hermitian, so we can apply the procedure again to it, until we are
left with a basis {vi} of eigenvectors of A, so that the matrix is diagonal.

In summary, suppose that we start with a hermitian matrix A, thought
of as the matrix of a hermitian linear transformation A relative to a unitary
basis. Then the above iterative procedure produces a unitary basis relative
to which the matrix for A is diagonal. Because the initial and final basis
are unitary, the change of basis transformation U is unitary. In other words,
given a hermitian matrix A there is a unitary matrix U such that

A′ = U−1 A U = (U∗)t A U

is diagonal. In other words,

Every hermitian matrix can be diagonalised by a unitary transformation.

In fact the unitary matrix U above can be written down explicitly in
terms of the normalised eigenvectors of A. Let {vi} be a set of normalised
eigenvectors which are mutually orthogonal. This is guaranteed if they have
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different eigenvalues, and in the case of degenerate eigenvalues by Gram–
Schmidt. Consider the matrix

U =



↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓


 .

We claim first of all that U is unitary. Indeed,

(U∗)t =




← (v∗1)
t →

← (v∗2)
t →

...
...

...
← (v∗N)t →


 .

Hence

(U∗)t U =




← (v∗1)
t →

← (v∗2)
t →

...
...

...
← (v∗N)t →






↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓




=


 (v∗i )

tvj




= I ,

since the {vi} form a unitary basis. Moreover, paying attention to the way
matrix multiplication is defined and using that the {vi} are eigenvectors of
A, we find

A U =




↑ ↑ · · · ↑
λ1 v1 λ2 v2 · · · λN vN

↓ ↓ · · · ↓




=



↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓







λ1

λ2

. . .

λN




= U A′ .

In other words, A′ = U−1 A U just as above.
There is a real version of this result: if A is real and symmetric, then it

is hermitian. We can diagonalise it with a unitary transformation, which is
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also real, whence it is orthogonal. This then yields the spectral theorem for
symmetric real matrices, which says that any real symmetric matrix can be
diagonalised by an orthogonal transformation.

We can now understand the positive-definiteness condition on the matrix
representing a inner product on a vector space. We saw in Section 1.3.1 that
the matrix G of an inner product in a real vector space is symmetric. Hence it
can be diagonalised by an orthogonal transformation. From equation (1.35),
it follows that there is a basis relative to which the matrix of the inner product
is diagonal. Let {ei} be such a basis and let 〈ei, ej〉 = λi δij. If v =

∑
i viei

is any vector, then

‖v‖2 = 〈v,v〉 =
∑

i

λiv
2
i .

Axiom IP3 says that this quantity has to be positive for all nonzero vectors
v, which clearly implies that λi > 0 for all i. Therefore a symmetric matrix
is positive definite if and only if all its eigenvalues are positive. A similar
statement also holds for hermitian inner products, whose proof is left as an
exercise.

� It is not just hermitian matrices that can be diagonalised by unitary transformations. Let
us say that a linear transformation N is normal if it commutes with its adjoint

N† ◦N = N ◦N† . (1.57)

Then it can be proven that a N is diagonalisable by a unitary transformation. As an
example consider the 3× 3 matrix

P =

0
@

0 1 0
0 0 1
1 0 0

1
A

considered in the Exercises. We saw that it was diagonalisable by a unitary transformation,
yet it is clearly not hermitian. Nevertheless it is easy to check that it is normal. Indeed,

(P∗)t =

0
@

0 0 1
1 0 0
0 1 0

1
A ,

so that
P (P∗)t = (P∗)t P = I ;

in other words, it is unitary.

It follows from the spectral theorem for hermitian transformations that
unitary transformations can also be diagonalised by unitary transformations.
This is known as the Cayley transformation, which is discussed in detail in
the Problems. It follows from the Cayley transformation that the eigenvalues
of a unitary matrix take values in the unit circle in the complex plane. This
can also be seen directly as follows. Let U be a unitary transformation and
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let v be an eigenvector with eigenvalue λ. Then consider ‖U(v)‖2. Because
U is unitary,

‖U(v)‖2 = ‖v‖2 ,

but because v is an eigenvector,

‖U(v)‖2 = ‖λ v‖2 = |λ|2 ‖v‖2 ,

whence |λ|2 = 1.
Spectral theorems are extremely powerful in many areas of physics and

mathematics, and in the next sections we will discuss two such applications.
However the real power of the spectral theorem manifests itself in quantum
mechanics, although the version of the theorem used there is the one for
self-adjoint operators in an infinite-dimensional Hilbert space, which we will
not have the opportunity to discuss in this course.

1.4.4 Application: quadratic forms

In this section we discuss a mathematical application of the spectral theorem
for real symmetric transformations.

Let us start with the simplest case of a two-dimensional quadratic form.
By a quadratic form on two variables (x1, x2) we mean a quadratic polyno-
mial of the form

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 , (1.58)

for some real constants a, b, c. By a quadric we mean the solutions (x1, x2)
of an equation of the form

Q(x1, x2) = d ,

where d is some real number and Q is a quadratic form. For example, we
can take

Q1(x1, x2) = x2
1 + x2

2 ,

in which case the quadrics Q1(x1, x2) = d for d > 0 describe a circle of radius√
d in the plane coordinatised by (x1, x2). To investigate the type of quadric

that a quadratic form gives rise to, it is convenient to diagonalise it: that it,
change to coordinates (y1, y2) for which the mixed term y1 y2 in the quadratic
form is not present. To tie this to the spectral theorem, it is convenient to
rewrite this in terms of matrices. In terms of the column vector x = (x1, x2)

t,
the general two-dimensional quadratic form in equation (1.58) can be written
as

Q(x1, x2) = xt Q x ,

62



where Q is the matrix

Q =

(
a b
b c

)
.

Because Q is symmetric, it can be diagonalised by an orthogonal transfor-
mation which is built out of the normalised eigenvectors as was explained
in the previous section. Hence there is an orthogonal matrix O such that
Q = O D Ot, where D is a diagonal matrix with entries λi, for i = 1, 2. That
means that in terms of the new coordinates

y =

(
y1

y2

)
= Ot x ,

the quadratic form is diagonal

Q(y1, y2) = yt D y = λ1 y2
1 + λ2 y2

2 .

We can further rescale the coordinates {yi}: zi = µiyi, where µi is real. This
means that relative to the new coordinates zi, the quadratic form takes the
form

Q(z1, z2) = ε1z
2
1 + ε2 y2

2 ,

where εi are 0,±1.
We can distinguish three types of quadrics, depending on the relative

signs of the eigenvalues:

1. (ε1ε2 = 1) In this case the eigenvalues have the same sign and the
quadric is an ellipse.

2. (ε1ε2 = −1) In this case the eigenvalues have different sign and the
quadric is a hyperbola.

3. (ε1ε2 = 0) In this case one of the eigenvalues is zero, and the quadric
consists of a pair of lines.

The general case is not much more complicated. Let V be a real vector
space of dimension N with an inner product. By a quadratic form we mean
a symmetric bilinear form Q : V×V→ R. In other words, Q satisfies axioms
IP1 and IP2 of an inner product, but IP3 need not be satisfied. Associated
to every quadratic form there is a linear transformation in V, which we also
denote Q, defined as follows

〈v, Q(w)〉 = Q(v,w) .
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Symmetry of the bilinear form implies that the linear transformation Q is
also symmetric:

〈v, Q(w)〉 = Q(v, w) = Q(w,v) = 〈w, Q(v)〉 = 〈Q(v),w〉 .

Hence it can be diagonalised by an orthogonal transformation. Relative to
an orthonormal basis {ei} for V, Q is represented by a symmetric matrix Q.
Let O be an orthogonal matrix which diagonalises Q; that is, Q = O D Ot,
with D diagonal.

We can further change basis to an orthogonal basis whose elements are
however no longer normalised, in such a way that the resulting matrix D′

is still diagonal with all its entries either ±1 or 0. Let (n+, n−, n0) denote,
respectively, the number of positive, negative and zero diagonal entries of D′.
There is a result, known as Sylvester’s Law of Inertia, which says that the
numbers (n+, n−, n0) are an invariant of the quadratic form, so that they can
be computed from the matrix of the quadratic form relative to any basis.
A quadratic form is said to be non-degenerate if n0 = 0. It is said to be
positive-definite if n− = n0 = 0, and negative-definite if n+ = n0 = 0.
Clearly a quadratic form is an inner product when it is positive-definite. A
non-degenerate quadratic form, which is not necessarily positive- or negative-
definite, defines a generalised inner product on V. There are two integers
which characterise a non-degenerate quadratic form: the dimension N of
the vector space, and the signature n+ − n−. Notice that if the signa-
ture is bounded above by the dimension: the bound being saturated when
the quadratic form is positive-definite. There are plenty of interesting non-
degenerate quadratic forms which are not positive-definite. For example,
Minkowski spacetime in the theory of special relativity possesses a quadratic
form with dimension 4 and signature 2.

1.4.5 Application: normal modes

This section discusses the powerful method of normal modes to decouple
interacting mechanical systems near equilibrium. It is perhaps not too exag-
gerated to suggest that theoretical physicists spend a large part of their lives
studying the problem of normal modes in one way or another.

We start with a simple example.
Consider an idealised one-dimensional mechanical sys-k k k

m m tem consisting of two point masses each of mass m con-
nected by springs to each other and to two fixed ends. We

will neglect gravity, friction and the mass of the springs. The springs obey
Hooke’s law with spring constant k. We assume that the system is at equilib-
rium when the springs are relaxed, and we want to study the system around
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equilibrium; that is, we wish to study small displacements of the masses. We
let xi for i = 1, 2 denote the displacements from equilibrium for each of the
two point masses, as shown below.

- -x1 x2

Then the potential energy due to the springs is the sum of the potential
energies of each of the springs:

V = 1
2
k x2

1 + 1
2
k (x2 − x1)

2 + 1
2
k x2

2

= k
(
x2

1 + x2
2 − x1x2

)
.

The kinetic energy is given by

T = 1
2
mẋ2

1 + 1
2
mẋ2

2 .

The equations of motion are then, for i = 1, 2,

d

dt

∂T

∂ẋi

= −∂V

∂xi

.

Explicitly, we have the following coupled system of second order ordinary
differential equations:

mẍ1 = −2kx1 + kx2

mẍ2 = −2kx2 + kx1 .

Let us write this in matrix form. We introduce a column vector xt = (x1, x2).
Then the above system of equations becomes

ẍ = −ω2 K x , (1.59)

where K is the matrix

K =

(
2 −1

−1 2

)
,

and where we have introduced the notation

ω ≡
√

k

m
.
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Notice that K is symmetric, hence it can be diagonalised by an orthogonal
transformation. Let us find its eigenvalues and its eigenvectors. The charac-
teristic polynomial of K is given by

χK(λ) =

∥∥∥∥
2− λ −1
−1 2− λ

∥∥∥∥ = (2− λ)2 − 1 = (λ− 1)(λ− 3) ,

from which it follows that it has as roots λ = 1, 3. The normalised eigenvec-
tors corresponding to these eigenvalues are

v1 =
1√
2

(
1
1

)
, and v3 =

1√
2

(
1

−1

)
,

respectively. We build the following matrix O out of the normalised eigen-
vectors

O =
1√
2

(
1 1
1 −1

)
.

One can check that O is orthogonal: Ot = O−1. One can also check that

K = O D Ot ,

where D is the diagonal matrix

D =

(
1 0
0 3

)
.

Inserting this expression into equation (1.59), we see that

ẍ = −ω2O D Ot x .

In terms of the new variables

y =

(
y1

y2

)
= Ot x ,

the equation of motion (1.59) becomes

ÿ = −ω2 D y . (1.60)

Because the matrix D is diagonal, the equations of motion for the new vari-
ables yi are now decoupled:

ÿ1 = −ω2y1 and ÿ2 = −3ω2y2 .
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One can now easily solve these equations,

y1(t) = A1 cos(ω1 t + ϕ1)

y2(t) = A2 cos(ω2 t + ϕ2) ,

where ω1 = ω, ω2 =
√

3 ω and Ai and ϕi are constants to be determined from
the initial conditions. The physical variables in the original problem are the
displacements xi of each of the point masses. They can be found in terms of
the new decoupled variables yi simply by inverting the change of variables
(1.60). Explicitly,

x1(t) =
A1√

2
cos(ω1t + ϕ1) +

A2√
2

cos(ω2t + ϕ2)

x2(t) =
A1√

2
cos(ω1t + ϕ1)− A2√

2
cos(ω2t + ϕ2) .

Variables like the yi which decouple the equations of motion are called
the normal modes of the mechanical system. Their virtue is that they
reduce an interacting (i.e., coupled) mechanical system around equilibrium
to a set of independent free oscillators. Each of these free oscillators are
mathematical constructs: the normal modes do not generally correspond to
the motion of any of the masses in the original system, but they nevertheless
possess a certain “physicality” and it is fruitful to work with them as if they
were physical. The original physical variables can then be understood as
linear combinations of the normal modes as we saw above. The frequencies
ωi of the normal modes are known as the characteristic frequencies of the
mechanical system. In particle physics, for example, the elementary particles
are the normal modes and their masses are the characteristic frequencies.

To illustrate the simplification in the dynamics which results from con-
sidering the normal modes, in Figure 1.1 we have sketched the motion of the
two masses in the problem and of the two normal modes, with time running
horizontally to the right.

Notice also that although the motion of each of the normal modes is
periodic, the system as a whole is not. This is due to the fact that the
characteristic frequencies are not rational multiples of each other.

� Let us see this. Suppose that we have to oscillators with frequencies ω1 and ω2. That
means that the oscillators are periodic with periods T1 = 2π/ω1 and T2 = 2π/ω2. The
combined system will be periodic provided that N1T1 = N2T2 for some integers Ni. But
this means that

ω1

ω2
=

N1

N2
,

which is a rational number. In the problem treated above, the ratio

ω1

ω2
=

1√
3

=

√
3

3
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(a) Point masses (b) Normal modes

Figure 1.1: Dynamics of point masses and normal modes.

is irrational. Therefore the motion is aperiodic.

If we were to plot the trajectory of the system in the plane, with the
trajectory of one of the point masses along the x-axis and the trajectory of
the other point mass along the y-axis, we see that the orbit never repeats,
and that we end up filling up the available configuration space. In Figure
1.2 we have plotted the cumulative trajectory of the system after letting it
run for T units of time, for different values of T . As you can see, as T grows
the system has visited more and more points in the available configuration
space. Asymptotically, as T → ∞, the system will have visited the whole
available space.

1.4.6 Application: near equilibrium dynamics

In this section we will consider a more general mechanical system near equi-
librium. Throughout the section V will be a real finite-dimensional vector
space with an inner product.

Consider a mechanical system whose configuration space is V. For ex-
ample, it could be a system of n point particles in d dimensions, and then
V would be an (nd)-dimensional vector space. In the previous section we
discussed the case of a one-dimensional system consisting of two point par-
ticles, so that V was two-dimensional. In the Problems we looked at systems
with three-dimensional V. In this section we are letting V be arbitrary but
finite-dimensional.

The potential energy is given by a function V : V→ R. The configurations
of mechanical equilibrium are those for which the gradient of the potential
vanishes. Hence let us consider one such equilibrium configuration q0 ∈ V:

∇V |q0
= 0 .
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(a) T = 10 (b) T = 20 (c) T = 30

(d) T = 50 (e) T = 100 (f) T = 300

Figure 1.2: Trajectory of the mechanical system at different times.

Because the potential energy is only defined up to an additive constant, we
are free to choose it such that V (q0) = 0. We can therefore expand the
potential function V about q0 and the first contribution will be quadratic:

V (q) = V (q0) + 〈∇V |q0
, q − q0〉+ 1

2
〈q − q0, H(q − q0)〉+ · · ·

= 1
2
〈q − q0, H(q − q0)〉 ,

where H : V→ V is a symmetric linear transformation known as the Hessian
of V at q0. Explicitly, if we choose an orthonormal basis {ei} for V, then
let q =

∑
i qiei define some coordinates qi for the configuration space. Then

relative to this basis the Hessian of V has matrix elements

Hij = 〈ei, H(ej)〉 =
∂2V

∂qi∂qj

∣∣∣∣
q0

,

which shows manifestly that it is symmetric: Hij = Hji. Let us define
x = q − q0 to be the displacements about equilibrium. These will be our
dynamical variables. The potential energy in the quadratic approximation is
given by

V = 1
2
〈x, H(x)〉 .

69



We will make the assumption that the kinetic energy is quadratic in the
velocities ẋ:

T = 1
2
〈ẋ, M(ẋ)〉 ,

where the mass matrix M is assumed to be symmetric and positive-definite;
that is, all its eigenvalues are positive.

We will now analyse the dynamics of small displacements from equilib-
rium following the following prescription:

1. we will standardise the kinetic energy by diagonalising and normalising
the mass matrix; and

2. we will then diagonalise the potential energy and solve for the normal
modes and characteristic frequencies of this system.

Both steps make use of the spectral theorem for symmetric transforma-
tions. To do the first step notice that relative to an orthonormal basis {ei}
for V, x =

∑
i xiei and we can form a column vector

x =




x1

x2
...

xN




out of the components of x. Relative to this basis, the mass matrix M and
the Hessian H have matrices M and H, respectively. By assumption both are
symmetric, and M is in addition positive-definite. The kinetic and potential
energies become

T = 1
2
ẋt M ẋ and V = 1

2
xt H x .

Because M is symmetric, there is an orthogonal matrix O1 such that
M′ = Ot

1 M O1 is diagonal with positive entries. Let D1 be the diagonal
matrix whose entries are the (positive) square roots of the diagonal entries
of M′. In other words, M′ = D2

1. We can therefore write

M = O1 D2
1 Ot

1 = (O1 D1) (O1 D1)
t ,

where we have used that Dt
1 = D1 since it is diagonal. Introduce then the

following variables
y = (O1 D1)

t x = D1 Ot
1 x .

We can invert this change of variables as follows:

x = O1 D−1
1 y ,
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where we have used that O1 is orthogonal, so that Ot
1 = O−1

1 . This change of
variables accomplishes the first step outlined above, since in terms of y, the
kinetic energy becomes simply

T = 1
2
ẏt ẏ = 1

2
‖ẏ‖2 .

Similarly, the potential energy has become

V = 1
2
yt K y ,

where the matrix K is defined by

K = D−1
1 Ot

1 H O1 D−1
1 ,

which is clearly symmetric since H and D1 are. Therefore we can find a
second orthogonal matrix O2 such that Ot

2 K O2 is diagonal; call this matrix
D. Let us define a new set of variables

z = Ot
2 y ,

relative to which the kinetic energy remains simple

T = 1
2
‖O2 z‖2 = 1

2
‖z‖2 ,

since orthogonal matrices preserve norms, and the potential energy diago-
nalises

V = 1
2
zt D z .

Because D is diagonal, the equations of motion of the z are decoupled:

z̈ = −D z ,

whence the z are the normal modes of the system. Let D have entries

D =




λ1

λ2

. . .

λN


 ,

Then the equations of motion for the normal modes are

z̈i = −λi zi .

We can distinguish three types of solutions:
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1. (λi > 0) The solution is oscillatory with characteristic frequency ωi =√
λi:

zi(t) = Ai cos(ωi t + ϕi) .

2. (λi = 0) The solution is linear

zi(t) = ai + bi t .

Such a normal mode is said to be a zero mode, since it has zero
characteristic frequency.

3. (λi < 0) The solution is exponential

zi(t) = Ai exp
(√

|λi|t
)

+ Bi exp
(
−

√
|λi|t

)
.

If all eigenvalues λi are positive the equilibrium point is said to be stable,
if they are all non-negative then it is semi-stable, whereas if there is a nega-
tive eigenvalue, then the equilibrium is unstable. The signs of the eigenvalues
of the matrix D agree with the sign of the eigenvalues of the Hessian matrix
of the potential at the equilibrium point. The different types of equilibria are
illustrated in Figure 1.3, which shows the behaviour of the potential function
around an equilibrium point in the simple case of a two-dimensional configu-
ration space V. The existence of zero modes is symptomatic of flat directions
in the potential along which the system can evolve without spending any en-
ergy. This usually signals the existence of some continuous symmetry in the
system. In the Figure we see that the semi-stable equilibrium point indeed
has a flat direction along which the potential is constant. In other words,
translation along the flat direction is a symmetry of the potential function.

(a) stable (b) semi-stable (c) unstable

Figure 1.3: Different types of equilibrium points.
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Chapter 2

Complex Analysis

In this part of the course we will study some basic complex analysis. This is
an extremely useful and beautiful part of mathematics and forms the basis
of many techniques employed in many branches of mathematics and physics.
We will extend the notions of derivatives and integrals, familiar from calculus,
to the case of complex functions of a complex variable. In so doing we will
come across analytic functions, which form the centerpiece of this part of the
course. In fact, to a large extent complex analysis is the study of analytic
functions. After a brief review of complex numbers as points in the complex
plane, we will first discuss analyticity and give plenty of examples of analytic
functions. We will then discuss complex integration, culminating with the
generalised Cauchy Integral Formula, and some of its applications. We then
go on to discuss the power series representations of analytic functions and
the residue calculus, which will allow us to compute many real integrals and
infinite sums very easily via complex integration.

2.1 Analytic functions

In this section we will study complex functions of a complex variable. We
will see that differentiability of such a function is a non-trivial property,
giving rise to the concept of an analytic function. We will then study many
examples of analytic functions. In fact, the construction of analytic functions
will form a basic leitmotif for this part of the course.

2.1.1 The complex plane

We already discussed complex numbers briefly in Section 1.3.5. The emphasis
in that section was on the algebraic properties of complex numbers, and
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although these properties are of course important here as well and will be
used all the time, we are now also interested in more geometric properties of
the complex numbers.

The set C of complex numbers is naturally identified with the plane R2.
This is often called the Argand plane.

Given a complex number z = x+i y, its real and imag- 6

-

z = x + iy
y

x

7
inary parts define an element (x, y) of R2, as shown in
the figure. In fact this identification is one of real vec-
tor spaces, in the sense that adding complex numbers
and multiplying them with real scalars mimic the simi-
lar operations one can do in R2. Indeed, if α ∈ R is real,
then to α z = (α x) + i (α y) there corresponds the pair
(α x, α y) = α (x, y). Similarly, if z1 = x1 + i y1 and z2 = x2 + i y2 are com-
plex numbers, then z1 + z2 = (x1 + x2) + i (y1 + y2), whose associated pair
is (x1 + x2, y1 + y2) = (x1, y1) + (x2, y2). In fact, the identification is even
one of euclidean spaces. Given a complex number z = x + i y, its modulus
|z|, defined by |z|2 = zz∗, is given by

√
x2 + y2 which is precisely the norm

‖(x, y)‖ of the pair (x, y). Similarly, if z1 = x1 + i y1 and z2 = x2 + i y2,
then Re(z∗1z2) = x1x2 + y1y2 which is the dot product of the pairs (x1, y1)
and (x2, y2). In particular, it follows from these remarks and the triangle
inequality for the norm in R2, that complex numbers obey a version of the
triangle inequality:

|z1 + z2| ≤ |z1|+ |z2| . (2.1)

Polar form and the argument function

Points in the plane can also be represented using polar coordinates, and
this representation in turn translates into a representation of the complex
numbers.

Let (x, y) be a point in the plane. If we define r =

θ
r 7

z = reiθ √
x2 + y2 and θ by θ = arctan(y/x), then we can write

(x, y) = (r cos θ, r sin θ) = r (cos θ, sin θ). The complex
number z = x + i y can then be written as z = r (cos θ +
i sin θ). The real number r, as we have seen, is the modulus
|z| of z, and the complex number cos θ + i sin θ has unit
modulus. Comparing the Taylor series for the cosine and

sine functions and the exponential functions we notice that cos θ+i sin θ = eiθ.
The angle θ is called the argument of z and is written arg(z). Therefore we
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have the following polar form for a complex number z:

z = |z| ei arg(z) . (2.2)

Being an angle, the argument of a complex number is only defined up to the
addition of integer multiples of 2π. In other words, it is a multiple-valued
function. This ambiguity can be resolved by defining the principal value
Arg of the arg function to take values in the interval (−π, π]; that is, for any
complex number z, one has

−π < Arg(z) ≤ π . (2.3)

Notice, however, that Arg is not a continuous function: it has a discontinuity
along the negative real axis. Approaching a point on the negative real axis
from the upper half-plane, the principal value of its argument approaches π,
whereas if we approach it from the lower half-plane, the principal value of
its argument approaches −π. Notice finally that whereas the modulus is a
multiplicative function: |zw| = |z||w|, the argument is additive: arg(z1 z2) =
arg(z1) + arg(z2), provided that we understand the equation to hold up to
integer multiples of 2π. Also notice that whereas the modulus is invariant
under conjugation |z∗| = |z|, the argument changes sign arg(z∗) = − arg(z),
again up to integer multiples of 2π.

Some important subsets of the complex plane

We end this section with a brief discussion of some very important subsets
of the complex plane. Let z0 be any complex number, and consider all those
complex numbers z which are a distance at most ε away from z0. These
points form a disk of radius ε centred at z0. More precisely, let us define the
open ε-disk around z0 to be the subset Dε(z0) of the complex plane defined
by

Dε(z0) = {z ∈ C | |z − z0| < ε} . (2.4)

Similarly one defines the closed ε-disk around z0 to be the subset

D̄ε(z0) = {z ∈ C | |z − z0| ≤ ε} , (2.5)

which consists of the open ε-disk and the circle |z − z0| = ε which forms its
boundary. More generally a subset U ⊂ C of the complex plane is said to be
open if given any z ∈ U , there exists some positive real number ε > 0 (which
can depend on z) such that the open ε-disk around z also belongs to U . A set
C is said to be closed if its complement Cc = {z ∈ C | z 6∈ C}—that is, all

75



those points not in C—is open. One should keep in mind that generic subsets
of the complex plane are neither closed nor open. By a neighbourhood of a
point z0 in the complex plane, we will mean any open set containing z0. For
example, any open ε-disk around z0 is a neighbourhood of z0.

� Let us see that the open and closed ε-disks are indeed open and closed, respectively. Let
z ∈ Dε(z0). This means that |z− z0| = δ < ε. Consider the disk Dε−δ(z). We claim that
this disk is contained in Dε(z0). Indeed, if |w − z| < ε− δ then,

|w − z0| = |(w − z) + (z − z0)| (adding and subtracting z)

≤ |w − z|+ |z − z0| (by the triangle inequality (2.1))

< ε− δ + δ

= ε .

Therefore the disk Dε(z0) is indeed open. Consider now the subset D̄ε(z0). Its complement
is the subset of points z in the complex plane such that |z− z0| > ε. We will show that it
is an open set. Let z be such that |z− z0| = η > ε. Then consider the open disk Dη−ε(z),
and let w be a point in it. Then

|z − z0| = |(z − w) + (w − z0)| (adding and subtracting w)

≤ |z − w|+ |w − z0| . (by the triangle inequality (2.1))

We can rewrite this as

|w − z0| ≥ |z − z0| − |z − w|
> η − (η − ε) (since |z − w| = |w − z| < η − ε)

= ε .

Therefore the complement of D̄ε(z0) is open, whence D̄ε(z0) is closed.

We should remark that the closed disk D̄ε(z0) is not open, since any open disk around a
point z at the boundary of D̄ε(z0)—that is, for which |z− z0| = ε—contains points which
are not included in Dε(z0).

Notice that it follows from this definition that every open set is made out of the union of
(a possibly uncountable number of) open disks.

2.1.2 Complex-valued functions

In this section we will discuss complex-valued functions.
We start with a rather trivial case of a complex-valued function. Suppose

that f is a complex-valued function of a real variable. That means that if x is
a real number, f(x) is a complex number, which can be decomposed into its
real and imaginary parts: f(x) = u(x)+ i v(x), where u and v are real-valued
functions of a real variable; that is, the objects you are familiar with from
calculus. We say that f is continuous at x0 if u and v are continuous at x0.

� Let us recall the definition of continuity. Let f be a real-valued function of a real variable.
We say that f is continuous at x0, if for every ε > 0, there is a δ > 0 such that |f(x) −
f(x0)| < ε whenever |x − x0| < δ. A function is said to be continuous if it is continuous
at all points where it is defined.
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Now consider a complex-valued function f of a complex variable z. We
say that f is continuous at z0 if given any ε > 0, there exists a δ > 0 such
that |f(z)− f(z0)| < ε whenever |z − z0| < δ. Heuristically, another way of
saying that f is continuous at z0 is that f(z) tends to f(z0) as z approaches
z0. This is equivalent to the continuity of the real and imaginary parts of f
thought of as real-valued functions on the complex plane. Explicitly, if we
write f = u+ i v and z = x+ i y, u(x, y) and v(x, y) are real-valued functions
on the complex plane. Then the continuity of f at z0 = x0 + i y0 is equivalent
to the continuity of u and v at the point (x0, y0).

“Graphing” complex-valued functions

Complex-valued functions of a complex variable are harder to visualise than
their real analogues. To visualise a real function f : R → R, one simply
graphs the function: its graph being the curve y = f(x) in the (x, y)-plane.
A complex-valued function of a complex variable f : C → C maps complex
numbers to complex numbers, or equivalently points in the (x, y)-plane to
points in the (u, v) plane. Hence its graph defines a surface u = u(x, y) and
v = v(x, y) in the four-dimensional space with coordinates (x, y, u, v), which
is not so easy to visualise. Instead one resorts to investigating what the
function does to regions in the complex plane. Traditionally one considers
two planes: the z-plane whose points have coordinates (x, y) corresponding
to the real and imaginary parts of z = x + i y, and the w-plane whose points
have coordinates (u, v) corresponding to w = u + i v. Any complex-valued
function f of the complex variable z maps points in the z-plane to points
in the w-plane via w = f(z). A lot can be learned from a complex function
by analysing the image in the w-plane of certain sets in the z-plane. We
will have plenty of opportunities to use this throughout the course of these
lectures.

� With the picture of the z- and w-planes in mind, one can restate the continuity of a
function very simply in terms of open sets. In fact, this was the historical reason why the
notion of open sets was introduced in mathematics. As we saw, a complex-valued function
f of a complex variable z defines a mapping from the complex z-plane to the complex
w-plane. The function f is continuous at z0 if for every neighbourhood U of w0 = f(z0)
in the w-plane, the set

f−1(U) = {z | f(z) ∈ U}
is open in the z-plane. Checking that both definitions of continuity agree is left as an
exercise.

2.1.3 Differentiability and analyticity

Let us now discuss differentiation of complex-valued functions. Again, if f =
u + i v is a complex-valued function of a real variable x, then the derivative
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of f at the point x0 is defined by

f ′(x0) = u′(x0) + i v′(x0) ,

where u′ and v′ are the derivatives of u and v respectively. In other words,
we extend the operation of differentiation complex-linearly. There is nothing
novel here.

Differentiability and the Cauchy–Riemann equations

The situation is drastically different when we consider a complex-valued func-
tion f = u+i v of a complex variable z = x+i y. As is calculus, let us attempt
to define its derivative by

f ′(z0) ≡ lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
. (2.6)

The first thing that we notice is that ∆z, being a complex number, can
approach zero in more than one way. If we write ∆z = ∆x + i ∆y, then we
can approach zero along the real axis ∆y = 0 or along the imaginary axis
∆x = 0, or indeed along any direction. For the derivative to exist, the answer
should not depend on how ∆z tends to 0. Let us see what this entails. Let
us write f = u + i v and z0 = x0 + i y0, so that

f(z0) = u(x0, y0) + i v(x0, y0)

f(z0 + ∆z) = u(x0 + ∆x, y0 + ∆y) + i v(x0 + ∆x, y0 + ∆y) .

Then

f ′(z0) = lim
∆x→0
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y
,

where

∆u(x0, y0) = u(x0 + ∆x, y0 + ∆y)− u(x0, y0)

∆v(x0, y0) = v(x0 + ∆x, y0 + ∆y)− v(x0, y0) .

Let us first take the limit ∆z → 0 by first taking ∆y → 0 and then ∆x → 0;
in other words, we let ∆z → 0 along the real axis. Then

f ′(z0) = lim
∆x→0

lim
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y

= lim
∆x→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x

=
∂u

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

.
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Now let us take the limit ∆z → 0 by first taking ∆x → 0 and then ∆y → 0;
in other words, we let ∆z → 0 along the imaginary axis. Then

f ′(z0) = lim
∆y→0

lim
∆x→0

∆u(x0, y0) + i ∆v(x0, y0)

∆x + i∆y

= lim
∆y→0

∆u(x0, y0) + i ∆v(x0, y0)

i ∆y

= −i
∂u

∂y

∣∣∣∣
(x0,y0)

+
∂v

∂y

∣∣∣∣
(x0,y0)

.

These two expressions for f ′(z0) agree if and only if the following equations
are satisfied at (x0, y0):

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (2.7)

These equations are called the Cauchy–Riemann equations.
We say that the function f is differentiable at z0 if f ′(z0) is well-defined

at z0. For a differentiable function f we have just seen that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

We have just shown that a necessary condition for f to be differentiable at
z0 is that its real and imaginary parts obey the Cauchy–Riemann equations
at (x0, y0). Conversely, it can be shown that this condition is also sufficient
provided that the the partial derivatives of u and v are continuous.

We say that the function f is analytic in a neighbourhood U of z0 if it is
differentiable everywhere in U . We say that a function is entire if it is analytic
in the whole complex plane. Often the terms regular and holomorphic are
used as synonyms for analytic.

For example, the function f(z) = z is entire. We can check this either by
verifying the Cauchy–Riemann equations or else simply by noticing that

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

z0 + ∆z − z0

∆z

= lim
∆z→0

∆z

∆z
= lim

∆z→0
1

= 1 ;
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whence it is well-defined for all z0.
On the other hand, the function f(z) = z∗ is not differentiable anywhere:

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

z∗0 + (∆z)∗ − z∗0
∆z

= lim
∆z→0

(∆z)∗

∆z
;

whence if we let ∆z tend to zero along real values, we would find that f ′(z0) =
1, whereas if we would let ∆z tend to zero along imaginary values we would
find that f ′(z0) = −1. We could have reached the same conclusion via
the Cauchy–Riemann equations with u(x, y) = x and v(x, y) = −y, which
violates the first of the Cauchy–Riemann equations.

It is important to realise that analyticity, unlike differentiability, is not
a property of a function at a point, but on an open set of points. The
reason for this is to able to eliminate from the class of interesting functions,
functions which may be differentiable at a point but nowhere else. Whereas
this is a rarity in calculus1, it is a very common occurrence for complex-
valued functions of a complex variables. For example, consider the function
f(z) = |z|2. This function has u(x, y) = x2 + y2 and v(x, y) = 0. Therefore
the Cauchy–Riemann equations are only satisfied at the origin in the complex
plane:

∂u

∂x
= 2x =

∂v

∂y
= 0 and

∂v

∂x
= 0 = −∂u

∂y
= −2y .

Relation with harmonic functions

Analytic functions are intimately related to harmonic functions. We say that
a real-valued function h(x, y) on the plane is harmonic if it obeys Laplace’s
equation:

∂2h

∂x2
+

∂2h

∂y2
= 0 . (2.8)

In fact, as we now show, the real and imaginary parts of an analytic function
are harmonic. Let f = u + i v be analytic in some open set of the complex

1Try to come up with a real-valued function of a real variable which is differentiable
only at the origin, for example.
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plane. Then,

∂2u

∂x2
+

∂2u

∂y2
=

∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y

=
∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x
(using Cauchy–Riemann)

=
∂2v

∂x ∂y
− ∂2v

∂y ∂x

= 0 .

A similar calculation shows that v is also harmonic. This result is important
in applications because it shows that one can obtain solutions of a second
order partial differential equation by solving a system of first order partial
differential equations. It is particularly important in this case because we
will be able to obtain solutions of the Cauchy–Riemann equations without
really solving these equations.

Given a harmonic function u we say that another harmonic function v is
its harmonic conjugate if the complex-valued function f = u+i v is analytic.
For example, consider the function u(x, y) = xy−x+y. It is clearly harmonic
since

∂u

∂x
= y − 1 and

∂u

∂y
= x + 1 ,

whence
∂2u

∂x2
=

∂2u

∂y2
= 0 .

By a harmonic conjugate we mean any function v(x, y) which together with
u(x, y) satisfies the Cauchy–Riemann equations:

∂v

∂x
= −∂u

∂y
= −x− 1 and

∂v

∂y
=

∂u

∂x
= y − 1 .

We can integrate the first of the above equations, to obtain

v(x, y) = −1
2
x2 − x + ψ(y) ,

for ψ an arbitrary function of y which is to be determined from the second
of the Cauchy–Riemann equations. Doing this one finds

ψ′(y) = y − 1 ,

which is solved by ψ(y) = 1
2
y2 − y + c, where c is any constant. Therefore,

the function f = u + i v becomes

f(x, y) = xy − x + y + i (−1
2
x2 + 1

2
y2 − x− y + c) .
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We can try to write this down in terms of z and z∗ by making the substitutions
x = 1

2
(z + z∗) and y = −i 1

2
(z − z∗). After a little bit of algebra, we find

f(z) = −iz2 − (1 + i) z + i c .

Notice that all the z∗ dependence has dropped out. We will see below that
this is a sign of analyticity.

2.1.4 Polynomials and rational functions

We now start to build up some examples of analytic functions. We have
already seen that the function f(z) = z is entire. In this section we will
generalise this to show that so is any polynomial P (z). We will also see that
ratios of polynomials are also analytic everywhere but on a finite set of points
in the complex plane where the denominator vanishes.

There are many ways to do this, but one illuminating way is to show
that complex linear combinations of analytic functions are analytic and that
products of analytic functions are analytic functions. Let f(z) be an analytic
function on some open subset U ⊂ C, and let α be a complex number. Then
it is easy to see that the function α f(z) is also analytic on U . Indeed, from
the definition (2.6) of the derivative, we see that

(α f)′(z0) = α f ′(z0) , (2.9)

which exists whenever f ′(z0) exists.
Let f(z) and g(z) be analytic functions on the same open subset U ⊂ C.

Then the functions f(z) + g(z) and f(z)g(z) are also analytic. Again from
the definition (2.6) of the derivative,

(f + g)′(z0) = f ′(z0) + g′(z0) (2.10)

(f g)′(z0) = f ′(z0) g(z0) + f(z0) g′(z0) , (2.11)

which exist whenever f ′(z0) and g′(z0) exist.

� The only tricky bit in the above result is that we have to make sure that f and g are
analytic in the same open set U . Normally it happens that f and g are analytic in
different open sets, say, U1 and U2 respectively. Then the sum f(z) + g(z) and product
f(z) g(z) are analytic in the intersection U = U1 ∩ U2, which is also open. This is easy to
see. Let us assume that U is not empty, otherwise the statement is trivially satisfied. Let
z ∈ U . This means that z ∈ U1 and z ∈ U2. Because each Ui is open there are positive
real numbers εi such that Dεi (z) lies inside Ui. Let ε = min(ε1, ε2) be the smallest of the
εi. Then Dε(z) ⊆ Dεi (z) ⊂ Ui for i = 1, 2. Therefore Dε(z) ⊂ U , and U is open.

It is important to realise that only finite intersections of open sets will again be open in
general. Consider, for example, the open disks D1/n(0) of radius 1/n about the origin,
for n = 1, 2, 3, . . .. Their intersection consists of the points z with |z| < 1/n for all
n = 1, 2, 3, . . .. Clearly, if z 6= 0 then there will be some positive integer n for which
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|z| > 1/n. Therefore the only point in the intersection of all the D1/n(0) is the origin
itself. But this set is clearly not open, since it does not contain any open disk with nonzero
radius. More generally, sets consisting of a finite number of points are never open; although
they are closed.

Therefore we see that (finite) sums and products of analytic functions
are analytic with the same domain of analyticity. In particular, sums and
products of entire functions are again entire. As a result, from the fact
that the function f(z) = z is entire, we see that any polynomial P (z) =∑N

n=0 an zn of finite degree N is also an entire function. Indeed, its derivative
is given by

P ′(z0) =
N∑

n=1

n an zn−1
0 ,

as follows from the above formulae for the derivatives of sums and products.
We will see later on in the course that to some extent we will be able

to describe all analytic functions (at least locally) in terms of polynomials,
provided that we allow the polynomials to have arbitrarily high degree; in
other words, in terms of power series.

There are two more constructions which start from analytic functions and
yield an analytic function: quotients and composition. Let f(z) and g(z) be
analytic functions on some open subset U ⊂ C. Then the quotient f(z)/g(z)
is continuous away from the zeros of g(z), which can be shown (see below) to
be an open set. If g(z0) 6= 0, then from the definition of the derivative (2.6),
it follows that

(
f

g

)′
(z0) =

f ′(z0) g(z0)− f(z0) g′(z0)

g(z0)2
.

� To see that the subset of points z for which g(z) 6= 0 is open, we need only realise that
this set is the inverse image g−1({0}c) under g of the complement of 0. The result then
follows because the complement of 0 is open and g is continuous, so that g−1(open) is
open.

By a rational function we mean the ratio of two polynomials. Let P (z)
and Q(z) be two polynomials. Then the rational function

R(z) =
P (z)

Q(z)

is analytic away from the zeros of Q(z).

� We have been tacitly assuming that every (non-constant) polynomial Q(z) has zeros. This
result is known as the Fundamental Theorem of Algebra and although it is of course intu-
itive and in agreement with our daily experience with polynomials, its proof is surprisingly
difficult. There are three standard proofs: one is purely algebraic, but it is long and ar-
duous, one uses algebraic topology and the other uses complex analysis. We will in fact
see this third proof later on in Section 2.2.6.
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Finally let g(z) be analytic in an open subset U ⊂ C and let f(z) be
analytic in some open subset containing g(U), the image of U under g. Then
the composition f ◦ g defined by (f ◦ g)(z) = f(g(z)) is also analytic in U .
In fact, its derivative can be computed using the chain rule,

(f ◦ g)′(z0) = f ′(g(z0)) g′(z0) . (2.12)

� You may wonder whether g(U) is an open set, for U open and g analytic. This is indeed
true: it is called the open mapping property of analytic functions. We may see this later
on in the course.

It is clear that if f and g are rational functions so will be its composition
f ◦ g, so one only ever constructs new functions this way when one of the
functions being composed is not rational. We will see plenty of examples of
this as the lectures progress.

Another look at the Cauchy–Riemann equations

Finally let us mention an a different way to understand the Cauchy–Riemann
equations, at least for the case of rational functions. Notice that the above
polynomials and rational functions share the property that they do not de-
pend on z∗ but only on z. Suppose that one is given a rational function
where the dependence on x and y has been made explicit. For example,

f(x, y) =
x− 1− i y

(x− 1)2 + y2
.

In order to see whether f is analytic one would have to apply the Cauchy–
Riemann equations, which can get rather messy when the rational function
is complicated. It turns out that it is not necessary to do this. Instead one
can try to re-express the function in terms of z and z∗ by the substitutions

x =
z + z∗

2
and y =

z − z∗

2i
.

Then, the rational function f(x, y) is analytic if and only if the z∗ dependence
cancels. In the above example, one can see that this is indeed the case.
Indeed, rewriting f(x, y) in terms of z and z∗ we see that

f(x, y) =
z∗ − 1

zz∗ − z − z∗ + 1
=

1

z − 1
,

whence the z∗ dependence has dropped out. We therefore expect that the
Cauchy–Riemann equations will be satisfied. Indeed, one has that

u(x, y) =
x− 1

(x− 1)2 + y2
and v(x, y) =

−y

(x− 1)2 + y2
,
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and after some algebra,

∂u

∂x
=
− (x− 1)2 + y2

(
(x− 1)2 + y2

)2 =
∂v

∂y

∂u

∂y
=

−2 (x− 1) y(
(x− 1)2 + y2

)2 = −∂v

∂x
.

The reason this works is the following. Let us think formally of z and z∗ as
independent variables for the plane, like x and y. Then we have that

∂f

∂z∗
=

∂f

∂(x− i y)
=

∂f

∂x
+ i

∂f

∂y
.

Let us break up f into its real and imaginary parts: f(x, y) = u(x, y) +
i v(x, y). Then,

∂f

∂z∗
=

∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+

∂u

∂y

)
.

Therefore we see that the Cauchy–Riemann equations are equivalent to the
condition

∂f

∂z∗
= 0 . (2.13)

2.1.5 The complex exponential and related functions

There are many other analytic functions besides the rational functions. Some
of them are related to the exponential function.

Let z = x+i y be a complex number and define the complex exponential
exp(z) (also written ez) to be the function

exp(z) = exp(x + i y) ≡ ex (cos y + i sin y) .

We will first check that this function is entire. Decomposing it into real and
imaginary parts, we see that

u(x, y) = ex cos y and v(x, y) = ex sin y .

It is easy to check that the Cauchy–Riemann equations (2.7) are satisfied
everywhere on the complex plane:

∂u

∂x
= ex cos y =

∂v

∂y
and

∂v

∂x
= ex sin y = −∂u

∂y
.
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Therefore the function is entire and its derivative is given by

exp′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + i ex sin y

= exp(z) .

The exponential function obeys the following addition property

exp(z1 + z2) = exp(z1) exp(z2) , (2.14)

which has as a consequence the celebrated De Moivre’s Formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) ,

obtained simply by noticing that exp(i nθ) = exp(i θ)n.
The exponential is also a periodic function, with period 2π i. In fact from

the periodicity of trigonometric functions, we see that exp(2π i) = 1 and
hence, using the addition property (2.14), we find

exp(z + 2π i) = exp(z) . (2.15)

This means that the exponential is not one-to-one, in sharp contrast with the
real exponential function. It follows from the definition of the exponential
function that

exp(z1) = exp(z2) if and only if z1 = z2 + 2π i k for some integer k.

We can divide up the complex plane into horizontal strips of height 2π in
such a way that in each strip the exponential function is one-to-one. To see
this define the following subsets of the complex plane

Sk ≡ {x + i y ∈ C | (2k − 1)π < y ≤ (2k + 1)π} ,

for k = 0,±1,±2, . . ., as shown in Figure 2.1.
Then it follows that if z1 and z2 belong to the same set Sk, then exp(z1) =

exp(z2) implies that z1 = z2. Each of the sets Sk is known as a fundamental
region for the exponential function. The basic property satisfied by a funda-
mental region of a periodic function is that if one knows the behaviour of the
function on the fundamental region, one can use the periodicity to find out
the behaviour of the function everywhere, and that it is the smallest region
with that property. The periodicity of the complex exponential will have as
a consequence that the complex logarithm will not be single-valued.
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S1

S0

S−1

S−2

−3π

−π

π

3π

Figure 2.1: Fundamental regions of the complex exponential function.

Complex trigonometric functions

We can also define complex trigonometric functions starting from the complex
exponential. Let z = x + i y be a complex number. Then we define the
complex sine and cosine functions as

sin(z) ≡ eiz − e−iz

2i
and cos(z) ≡ eiz + e−iz

2
.

Being linear combinations of the entire functions exp(±iz), they themselves
are entire. Their derivatives are

sin′(z) = cos(z) and cos′(z) = − sin(z) .

The complex trigonometric functions obey many of the same properties
of the real sine and cosine functions, with which they agree when z is real.
For example,

cos(z)2 + sin(z)2 = 1 ,

and they are periodic with period 2π. However, there is one important
difference between the real and complex trigonometric functions: whereas
the real sine and cosine functions are bounded, their complex counterparts
are not. To see this let us break them up into real and imaginary parts:

sin(x + i y) = sin x cosh y + i cos x sinh y

cos(x + i y) = cos x cosh y − i sin x sinh y .
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We see that the appearance of the hyperbolic functions means that the com-
plex sine and cosine functions are not bounded.

Finally, let us define the complex hyperbolic functions. If z = x + i y,
then let

sinh(z) ≡ ez − e−z

2
and cosh(z) ≡ ez + e−z

2
.

In contrast with the real hyperbolic functions, they are not independent from
the trigonometric functions. Indeed, we see that

sinh(iz) = i sin(z) and cosh(iz) = cos(z) . (2.16)

Notice that one can also define other complex trigonometric functions:
tan(z), cot(z), sec(z) and csc(z) in the usual way, as well as their hyperbolic
counterparts. These functions obey many other properties, but we will not
review them here. Instead we urge you to play with these functions until you
are familiar with them.

2.1.6 The complex logarithm

This section introduces the logarithm of a complex number. We will see that
in contrast with the real logarithm function which is only defined for posi-
tive real numbers, the complex logarithm is defined for all nonzero complex
numbers, but at a price: the function is not single-valued. This has to do
with the periodicity (2.15) of the complex exponential or, equivalently, with
the multiple-valuedness of the argument arg(z).

In this course we will use the notation ‘log’ for the natural logarithm,
not for the logarithm base 10. Some people also use the notation ‘ln’ for the
natural logarithm, in order to distinguish it from the logarithm base 10; but
we will not be forced to do this since we will only be concerned with the
natural logarithm.

By analogy with the real natural logarithm, we define the complex loga-
rithm as an inverse to the complex exponential function. In other words, we
say that a logarithm of a nonzero complex number z, is any complex number
w such that exp(w) = z. In other words, we define the function log(z) by

w = log(z) if exp(w) = z . (2.17)

From the periodicity (2.15) of the exponential function it follows that if
w = log(z) so is w + 2π i k for any integer k. Therefore we see that log(z) is
a multiple-valued function. We met a multiple-valued function before: the
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argument function arg(z). Clearly if θ = arg(z) then so is θ + 2π k for any
integer k. This is no accident: the imaginary part of the log(z) function is
arg(z). To see this, let us write z in polar form (2.2) z = |z| exp(i arg(z))
and w = log(z) = u + i v. By the above definition and using the addition
property (2.14), we have

exp(u + i v) = eu ei v = |z| ei arg(z) ,

whence comparing polar forms we see that

eu = |z| and ei v = ei arg(z) .

Since u is a real number and |z| is a positive real number, we can solve the
first equation for u uniquely using the real logarithmic function, which in
order to distinguish it from the complex function log(z) we will write as Log:

u = Log |z| .

Similarly, we see that v = arg(z) solves the second equation. So does v+2π k
for any integer k, but this is already taken into account by the multiple-
valuedness of the arg(z) function. Therefore we can write

log(z) = Log |z|+ i arg(z) , (2.18)

where we see that it is a multiple-valued function as a result of the fact that
so is arg(z). In terms of the principal value Arg(z) of the argument function,
we can also write the log(z) as follows:

log(z) = Log |z|+ i Arg(z) + 2π i k for k = 0,±1,±2, . . ., (2.19)

which makes the multiple-valuedness manifest.
For example, whereas the real logarithm of 1 is simply 0, the complex

logarithm is given by

log(1) = Log |1|+ i arg(1) = 0 + i 2π k for any integer k.

As promised, we can now take the logarithm of negative real numbers. For
example,

log(−1) = Log | − 1|+ i arg(−1) = 0 + i π + i 2π k for any integer k.

The complex logarithm obeys many of the algebraic identities that we
expect from the real logarithm, only that we have to take into account its
multiple-valuedness properly. Therefore an identity like

log(z1 z2) = log(z1) + log(z2) , (2.20)
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for nonzero complex numbers z1 and z2, is still valid in the sense that having
chosen a value (out of the infinitely many possible values) for log(z1) and for
log(z2), then there is a value of log(z1 z2) for which the above equation holds.
Or said in a different way, the identity holds up to integer multiples of 2π i
or, as it is often said, modulo 2π i:

log(z1 z2)− log(z1)− log(z2) = 2π i k for some integer k.

Similarly we have

log(z1/z2) = log(z1)− log(z2) , (2.21)

in the same sense as before, for any two nonzero complex numbers z1 and z2.

Choosing a branch for the logarithm

We now turn to the discussion of the analyticity properties of the complex
logarithm function. In order to discuss the analyticity of a function, we need
to investigate its differentiability, and for this we need to be able to take
its derivative as in equation (2.6). Suppose we were to try to compute the
derivative of the function log(z) at some point z0. Writing the derivative as
the limit of a quotient,

log′(z0) = lim
∆z→0

log(z0 + ∆z)− log(z0)

∆z
,

we encounter an immediate obstacle: since the function log(z) is multiple-
valued we have to make sure that the two log functions in the numerator tend
to the same value in the limit, otherwise the limit will not exist. In other
words, we have to choose one of the infinitely many values for the log function
in a consistent way. This way of restricting the values of a multiple-valued
function to make it single-valued in some region (in the above example in
some neighbourhood of z0) is called choosing a branch of the function. For
example, we define the principal branch Log of the logarithmic function to
be

Log(z) = Log |z|+ i Arg(z) ,

where Arg(z) is the principal value of arg(z). Af first sight it might seem
that this notation is inconsistent, since we are using Log both for the real
logarithm and the principal branch of the complex logarithm. So let us make
sure that this is not the case. If z is a positive real number, then z = |z|
and Arg(z) = 0, whence Log(z) = Log |z|. Hence at least the notation is
consistent. The function Log(z) is single-valued, but at a price: it is no
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longer continuous in the whole complex plane, since Arg(z) is not continuous
in the whole complex plane. As explained in Section 2.1.1, the principal
branch Arg(z) of the argument function is discontinuous along the negative
real axis. Indeed, let z± = −x±i ε where x and ε are positive numbers. In the
limit ε → 0, z+ and z− tend to the same point on the negative real axis from
the upper and lower half-planes respectively. Hence whereas limε→0 z± = −x,
the principal value of the logarithm obeys

lim
ε→0

Log(z±) = Log(x)± i π ,

so that it is not a continuous function anywhere on the negative real axis, or
at the origin, where the function itself is not well-defined. The non-positive
real axis is known as a branch cut for this function and the origin is known
as a branch point.

Let D denote all the points in the complex plane except

D

•
for those which are real and non-positive; in other words,
D is the complement of the non-positive real axis. It is easy
to check that D is an open subset of the complex plane and
by construction, Log(z) is single-valued and continuous for
all points in D. We will now check that it is analytic there
as well. For this we need to compute its derivative. So let

z0 ∈ D be any point in D and consider w0 = Log(z0). Letting ∆z = z − z0,
we can write the derivative of w = Log(z) at z0 in the following form

Log′(z0) = lim
z→z0

w − w0

z − z0

= lim
z→z0

1
z−z0

w−w0

= lim
w→w0

1
z−z0

w−w0

,

where to reach the second line we used the fact that w = w0 implies z = z0

(single-valuedness of the exponential function), and to reach the third line
we used the continuity of Log(z) in D to deduce that w → w0 as z → z0.
Now using that z = ew we see that what we have here is the reciprocal of
the derivative of the exponential function, whence

Log′(z0) = lim
w→w0

1
ew−ew0

w−w0

=
1

exp′(w0)
=

1

exp(w0)
=

1

z0

.

Since this is well-defined everywhere but for z0 = 0, which does not belong
to D, we see that Log(z) is analytic in D.
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Other branches

The choice of branch for the logarithm is basically that, a choice. It is
certainly not the only one. We can make the logarithm function single-
valued in other regions of the complex plane by choosing a different branch
for the argument function.

For example, another popular choice is to consider the function Arg0(z)
which is the value of the argument function for which

0 ≤ Arg0(z) < 2π .

This function, like Arg(z), is single-valued but discontinuous; however the
discontinuity is now along the positive real axis, since approaching a positive
real number from the upper half-plane we would conclude that its argument
tends to 0 whereas approaching it from the lower half-plane the argument
would tend to 2π. We can therefore define a branch Log0(z) of the logarithm
by

Log0(z) = Log |z|+ i Arg0(z) .

This branch then has a branch cut along the non-negative real axis, but it is
continuous in its complement D0 as shown in Figure 2.2. The same argument
as before shows that Log0(z) is analytic in D0 with derivative given by

Log′0(z0) =
1

z0

for all z0 in D0.

D0 Dτ

• •

Figure 2.2: Two further branches of the logarithm.

There are of course many other branches. For example, let τ be any real
number and define the branch Argτ (z) of the argument function to take the
values

τ ≤ Argτ (z) < τ + 2π .

This gives rise to a branch Logτ (z) of the logarithm function defined by

Logτ (z) = Log |z|+ i Argτ (z) ,

92



which has a branch cut emanating from the origin and consisting of all those
points z with arg(z) = τ modulo 2π. Again the same arguments show that
Logτ (z) is analytic everywhere on the complement Dτ of the branch cut, as
shown in Figure 2.2, and its derivative is given by

Log′τ (z0) =
1

z0

for all z0 in Dτ .

The choice of branch is immaterial for many properties of the logarithm,
although it is important that a choice be made. Different applications may
require choosing one branch over another. Provided one is consistent this
should not cause any problems.

As an example suppose that we are faced with computing the derivative
of the function f(z) = log(z2 + 2iz + 2) at the point z = i. We need to
choose a branch of the logarithm which is analytic in a region containing a
neighbourhood of the point i2 + 2i i + 2 = −1. The principal branch is not
analytic there, so we have to choose another branch. Suppose that we choose
Log0(z). Then, by the chain rule

f ′(i) =
2z + 2i

z2 + 2iz + 2

∣∣∣∣
z=i

=
2 i + 2 i

i2 + 2i2 + 2
= −4 i .

Any other valid branch would of course give the same result.

2.1.7 Complex powers

With the logarithm function at our disposal, we are able to define complex
powers of complex numbers. Let α be a complex number. The for all z 6= 0,
we define the α-th power zα of z by

zα ≡ eα log(z) = eα Log |z|+i α arg(z) . (2.22)

The multiple-valuedness of the argument means that generically there will
be an infinite number of values for zα. We can rewrite the above expression
a little to make this manifest:

zα = eα Log |z|+i α Arg(z)+i α 2π k = eα Log(z)ei α 2π k ,

for k = 0,±1,±2, . . ..
Depending on α we will have either one, finitely many or infinitely many

values of exp(i 2π α k). Suppose that α is real. If α = n is an integer then

93



so is α k = nk and exp(i 2π α k) = exp(i 2π nk) = 1. There is therefore only
one value for zn. This is as we expect, since in this case we have

zn =





1 for n = 0,

z z · · · z︸ ︷︷ ︸
n times

for n > 0,

1
z−n for n < 0.

If α = p/q is a rational number, where we have chosen the integers p and
q to have no common factors (i.e., to be coprime), then zp/q will have a
finite number of values. Indeed consider exp(i 2π kp/q) as k ranges over the
integers. It is clear that this exponential takes the same values for k and for
k + q:

ei 2π (k+q)p/q = ei 2π (k(p/q)+p) = ei 2π k(p/q)+i 2π p = ei 2π kp/q ,

where we have used the addition and periodicity properties (2.14) and (2.15)
of the exponential function. Therefore zp/q will have at most q distinct values,
corresponding to the above formula with, say, k = 0, 1, 2, . . . , q − 1. In fact,
it will have precisely q distinct values, as we will see below. Finally, if α
is irrational, then zα will possess an infinite number of values. To see this
notice that if there are integers k and k′ for which ei α 2π k = ei α 2π k′ , then
we must have that ei α 2π (k−k′) = 1, which means that α (k − k′) must be an
integer. Since α is irrational, this can only be true if k = k′.

For example, let us compute 11/q. According to the formula,

11/q = eLog(1)/q ei 2π (k/q) = ei 2π (k/q) ,

as k ranges over the integers. As discussed above only the q values k =
0, 1, 2, . . . , q − 1 will be different. The values of 11/q are known as q-th
roots of unity. They each have the property that their q-th power is equal
to 1: (11/q)q = 1, as can be easily seen from the above expression. Let
ω = exp(i 2π/q) correspond to the k = 1 value of 11/q. Then the q-th roots
of unity are given by 1, ω, ω2, . . . , ωq−1, and there are q of them. The q-th
roots of unity lie in the unit circle |z| = 1 in the complex plane and define
the vertices of a regular q-gon. For example, in Figure 2.3 we depict the q-th
roots of unity for q = 3, 5, 7, 11.

Let z be a nonzero complex number and suppose that we are after its
q-th roots. Writing z in polar form z = |z| exp(i θ), we have

z1/q = |z|1/q ei θ/qωk for k = 0, 1, 2, . . . , q − 1.

In other words the q different values of z1/q are obtained from any one value
by multiplying it by the q powers of the q-th roots of unity. If p is any integer,
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Figure 2.3: Some roots of unity.

we can then take the p-th power of the above formula:

zp/q = |z|p/q ei p θ/qωpk for k = 0, 1, 2, . . . , q − 1.

If p and q are coprime, the ωpk for k = 0, 1, 2, . . . , q− 1 are different. Indeed,
suppose that ωpk = ωpk′ , for k and k′ between 0 and q−1. Then ωp(k−k′) = 1,
which means that p(k − k′) has to be a multiple of q. Because p and q are
coprime, this can only happen when k = k′. Therefore we see that indeed a
rational power p/q (with p and q coprime) of a complex number has precisely
q values.

Let us now consider complex powers. If α = a + i b is not real (so that
b 6= 0), then zα will always have an infinite number of values. Indeed, notice
that the last term in the following expression takes a different value for each
integer k:

ei α 2π k = ei (a+i b) 2π k = ei 2π k ae−2π k b .

For examples, let us compute ii. By definition,

ii = ei log(i) = ei (Log(i)+i 2π k) = ei (iπ/2+i 2π k) = e−π/2 e−2π k ,

for k = 0.± 1,±2, . . ., which interestingly enough is real.

Choosing a branch for the complex power

Every branch of the logarithm gives rise to a branch of zα. In particular we
define the principal branch of zα to be exp(α Log(z)). Since the exponential
function is entire, the principal branch of zα is analytic in the domain D
where Log(z) is analytic. We can compute its derivative for any point z0 in
D using the chain rule (2.12):

d

dz

(
eα Log(z)

)∣∣
z=z0

= eα Log(z0) α

z0

.

Given any nonzero z0 in the complex plane, we can choose a branch of the
logarithm so that the function zα is analytic in a neighbourhood of z0. We
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can compute its derivative there and we see that the following equation holds

d

dz
(zα)|z=z0

= α zα
0

1

z0

,

provided that we use the same branch of zα on both sides of the equation.
One might be tempted to write the right-hand side of the above equation

as α zα−1
0 , and indeed this is correct, since the complex powers satisfy many

of the identities that we are familiar with from real powers. For example,
one can easily show that for any complex numbers α and β

zα zβ = zα+β ,

provided that the same branch of the logarithm, and hence of the complex
power, is chosen on both sides of the equation. Nevertheless, there is one
identity that does not hold. Suppose that α is a complex number and let
z1 and z2 be nonzero complex numbers. Then it is not true that zα

1 zα
2 and

(z1 z2)
α agree, even if, as we always should, we choose the same branch of

the complex power on both sides of the equation.
We end this section with the observation that the function zz is analytic

wherever the chosen branch of the logarithm function is defined. Indeed,
zz = exp(z log(z)) and its principal branch can is defined to be the function
exp(z Log(z)), which as we now show is analytic in D. Taking the derivative
we see that

d

dz

(
ez Log(z)

)∣∣
z=z0

= ez0 Log(z0) (Log(z0) + 1) ,

which exists everywhere on D. Again a similar result holds for any other
branch provided we are consistent and take the same branches of the loga-
rithm in both sides of the following equation:

d

dz
(zz)|z=z0

= zz0
0 (log(z0) + 1) .

2.2 Complex integration

Having discussed differentiation of complex-valued functions, it is time to
now discuss integration. In real analysis differentiation and integration are
roughly speaking inverse operations. We will see that something similar
also happens in the complex domain; but in addition, and this is unique to
complex analytic functions, differentiation and integration are also roughly
equivalent operations, in the sense that we will be able to take derivatives
by performing integrals.
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2.2.1 Complex integrals

There is a sense in which the integral of a complex-valued function is a trivial
extension of the standard integral one learns about in calculus. Suppose that
f is a complex-valued function of a real variable t. We can decompose f(t)
into its real and imaginary parts f(t) = u(t) + i v(t), where u and v are now
real-valued functions of a real variable. We can therefore define the integral∫ b

a
f(t) dt of f(t) on the interval [a, b] as

∫ b

a

f(t) dt =

∫ b

a

u(t) dt + i

∫ b

a

v(t) dt ,

provided that the functions u and v are integrable. We will not develop
a formal theory of integrability in this course. You should nevertheless be
aware of the fact that whereas not every function is integrable, a continuous
function always is. Hence, for example, if f is a continuous function in the
interval [a, b] then the integral

∫ b

a
f(t) dt will always exist, since u and v are

continuous and hence integrable.
This integral satisfies many of the properties that real integrals obey. For

instance, it is (complex) linear, so that if α and β are complex numbers and
f and g are complex-valued functions of t, then

∫ b

a

(α f(t) + β g(t)) dt = α

∫ b

a

f(t) dt + β

∫ b

a

g(t) dt .

It also satisfies a complex version of the Fundamental Theorem of Calculus.
This theorem states that if f(t) is continuous in [a, b] and there exists a
function F (t) also defined on [a, b] such that Ḟ (t) = f(t) for all a ≤ t ≤ b,
where Ḟ (t) ≡ dF

dt
, then

∫ b

a

f(t) dt =

∫ b

a

dF (t)

dt
dt = F (b)− F (a) . (2.23)

� This follows from the similar theorem for real integrals, as we now show. Indeed, let us
decompose both f and F into real and imaginary parts: f(t) = u(t) + i v(t) and F (t) =
U(t)+ i V (t). Then since F is an antiderivative Ḟ (t) = U̇(t)+ i V̇ (t) = f(t) = u(t)+ i v(t),
whence U̇(t) = u(t) and V̇ (t) = v(t). Therefore, by definition

Z b

a
f(t) dt =

Z b

a
u(t) dt + i

Z b

a
v(t) dt

= U(b)− U(a) + i (V (b)− V (a))

= U(b) + i V (b)− (U(a) + i V (a))

= F (b)− F (a) ,

where to reach the second line we used the real version of the fundamental theorem of
calculus for the real and imaginary parts of the integral.
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A final useful property of the complex integral is that
∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣ ≤
∫ b

a

|f(t)| dt . (2.24)

This result makes sense intuitively because in integrating f(t) one might
encounter cancellations which do not occur while integrating the non-negative
quantity |f(t)|.

� This last property follows from the similar property of real integrals. Let us see this. Write

the complex integral
R b

a f(t) dt in polar form:

Z b

a
f(t) dt = R ei θ ,

where

R =

����
Z b

a
f(t) dt

���� .

On the other hand,

R =

Z b

a
e−i θf(t) dt .

Write e−i θf(t) = U(t) + i V (t) where U(t) and V (t) are real-valued functions. Then
because R is real,

R =

Z b

a
U(t) dt .

But now,

U(t) = Re
�
e−i θf(t)

�
≤
���e−i θf(t)

��� = |f(t)| .

Therefore, from the properties of real integrals,

Z b

a
U(t) dt ≤

Z b

a
|f(t)| dt ,

which proves the desired result.

2.2.2 Contour integrals

Much more interesting is the integration of complex-valued functions of a
complex variable. We would like to be able to make sense out of something
like ∫ z1

z0

f(z) dz ,

where z0 and z1 are complex numbers. We are immediately faced with a
difficulty. Unlike the case of an interval [a, b] when it is fairly obvious how
to go from a to b, here z0 and z1 are points in the complex plane and there
are many ways to go from one point to the other. Therefore as it stands,
the above integral is ambiguous. The way out of this ambiguity is to specify
a path joining z0 to z1 and then integrate the function along the path. In
order to do this we will have to introduce some notation.
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The integral along a parametrised curve

Let z0 and z1 be two points in the complex plane. One has an intuitive notion
of what one means by a curve joining z0 and z1. Physically, we can think
of a point-particle moving in the complex plane, starting at some time t0 at
the point z0 and ending at some later time t1 at the point z1. At any given
instant in time t0 ≤ t ≤ t1, the particle is at the point z(t) in the complex
plane. Therefore we see that a curve joining z0 and z1 can be defined by
a function z(t) taking points t in the interval [t0, t1] to points z(t) in the
complex plane in such a way that z(t0) = z0 and z(t1) = z1. Let us make
this a little more precise. By a (parametrised) curve joining z0 and z1 we
shall mean a continuous function z : [t0, t1] → C such that z(t0) = z0 and
z(t1) = z1. We can decompose z into its real and imaginary parts, and this
is equivalent to two continuous real-valued functions x(t) and y(t) defined
on the interval [t0, t1] such that x(t0) = x0 and x(t1) = x1 and similarly for
y(t): y(t0) = y0 and y(t1) = y1, where z0 = x0 + i y0 and z1 = x1 + i y1.
We say that the curve is smooth if its velocity ż(t) is a continuous function
[t0, t1] → C which is never zero.

Let Γ be a smooth curve joining z0 to z1, and let f(z) be a complex-valued
function which is continuous on Γ. Then we define the integral of f along
Γ by

∫

Γ

f(z) dz ≡
∫ t1

t0

f(z(t)) ż(t) dt . (2.25)

By hypothesis, the integrand, being a product of continuous functions, is
itself continuous and hence the integral exists.

Let us compute some examples. Consider the function f(z) = x2 + i y2

integrated along the smooth curve parametrised by z(t) = t+i t for 0 ≤ t ≤ 1.
As shown in Figure 2.4 this is the straight line segment joining the origin and
the point 1+i. Decomposing z(t) = x(t)+i y(t) into real and imaginary parts,
we see that x(t) = y(t) = t. Therefore f(z(t)) = t2 + i t2 and ż(t) = 1 + i.
Putting it all together, using complex linearity of the integral and performing
the elementary real integral, we find the following result

∫

Γ

f(z) dz =

∫ 1

0

(t2 + i t2)(1 + i) dt =

∫ 1

0

(1 + i)2 t2 dt = 2i
t3

3

∣∣∣∣
1

0

=
2i

3
.

Consider now the function f(z) = 1/z integrated along the smooth curve
Γ parametrised by z(t) = R exp(i 2π t) for 0 ≤ t ≤ 1, where R 6= 0. As
shown in Figure 2.4, the resulting curve is the circle of radius R centred about
the origin. Here f(z(t)) = (1/R) exp(−i 2π t) and ż(t) = 2π iR exp(i 2π t).
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Figure 2.4: Two parametrised curves.

Putting it all together we obtain
∫

Γ

f(z) dz =

∫ 1

0

2π i Rei 2π t

Rei 2π t
dt = 2π i

∫ 1

0

dt = 2π i . (2.26)

Notice that the result is independent of the radius. This is in sharp contrast
with real integrals, which we are used to interpret physically in terms of area.
In fact, the above integral behaves more like a charge than like an area.

Finally let us consider the function f(z) ≡ 1 along any smooth curve Γ
parametrised by z(t) for 0 ≤ t ≤ 1. It may seem that we do not have enough
information to compute the integral, but let us see how far we can get with
the information given. The integral becomes

∫

Γ

f(z) dz =

∫ 1

0

ż(t) dt .

Using the complex version of the fundamental theorem of calculus, we have
∫ 1

0

ż(t) dt = z(1)− z(0) ,

independent of the actual curve used to join the two points! Notice that this
integral is therefore not the length of the curve as one might think from the
notation.

The length of a curve and a useful estimate

The length of the curve can be computed, but the integral is not related to
the complex dz but the real |dz|. Indeed, if Γ is a curve parametrised by
z(t) = x(t) + i y(t) for t ∈ [t0, t1], consider the real integral

∫

Γ

|dz| ≡
∫ t1

t0

|ż(t)| dt

=

∫ t1

t0

√
ẋ(t)2 + ẏ(t)2 dt ,
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which is the integral of the infinitesimal line element
√

dx2 + dy2 along the
curve. Therefore, the integral is the (arc)length `(Γ) of the curve:

∫

Γ

|dz| = `(Γ) . (2.27)

This immediately yields a useful estimate on integrals along curves, analogous
to equation (2.24). Indeed, suppose that Γ is a curve parametrised by z(t)
for t ∈ [t0, t1]. Then,

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ =

∣∣∣∣
∫ t1

t0

f(z(t)) ż(t) dt

∣∣∣∣

≤
∫ t1

t0

|f(z(t))| |ż(t)| dt (using (2.24))

≤ max
z∈Γ

|f(z)|
∫ t1

t0

|ż(t)| dt .

But this last integral is simply the length `(Γ) of the curve, whence we have

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤
∫

Γ

|f(z)| |dz| ≤ max
z∈Γ

|f(z)| `(Γ) . (2.28)

Results of this type are the bread and butter of analysis and in this part of
the course we will have ample opportunity to use this particular one.

Some further properties of the integrals along a curve

We have just seen that one of the above integrals does not depend on the
actual path but just on the endpoints of the contour. We will devote the next
two sections to studying conditions for complex integrals to be independent
of the path; but before doing so, we discuss some general properties of the
integrals

∫
Γ
f(z) dz.

The first important property is that the integral is complex linear. That
is, if α and β are complex numbers and f and g are functions which are
continuous on Γ, then

∫

Γ

(α f(z) + β g(z)) dz = α

∫

Γ

f(z) dz + β

∫

Γ

g(z) dz .

The proof is routine and we leave it as an exercise.
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The first nontrivial property is that the integral
∫
Γ
f(z) dz does not de-

pend on the actual parametrisation of the curve Γ. In other words, it is
a “physical” property of the curve itself, meaning the set of points Γ ⊂ C
together with the direction along the curve, and not of the way in which we
go about traversing them.

� The only difficult thing in showing this is coming up with a mathematical statement to
prove. Let z(t) for t0 ≤ t ≤ t1 and z′(t) for t′0 ≤ t ≤ t′1 be two smooth parametrisations
of the same curve Γ. This means that z(t0) = z′(t′0) and z(t1) = z′(t′1). We will say that
the parametrisations z(t) and z′(t) are equivalent if there exists a one-to-one differentiable
function λ : [t′0, t′1] → [t0, t1] such that z′(t) = z(λ(t)). In particular, this means that
λ(t′0) = t0 and λ(t′1) = t1. (It is possible to show that this is indeed an equivalence
relation.)

The condition of reparametrisation invariance of
R
Γ f(z) dz can then be stated as follows.

Let z and z′ be two equivalent parametrisations of a curve Γ. Then for any function f(z)
continuous on Γ, we have

Z t′1

t′0
f(z′(t)) ż′(t) dt =

Z t1

t0

f(z(t)) ż(t) dt .

Let us prove this.

Z t′1

t′0
f(z′(t)) ż′(t) dt =

Z t′1

t′0
f(z(λ(t))) ż(λ(t)) dt

=

Z λ(t′1)

λ(t′0)
f(z(λ))

dz(λ)

dλ
dλ

=

Z t1

t0

f(z(λ))
dz(λ)

dλ
dλ ,

which after changing the name of the variable of integration from λ to t (Shakespeare’s
Theorem!), is seen to agree with

Z t1

t0

f(z(t)) ż(t) dt .

Because of reparametrisation invariance, we can always parametrise a
curve in such a way that the initial time is t = 0 and the final time is
t = 1. Indeed, let z(t) for t0 ≤ t ≤ t1 be any smooth parametrisation of a
curve Γ. Then define the parametrisation z′(t) = z(t0 + t(t1 − t0)). Clearly,
z′(0) = z(t0) and z′(1) = z(t1), and moreover ż′(t) = (t1− t0)ż(t0 + t(t1− t0))
hence z′ is also smooth.

Now let us notice that parametrised curves Γ have a natural notion of
direction: this is the direction in which we traverse the curve. Choosing a
parametrisation z(t) for 0 ≤ t ≤ 1, as we go from z(0) to z(1), we trace the
points in the curve in a given order, which we depict by an arrowhead on
the curve indicating the direction along which t increases, as in the curves
in Figure 2.4. A curve with such a choice of direction is said to be directed.
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Given any directed curve Γ, we let −Γ denote the directed curve with the
opposite direction; that is, with the arrow pointing in the opposite direction.
The final interesting property of the integral

∫
Γ
f(z) dz is that

∫

−Γ

f(z) dz = −
∫

Γ

f(z) dz . (2.29)

� To prove this it is enough to find two parametrisations for Γ and −Γ and compute the
integrals. By reparametrisation independence it does not matter which parametrisations
we choose. If z(t) for 0 ≤ t ≤ 1 is a parametrisation for Γ, then z′(t) = z(1 − t) for
0 ≤ t ≤ 1 is a parametrisation for −Γ. Indeed, z′(0) = z(1) and z′(1) = z(0) and they
trace the same set of points. Let us compute:

Z

−Γ
f(z) dz =

Z 1

0
f(z′(t)) ż′(t) dt

= −
Z 1

0
f(z(1− t)) ż(1− t) dt

=

Z 0

1
f(z(t′)) ż(t′) dt′

= −
Z 1

0
f(z(t′)) ż(t′) dt′

= −
Z

Γ
f(z) dz .

Piecewise smooth curves and contour integrals

Finally we have to generalise the integral
∫
Γ
f(z) dz to curves which are not

necessarily smooth, but which are made out of smooth curves. Curves can
be composed: if Γ1 is a curve joining z0 to z1 and Γ2 is a curve joining z1

to z2, then we can make a curve Γ joining z0 to z2 by first going to the
intermediate point z1 via Γ1 and then from there via Γ2 to our destination
z2. The resulting curve Γ is still continuous, but it will generally fail to be
smooth, since the velocity need not be continuous at the intermediate point
z1, as shown in the figure.

However such curve is piecewise smooth: which

•
z0

•
z1

•
z2

Γ1

Γ2

-
µ

means that it is made out of smooth components by
the composition procedure just outlined. In terms of
parametrisations, if z1(t) and z2(t), for 0 ≤ t ≤ 1, are
smooth parametrisations for Γ1 and Γ2 respectively,
then

z(t) =

{
z1(2t) for 0 ≤ t ≤ 1

2

z2(2t− 1) for 1
2
≤ t ≤ 1

is a parametrisation for Γ. Notice that it is well-defined and continuous at
t = 1

2
precisely because z1(1) = z2(0); however it need not be smooth there
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since ż1(1) 6= ż2(0) necessarily. We can repeat this procedure and construct
curves which are not smooth but which are made out of a finite number of
smooth curves: one curve ending where the next starts. Such a piecewise
smooth curve will be called a contour from now on. If a contour Γ is made
out of composing a finite number of smooth curves {Γj} we will say that each
Γj is a smooth component of Γ.

Let Γ be a contour with n smooth components {Γj} for j = 1, 2, . . . , n.
If f(z) is a function continuous on Γ, then the contour integral of f along
Γ is defined as
∫

Γ

f(z) dz =
n∑

j=1

∫

Γj

f(z) dz =

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz + · · ·+
∫

Γn

f(z) dz ,

with each of the
∫

Γi
f(z) dz is defined by (2.25) relative to any smooth para-

metrisation.

2.2.3 Independence of path

In this section we will investigate conditions under which a contour integral
only depends on the endpoints of the contour, and not not the contour itself.
This is necessary preparatory material for Cauchy’s integral theorem which
will be discussed in the next section.

We will say that an open subset U of the complex plane is connected,
if every pair of points in U can be joined by a contour. A connected open
subset of the complex plane will be called a domain.

�� What we have called connected here is usually called path-connected. We can allow
ourselves this abuse of notation because path-connectedness is easier to define and it can
be shown that the two notions agree for subsets of the complex plane.

Fundamental Theorem of Calculus: contour integral version

First we start with a contour integral version of the fundamental theorem of
calculus. Let D be a domain and let f : D → C be a continuous complex-
valued function defined on D. We say that f has an antiderivative in D if
there exists some function F : D → C such that

F ′(z) =
dF (z)

dz
= f(z) .

Notice that F is therefore analytic in D. Now let Γ be any contour in D with
endpoints z0 and z1. If f has an antiderivative F on D, the contour integral
is given by ∫

Γ

f(z) dz = F (z1)− F (z0) . (2.30)
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Let us first prove this for Γ a smooth curve, parametrised by z(t) for
0 ≤ t ≤ 1. Then

∫

Γ

f(z) dz =

∫ 1

0

F ′(z(t))ż(t)dt =

∫ 1

0

dF (z(t))

dt
dt .

Using the complex version of the fundamental theorem of calculus (2.23), we
see that ∫

Γ

f(z) dz = F (z(1))− F (z(0)) = F (z1)− F (z0) .

Now we consider the general case: Γ a contour with smooth components
{Γj} for j = 1, 2, . . . , n. The curve Γ1 starts in z0 and ends in some inter-
mediate point τ1, Γ2 starts in τ1 and ends in a second intermediate point τ2,
and so so until Γn which starts in the intermediate point τn−1 and ends in
z1. Then

∫

Γ

f(z)dz =
n∑

j=1

∫

Γj

f(z) dz

=

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz + · · ·+
∫

Γn

f(z) dz

= F (τ1)− F (z0) + F (τ2)− F (τ1) + · · ·+ F (z1)− F (τn−1)

= F (z1)− F (z0) ,

where we have used the definition of the contour integral and the result
proven above for each of the smooth components.

This result says that if a function f has an antiderivative, then its contour
integrals do not depend on the precise path, but only on the endpoints. Path
independence can also be rephrased in terms of closed contour integrals. We
say that a contour is closed if its endpoints coincide. The contour integral
along a closed contour Γ is sometimes denoted

∮
Γ

when we wish to emphasise
that the contour is closed.

The path-independence lemma

As a corollary of the above result, we see that if Γ is a closed contour in some
domain D and f : D → C has an antiderivative in D, then∮

Γ

f(z) dz = 0 .

This is clear because if the endpoints coincide, so that z0 = z1, then F (z1)−
F (z0) = 0.

In fact, let f : D → C be a continuous function on some domain D. Then
the following three statements are equivalent:
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(a) f has an antiderivative F in D;

(b) The closed contour integral
∮

Γ
f(z) dz vanishes for all closed contours

Γ in D; and

(c) The contour integrals
∫

Γ
f(z) dz are independent of the path.

We shall call this result the Path-independence Lemma.
We have already proven that (a) implies (b) and (c). We will now show

that in fact (b) and (c) are equivalent.
Let Γ1 and Γ2 be any two contours in D sharing the

•
z0

•
z1Γ1

Γ2

µ

µ

same initial and final endpoints: z0 and z1, say. Then
consider the contour Γ obtained by composing Γ1 with
−Γ2. This is a closed contour with initial and final
endpoint z0. Therefore, using (2.29) for the integral
along −Γ2,

∮

Γ

f(z) dz =

∫

Γ1

f(z) dz +

∫

−Γ2

f(z) dz

=

∫

Γ1

f(z) dz −
∫

Γ2

f(z) dz ,

whence
∮

Γ
f(z) dz = 0 if and only if

∫
Γ1

f(z) dz =
∫

Γ2
f(z) dz. This shows

that (b) implies (c). Now we prove that, conversely, (c) implies (b). Let Γ
be any closed contour with endpoints z1 = z0. By path-independence, we
can evaluate the integral by taking the trivial contour which remains at z0

for all 0 ≤ t ≤ 1. This parametrisation is strictly speaking not smooth since
ż(t) = 0 for all t, but the integrand f(z(t))ż(t) = 0 is certainly continuous, so
that the integral exists and is clearly zero. Hence

∮
Γ
f(z) dz = 0 for all closed

contours Γ. Alternatively, we can pick any point τ in the contour not equal
to z0 = z1. We can think of the contour as made out of two contours: Γ1 from
z0 to τ and Γ2 from τ to z1 = z0. We can therefore go from z0 = z1 to τ in two
ways: one is along Γ1 and the other one is along −Γ2. Path-independence
says that the result is the same:

∫

Γ1

f(z) dz =

∫

−Γ2

f(z) dz = −
∫

Γ2

f(z) dz ,

where we have used equation (2.29). Therefore,

0 =

∫

Γ1

f(z) dz +

∫

Γ2

f(z) dz =

∫

Γ

f(z) dz .
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Finally we finish the proof of the path-independence lemma by showing
that (c) implies (a); that is, if all contour integrals are path-independence,
then the function f has an antiderivative. The property of path-independence
suggests a way to define the antiderivative. Let us fix once and for all a point
z0 in the domain D. Let z be an arbitrary point in D. Because D is connected
there will be a contour Γ joining z0 and z. Define a function F (z) by

F (z) ≡
∫

Γ

f(ζ) dζ ,

where we have changed notation in the integral (Shakespeare’s Theorem
again) not to confuse the variable of integration with the endpoint z of the
contour. By path-independence this integral is independent of the contour
and is therefore well-defined as a function of the endpoint z. We must now
check that it is an antiderivative for f .

The derivative of F (z) is computed by

F ′(z) = lim
∆z→0

1

∆z

[∫

Γ′
f(ζ) dζ −

∫

Γ

f(ζ) dζ

]
,

where Γ′ is any contour from z0 to z+∆z. Since we are interested in the limit
of ∆z → 0, we can assume that ∆z is so small that z+∆z is contained in some
open ε-disk about z which also belongs to D.2 This means that the straight-
line segment Γ′′ from z to z + ∆z belongs to D. By path-independence we
are free to choose the contour Γ′, and we exercise this choice by taking Γ′ to
be the composition of Γ with this straight-line segment Γ′′. Therefore,

∫

Γ′
f(ζ) dζ −

∫

Γ

f(ζ) dζ =

∫

Γ

f(ζ) dζ +

∫

Γ′′
f(ζ) dζ −

∫

Γ

f(ζ) dζ

=

∫

Γ′′
f(ζ) dζ ,

whence

F ′(z) = lim
∆z→0

1

∆z

∫

Γ′′
f(ζ) dζ .

We parametrise the contour Γ′′ by ζ(t) = z + t∆z for 0 ≤ t ≤ 1. Then we

2In more detail, since D is open we know that there exists some ε > 0 small enough
so that Dε(z) belongs to D. We then simply take |∆z| < ε, which we can do since we are
interested in the limit ∆z → 0.
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have

F ′(z) = lim
∆z→0

1

∆z

∫ 1

0

f(z + t∆z) ζ̇(t) dt

= lim
∆z→0

1

∆z

∫ 1

0

f(z + t∆z) ∆z dt

= lim
∆z→0

∫ 1

0

f(z + t∆z) dt .

One might be tempted now to simply sneak the limit inside the integral, use
continuity of f and obtain

F ′(z)
?
=

∫ 1

0

lim
∆z→0

f(z + t∆z) dt =

∫ 1

0

f(z) dt = f(z) ,

which would finish the proof. However sneaking the limit inside the integral
is not always allowed since integration itself is a limiting process and limits
cannot always be interchanged.

� A simple example showing that the order in which one takes limits matters is the following.
Consider the following limit

lim
n→∞
m→∞

m + n

m
.

We can take this limit in two ways. On the one hand,

lim
n→∞ lim

m→∞
m

m + n
= lim

n→∞ 1 = 1 ;

yet on the other

lim
m→∞ lim

n→∞
m

m + n
= lim

m→∞ 0 = 0 .

Nevertheless, as we sketch below, in this case interchanging the limits
turns out to be a correct procedure due to the continuity of the integrand.

� We want to prove here that indeed

lim
∆z→0

Z 1

0
f(z + t∆z) dt = f(z) .

We do this by showing that in this limit, the quantity

�Z 1

0
f(z + t∆z) dt

�
− f(z) =

Z 1

0
[f(z + t∆z)− f(z)] dt

goes to zero. We will prove that its modulus goes to zero, which is clearly equivalent. By
equation (2.24), we have

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� ≤
Z 1

0
|f(z + t∆z)− f(z)| dt .
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By continuity of f we know that given any ε > 0 there exists a δ > 0 such that

|f(z + t∆z)− f(z)| < ε whenever |∆z| < δ .

Since we are taking the limit ∆z → 0, we can take |∆z| < δ, whence

lim
∆z→0

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� ≤ lim
∆z→0

Z 1

0
|f(z + t∆z)− f(z)| dt <

Z 1

0
ε dt = ε ,

for any ε > 0, where we have used equation (2.24) to arrive at the last inequality. Hence,

lim
∆z→0

����
Z 1

0
[f(z + t∆z)− f(z)] dt

���� = 0 ,

so that

lim
∆z→0

Z 1

0
[f(z + t∆z)− f(z)] dt = 0 .

2.2.4 Cauchy’s Integral Theorem

We have now laid the groundwork to be able to discuss one of the key results
in complex analysis. The path-independence lemma tells us that a continuous
function f : D → C in some domain D has an antiderivative if and only if
all its closed contour integrals vanish. Unfortunately it is impractical to
check this hypothesis explicitly, so one would like to be able to conclude the
vanishing of the closed contour integrals some other way. Cauchy’s integral
theorem will tell us that, under some conditions, this is true if f is analytic.
These conditions refer to the topology of the domain, so we have to first
introduce a little bit of notation.

Let us say that a contour is simple if it has no self-intersections. We
define a loop to be a closed simple contour. We start by mentioning the
celebrated Jordan curve lemma, a version of which states that any loop in
the complex plane separates the plane into two domains with the loop as
common boundary: one of which is bounded and is called the interior and
one of which is unbounded and is called the exterior.

�� This is a totally obvious statement and as most such statements extremely hard to prove,
requiring techniques of algebraic topology.

We say that a domain D is simply-connected if the interior domain
of every loop in D lies wholly in D. Hence for example, a disk is simply
connected, while a punctured disk is not: any circle around the puncture
contains the puncture in its interior, but this has been excised from the disk.
Intuitively speaking, a domain is simply-connected if any loop in the domain
can be continuously shrunk to a point without any point of the loop ever
leaving the domain.
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We are ready to state the Cauchy Integral Theorem: Let D ⊂ C be a
simply-connected domain and let f : D → C be an analytic function, then
for any loop Γ, the contour integral vanishes:

∮

Γ

f(z)dz = 0 .

As an immediate corollary of this theorem and of the path-independence
lemma, we see that an analytic function in a simply-connected domain has
an antiderivative, which is itself analytic in D.

We will actually prove a slightly weaker version of the theorem which
requires the stronger hypothesis that f ′(z) be continuous in D. Recall that
analyticity only requires f ′(z) to exist. The proof uses a version of Green’s
theorem which is valid in the complex plane. This theorem states that if
V (x, y) = P (x, y) dx + Q(x, y) dy is a continuously differentiable vector field
in a simply-connected domain D in the complex plane, and if Γ is any posi-
tively oriented loop in D, then the line integral of V along Γ can be written
as the area integral of the function ∂Q

∂x
− ∂P

∂y
on the interior Int(Γ) of Γ:

∮

Γ

(P (x, y) dx + Q(x, y) dy) =

∫∫

Int(Γ)

(
∂Q

∂x
− ∂P

∂y

)
dx dy . (2.31)

We will sketch a proof of this theorem below; but now let us use it to prove
the Cauchy Integral Theorem. Let Γ be a loop in a simply-connected domain
D in the complex plane, and let f(z) be a function which is analytic in D.
Computing the contour integral, we find

∮

Γ

f(z) dz =

∫

Γ

(u(x, y) + i v(x, y)) (dx + i dy)

=

∫

Γ

(u(x, y) dx− v(x, y) dy) + i

∫

Γ

(v(x, y) dx + u(x, y) dy) .

By hypothesis, f ′(z) is continuous, which means that the vector fields u dx−
v dy and v dx+u dy are continuously differentiable, whence we can use Green’s
Theorem (2.31) to deduce that

∮

Γ

f(z) dz =

∫∫

Int(Γ)

(
−∂v

∂x
− ∂u

∂y

)
dx dy +

∫∫

Int(Γ)

(
∂u

∂x
− ∂v

∂y

)
dx dy ,

which vanishes by the Cauchy–Riemann equations (2.7).
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� Here we will sketch a proof of Green’s Theorem (2.31). The strategy will be the following.
We will approximate the interior of the loop by tiny squares (plaquettes) in such a way
that the loop itself is approximated by the straight line segments which make up the edges
of the squares. As the size of the plaquettes decreases, the approximation becomes better
and better. In the picture we have illustrated this by showing three approximations to the
unit disk. For each we show the value of the length ` of the contour and of the area A of
its interior.

A = 2.9952
` = 9.6

A = 2.9952
` = 7.68

A = 3.1104
` = 7.68

A = π
` = 2π

· · ·

In fact, it is a simple matter of careful bookkeeping to prove that in the limit,

ZZ

Int(Γ)

= lim
size→0

X

plaquettes Π

ZZ

Int(Π)

.

Similarly for the contour integral,

I

Γ
= lim

size→0

X

plaquettes Π

I

Π
.

To see this notice that the contour integrals along internal edges common to two adjacent
plaquettes cancel because of equation (2.29) and the fact that we integrated twice along
them: once for each plaquette but in the opposite orientation, as shown in the picture
below. Therefore we only receive contributions from the external edges. Since the region
is simply-connected this means that boundary of the region covered by the plaquettes.

Π1

-

6

¾

? Π2

-

6

¾

?

Π3

-

6

¾

?Π4

-

6

¾

?

Π

-

6

¾

?

In the notation of the picture, then, one has

I

Π1

+

I

Π2

+

I

Π3

+

I

Π4

=

I

Π
.

Therefore it is sufficient to prove formula (2.31) for the special case of one plaquette. To
this effect we will choose our plaquette Π to have size ∆x×∆y and whose lower left-hand
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corner is at the point (x0, y0):

•
(x0, y0)

•
(x0 + ∆x, y0)

•(x0, y0 + ∆y) •(x0 + ∆x, y0 + ∆y)

Π

-

6

¾

?

Performing the contour integral we have for V (x, y) = P (x, y) dx + Q(x, y) dy,

I

Π
V (x, y) =

Z (x0+∆x,y0)

(x0,y0)
V (x, y) +

Z (x0+∆x,y0+∆y)

(x0+∆x,y0)
V (x, y)

+

Z (x0,y0+∆y)

(x0+∆x,y0+∆y)
V (x, y) +

Z (x0,y0)

(x0,y0+∆y)
V (x, y) .

Along the first and third contour integrals the value of y is constant, whereas along the
second and fourth integrals it is the value of x which is constant. Taking this into account,
we can rewrite the integrals as follows

I

Π
V (x, y) =

Z x0+∆x

x0

P (x, y0) dx +

Z y0+∆y

y0

Q(x0 + ∆x, y) dy

+

Z x0

x0+∆x
P (x, y0 + ∆y) dx +

Z y0

y0+∆y
Q(x0, y) dy .

Exchanging the limits of integration in the third and fourth integrals, and picking up a
sign in each, we can rewrite the integrals as follows:

I

Π
V (x, y)

=

Z y0+∆y

y0

[Q(x0 + ∆x, y)−Q(x0, y)] dy −
Z x0+∆x

x0

[P (x, y0 + ∆y)− P (x, y0)] dx .

But now we make use of the facts that

Q(x0 + ∆x, y)−Q(x0, y) =

Z x0+∆x

x0

∂Q(x, y)

∂x
dx

P (x, y0 + ∆y)− P (x, y0) =

Z y0+∆y

y0

∂P (x, y)

∂y
dy ;

whence the integrals become

I

Π
V (x, y) =

Z y0+∆y

y0

Z x0+∆x

x0

∂Q(x, y)

∂x
dx dy −

Z x0+∆x

x0

Z y0+∆y

y0

∂P (x, y)

∂y
dy dx

=

Z x0+∆x

x0

Z y0+∆y

y0

�
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

�
dx dy

=

ZZ

Int(Π)

�
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

�
dx dy ,

which proves the formula for the plaquette Π.
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Deforming the contour without changing the integral

The Cauchy Integral Theorem has a very important consequence for the com-
putation of contour integrals. It basically says that contours can be moved
about (or deformed) without changing the result of the integral, provided
that in doing so we never cross a point where the integrand ceases to be
analytic. Let us illustrate this with a few examples.

Let us compute the contour integral

C

E

I¾
∮

E

1

z
dz ,

where E is the positively-oriented ellipse x2 + 4y2 = 1
depicted in the figure. Earlier we computed the same
integral around a circular contour C of radius 1, cen-

tred at the origin, and we obtained∮

C

1

z
dz = 2π i .

We will argue, using the Cauchy Integral Theorem, that we get the same
answer whether we integrate along E or along C. Consider the two domains
in the interior of the circle C but in the exterior of the ellipse E. The
integrand is analytic everywhere in the complex plane except for the origin,
which lies outside these two regions. The Cauchy Integral Theorem says that
the contour integral vanishes along either of the two contours which make up
the boundary of these domains. Let us be more explicit and let us call these
contours Γ± as in the figure below.

••

Γ−

••

Γ+

-
¾

¾
-

Then it is clear that∮

C

1

z
dz =

∮

Γ+

1

z
dz +

∮

Γ−

1

z
dz +

∮

E

1

z
dz .

Since the interior Γ± is simply-connected and the integrand 1
z

is analytic in
and on Γ±, the Cauchy Integral Theorem says that∮

Γ±

1

z
dz = 0 ,
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whence ∮

E

1

z
dz =

∮

C

1

z
dz = 2π i .

In other words, we could deform the contour from E to C without altering
the result of the integral because in doing so we do not pass over any point
where the integrand ceases to be analytic.

Let us illustrate this with another example, which generalises this one.
Let Γ be any positively-oriented loop in the complex plane, let z0 be any
complex number which does not lie on Γ, and consider the following contour
integral ∮

Γ

1

z − z0

dz .

We must distinguish two possibilities: z0 is in the interior of Γ or in the
exterior. In the latter case, the integral is zero because the integrand is
analytic everywhere but at z0, hence if z0 lies outside Γ, Cauchy’s Integral
Theorem applies. On the other hand, if z0 is in the interior of Γ we expect that
we should obtain a nonzero answer—after all, if Γ were the circle |z − z0| =
R > 0, then the same calculation as in (2.26) yields a value of 2π i for the
integral. In fact, as we will now show this is the answer we get for any
positively-oriented loop containing z0 in its interior.

In Figure 2.5 we have depicted the contour Γ and a circular contour C
of radius r about the point z0. We have also depicted two pairs of points
(P1, P2) and (P3, P4): each pair having one point in each contour, as well as
straight line segments joining the points in each pair.

•z0

Γ

C

•P4 •
P3

•
P1

•
P2

¾

I

Figure 2.5: The contours Γ and C and some special points.

Now consider the following loop Γ1 starting and ending at P1, as illus-
trated in Figure 2.6. We start at P1 and go to P4 via the top half of Γ, call
this, Γ+; then we go to P3 along the straight line segment joining them, call

114



it −γ34; then to P2 via the upper half of C in the negative sense, call it −C+;
and then back to P1 via the straight line segment joining P2 and P1, call it
−γ12. The interior of this contour is simply-connected and does not contain
the point z0. Therefore Cauchy’s Integral Theorem says that

∮

Γ1

1

z − z0

dz =

(∫

Γ+

+

∫

−γ34

+

∫

−C+

+

∫

−γ12

)
1

z − z0

dz

=

(∫

Γ+

−
∫

γ34

−
∫

C+

−
∫

γ12

)
1

z − z0

dz

= 0 ,

from where we deduce that∫

Γ+

1

z − z0

dz =

(∫

γ34

+

∫

C+

+

∫

γ12

)
1

z − z0

dz .

•• • •• •• • ••

Γ2

Γ1

Γ+

Γ−

¾

-

-−C+

¾
−C−

-
−γ34

-
−γ12

¾γ34 ¾γ12

Figure 2.6: The contours Γ1 and Γ2.

Similarly consider the loop Γ2 starting and ending at P4. We start at P4

and go to P1 along the lower half of Γ, call it Γ−; then we go to P2 along
γ12; then to P3 via the lower half of the circular contour in the negative
sense −C−; and then finally back to P4 along γ34. By the same argument
as above, the interior of Γ2 is simply-connected and z0 lies in its exterior
domain. Therefore by the Cauchy Integral Theorem,

∮

Γ2

1

z − z0

dz =

(∫

Γ−
+

∫

γ34

+

∫

−C−
+

∫

−γ12

)
1

z − z0

dz

=

(∫

Γ−
+

∫

γ34

−
∫

C−
+

∫

−γ12

)
1

z − z0

dz

= 0 ,

from where we deduce that∫

Γ−

1

z − z0

dz =

(
−

∫

γ34

+

∫

C+

−
∫

γ12

)
1

z − z0

dz .
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Putting the two results together, we find that
∫

Γ

1

z − z0

dz =

∫

Γ+

1

z − z0

dz +

∫

Γ−

1

z − z0

dz

=

∫

C+

1

z − z0

dz +

∫

C−

1

z − z0

dz

=

∫

C

1

z − z0

dz

= 2π i .

In summary, we find that if Γ is any positively-oriented loop in the complex
plane and z0 a point not in Γ, then

∫

Γ

1

z − z0

dz =

{
2π i for z0 in the interior of Γ; and

0 otherwise.
(2.32)

In the following section we will generalise this formula in a variety of ways.

2.2.5 Cauchy’s Integral Formula

In this section we present several generalisations of the formula (2.32). Let
f(z) be analytic in a simply-connected domain D, and let Γ be a positively-
oriented loop in D. Let z0 be any point in the interior of Γ. Then the Cauchy
Integral Formula reads

f(z0) =
1

2π i

∮

Γ

f(z)

z − z0

dz . (2.33)

This is a remarkable formula. It says that an analytic function in a simply-
connected domain is determined by its behaviour on the boundary. In other
words, if two analytic functions f(z) and g(z) agree on the boundary of a
simply-connected domain they agree everywhere in the domain.

�� Cauchy’s Integral Formula is a mathematical analogue of a notion that is very much in
vogue in today’s theoretical physics, namely ‘holography’. You all know what the idea of
an optical hologram is: it is a two-dimensional film which contains enough information to
reconstruct (optically) a three-dimensional object. In theoretical physics, holography is
exemplified in the celebrated formula of Beckenstein–Hawking for the entropy of a black
hole. On the one hand, we know from Boltzmann’s formula that the entropy of a statistical
mechanical system is a measure of the density of states of the system. The black-hole
entropy formula says that the entropy is a black hole is proportional to the area of the
horizon. In simple terms, the horizon of the black hole is the surface within which light
can no longer escape the gravitational attraction of the black hole. The entropy formula
is holographic because it tells us that the degrees of freedom of a three-dimensional object
like a black hole is determined from the properties of a two-dimensional system: the
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horizon, just like with the optical hologram. The “Holographic Principle” roughly states
that any theory of quantum gravity, i.e., a theory which can explain the microscopic
origin of the entropy of the black hole, must be able to explain the entropy formula and
hence be holographic. The Cauchy Integral Formula is holographic in the sense that an
analytic function in the plane (which is two-dimensional) is determined by its behaviour
on contours (which are one-dimensional).

Notice that by equation (2.32), we have that

f(z0) =
1

2π i

∮

Γ

f(z0)

z − z0

dz ,

whence we will have proven the Cauchy Integral Formula if we can show that
∮

Γ

f(z)− f(z0)

z − z0

dz = 0 .

As a first step in proving this result, let us use the Cauchy Integral Theorem
to conclude that the above integral can be computed along a small circle Cr

of radius r about z0 without changing its value:
∮

Γ

f(z)− f(z0)

z − z0

dz =

∮

Cr

f(z)− f(z0)

z − z0

dz .

Moreover since the radius of the circle does not matter, we are free to take
the limit in which the radius goes to zero, so that:

∮

Γ

f(z)− f(z0)

z − z0

dz = lim
r→0

∮

Cr

f(z)− f(z0)

z − z0

dz .

Let us parametrise Cr by z(t) = z0 + r exp(2π i t) for t ∈ [0, 1]. Then

∮

Cr

f(z)− f(z0)

z − z0

dz =

∫ 1

0

f(z)− f(z0)

re2π i t
2π i re2π i t dt

= 2π i

∫ 1

0

(f(z)− f(z0)) dt .

Let us estimate the integral. Using (2.24) we find
∣∣∣∣
∫ 1

0

(f(z)− f(z0)) dt

∣∣∣∣ ≤
∫ 1

0

|f(z)− f(z0)| dt ≤ max
|z−z0|=r

|f(z)− f(z0)| .

Because f is continuous at z0—that is, f(z) → f(z0) as z → z0—the limit as
r → 0 of |f(z)− f(z0)| is zero, whence

lim
r→0

∮

Cr

f(z)− f(z0)

z − z0

dz = 0 .
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� Formally, continuity of f at z0 says that given any ε > 0 there is a δ > 0 such that
|f(z) − f(z0)| < ε whenever |z − z0| < δ. Since we are interested in the limit r → 0, we
can always take δ small enough so that |f(z) − f(z0)| is smaller than any ε. Therefore,
limr→0 |f(z)− f(z0)| = 0.

Now let us do something “deep.” We will change notation in the Cauchy
Integral Formula (2.33) and rewrite it as

f(z) =
1

2π i

∮

Γ

f(ζ)

ζ − z
dζ .

All we have done is change the name of the variable of integration (Shake-
speare’s Theorem again!); but as a result we have obtained an integral repre-
sentation of an analytic function which suggests a way to take its derivative
simply by sneaking the derivative inside the integral:

f ′(z)
?
=

1

2π i

∮

Γ

f(ζ)

(ζ − z)2
dζ

f ′′(z)
?
=

2

2π i

∮

Γ

f(ζ)

(ζ − z)3
dζ

...

f (n)(z)
?
=

n!

2π i

∮

Γ

f(ζ)

(ζ − z)n+1
dζ .

Of course such manipulations have to be justified, and we will see that indeed
this is correct. Given that we are going to spend the effort in justifying this
procedure, let us at least get something more out of it.

Integral representation for analytic functions

We already have at our disposal quite a number of analytic functions: rational
functions, exponential and related functions, logarithm and complex powers.
To some extent these are complex versions of functions with which we are
familiar from real calculus. In this section we will learn of yet another way
of constructing analytic functions. Functions constructed in this way usually
do not have names, since anonymity is the fate which befalls most functions.
But by the same token, this means that the method below is a powerful
way to construct new analytic functions, or to determine that a function is
analytic.

Let g be a function which is continuous in some contour Γ which need
not be closed. Let z be any complex number not contained in Γ, and define
the following function:

G(z) =

∫

Γ

g(ζ)

ζ − z
dζ . (2.34)
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We claim that G(z) is analytic except possible on Γ, and

G′(z) =

∫

Γ

g(ζ)

(ζ − z)2
dζ . (2.35)

This generalises the above discussion in two important ways: g need not be
analytic (just continuous) and the contour need not be closed.

To see if G(z) is analytic we need to investigate whether the derivative
G′(z) exists and is well-defined. By definition,

G′(z) = lim
∆z→0

G(z + ∆z)−G(z)

∆z

= lim
∆z→0

1

∆z

∫

Γ

(
g(ζ)

ζ − z −∆z
− g(ζ)

ζ − z

)
dζ

= lim
∆z→0

1

∆z

∫

Γ

g(ζ)∆z

(ζ − z −∆z)(ζ − z)
dζ

= lim
∆z→0

∫

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ .

Again, we would be done if we could simply take the limit inside the integral:

G′(z)
?
=

∫

Γ

lim
∆z→0

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ =

∫

Γ

g(ζ)

(ζ − z)2
dζ .

This can be justified (see below), so we are allowed to do so and recover what
we were after. The formula (2.34) defines an integral representation for the
analytic function G(z).

� Let us show that one can take the limit inside the integral, so that

lim
∆z→0

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)
dζ =

Z

Γ

g(ζ)

(ζ − z)2
dζ .

Equivalently we would like to show that in the limit ∆z → 0, the difference

Z

Γ

�
g(ζ)

(ζ − z −∆z)(ζ − z)
− g(ζ)

(ζ − z)2

�
dζ

vanishes. We can rewrite this difference as

∆z

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ ,

which we would like to vanish as ∆z → 0. By equation (2.24), we have that

����
Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤
Z

Γ

����
g(ζ)

(ζ − z −∆z)(ζ − z)2

���� |dζ|

= max
ζ∈Γ

����
g(ζ)

(ζ − z −∆z)(ζ − z)2

���� `(Γ) ,

119



where we have used equation (2.27) for the length `(Γ) of the contour.

Since g(ζ) is continuous on Γ, |g(ζ)| is bounded there: |g(ζ)| ≤ M , for some positive real
M .

δ
¾

¾
Γ

•z
•
z + ∆z

Because z is not on Γ, any point ζ on Γ is at least a certain distance δ from z: |ζ−z| ≥ δ > 0,
as shown in the above figure. Now by the triangle inequality (2.1),

|ζ − z| = |ζ − z −∆z + ∆z| ≤ |ζ − z −∆z|+ |∆z| ,

whence
|ζ − z −∆z| ≥ |ζ − z| − |∆z| .

Since we are taking the limit ∆z → 0, we can choose |∆z| ≤ 1
2
δ so that

|ζ − z −∆z| ≥ δ − 1
2
δ = 1

2
δ .

Therefore putting it all together we find that

����
Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤
2M`(Γ)

δ3
.

Therefore

lim
∆z→0

����∆z

Z

Γ

g(ζ)

(ζ − z −∆z)(ζ − z)2
dζ

���� ≤ lim
∆z→0

|∆z|2M`(Γ)

δ3
= 0 .

� This is as good a place as any to mention another way of writing the triangle inequality
(2.1), which is sometimes more useful and which was used above:

|z + w| ≥ |z| − |w| . (2.36)

To obtain the second version of the triangle inequality from the first we simply make the
following substitution: z1 + z2 = z, and z2 = −w, so that z1 = z + w. Then we find from
the (2.1), that |z| ≤ |z + w|+ | − w| = |z + w|+ |w|, which is can be rewritten as (2.36).

The same argument shows that if we define

H(z) =

∫

Γ

g(ζ)

(ζ − z)n
dζ , (2.37)

where n is a positive integer, then H is analytic and its derivative is given
by

H ′(z) = n

∫

Γ

g(ζ)

(ζ − z)n+1
dζ . (2.38)
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The generalised Cauchy Integral Formula

This has as an important consequence: if f is analytic in a neighbourhood
of z0, then so are all its derivatives f (n). To prove this simply notice that
if f is analytic in a neighbourhood of z0, there is some ε > 0 such that f is
analytic in and on the circle C of radius ε centred at z0; that is, the closed
disk |ζ − z0| ≤ ε. Therefore for any z in the interior of the circle—that is,
such that |z − z0| < ε—we have the Cauchy Integral representation

f(z) =
1

2π i

∮

C

f(ζ)

ζ − z
dζ .

But this integral representation is of the form (2.34), whence its derivative
is given by the analogue of equation (2.35):

f ′(z) =
1

2π i

∮

C

f(ζ)

(ζ − z)2
dζ .

But this is of the general form (2.37) (with n = 2), whence by the above
results, f ′(z) is an analytic function and its derivative is given by the analogue
of (2.38):

f ′′(z) =
2

2π i

∮

C

f(ζ)

(ζ − z)3
dζ ,

which again follows the pattern (2.37). Continuing in this fashion we deduce
that f ′, f ′′, ... are analytic in the open ε-disk about z0.

In summary, an analytic function is infinitely differentiable, its derivatives
being given by the generalised Cauchy Integral Formula:

f (n)(z) =
n!

2π i

∮

Γ

f(ζ)

(ζ − z)n+1
dζ . (2.39)

Notice that if we put n = 0 in this formula, define 0! = 1 and understand
the zeroth derivative f (0) as the function f itself, then this is precisely the
Cauchy Integral Formula.

� Infinite differentiability of harmonic functions.

The generalised Cauchy Integral Formula can also be turned around in or-
der to compute contour integrals. Hence if f is analytic in and on a positively
oriented loop Γ, and if z0 is a point in the interior of Γ, then

∮

Γ

f(z)

(z − z0)n+1
dz =

2π i

n!
f (n)(z0) . (2.40)
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For example, let us compute the following contour integral

∮

Γ

e5z

z3
dz ,

where Γ is the positively oriented unit circle |z| = 1. This integral is of the
form (2.40) with n = 2, f(z) = e5z, which is entire and hence, certainly
analytic in and on the contour, and with z0 = 0, which lies in the interior of
the contour. Therefore by (2.40) we have

∮

Γ

e5z

z3
dz = 2π i

1

2!

d2

dz2

(
e5z

)∣∣∣∣
z=0

= 2π i
1

2!
25 = 25π i .

Let us consider a more complicated example. Let us compute the contour
integral ∫

Γ

2z + 1

z(z − 1)2
dz ,

where Γ is the contour depicted in Figure 2.7. Two things prevent us from ap-
plying the generalised Cauchy Integral Formula: the contour is not a loop—
indeed it is not simple—and the integrand is not of the form g(z)/(z − z0)

n

where g(z) is analytic inside the contour. This last problem could be solved
by rewriting the integrand using partial fractions:

2z + 1

z(z − 1)2
=

3

(z − 1)2
− 1

z − 1
+

1

z
. (2.41)

However we are still faced with a contour which is not simple.

• •0 +1 • •0 +1

¾- Γ

µª

Γ1Γ0

Figure 2.7: The contour Γ and an equivalent pair of contours {Γ0, Γ1}.

This problem can be circumvented by noticing that the smooth contour Γ
can be written as a piecewise smooth contour with two smooth components:
both starting and ending at the point of self-intersection of Γ. The first such
contour is the left lobe of Γ, which is a negatively oriented loop about z = 0,
and the second is the right lobe of Γ, which is a positively oriented loop
about z = 1. Because the integrand is analytic everywhere but at z = 0 and
z = 1, the Cauchy Integral Theorem tells us that we get the same result by
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integrating around the circular contours Γ0 and Γ1 in Figure 2.7. In other
words,

∫

Γ

2z + 1

z(z − 1)2
dz =

∮

Γ0

2z + 1

z(z − 1)2
dz +

∮

Γ1

2z + 1

z(z − 1)2
dz .

We can now evaluate this in either of two ways. Using the partial fraction
decomposition (2.41) of the integrand, one finds

∮

Γ0

2z + 1

z(z − 1)2
dz =

∮

Γ0

1

z
dz = −

∮

−Γ0

1

z
dz = −2π i ,

∮

Γ1

2z + 1

z(z − 1)2
dz =

∮

Γ1

3

(z − 1)2
dz −

∮

Γ1

1

z − 1
dz = 0− 2π i = −2π i ;

whence ∫

Γ

2z + 1

z(z − 1)2
dz = −4π i .

Alternatively we notice that

∮

Γ0

2z + 1

z(z − 1)2
dz =

∮

Γ0

2z+1
(z−1)2

z
dz = −2π i ,

where we have used the fact that 2z+1
(z−1)2

is analytic in and on Γ0 and the
Cauchy Integral Formula after taking into account that Γ0 is negatively ori-
ented. Similarly, one has

∮

Γ1

2z + 1

z(z − 1)2
dz =

∮

Γ1

2z+1
z

(z − 1)2
dz = 2π i

d

dz

(
2z + 1

z

)∣∣∣∣
z=1

= −2π i ,

where we have used that 2z+1
z

is analytic in and on Γ1, and the generalised
Cauchy Integral formula (with n = 1). Therefore again

∫

Γ

2z + 1

z(z − 1)2
dz = −4π i .

Morera’s Theorem

Finally we discuss a converse of the Cauchy Integral Theorem, known as
Morera’s Theorem. Suppose that f is continuous in a domain D and has
an antiderivative F in D. This means that F is analytic, and by what we
have just shown, so is f(z) = F ′(z). Therefore we have just shown that if
f(z) is continuous with an antiderivative, then f is analytic. Now from the
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path independence lemma, f has an antiderivative if and only if all its loop
integrals in D vanish: ∮

Γ

f(z)dz = 0 .

Therefore we arrive at Morera’s Theorem which states that: if f(z) is con-
tinuous in D and all the loop integrals of f(z) in D vanish, then f is analytic.
This theorem will be of use in Section 2.3.

2.2.6 Liouville’s Theorem and its applications

The generalised Cauchy Integral Formula is one of the cornerstones of com-
plex analysis, as it has a number of very useful corollaries. An immediate ap-
plication of the generalised Cauchy Integral Formula is the so-called Cauchy
estimates for the derivatives of an analytic function. These estimates will
play an important role in the remainder of this section.

Suppose that f(z) is analytic in some domain D containing a circle C
of radius R centred about z0. Suppose moreover that |f(z)| ≤ M for all z
on the circle C. We can then use the generalised Cauchy Integral Formula
(2.39) to obtain a bound for the derivatives of f at z0:

|f (n)(z0)| =
∣∣∣∣

n!

2π i

∮

C

f(z)

(z − z0)n+1
dz

∣∣∣∣ ≤
n!

2π

∮

C

|f(z)|
|z − z0|n+1

|dz| ,

where we have used (2.28) to arrive at the inequality. On the circle, |z−z0| =
R and |f(z)| ≤ M , whence

|f (n)(z0)| ≤ n!

2π

M

Rn+1

∮

C

|dz| ,

which, using that the length of the contour is 2π R, can be rewritten neatly
as

|f (n)(z0)| ≤ n! M

Rn
. (2.42)

This inequality is known as the Cauchy estimate.
As an immediate corollary of this estimate suppose that f is analytic in

whole complex plane (i.e., that f is an entire function) and that it is bounded,
so that |f(z)| ≤ M for all z. Then from the Cauchy estimate, at any point
z0 in the complex plane, its derivative is bounded by |f ′(z0)| ≤ M/R. But
because the function is entire, we can take R as large as we wish. Now
given any number ε > 0, however small, there is always an R large enough
for which M/R < ε, so that |f ′(z0)| < ε. Therefore |f ′(z0)| = 0, whence
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f ′(z0) = 0. Since this is true for all z0 in the complex plane, we have proven
Liouville’s theorem:

a bounded entire function is constant.

This does not violate our experience since the only entire functions we have
met are polynomials and the exponential and functions we can make out
of them by multiplication, linear combinations and compositions, and these
functions are all clearly not bounded.

Indeed, suppose that P (z) is a polynomial of order N ; that is,

P (z) = zN + aN−1z
N−1 + · · ·+ a1z + a0 .

Then intuitively, for large z we expect that P (z) should go as zN , since
the largest power dominates the other ones. The precise statement, to be
proven below, is that there exists R > 0 large enough such that for |z| ≥ R,
|P (z)| ≥ c|z|N , where 0 < c < 1 depends on R in such a way that as R tends
to ∞, c tends to 1.

� Let P (z) be the above polynomial and let A ≥ 1 denote the largest of the moduli of
coefficients of the polynomial: A = max{|a0|, |a1|, . . . , |aN−1|, 1}. Then let us rewrite
the polynomial as P (z) = zN

�
1 + aN−1/z + · · · a0/zN

�
. Now by the triangle inequality

(2.36),

���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1−
���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� .

Using the triangle inequality again,

���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≤
���aN−1

z

���+ · · ·+
��� a1

zN−1

���+
��� a0

zN

���

≤ A

|z| + · · ·+ A

|z|N−1
+

A

|z|N .

Now take |z| ≥ 1 so that |z|N ≥ |z|N−1 ≥ · · · ≥ |z|. Then,

���aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≤ NA

|z| .

Therefore, ���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1− NA

|z| .

Hence if we take z such that |z| ≥ R ≥ NA ≥ 1, then

���1 +
aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ 1− NA

R
=

R−NA

R
.

Finally then,

|P (z)| = |z|N
���1 +

aN−1

z
+ · · ·+ a1

zN−1
+

a0

zN

��� ≥ R−NA

R
|z|N .

Hence c = (R−NA)/R < 1 and as R →∞, c → 1.
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We are now able to prove the Fundamental Theorem of Algebra which
states that

every nonconstant polynomial has at least one zero.

Indeed, let P (z) be a polynomial and suppose that it does not have any zeros.
Then 1/P (z) is an entire function. If we manage to prove that this function
is bounded, then we can use Liouville’s theorem and conclude that 1/P (z),
and hence P (z), would have to be constant. So let us try to prove that it is
bounded. Without loss of generality we can assume that the polynomial has
the form P (z) = zN + aN−1z

N−1 + · · ·+ a1z + a0 for some N . Let R be such
that |z| ≥ R, |P (z)| ≥ c|z|N , where 0 < c < 1. Then, for |z| ≥ R,

∣∣∣∣
1

P (z)

∣∣∣∣ =
1

|P (z)| ≤
1

c|z|N ≤ 1

cRN
.

While for |z| ≤ R, then the function 1/P (z), being continuous, is bounded
in this disk by some M = max|z|≤R 1/|P (z)|. Therefore 1/|P (z)| is bounded
above for all z by the largest of M and 1/(cRN). Hence 1/P (z) is bounded.

�� I have always found this proof of the Fundamental Theorem of Algebra quite remarkable.
It is compelling evidence in favour of the vision of mathematics as a coherent whole, that
a purely algebraic statement like the Fundamental Theorem of Algebra can be proven in
a relatively elementary fashion using complex analysis. I hope that as physicists we can
be forgiven the vanity of thinking that this unity of mathematics stems from it being the
language of nature.

2.3 Series expansions for analytic functions

This section ushers in the second half of this part of the course. The pur-
pose of this section is to learn about the series representations for analytic
functions. We will see that every function analytic in a disk can be approxi-
mated by polynomials: the partial sums of its Taylor series. Similarly every
function analytic in a punctured disk can be described by a Laurent series,
a generalisation of the notion of a power series, where we also allow for neg-
ative powers. This will allow us to discuss the different types of singularities
that an analytic function can have. This section is organised as follows: we
start with a study of sequences and series of complex numbers and of complex
functions and of different notions of convergence and methods of establishing
convergence. We will then show that a function analytic in the neighbour-
hood of a point can be approximated there by a power series: its Taylor
series. We will then discuss power series and prove that every power series
converges to an analytic function in its domain of convergence, and in fact is
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the Taylor series of that function. Therefore the power series representation
of an analytic function is unique. We then introduce Laurent series: which
allows us to represent analytic functions around an isolated singularity. We
also prove that they are unique in a sense. We end the section with a dis-
cussion of the different isolated singularities which an analytic function can
have.

2.3.1 Sequences and Series

In this section we discuss sequences and series and the rudiments of the
theory of convergence. This is necessary groundwork to be able to discuss
the Taylor and Laurent series representations for analytic functions.

Sequences

By a sequence we mean an infinite set {z0, z1, z2, z3, . . . } of complex num-
bers. It is often denoted {zn} where the index is understood to run over the
non-negative integers. Intuitively, a sequence {zn} converges to a complex
number z if as n increases, zn remains ever closer to z. A precise definition
is the following. A sequence {zn} is said to converge to z (written zn → z
or limn→∞ zn = z) if given any ε > 0, there exists an integer N , which may
depend on ε, such that for all n ≥ N , |zn− z| < ε. In other words, the “tail”
of the sequence remains arbitrary close to z provided we go sufficiently far
into it. A sequence which converges to some point is said to be convergent.
Convergence is clearly a property only of the tail of the sequence, in the sense
that two sequences which differ only in the first N terms (any finite N) but
are identical afterwards will have the same convergence properties.

For example, the sequence {zn = 1/n} clearly converges to 0: |zn| = 1/n
and we can make this as small as we like by taking n as large as needed.

A sequence {zn} is said to satisfy the Cauchy criterion (or be a Cauchy
sequence) if it satisfies the following property: given any ε > 0 there exists
N (again, depending on ε) such that |zn − zm| < ε for all n,m ≥ N . This
criterion simply requires that the elements in the sequence remain ever closer
to each other, not that they should converge to any point. Clearly, if a
sequences converges it is Cauchy: simply notice that adding and subtracting
z,

|zn − zm| = |(zn − z)− (zm − z)| ≤ |zn − z|+ |zm − z|
by the triangle inequality (2.1). Hence if we want zn and zm to remain within
ε of each other for n,m larger than some N , we need just choose N such that
|zn − z| < ε/2 for all n ≥ N .
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� What is a relatively deep result, is that every Cauchy sequence is convergent. This is
essentially the fact that the complex numbers are complete. To prove this requires a more
careful axiomatisation of the real number system than we have time for.

Series

By a series we mean a formal sum

c0 + c1 + c2 + · · ·+ cj + · · ·

of complex numbers, cj, called the coefficients. We say formal since just
because we can write something down does not mean it makes any sense: it
does not make much sense to add an infinite number of terms. What does
make sense is the following: define the n-th partial sum

Sn ≡
n∑

j=0

cj = c0 + c1 + · · ·+ cn−1 + cn .

This defines a sequence {Sn}. Then we can analyse the limit as n → ∞
of this sequence. If one exists, say Sn → S, then we say that the series
converges to or sums to S, and we write

S =
∞∑

j=0

cj .

Otherwise we say that the series is divergent. Applying the Cauchy criterion
to the sequence of partial sums, we see that a necessary condition for the
convergence of a series is that the sequence of coefficients converge to 0.
Indeed, if {Sn} is convergent, it is Cauchy, whence given any ε > 0, there
exists N such that for all n,m ≥ N , |Sn − Sm| < ε. Taking m = n − 1, we
see that ∣∣∣∣∣

n∑
j=0

cj −
n−1∑
j=0

cj

∣∣∣∣∣ = |cn| < ε ,

for every n ≥ N . Therefore the sequence {cj} converges to 0. We can
summarise this as follows

If
∞∑

j=0

cj converges, then lim
j→∞

cj = 0 .

This is a necessary criterion for the convergence of a series, so it can be
used to conclude that a series is divergent, but not to conclude that it is

128



convergent. For example, consider the series

∞∑
j=0

j

2j + 1
. (2.43)

It is clearly divergent because j/(2j + 1) → 1
2
. On the other hand consider

the series (we start at j = 1 for obvious reasons)

∞∑
j=1

1

j
. (2.44)

Now the coefficients do converge to zero, but this series is actually divergent.
One way to see this is to notice that for every n ≥ 1,

n∑
j=1

1

j
=

n∑
j=1

∫ j+1

j

dx

j
>

n∑
j=1

∫ j+1

j

dx

x
=

∫ n+1

1

dx

x
= log(n + 1) ,

and limn→∞ log(n + 1) = ∞. On the other hand, the series

∞∑
j=1

1

j2

does converge. One can argue in a similar style. Notice that for j ≥ 2,

1

j2
=

∫ j

j−1

dx

j2
<

∫ j

j−1

dx

x2
=

1

j(j − 1)
.

Hence, for all n ≥ 2,

n∑
j=1

1

j2
= 1 +

n∑
j=2

1

j2
< 1 +

n∑
j=2

∫ j

j−1

dx

x2
= 1 +

∫ n

1

dx

x2
= 2− 1

n
,

so that in the limit,
∞∑

j=1

1

j2
< 2 .

Indeed, we will be able to compute this sum very easily using contour inte-
gration and it will turn out that

∑∞
j=1

1
j2 = π2

6
' 1.6449341. Similarly, one

can show in the same way that the series

∞∑
j=1

1

jp

converges for any p > 1. In fact, p can be any real number.
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Establishing convergence

There are two useful tests for establishing the convergence of a series. The
first one is known as the Comparison Test: Suppose that

∑∞
j=0 Mj is a

convergent series whose coefficients are non-negative real numbers: Mj ≥ 0.
Let

∑∞
j=0 cj be such that |cj| ≤ Mj for all sufficiently large j. Then

∑∞
j=0 cj

also converges.

� Prove the Comparison Test.

Of course, in order to apply this test we need to have some examples
of convergent series to compare with. We have already seen the series∑∞

j=1 1/jp, for p > 1, but perhaps the most useful series we will come across

is the geometric series
∑∞

j=0 cj, where c is some complex number. To inves-

tigate the convergence of this series, simply notice that |cj| = |c|j and hence
the coefficient sequence {cj} converges to 0 if and only if |c| < 1. Thus we
let |c| < 1 from now on. We proceed as follows:

(1− c)Sn = (1− c)(1 + c + · · ·+ cn) = 1− cn+1 ,

whence

Sn =
1− cn+1

1− c
or Sn − 1

1− c
= − cn+1

1− c
.

Therefore taking the modulus, we see that

∣∣∣∣Sn − 1

1− c

∣∣∣∣ =
|c|n+1

|1− c| ,

which converges to 0 as n →∞ since |c| < 1. Therefore

∞∑
j=0

cj =
1

1− c
if |c| < 1. (2.45)

As an example, let us consider the following series

∞∑
j=0

3 + 2i

(j + 1)j
. (2.46)

Its coefficient sequence converges to zero. Notice also that

∣∣∣∣
3 + 2i

(j + 1)j

∣∣∣∣ =

√
13

(j + 1)j
<

4

(j + 1)j
.

130



Hence for j ≥ 3, ∣∣∣∣
3 + 2i

(j + 1)j

∣∣∣∣ <
1

2j
.

But since 1
2

< 1, the geometric series

∞∑
j=0

1

2j
= 2

converges. Hence by the comparison test, the original series (2.46) converges
as well.

A further convergence criterion is the Ratio Test: Let
∑∞

j=0 cj be such
that the limit

L ≡ lim
j→∞

∣∣∣∣
cj+1

cj

∣∣∣∣
exists. Then if L < 1 the series converges, and if L > 1 the series diverges.
(Alas, if L = 1 we cannot conclude anything.)

� Prove the Ratio Test.

The Ratio Test does not contradict our experience so far: for the geomet-
ric series L = |c|, and we certainly needed |c| < 1 for convergence. Moreover
in this case L ≥ 1 implies divergence. Similarly, the series (2.44) has L = 1,
so that the test tells us nothing. The same goes for the series (2.43). Notice
that there are series for which the Ratio Test cannot even be applied, since
the limit L may not exist.

Sequences and series of functions: uniform convergence

Our primary interest in series and sequences being the construction of an-
alytic functions, let us now turn our attention to the important case of se-
quences and series of functions . Consider a sequence {fn} whose elements
are functions fn(z) defined on some domain in the complex plane. For a
fixed point z we can study the sequence of complex numbers {fn(z)} and
analyse its convergence. If it does converge, let us call the limit f(z); that
is, fn(z) → f(z). This procedure defines a function f for those z such that
the sequence {fn(z)} converges. If this is the case we say that the sequence
{fn} converges pointwise to f . Now suppose that each fn is continuous (or
analytic) will f be continuous (or analytic)? It turns out that pointwise
convergence is too weak in order to guarantee that the limit function shares
some of these properties of the fn.
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For instance, it is easy to cook up a pointwise limit of analytic functions
which is not even continuous. Consider the functions fn(z) = exp(−nz2).
Clearly these functions are analytic for each n. Let us now consider the
functions restricted to the real axis: z = x, and consider the limit function
f(x). For all n, fn(0) = 1, whence in the limit f(0) = 1. On the other hand,
let x 6= 0. Then given any ε > 0, however small, there will be N such that
exp(−nx2) < ε for n ≥ N . Hence

f(x) =

{
1 for x = 0;

0 otherwise.

In other words, the limit function has a discontinuity at the origin. Conti-
nuity would require f(0) = 0. To understand what is going on here, notice
that to make fn(x) < ε we require that

e−nx2

< ε =⇒ n >
log(1/ε)

x2
,

as can be easily seen by taking the logarithm of both sides of the first in-
equality. Hence as x becomes smaller, the value of n has to be larger and
larger to the extent that in the limit as x → 0, there is no n for which this
is the case.

The above “post mortem” analysis prompts the following definition. A
sequence of functions {fn} is said to converge to a function f uniformly in
a subset U if given any ε > 0 there exists an N such that for all n ≥ N ,

|fn(z)− f(z)| < ε for all z ∈ U .

In other words, N can depend on ε but not on z.
Similarly one says that a series of functions

∞∑
j=0

fj(z) ,

converges pointwise or uniformly if the sequence of partial sums does.
To show that this definition takes care of the kind of pathologies encoun-

tered above, let us first of all prove that the uniform limit of continuous
functions is again continuous. Indeed, let {fn(z)} be a sequence of functions
which are continuous at z0, and let it converge to a function f(z) uniformly
in a neighbourhood of z0. We claim that f(z) is continuous at z0. This
means that given any ε > 0, there exists δ > 0 such that |f(z) − f(z0)| < ε
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whenever |z − z0| < δ. To prove this we will employ a device known as the
ε/3 trick . Let us rewrite |f(z)− f(z0)| as follows

|f(z)− f(z0)| = |f(z)− fn(z) + fn(z)− fn(z0) + fn(z0)− f(z0)|
≤ |f(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− f(z0)| ,

by the triangle inequality. Now, because fn(z) → f(z) uniformly, we can
choose n above so large that |f(z) − fn(z)| < ε/3 for all z, so in particular
for z = z0. Similarly, because fn(z) is continuous at z0, there exists δ such
that |fn(z)− fn(z0)| < ε/3 whenever |z − z0| < δ. Therefore,

|f(z)− f(z0)| < ε/3 + ε/3 + ε/3 = ε .

In other words, we have shown that

the uniform limit of continuous functions is continuous.

Similarly we will see that the uniform limit of analytic functions is an-
alytic. Uniform convergence is sufficiently strong to allow us to manipulate
sequences of functions naively and yet sufficiently weak to allow for many
examples. For instance we will see that if a series converges uniformly to a
function, then the series can be differentiated and integrated termwise and
it will converge to the derivative or integral of the limit function.

In practice, the way one checks that a sequence {fn} of functions con-
verges uniformly in U to a function f is to write

fn(z) = f(z) + Rn(z)

and then to see whether the remainder Rn(z) can be made arbitrarily small
for some large enough n independently of z in U . Let us see this for the
geometric series:

∞∑
j=0

zj . (2.47)

The partial sums are the functions

fn(z) =
n∑

j=0

zj = 1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
.

We claim that this geometric series converges uniformly to the function 1/(1−
z) on every closed disk |z| ≤ R with R < 1. Indeed, we have the following
estimate for the remainder:∣∣∣∣fn(z)− 1

1− z

∣∣∣∣ =
|z|n+1

|1− z| ≤
Rn+1

|1− z| .
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Now, using the triangle inequality (2.36),

|z − 1| = |1− z| ≥ 1− |z| whence
1

|1− z| ≤
1

1− |z| ≤
1

1−R
.

In other words, ∣∣∣∣fn(z)− 1

1− z

∣∣∣∣ =
|z|n+1

|1− z| ≤
Rn+1

1−R
.

This bound is independent of z and can be made as small as desired since
R < 1, whence the convergence is uniform.

Another way to check for uniform convergence is the Weierstrass M-
test, which generalises the Comparison Test. Suppose that

∑∞
j=0 Mj is a

convergent series with real non-negative terms Mj ≥ 0. Suppose further
that for all z in some subset U of the complex plane and for all sufficiently
large j, |fj(z)| ≤ Mj. Then the series

∑∞
j=0 fj(z) converges uniformly in U .

(Notice that the Comparison Test is obtained as a special case, when fj(z)
are constant functions.)

� Proof of the Weierstrass M-test.

Using the Weierstrass M-test we can prove the uniform convergence of the
geometric series on any closed disk |z| ≤ R < 1. Indeed, notice that |zj| =
|z|j ≤ Rj and that since R < 1, the geometric series

∑∞
j=0 Rj converges.

2.3.2 Taylor series

In this section we will prove the remarkable result that a function analytic
in the neighbourhood of a point can be approximated by a sequence of poly-
nomials, namely by its Taylor series. Moreover we will see that convergence
is uniform inside the largest open disk over which the function is analytic.

The Taylor series of a function is the result of successive approximations
of the function by polynomials. Suppose that f(z) is analytic in a neigh-
bourhood of z0. Then as we saw in Section 2.2.5 f is infinitely differentiable
around z0. Let us then write down a polynomial function fn such that it
agrees with f at z0 up to an including its n-th derivative. In other words,
f

(j)
n (z0) = f (j)(z0) for j = 0, 1, . . . , n. The polynomial function of least order

which satisfies this condition is

fn(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + · · ·+ f (n)(z0)

n!
(z − z0)

n .
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The sequence {fn}, if it converges, does so to the Taylor series around z0 of
the function f :

∞∑
j=0

f (j)(z0)

j!
(z − z0)

j . (2.48)

(If z0 = 0 this series is also called the Maclaurin series of f .)
We will now prove the following important result: Let f(z) be analytic

in the disk |z − z0| < R centred at z0. Then the Taylor series for f around
z0 converges to f(z) for all z in the disk and moreover the convergence is
uniform on any closed subdisk |z − z0| ≤ r < R.

The proof uses the generalised Cauchy Integral For-

•z0

•z
•ζ

ª r
?

ρ

R

R

I
Γ mula with an appropriate choice of contour, as shown

in the diagram. Let Γ denote the positively oriented
circle centred at z0 with radius ρ where r < ρ < R.
By hypothesis, f is analytic in and on the contour Γ,
whence for any z satisfying |z − z0| ≤ r, we have the
Cauchy Integral Formula:

f(z) =
1

2π i

∮

Γ

f(ζ)

ζ − z
dζ .

Now we rewrite the integrand:

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0

ζ−z0

,

and use the geometric series to write

1

1− z−z0

ζ−z0

=
∞∑

j=0

(
z − z0

ζ − z0

)j

,

which is valid because |z− z0| = r < ρ = |ζ − z0|. Putting it all together, we
have

1

ζ − z
=

∞∑
j=0

(z − z0)
j

(ζ − z0)j+1
.

Inserting it into the Cauchy Integral Formula,

f(z) =
1

2π i

∮

Γ

∞∑
j=0

f(ζ)

(ζ − z0)j+1
(z − z0)

j dζ .
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Now we would be tempted to interchange the order of the integral and the
summation and arrive at

f(z)
?
=

∞∑
j=0

[
1

2π i

∮

Γ

f(ζ)

(ζ − z0)j+1
dζ

]
(z − z0)

j

=
∞∑

j=0

f (j)(z0)

j!
(z − z0)

j ,

where we have used the generalised Cauchy Integral Formula. This manip-
ulation turns out to be allowed, but doing it this way we do not see the
uniform convergence. This is done with more care below.

� Let us prove the Taylor series theorem carefully. It is not hard, but it takes a bit more
bookkeeping. Rather than using the geometric series in its entirety, let us use its n-th
partial sum:

1

1− z−z0
ζ−z0

=
nX

j=0

�
z − z0

ζ − z0

�j

+

�
z−z0
ζ−z0

�n+1

1− z−z0
ζ−z0

,

whence

1

ζ − z
=

nX

j=0

(z − z0)j

(ζ − z0)j+1
+

�
z−z0
ζ−z0

�n+1

ζ − z
.

Into the Cauchy Integral Formula, we have

f(z) =
1

2π i

I

Γ
f(ζ)

2
64

nX

j=0

(z − z0)j

(ζ − z0)j+1
+

�
z−z0
ζ−z0

�n+1

ζ − z

3
75 dζ .

Now this is only a finite sum, so by linearity we can integrate it term by term. Using the
generalised Cauchy Integral Formula we have

f(z) =
nX

j=0

f (j)(z0)

j!
(z − z0)j + Rn(z) ,

where

Rn(z) ≡ 1

2π i

I

Γ

f(ζ)

ζ − z

�
z − z0

ζ − z0

�n+1

dζ .

In other words,

f(z)−
nX

j=0

f (j)(z0)

j!
(z − z0)j = Rn(z) ,

whence in order to prove uniform convergence of the Taylor series, we only have to show
that we can make |Rn(z)| as small as desired for all z by simply taking n sufficiently large.
Let us estimate |Rn(z)|. Using (2.28)

|Rn(z)| ≤ 1

2π

I

Γ

|f(ζ)|
|ζ − z|

����
z − z0

ζ − z0

����
n+1

|dζ| .

We now use that |z − z0| ≤ r, |ζ − z0| = ρ, |f(ζ)| ≤ M for some M , `(Γ) = 2π ρ, and the
triangle inequality (2.36),

|ζ − z| = |(ζ − z0)− (z − z0)| ≥ |ζ − z0| − |z − z0| ≥ ρ− r ,
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whence
1

|ζ − z| ≤
1

ρ− r
.

Therefore,

|Rn(z)| ≤ ρ M

ρ− r

�
r

ρ

�n+1

.

This is what we wanted, because the right-hand side does not depend on z and can be
made as small as desired by taking n large, since r/ρ < 1. This proves uniform convergence
of the Taylor series.

Notice that this result implies that the Taylor series will converge to
f(z) everywhere inside the largest open disk, centred at z0, over which f is
analytic.

As an example, let us compute the Taylor series for the functions Log z
around z0 = 1 and also 1/(1 − z) around z0 = 0. The derivatives of the
principal branch of the logarithm are:

dj Log z

dzj
= (−1)j+1(j − 1)!

1

zj
.

Evaluating at z = 1 and constructing the Taylor series, we have

Log z =
∞∑

j=1

(−1)j+1

j
(z − 1)j .

This series is valid for |z − 1| < 1 which is the largest open disk centred at
z = 1 over which Log z is analytic, as seen in Figure 2.8. Similarly,

•
1

•0 •
1•

Figure 2.8: Analyticity disks for the Taylor series of Log z and 1/(1− z).

dj

dzj

1

1− z
=

j!

(1− z)j+1
,

whence evaluating at z = 0 and building the Taylor series we find the geo-
metric series

1

1− z
=

∞∑
j=0

zj ,
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which is valid for |z| < 1 since that is the largest open disk around the origin
over which 1/(1− z) is analytic, as seen in Figure 2.8. Now notice something
remarkable. We have two a priori different series representations for the
function 1/(1− z) around the origin: one is the Taylor series and another is
the geometric series. Yet we have shown that these series are the same. This
is not a coincidence and we will see in Section 2.3.3 that series representations
for analytic functions are unique: they are all essentially Taylor series.

Basic properties of Taylor series

Taking the derivative of the Taylor series for Log z about z0 = 1 term by
term, we find the series

∞∑
j=1

(−1)j+1

(z − 1)j−1 =
∞∑

j=0

(−1)j (z − 1)j =
∞∑

j=0

(1− z)j .

This is a geometric series which for |z − 1| < 1 converges to

1

1− (1− z)
=

1

z
,

which is precisely the derivative of Log z. This might not seem at all remark-
able, but it is. There is no reason a priori why the termwise differentiation
of an infinite series which converges to a function f(z), should converge to
the derivative f ′(z) of the function. This is because there are two limits
involved: the limit in the definition of the derivative and the one which we
take to approach the function f(z), and we know from previous experience
that the order in which one takes limits matters in general. On the other
hand, what we have just seen is that for the case of the Log z function, these
two limits commute; that is, they can be taken in any order. It turns out
that this is not just a property of Log z but indeed of any analytic function.

To see this recall that we saw in Section 2.2.5 that if a function f(z) is
analytic in a disk |z − z0| < R, then so are all its derivatives. In particular
f(z) and f ′(z) have Taylor series in the disk which converge uniformly on
any closed subdisk. The Taylor series for f ′(z) is given by equation (2.48)
applied to f ′ instead of f :

∞∑
j=0

(f ′)(j)(z0)

j!
(z − z0)

j .

But notice that the j-th derivative of f ′ is just the (j + 1)-st derivative of f :
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(f ′)(j) = f (j+1). Therefore we can rewrite the above Taylor series as

∞∑
j=0

f (j+1)(z0)

j!
(z − z0)

j . (2.49)

On the other hand, differentiating the Taylor series (2.48) for f termwise, we
get

∞∑
j=0

f (j)(z0)

j!
j (z − z0)

j−1 =
∞∑

j=1

f (j)(z0)

(j − 1)!
(z − z0)

j−1

=
∞∑

k=0

f (k+1)(z0)

k!
(z − z0)

k ,

where we have reindexed the last sum by introducing k = j − 1. Finally,
Shakespeare’s Theorem tells us that this last series is the same as the one
in equation (2.49). In other words, we have proven that if f(z) is analytic
around z0, the Taylor series for f ′(z) around z0 is obtained by termwise
differentiation of the Taylor series for f(z) around z0.

Similarly one can show that Taylor series have additional properties. Let
f(z) and g(z) be analytic around z0. That means that there is some disk
|z − z0| < R in which the two functions are analytic. Then as shown in
Section 2.1.4, αf(z), for α any complex number, and f(z) + g(z) are also
analytic in the disk. Then one can show

• The Taylor series for αf(z) is the series obtained by multiplying each
term in the Taylor series for f(z) by α:

∞∑
j=0

α f (j)(z0)

j!
(z − z0)

j .

• The Taylor series of f(z) + g(z) is the series obtained by adding the
terms for the Taylor series of f(z) and g(z):

∞∑
j=0

f (j)(z0) + g(j)(z0)

j!
(z − z0)

j .

These results follow from equations (2.9) and (2.10).
Finally, let f(z) and g(z) be analytic in a disk |z − z0| < R around z0.

We also saw in Section 2.1.4 that their product f(z)g(z) is analytic there.
Therefore it has a Taylor series which converges uniformly in any closed
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subdisk. What is the relation between this series and the Taylor series for
f(z) and g(z)? Let us compute the first couple of terms. We have that the
first few derivatives of fg are

(fg)(z0) = f(z0)g(z0) (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0)

(fg)′′(z0) = f ′′(z0)g(z0) + 2f ′(z0)g
′(z0) + f(z0)g

′′(z0) ,

so that the first few terms of the Taylor series for fg are

f(z0)g(z0) + (f ′(z0)g(z0) + f(z0)g
′(z0)) (z − z0)

+
f ′′(z0)g(z0) + 2f ′(z0)g

′(z0) + f(z0)g
′′(z0)

2
(z − z0)

2 + · · ·

Notice that this can be rewritten as follows:
(

f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + · · ·
)

×
(

g(z0) + g′(z0)(z − z0) +
g′′(z0)

2
(z − z0)

2 + · · ·
)

,

which looks like the product of the first few terms in the Taylor series of
f and g. Appearances do not lie in this case and one can show that the
Taylor series for the product fg of any two analytic functions is the product
of their Taylor series, provided one defines the product of the Taylor series
appropriately.

� Let us see this. To save some writing let me write the Taylor series for f(z) as
P∞

j=0 aj(z−
z0)j and for g(z) as

P∞
j=0 bj(z − z0)j . In other words, I have introduced abbreviations

aj = f (j)(z0)/j! and bj = g(j)(z0)/j!. The Cauchy product of these two series is defined
by multiplying the series formally and collecting terms with the same power of z − z0. In
other words,

0
@
∞X

j=0

aj(z − z0)j

1
A×

0
@
∞X

j=0

bj(z − z0)j

1
A =

X

j=0

cj(z − z0)j ,

where

cj =
∞X

k,`=0
k+`=j

akb` =

jX

k=0

akbj−k =

jX

k=0

f (k)(z0)

k!

g(j−k)(z0)

(j − k)!
.

On the other hand, the Taylor series for fg can be written an

∞X

j=0

(fg)(j)(z0)

j!
(z − z0)j ,

where one can use the generalised Leibniz rule to obtain

(fg)(j)(z0) =

jX

k=0

�j

k

�
f (k)(z0)g(j−k)(z0) ,
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where
�j
k

�
is the binomial coefficient

�j

k

�
=

j!

k!(j − k)!
.

Therefore the Taylor series for fg can be written as

∞X

j=0

1

j!

jX

k=0

�j

k

�
f (k)(z0)g(j−k)(z0) (z − z0)j

=
∞X

j=0

jX

k=0

1

k!(j − k)!
f (k)(z0)g(j−k)(z0) (z − z0)j =

∞X

j=0

cj(z − z0)j ,

with the cj being the same as above.

2.3.3 Power series

Taylor series are examples of a more general type of series, called power series,
whose study is the purpose of this section. We will see that power series are
basically always the Taylor series of some analytic function. This shows that
series representations of analytic functions are in some sense unique, so that
if we manage to cook up, by whatever means, a power series converging to
a function in some disk, we know that this series will be its Taylor series of
the function around the centre of the disk.

By a power series around z0 we mean a series of the form

∞∑
j=0

aj (z − z0)
j ,

and where {aj} are known as the coefficients of the power series. A power
series is clearly determined by its coefficients and by the point z0. Given a
power series one can ask many questions: For which z does it converge? Is
the convergence uniform? Will it converge to an analytic function? Will the
power series be a Taylor series?

We start the section with the following result, which we will state without
proof. It says that to any power series

∑∞
j=0 aj (z − z0)

j one can associate a
number 0 ≤ R ≤ ∞, called the radius of convergence, depending only on
the coefficients {aj}, such that the series converges in the disk |z − z0| < R,
uniformly on any closed subdisk, and the series diverges in |z − z0| > R.

� Introduce lim sup, root test and the proof of this theorem.

One can actually give a formula for the number R in terms of the coef-
ficients {aj} but we will not do so here in general. Instead we will give a
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formula which is valid only in those cases when the Ratio Test can be used.
Recall that the Ratio Test says that if the limit

L ≡ lim
j→∞

∣∣∣∣
cj+1

cj

∣∣∣∣ (2.50)

exists, then the series
∑∞

j=0 cj converges for L < 1 and diverges for L > 1.
In the case of a power series, we have

L = lim
j→∞

∣∣∣∣
aj+1(z − z0)

j+1

aj(z − z0)j

∣∣∣∣ = lim
j→∞

∣∣∣∣
aj+1

aj

∣∣∣∣ |z − z0| .

Therefore convergence is guaranteed if L < 1, which is equivalent to

|z − z0| < lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣

and divergence is guaranteed for L > 1, which is equivalent to

|z − z0| > lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣ .

Therefore if the limit (2.50) exists, we have that the radius of convergence is
given by

R = lim
j→∞

∣∣∣∣
aj

aj+1

∣∣∣∣ . (2.51)

Notice that this agrees with our experience with the geometric series (2.47),
which is clearly a power series around the origin. Since all the coefficients are
equal, the limit exists and R = 1, which is precisely the radius of convergence
we had established previously.

Power series are Taylor series

We are now going to prove the main result of this section: that a power series
is the Taylor series of the functions it approximates. This is a very useful
result, because it says that in order to compute the Taylor series of a function
it is enough to produce any power series which converges to that function.
The proof will follow two steps. The first is to show that a power series
converges to an analytic function and the second step will use the Cauchy
Integral formula to relate the coefficients of the power series with those of
the Taylor series. The first step will itself require two preliminary results,
which we state in some more generality.
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Suppose that {fn} is a sequence of continuous functions which converges
uniformly to a function f(z) in the closed disk |z − z0| ≤ R. Let Γ be
any contour (not necessarily closed) inside the disk, and let ` be the length
of the contour. Then we claim that the sequence

∫
Γ
fn(z) dz converges to

the integral
∫
Γ
f(z) dz. To see this, let ε > 0. Then because of uniform

convergence, there exists N depending only on ε such that for all n ≥ N ,
one has |f(z)− fn(z)| < ε/` for all z in the disk. Then

∣∣∣∣
∫

Γ

f(z) dz −
∫

Γ

fn(z) dz

∣∣∣∣ =

∣∣∣∣
∫

Γ

(f(z)− fn(z)) dz

∣∣∣∣
≤ max

z∈Γ
|f(z)− fn(z)| ` (using (2.28))

< (ε/`)` = ε .

Now suppose that the sequence {fn} is the sequence of partial sums of some
infinite series of functions. Then the above result says that one can integrate
the series termwise, since for any partial sum, the integral of the sum is
the sum of the integrals. In other words, when integrating an infinite series
which converges uniformly in some region U along any contour in U , we can
interchange the order of the summation and the integration.

Now suppose that the functions {fn} are not just continuous but actually
analytic, and let Γ be any loop; that is, a closed simple contour. Then by
the Cauchy Integral Theorem,

∮
Γ
fn(z) dz = 0, whence by what we have just

shown ∮

Γ

f(z) dz = lim
n→∞

∮

Γ

fn(z) dz = 0 .

Therefore by Morera’s theorem, f(z) is also analytic. Therefore we have
shown that

the uniform limit of analytic functions is analytic.

In particular, let
∑∞

j=0 aj(z− z0)
j be a power series with circle of conver-

gence |z − z0| = R > 0. Since each of the partial sums, being a polynomial
function, is analytic in the disk (in fact, in the whole plane), the limit is also
analytic in the disk. In other words, a power series converges to an analytic
function inside its disk of convergence.

Now that we know that
∑∞

j=0 aj(z − z0)
j defines an analytic function,

call it f(z), in its disk of convergence, we can compute its Taylor series and
compare it with the original series. The Taylor series of f(z) around z0 has
coefficients given by the generalised Cauchy Integral Formula:

f (j)(z0)

j!
=

1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz ,
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where Γ is any positively oriented loop inside the disk of convergence of the
power series which contains the point z0 in its interior. Because the power
series converges uniformly, we can now substitute the power series for f(z)
inside the integral and compute the integral termwise:

f (j)(z0)

j!
=

1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz

=
∞∑

k=0

1

2π i

∮

Γ

ak
(z − z0)

k

(z − z0)j+1
dz

=
∞∑

k=0

ak
1

2π i

∮

Γ

(z − z0)
k−j−1 dz .

But now, from the generalised Cauchy Integral Formula,

∮

Γ

(z − z0)
k−j−1 dz =

{
2π i if j = k, and

0 otherwise.
(2.52)

Therefore, only one term contributes to the
∑

k, namely the term with k = j,
and hence we see that

f (j)(z0)

j!
= aj .

In other words, the power series is the Taylor series. Said differently, any
power series is the Taylor series of a function analytic in the disk of conver-
gence |z − z0| < R.

For example, let us compute the Taylor series of the function

1

(z − 1)(z − 2)

in the disk |z| < 1. This is the largest disk centred at the origin where we
could hope to find a convergent power series for this function, since it has
singularities at z = 1 and z = 2. The naive solution to this problem would
be to take derivatives and evaluate them at the origin and build the Taylor
series this way. However from our discussion above, it is enough to exhibit
any power series which converges to this function in the specified region. We
use partial fractions to rewrite the function as a sum of simple fractions:

1

(z − 1)(z − 2)
=

1

1− z
− 1

2− z
.

Now we use geometric series for each of them. For the first fraction we have

1

1− z
=

∞∑
j=0

zj valid for |z| < 1;
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whereas for the second fraction we have

−1

2− z
=

−1/2

1− (z/2)
= −1

2

∞∑
j=0

zj

2j
= −

∞∑
j=0

zj

2j+1
,

which is valid for |z| < 2, which contains the region of interest. Therefore,
putting the two series together,

1

(z − 1)(z − 2)
=

∞∑
j=0

(
1− 1

2j+1

)
zj , for |z| < 1.

2.3.4 Laurent series

In the previous section we saw that any function which is analytic in some
neighbourhood of a point z0 can be approximated by a power series (its Taylor
series) about that point. How about a function which has a “mild” singularity
at z0? For example, how about a function of the form g(z)/(z − z0)? Might
we not expect to be able to approximate it by some sort of power series?
It certainly could not be a power series of the type we have been discussing
because these series are analytic at z0. There is, however, a simple yet useful
generalisation of the notion of power series which can handle these cases.
These series are known as Laurent series and consist of a sum of two power
series.

A Laurent series about the point z0 is a sum of two power series one
consisting of positive powers of z − z0 and the other of negative powers:

∞∑
j=0

aj(z − z0)
j +

∞∑
j=1

a−j(z − z0)
−j .

Laurent series are often abbreviated as

∞∑
j=−∞

aj(z − z0)
j,

but we should keep in mind that this is only an abbreviation: conceptually
a Laurent series is the sum of two independent power series.

A Laurent series is said to converge if each of the power series converges.
The first series, being a power series in z− z0 converges inside some circle of
convergence |z − z0| = R, for some 0 ≤ R ≤ ∞. The second series, however,
is a power series in w = 1/(z − z0). Hence it will converge inside a circle of
convergence |w| = R′; that is, for |w| < R′. If we let R′ = 1/r, then this
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condition translates into |z − z0| > r. In other words, such a Laurent series
will converge in an annulus: r < |z − z0| < R. (Of course for this to make
sense, we need r < R. If this is not the case, then the Laurent series does
not converge anywhere.)

It turns out that the results which are valid for Taylor series have gener-
alisations for Laurent series. The first main result that we will prove is that
any function analytic in an open annulus r < |z−z0| < R centred at z0 has a
Laurent series around z0 which converges to it everywhere inside the annulus
and uniformly on closed sub-annuli r < R1 ≤ |z − z0| ≤ R2 < R. Moreover
the coefficients of the Laurent series are given by

aj =
1

2π i

∮

Γ

f(z)

(z − z0)j+1
dz , for j = 0,±1,±2, . . .,

where Γ is any positively oriented loop lying in the annulus and containing
z0 in its interior.

Notice that this result generalises the result proven in Section 2.3.2 for
functions analytic in the disk. Indeed, if f(z) were analytic in |z − z0| <
R, then by the Cauchy Integral Theorem and the above formula for aj, it
would follow that that a−j = 0 for j = 1, 2, . . ., and hence that the Laurent
series is the Taylor series. Notice also that the Laurent series is a nontrivial
generalisation of the Taylor series in that the coefficients a−j for j = 1, 2, . . .
are not just simply derivatives of the function, but rather require contour
integration.

•z0

•z

¾r

ª
R

?
R1

R R2

•¾ρ1

?
ρ2

I
Γ •z

I
Γ2

IΓ1

- ¾•Q •P

Figure 2.9: Contours Γ, Γ1 and Γ2.

In order to follow the logic of the proof, it will be convenient to keep Figure
2.9 in mind. The left-hand picture shows the annuli r < R1 ≤ |z − z0| ≤
R2 < R and the contour Γ. The right-hand picture shows the equivalent
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contours Γ1 and Γ2, circles with radii ρ1 and ρ2 satisfying the inequalities
r < ρ1 < R1 and R2 < ρ2 < R.

Consider the closed contour C, starting and ending at the point P in the
Figure, and defined as follows: follow Γ2 all the way around until P again,
then go to Q via the ‘bridge’ between the two circles, then all the way along
Γ1 until Q, then back to P along the ‘bridge.’ This contour encircles the
point z once in the positive sense, hence by the Cauchy Integral Formula we
have that

f(z) =
1

2π i

∮

C

f(ζ)

ζ − z
dζ .

On the other hand, because the ‘bridge’ is traversed twice in opposite direc-
tions, their contribution to the integral cancels and we are left with

f(z) =
1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ +

1

2π i

∮

Γ2

f(ζ)

ζ − z
dζ .

We now treat each integral at a time.
The integral along Γ2 can be treated mutatis mutandis as we did the

similar integral in the proof of the Taylor series theorem in Section 2.3.2. We
simply quote the result:

1

2π i

∮

Γ2

f(ζ)

ζ − z
dζ =

∞∑
j=0

aj(z − z0)
j ,

where

aj =
1

2π i

∮

Γ2

f(ζ)

(ζ − z0)j+1
dζ =

f (j)(z0)

j!
. (2.53)

Moreover the series converges uniformly in the closed disk |z − z0| ≤ R2, as
was shown in that section.

The integral along Γ1 can be treated along similar lines, except that
because |z − z0| > |ζ − z0|, we must expand the integrand differently. We
will be brief, since the idea is very much the same as what was done for the
Taylor series. We start by rewriting 1/(ζ − z) appropriately:

1

ζ − z
=

1

(ζ − z0)− (z − z0)
= − 1

z − z0

1

1− ζ−z0

z−z0

.

Let us write this now as a geometric series:

1

ζ − z
= − 1

z − z0




n∑
j=0

(
ζ − z0

z − z0

)j

+

(
ζ−z0

z−z0

)n+1

1− ζ−z0

z−z0


 ;
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whence
1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

m+1∑
j=1

a−j(z − z0)
−j + Sn(z) ,

where

a−j = − 1

2π i

∮

Γ1

f(ζ)

(ζ − z0)−j+1
dζ , (2.54)

and where

Sn(z) =
1

2π i

∮

Γ1

f(ζ)

ζ − z

(ζ − z0)
n+1

(z − z0)n+1
dζ .

Now, for ζ in Γ1 we have that |ζ − z0| = ρ1 and from the triangle inequality
(2.36), that |ζ− z| ≥ R1−ρ1. We also note that |z− z0| ≥ R1. Furthermore,
f(ζ), being continuous, is bounded so that |f(ζ)| ≤ M for some M and all ζ
on Γ1. Therefore using (2.28) and the above inequalities,

|Sn(z)| ≤ M ρ1

R1 − ρ1

(
ρ1

R1

)n+1

,

which is independent of z and, because ρ1 < R1, can be made arbitrarily small
by choosing n large. Hence Sn(z) → 0 as n →∞ uniformly in |z− z0| ≥ R1,
and

1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

∞∑
j=1

a−j(z − z0)
−j ,

where the a−j are still given by (2.54). In other words,

1

2π i

∮

Γ1

f(ζ)

ζ − z
dζ =

∞∑
j=1

a−j(z − z0)
−j ,

and the series converges uniformly to the integral for |z − z0| ≤ R1. In
summary, we have that proven that f(z) is approximated by the Laurent
series

f(z) =
∞∑

j=−∞
aj(z − z0)

j ,

everywhere on r < |z − z0| < R and uniformly on any closed sub-annulus,
where the coefficients aj are given by (2.53) for j ≥ 0 and by (2.54) for j < 0.

We are almost done, except that in the statement of the theorem the
coefficients aj are given by contour integrals along Γ and what we have shown
is that they are given by contour integrals along Γ1 or Γ2. But notice that
the integrand in (2.53) is analytic in the domain bounded by the contours Γ
and Γ2; and similarly for the integrand in (2.54) in the region bounded by
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the contours Γ and Γ1. Therefore we can deform the contours Γ1 and Γ2 to
−Γ and Γ respectively, in the integrals

a−j = − 1

2π i

∮

Γ1

f(ζ)

(ζ − z0)−j+1
dζ =

1

2π i

∮

Γ

f(ζ)

(ζ − z0)−j+1
dζ

aj =
1

2π i

∮

Γ2

f(ζ)

(ζ − z0)j+1
dζ =

1

2π i

∮

Γ

f(ζ)

(ζ − z0)j+1
dζ ,

which proves the theorem.

Laurent series are unique

We saw in Section 2.3.3 that any power series is the Taylor series of the ana-
lytic function it converges to. In other words, the power series representation
of an analytic function is unique (in the domain of convergence of the series,
of course). Since Laurent series are generalisations of the Taylor series and
agree with them when the function is analytic not just in the annulus but in
fact in the whole disk, we might expect that the same is true and that the
Laurent series representation of a function analytic in an annulus should also
be unique. This turns out to be true and the proof follows basically from
that of the uniqueness of the power series.

More precisely, one has the following result. Let

∞∑
j=0

cj(z − z0)
j and

∞∑
j=1

c−j(z − z0)
−j

be any two power series converging in |z − z0| < R and |z − z0| > r, respec-
tively, with R > r. Then there is a function f(z) analytic in the annulus
r < |z − z0| < R, such that

∞∑
j=0

cj(z − z0)
j +

∞∑
j=1

c−j(z − z0)
−j

is its Laurent series. We shall omit the proof, except to notice that this
follows from the uniqueness of the power series applied to each of the series
in turn.

� Do this in detail.

This is a very useful result because it says that no matter how we obtain
the power series, their sum is guaranteed to be the Laurent series of the
analytic function in question. Let us illustrate this in order to compute the
Laurent series of some functions.

149



For example, let us compute the Laurent series of the rational function
(z2−2z+3)(z−2) in the region |z−1| > 1. Let us first rewrite the numerator
as a power series in (z − 1):

z2 − 2z + 3 = (z − 1)2 + 2 .

Now we do the same with the denominator:

1

z − 2
=

1

(z − 1)− 1
=

1

z − 1

1

1− 1
z−1

,

where we have already left it in a form which suggests that we try a geometric
series in 1/(z−1), which converges in the specified region |z−1| > 1. Indeed,
we have that in this region,

1

z − 1

1

1− 1
z−1

=
1

z − 1

∞∑
j=0

1

(z − 1)j
=

∞∑
j=0

1

(z − 1)j+1
.

Putting the two series together,

z2 − 2z + 3

z − 2
=

(
(z − 1)2 + 2

) ∞∑
j=0

1

(z − 1)j+1

= (z − 1) + 1 +
∞∑

j=0

3

(z − 1)j+1
.

By the uniqueness of the Laurent series, this is the Laurent series for the
function in the specified region.

As a final example, consider the function 1/(z −

•0 •1 •2
I

II

III
1)(z − 2). Let us find its Laurent expansions in the
regions: |z| < 1, 1 < |z| < 2 and |z| > 2, which we
have labelled I, II and III in the figure. We start by
decomposing the function into partial fractions:

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

In region I, we have the following geometric series:

− 1

z − 1
=

1

1− z
=

∞∑
j=0

zj valid for |z| < 1; and

1

z − 2
=

−1
2

1− (z/2)
= −1

2

∞∑
j=0

(z

2

)j

=
∞∑

j=0

−1

2j+1
zj valid for |z| < 2.
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Therefore in their common region of convergence, namely region I, we have
that

1

(z − 1)(z − 2)
=

∞∑
j=0

(
1− 1

2j+1

)
zj .

In region II, the first of the geometric series above is not valid, but the
second one is. Because in region II, |z| > 1, this means that |1/z| < 1,
whence we should try and use a geometric series in 1/z. This is easy:

− 1

z − 1
= −1

z

1

1− (1/z)
= −1

z

∞∑
j=0

(
1

z

)j

=
∞∑

j=0

−1

zj+1
valid for |z| > 1.

Therefore in region II we have that

1

(z − 1)(z − 2)
=

∞∑
j=0

−1

zj+1
+

∞∑
j=0

−1

2j+1
zj .

Finally in region III, we have that |z| > 2, so that we will have to find
another series converging to 1/(z−2) in this region. Again, since now |2/z| <
1 we should try to use a geometric series in 2/z. This is once again easy:

1

z − 2
=

1

z

1

1− (2/z)
=

1

z

∞∑
j=0

(
2

z

)j

=
∞∑

j=0

2j

zj+1
valid for |z| > 2.

Therefore in region III we have that

1

(z − 1)(z − 2)
=

∞∑
j=0

(−1 + 2j
) 1

zj+1
.

Again by the uniqueness of the Laurent series, we know that these are the
Laurent series for the function in the specified regions.

2.3.5 Zeros and Singularities

As a consequence of the existence of power and Laurent series representations
for analytic functions we are able to characterise the possible singularities
that an analytic function can have, and this is the purpose of this section.

A point z0 is said to be a singularity for a function f(z), if f ceases to
be analytic at z0. Singularities can come in two types. One says that a a
point z0 is an isolated singularity for a function f(z), if f is analytic in some
punctured disk around the singularity; that is, in 0 < |z − z0| < R for some
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R > 0. We have of course already encountered isolated singularities; e.g.,
the function 1/(z − z0) has an isolated singularity at z0. In fact, we will
see below that the singularities of a rational function are always isolated.
Singularities need not be isolated, of course. For example, any point −x in
the non-positive real axis is a singularity for the principal branch Log z of the
logarithm function which is not isolated, since any disk around −x, however
small, will contain other singularities. In this section we will concentrate
on isolated singularities. We will see that there are three types of isolated
singularities, distinguished by the behaviour of the function as it approaches
the singularity. Before doing so we will discuss the singularities of rational
functions. As these occur at the zeros of the denominators, we will start by
discussing zeros.

Zeros of analytic functions

Let f(z) be analytic in a neighbourhood of a point z0. This means that there
is an open disk |z − z0| < R in which f is analytic. We say that z0 is a zero
of f if f(z0) = 0. More precisely we say that z0 is a zero of order m, for
m = 1, 2, . . ., if

f(z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 but f (m)(z0) 6= 0.

(A zero of order m = 1 is often called a simple zero.) Because f(z) is
analytic in the disk |z − z0| < R, it has a power series representation there:
namely the Taylor series:

f(z) =
∞∑

j=0

f (j)(z0)

j!
(z − z0)

j .

But because z0 is a zero of order m, the first m terms in the Taylor series
vanish, whence

f(z) =
∞∑

j=m

f (j)(z0)

j!
(z − z0)

j = (z − z0)
mg(z) ,

where g(z) has a power series representation

g(z) =
∞∑

j=0

f (j+m)(z0)

(j + m)!
(z − z0)

j

in the disk, whence it is analytic there and moreover, by hypothesis, g(z0) =
f (m)(z0)/m! 6= 0. It follows from this that the zeros of an analytic function
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are isolated. Because g(z) is analytic, and hence continuous, in the disk
|z − z0| < R and g(z0) 6= 0, it means that there is a disk |z − z0| < ε < R in
which g(z) 6= 0, and hence neither is f(z) = (z − z0)

m g(z) zero there.
Now let P (z)/Q(z) be a rational function. Its singularities will be the

zeroes of Q(z) and we have just seen that these are isolated, whence the
singularities of a rational function are isolated.

Isolated singularities

Now let z0 be an isolated singularity for a function f(z). This means that f
is analytic in some punctured disk 0 < |z − z0| < R, for some R > 0. The
punctured disk is a degenerate case of an open annulus r < |z − z0| < R,
corresponding to r = 0. By the results of the previous section, we know that
f(z) has a Laurent series representation there. We can distinguish three
types of singularities depending on the Laurent expansion:

f(z) =
∞∑

j=−∞
aj(z − z0)

j .

Let us pay close attention to the negative powers in the Laurent expansion:
we can either have no negative powers—that is, aj = 0 for all j < 0; a
finite number of negative powers—that is, aj = 0 for all but a finite number
of j < 0; or an infinite number of negative powers—that is, aj 6= 0 for an
infinite number of j < 0. This trichotomy underlies the following definitions:

• We say that z0 is a removable singularity of f , if the Laurent expansion
of f around z0 has no negative powers; that is,

f(z) =
∞∑

j=0

aj(z − z0)
j .

• We say that z0 is a pole of order m for f , if the Laurent expansion of
f around z0 has aj for all j < −m and a−m 6= 0; that is powers; that
is,

f(z) =
a−m

(z − z0)m
+ · · ·+ a0 + a1(z − z0) + · · · with a−m 6= 0.

A pole of order m = 1 is often called a simple pole.

• Finally we say that z0 is an essential singularity of f if the Laurent
expansion of f around z0 has an infinite number of nonzero terms with
negative powers of (z − z0).
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The different types of isolated singularities can be characterised by the
way the function behaves in the neighbourhood of the singularity. For a
removable singularity the function is clearly bounded as z → z0, since the
power series representation

f(z) =
∞∑

j=0

aj(z − z0)
j = a0 + a1(z − z0) + · · ·

certainly has a well-defined limit as z → z0: namely, a0. This is not the same
thing as saying that f(z0) = a0. If this were the case, then the function would
not have a singularity at z0, but it would be analytic there as well. Therefore,
removable singularities are due to f being incorrectly or “peculiarly” defined
at z0. For example, consider the following bizarre-looking function:

f(z) =

{
ez for z 6= 0;

26 at z = 0.

This function is clearly analytic in the punctured plane |z| > 0, since it agrees
with the exponential function there, which is an entire function. This means
that in the punctured plane, f(z) has a power series representation which
agrees with the Taylor series of the exponential function:

f(z) =
∞∑

j=0

1

j!
zj .

However this series has the limit 1 as z → 0, which is the value of the
exponential for z = 0, and this does not agree with the value of f there.
Hence the function has a singularity, but one which is easy to cure: we simply
redefine f at the origin so that f(z) = exp(z) throughout the complex plane.
Other examples of removable singularities are

sin z

z
=

1

z

(
z − z3

3!
+

z5

5!
− · · ·

)
= 1− z2

3!
+

z4

5!
− · · · ; (2.55)

and
z2 − 1

z − 1
=

1

z − 1

(
(z − 1)2 + 2(z − 1)

)
= (z − 1) + 2 .

Of course in this last example we could have simply noticed that z2 − 1 =
(z − 1)(z + 1) and simplified the rational function to z + 1 = (z − 1) + 2.
In summary, at a removable singularity the function is bounded and can be
redefined at the singularity so that the new function is analytic there, in
effect removing the singularity.
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In contrast, a pole is a true singularity for the function f . Indeed, around
a pole z0 of order m, the Laurent series for f looks like

f(z) =
1

(z − z0)m
h(z) ,

where h(z) has a series expansion around z0 given by

h(z) =
∞∑

j=0

aj−m(z − z0)
j = a−m + a−m+1(z − z0) + · · ·

This means that h(z) has at most a removable singularity at z0. We have
already seen many examples of functions with poles throughout these lec-
tures, so we will not give more examples. Let us however pause to discuss
the singularities of a rational function.

Let f(z) = P (z)/Q(z) be a rational function. Then we claim that f(z)
has either a pole or a removable singularities at the zeros of Q(z). Let us be
a little bit more precise. Suppose that z0 is a zero of Q(z0), and assume that
it is a zero of order m. This means that

Q(z) = (z − z0)
m q(z) ,

where q(z) is an analytic function around z0 and such that q(z0) 6= 0. If z0 is
not a zero of P (z), then z0 is a pole of f of order m. If z0 is a zero of order
k of P (z), then we have that

P (z) = (z − z0)
k p(z) ,

where p(z) is analytic and p(z0) 6= 0. Therefore we have that

f(z) =
(z − z0)

k p(z)

(z − z0)m q(z)
=

1

(z − z0)m−k

p(z)

q(z)
;

whence f(z) has a pole of order m−k if m > k and has a removable singularity
otherwise.

How about essential singularities? A result known as Picard’s Theorem
says that a function takes all possible values (with the possible exception of
one) in any neighbourhood of an essential singularity. This is a deep result in
complex analysis and one we will not even attempt to prove. Let us however
verify this for the function f(z) = exp(1/z). This function is analytic in
the punctured plane |z| > 0 since the exponential function is entire. For
any finite w we have seen that the exponential function has a power series
expansion:

ew =
∞∑

j=0

1

j!
wj .

155



Therefore for |z| > 0, we have that

e1/z =
∞∑

j=0

1

j!

1

zj
,

whence z0 = 0 is an essential singularity. According to Picard’s theorem,
the function exp(1/z) takes every possible value (except possibly one) in any
neighbourhood of the origin. Clearly, the value 0 is never attainable, but we
can easily check that any other value is obtained. Let c 6= 0 be any nonzero
complex number, and let us solve for those z such that exp(1/z) = c. The
multiple-valuedness of the logarithm says that there are infinitely many such
z, satisfying:

1

z
= log(c) = Log |c|+ i Arg(c) + 2π i k ,

for k = 0,±1 ± 2, . . ., whose moduli are given by

|z| = Log |c| − i Arg(c)− 2π i k

(Log |c|)2 + (Arg(c) + 2π k)2
,

which can be as small as desired by taking k as large as necessary. Therefore
in any neighbourhood of the origin, there are an infinite number of points for
which the function exp(1/z) takes as value a given nonzero complex number.

2.4 The residue calculus and its applications

We now start the final section of this part of the course. It is the culmination
of a lot of hard work and formalism but one which is worth the effort and
the time spent developing the necessary vocabulary. In this section we will
study the theory of residues. The theory itself is very simple and is basically
a matter of applying what we have learned already in the appropriate way.
Most of the sections are applications of the theory to the computation of real
integrals and infinite sums. These are problems which are simple to state in
the context of real calculus but whose solutions (at least the elementary ones)
take us to the complex plane. In a sense they provide the simplest instance of
a celebrated phrase by the French mathematician Hadamard, who said that
the shortest path between two real truths often passes by a complex domain.

2.4.1 The Cauchy Residue Theorem

Let us consider the behaviour of an analytic function around an isolated
singularity. To be precise let z0 be an isolated singularity for an analytic
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function f(z). The function is analytic in some punctured disk 0 < |z−z0| <
R, for some R > 0, and has a Laurent series there of the form

f(z) =
∞∑

j=−∞
aj(z − z0)

j .

Consider the contour integral of the function f(z) along a positively oriented
loop Γ contained in the punctured disk and having the singularity z0 in its
interior. Because the Laurent series converges uniformly, we can integrate
the series term by term:

∮

Γ

f(z) dz =
∞∑

j=−∞
aj

∮

Γ

(z − z0)
j dz .

From the (generalised) Cauchy Integral Formula or simply by deforming the
contour to a circle of radius ρ < R, we have that (c.f., equation (2.52))

∮

Γ

(z − z0)
j dz =

{
2π i for j = −1, and

0 otherwise;

whence only the j = −1 term contributes to the sum, so that
∮

Γ

f(z) dz = 2π i a−1 .

This singles out the coefficient a−1 in the Laurent series, and hence we give
it a special name. We say that a−1 is the residue of f at z0, and we write
this as Res(f ; z0) or simply as Res(z0) when f is understood.

For example, consider the function z exp(1/z). This function has an es-
sential singularity at the origin and is analytic everywhere else. The residue
can be computed from the Laurent series:

ze1/z = z

∞∑
j=0

1

j!

1

zj
=

∞∑
j=0

1

j!

1

zj−1
= z + 1 +

1

2z
+ · · · ,

whence the residue is given by Res(0) = 1
2
.

It is often not necessary to calculate the Laurent expansion in order to
extract the residue of a function at a singularity. For example, the residue
of a function at a removable singularity vanishes, since there are no negative
powers in the Laurent expansion. On the other hand, if the singularity
happens to be a pole, we will see that the residue can be computed by
differentiation.
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Suppose, for simplicity, that f(z) has a simple pole at z0. Then the
Laurent series of f(z) around z0 has the form

f(z) =
a−1

z − z0

+ a0 + a1(z − z0) + · · · ,

whence the residue can be computed by

Res(f ; z0) = lim
z→z0

(z − z0) f(z)

= lim
z→z0

(
a−1 + a0(z − z0) + a1(z − z0)

2 + · · · )

= a−1 + 0 .

For example, the function f(z) = ez/z(z + 1) has simple poles at z = 0 and
z = −1; therefore,

Res(f ; 0) = lim
z→0

z f(z) = lim
z→0

ez

z + 1
= 1

Res(f ;−1) = lim
z→−1

(z + 1) f(z) = lim
z→−1

ez

z
= −1

e
.

Suppose that f(z) = P (z)/Q(z) where P and Q are analytic at z0 and Q
has a simple zero at z0 whereas P (z0) 6= 0. Clearly f has a simple pole at z0,
whence the residue is given by

Res(f ; z0) = lim
z→z0

(z − z0)
P (z)

Q(z)
= lim

z→z0

P (z)
Q(z)−Q(z0)

z−z0

=
P (z0)

Q′(z0)
,

where we have used that Q(z0) = 0 and the definition of the derivative, which
exists since Q is analytic at z0.

We can use this to compute the residues at each singularity of the function
f(z) = cot z. Since cot z = cos z/ sin z, the singularities occur at the zeros of
the sine function: z = nπ, n = 0,±1,±2, . . .. These zeros are simple because
sin′(nπ) = cos(nπ) = (−1)n 6= 0. Therefore we can apply the above formula
to deduce that

Res(f ; nπ) =
cos z

(sin z)′

∣∣∣∣
z=nπ

=
cos(nπ)

cos(nπ)
= 1 .

This result will be crucial for the applications concerning infinite series later
on in this section.

Now suppose that f has a pole of order m at z0. The Laurent expansion
is then

f(z) =
a−m

(z − z0)m
+ · · ·+ a−1

z − z0

+ a0 + a1(z − z0) + · · ·
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Let us multiply this by (z − z0)
m to obtain

(z − z0)
m f(z) = a−m + · · ·+ a−1(z − z0)

m−1 + a0(z − z0)
m + · · · ,

whence taking m− 1 derivatives, we have

dm−1

dzm−1
[(z − z0)

m f(z)] = (m− 1)! a−1 + m! a0(z − z0) + · · · .

Finally if we evaluate this at z = z0, we obtain (m−1)! a−1, which then gives
a formula for the residue of f at a pole of order m:

Res(f ; z0) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
[(z − z0)

m f(z)] . (2.56)

For example, let us compute the residues of the function

f(z) =
cos z

z2(z − π)3
.

This function has a pole of order 2 at the origin and a pole of order 3 at
z = π. Therefore, applying the above formula, we find

Res(f ; 0) = lim
z→0

1

1!

d

dz

[
z2f(z)

]

= lim
z→0

d

dz

[
cos z

(z − π)3

]

= lim
z→0

[ − sin z

(z − π)3
− 3 cos z

(z − π)4

]

= − 3

π4
,

Res(f ; π) = lim
z→π

1

2!

d2

dz2

[
(z − π)3f(z)

]

= lim
z→π

1

2

d2

dz2

[cos z

z2

]

= lim
z→π

1

2

[
6 cos z

z4
+

4 sin z

z3
− cos z

z2

]

= −6− π2

2π4
.

We are now ready to state the main result of this section, which con-
cerns the formula for the integral of a function f(z) which is analytic on a
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positively-oriented loop Γ and has only a finite number of isolated singulari-
ties {zk} in the interior of the loop. Because of the analyticity of the function,
and using a contour deformation argument, we can express the integral of
f(z) along Γ as the sum of the integrals of f(z) along positively-oriented
loops Γk, each one encircling one of the isolated singularities. But we have
just seen that the integral along each of these loops is given by 2π i times the
residue of the function at the singularity. In other words, we have

∮

Γ

f(z) dz =
∑

k

∮

Γk

f(z) dz =
∑

k

2π i Res(f ; zk) .

In other words, we arrive at the Cauchy Residue Theorem, which states that
the integral of f(z) along Γ is equal to 2π i times the sum of the residues of
the singularities in the interior of the contour:

∮

Γ

f(z) dz = 2π i
∑

singularities
zk∈Int Γ

Res(f ; zk) .

For example, let us compute the integral
∮

Γ

1− 2z

z(z − 1)(z − 3)
dz ,

along the positively oriented circle of radius 2: |z| = 2. The integrand f(z)
has simple poles at z = 0, z = 1 and z = 2, but only the first two lie in the
interior of the contour. Thus by the residue theorem,

∮

Γ

1− 2z

z(z − 1)(z − 3)
dz = 2π i [Res(f ; 0) + Res(f ; 1)] ,

and

Res(f ; 0) = lim
z→0

z f(z)

= lim
z→0

(1− 2z)

(z − 1)(z − 3)

=
1

3
,

Res(f ; 1) = lim
z→1

(z − 1) f(z)

= lim
z→1

(1− 2z)

z(z − 3)

=
1

2
;
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so that ∮

Γ

1− 2z

z(z − 1)(z − 3)
dz = 2π i

(
1

3
+

1

2

)
=

5π i

3
.

�� Notice something curious. Computing the residue at z = 3, we find,

Res(f ; 3) = lim
z→3

(z − 3) f(z)

= lim
z→3

(1− 2z)

z(z − 1)

=
−5

6
;

whence the sum of all three residues is 0. This can be explained by introducing the
Riemann sphere model for the extended complex plane, and thus noticing that a contour
which would encompass all three singularities can be deformed to surround the point at
infinity but in the opposite sense. Since the integrand is analytic at infinity, the Cauchy
Integral Theorem says that the integral is zero, but (up to factors) this is equal to the
sum of the residues.

2.4.2 Application: trigonometric integrals

The first of the applications of the residue theorem is to the computation of
trigonometric integrals of the form

∫ 2π

0

R(cos θ, sin θ) dθ ,

where R is a rational function of its arguments and such that it is finite in the
range 0 ≤ θ ≤ 2π. We want to turn this into a complex contour integral so
that we can apply the residue theorem. One way to do this is the following.
Consider the contour Γ parametrised by z = exp(iθ) for θ ∈ [0, 2π]: this is
the unit circle traversed once in the positive sense. On this contour, we have
z = cos θ + i sin θ and 1/z = cos θ − i sin θ. Therefore we can solve for cos θ
and sin θ in terms of z and 1/z as follows:

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
.

Similarly, dz = d exp(iθ) = iz dθ, whence dθ = dz
iz

. Putting it all together we
have that

∫ 2π

0

R(cos θ, sin θ) dθ =

∮

Γ

1

iz
R

(
z + 1

z

2
,
z − 1

z

2i

)
dz ,
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which is the contour integral of a rational function of z, and hence can be
computed using the residue theorem:

∫ 2π

0

R(cos θ, sin θ) dθ = 2π
∑

singularities
|zk|<1

Res(f ; zk) , (2.57)

where f(z) is the rational function

f(z) ≡ 1

z
R

(
z + 1

z

2
,
z − 1

z

2i

)
. (2.58)

As an example, let us compute the integral

I =

∫ 2π

0

(sin θ)2

5 + 4 cos θ
dθ .

First of all notice that the denominator never vanishes, so that we can go
ahead. The rational function f(z) given in (2.58) is

f(z) =
1

z

(
1
2i

(
z − 1

z

))2

5 + 41
2

(
z + 1

z

) = −1

4

(z2 − 1)2

z2(2z2 + 5z + 2)
= −1

8

(z2 − 1)2

z2(z + 1
2
)(z + 2)

,

whence it has a double pole at z = 0 and single poles at z = −1
2

and z = −2.
Of these, only the poles at z = 0 and z = −1

2
lie inside the unit disk, whence

I = 2π
[
Res(f ; 0) + Res(f ;−1

2
)
]

.

Let us compute the residues. The singularity at z = 0 is a pole of order 2,
whence by equation (2.56), we have

Res(f ; 0) = lim
z→0

d

dz

[
−1

8

(z2 − 1)2

(z + 1
2
)(z + 2)

]
=

5

16
.

The pole at z = −1
2

is simple, so that its residue is even simpler to compute:

Res(f ;−1/2) = lim
z→−1

2

[
−1

8

(z2 − 1)2

z2(z + 2)

]
= − 3

16
.

Therefore, the integral becomes

I = 2π

(
5

16
− 3

16

)
=

π

4
.
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As a mild check on our result, we notice that it is real whence it is not
obviously wrong.

Let us do another example:

I =

∫ π

0

dθ

2− cos θ
.

This time the integral is only over [0, π], so that we cannot immediately use
the residue theorem. However in this case we notice that because cos(2π −
θ) = cos θ, we have that

∫ 2π

π

dθ

2− cos θ
=

∫ 0

π

d(2π − θ)

2− cos(2π − θ)
= −

∫ 0

π

dθ

2− cos θ
=

∫ π

0

dθ

2− cos θ
.

Therefore,

I = 1
2

∫ 2π

0

dθ

2− cos θ
,

which using equation (2.57) and paying close attention to the factor of 1
2
,

becomes π times the sum of the residues of the function

f(z) =
1

z

1

2− 1
2
(z + 1

z
)

lying inside the unit disk. After a little bit of algebra, we find that

f(z) = − 2

z2 − 4z + 1
= − 2

(z − 2 +
√

3)(z − 2−√3)
.

Of the two simple poles of this function only the one at z = 2−√3 lies inside
the unit disk, hence

Res(f ; 2−
√

3) = lim
z→2−√3

−2

z − 2−√3
=

1√
3

,

and thus the integral becomes

I =
π√
3

.

2.4.3 Application: improper integrals

In this section we consider improper integrals of rational functions and of
products of rational and trigonometric functions.
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Let f(x) be a function of a real variable, which is continuous in 0 ≤ x <
∞. Then by the improper integral

∫∞
0

f(x) dx, we mean the limit

∫ ∞

0

f(x) dx ≡ lim
R→∞

∫ R

0

f(x) dx ,

if such a limit exists. Similarly, if f(x) is continuous in −∞ < x ≤ 0, then

the improper integral
∫ 0

−∞ f(x) dx is defined by the limit

∫ 0

−∞
f(x) dx ≡ lim

r→−∞

∫ 0

r

f(x) dx ,

again provided that it exists. If f(x) is continuous on the whole real line and
both of the above limits exists, we define

∫ ∞

−∞
f(x) dx ≡ lim

R→∞
r→−∞

∫ R

r

f(x) dx . (2.59)

If such limits exist, then we get the same result by symmetric integration:

∫ ∞

−∞
f(x) dx = lim

ρ→∞

∫ ρ

−ρ

f(x) dx . (2.60)

Notice however that the symmetric integral may exist even if the improper
integral (2.59) does not. For example consider the function f(x) = x. Clearly

the integrals
∫∞

0
x dx and

∫ 0

−∞ x dx do not exist, yet because x is an odd

function,
∫ ρ

−ρ
xdx = 0 for all ρ, whence the limit is 0. In cases like this we

say that equation (2.60) defines the Cauchy principal value of the integral,
and we denote this by

p. v.

∫ ∞

−∞
f(x) dx ≡ lim

ρ→∞

∫ ρ

−ρ

f(x) dx .

We stress to point out that whenever the improper integral (2.59) exists it
agrees with its principal value (2.60).

Improper integrals of rational functions over (−∞,∞)

Let us consider as an example the improper integral

I = p. v.

∫ ∞

−∞

dx

x2 + 4
= lim

ρ→∞

∫ ρ

−ρ

dx

x2 + 4
.
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The integral for finite ρ can be interpreted as the complex integral of the
function f(z) = 1/(z2 + 4), ∫

γρ

dz

z2 + 4
,

where γρ is the straight line segment on the real axis: y = 0 and −ρ ≤ x ≤ ρ .
In order to use the residue theorem we need to close the contour ; that is, we
must produce a closed contour along which we can apply the residue theorem.
Ot f course, in so doing we are introducing a further integral, and the success
of the method depends on whether the extra integral is computable. We will
see that in this case, the extra integral, if chosen judiciously, vanishes.

Let us therefore complete the contour γρ to a closed

−ρ ρ

• 2i

•−2i
γρ

C+
ρ

-

Icontour. One suggestion is to consider the semicircular
contour C+

ρ in the upper half plane, parametrised by
z(t) = ρ exp(it), for t ∈ [0, π]. Let Γρ be the composi-
tion of both contours: it is a closed contour as shown
in the figure. Then, according to the residue theorem,

∫

Γρ

dz

z2 + 4
=

∫

γρ

dz

z2 + 4
+

∫

C+
ρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk) ;

whence ∫

γρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk)−
∫

C+
ρ

dz

z2 + 4
.

We will now argue that the integral along C+
ρ vanishes in the limit ρ → ∞.

Of course, this is done using (2.28):
∣∣∣∣∣
∫

C+
ρ

dz

z2 + 4

∣∣∣∣∣ ≤
∫

C+
ρ

|dz|
|z2 + 4| . (2.61)

Using the triangle inequality (2.36), we have that on C+
ρ ,

|z2 + 4| ≥ |z2| − 4 = |z|2 − 4 = ρ2 − 4 ,

whence
1

|z2 + 4| ≤
1

ρ2 − 4
.

Plugging this into (2.61), and taking into account that the length of the
semicircle C+

ρ is πρ,
∣∣∣∣∣
∫

C+
ρ

dz

z2 + 4

∣∣∣∣∣ ≤
πρ

ρ2 − 4
→ 0 as ρ →∞.

165



Therefore in the limit,
∫

γρ

dz

z2 + 4
= 2π i

∑

singularities
zk∈Int Γρ

Res(f ; zk) .

The function f(z) has poles at z = ±2i, of which only the one at z = 2i lies
inside the closed contour Γρ, for large ρ. Computing the residue there, we
find from (2.56) that

Res(f ; 2i) = lim
z→2i

[
1

z + 2i

]
=

1

4i
,

and hence the integral is given by

I = 2π i
1

4i
=

π

2
.

� There is no reason why we chose to close the contour using the top semicircle C+
ρ instead

of using the bottom semicircle C−ρ parametrised by z(t) = ρ exp(it) for t ∈ [π, 2π]. The

same argument shows that in the limit ρ →∞ the integral along C−ρ vanishes. It is now
the pole at −2i that we have to take into account, and one has that Res(f ;−2i) = −1/4i.
Notice however that the closed contour is negatively-oriented, which produces an extra −
sign from the residue formula, in such a way that the final answer is again

I = −2π i
−1

4i
=

π

2
.

The technique employed in the calculation of the above integral can be
applied in more general situations. All that we require is for the integral
along the large semicircle C+

ρ to vanish and this translates into a condition
on the behaviour of the integrand for large |z|.

We will now show the following general result. Let R(x) = P (x)/Q(x)
be a rational function of a real variable satisfying the following two criteria:

• Q(x) 6= 0; and

• deg Q− deg P ≥ 2.

Then the improper integral of R(x) along the real line is given by considering
the residues of the complex rational function R(z) at its singularities in the
upper half-plane. Being a rational function the only singularities are either
removable or poles, and only these latter ones contribute to the residue. In
summary,

p. v.

∫ ∞

−∞
R(x) dx = 2π i

∑

poles zk
Im(zk)>0

Res(R; zk) . (2.62)
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The proof of this relation follows the same steps as in the computation
of the integral I above. The trick is to close the contour using the upper
semicircle C+

ρ and then argue that the integral along the semicircle vanishes.
This is guaranteed by the the behaviour of R(z) for large |z|.

� Let us do this in detail. The integral to be computed is

I = p. v.

Z ∞

−∞
R(x) dx = lim

ρ→∞

Z ρ

−ρ
R(x) dx = lim

ρ→∞

Z

γρ

R(z) dz .

Closing the contour with C+
ρ to Γρ, we have

Z

γρ

R(z) dz =

I

Γρ

R(z) dz −
Z

C+
ρ

R(z) dz .

The first integral in the right-hand side can be easily dispatched using the residue theorem.
In the limit ρ →∞, one finds

lim
ρ→∞

I

Γρ

R(z) dz = 2π i
X

poles zk
Im(zk)>0

Res(R; zk) .

All that remains then is to show that the second integral vanishes in the limit ρ → ∞.
We can estimate it using (2.28) as usual:

�����
Z

C+
ρ

R(z) dz

����� ≤
Z

C+
ρ

|R(z)| |dz| =
Z

C+
ρ

|P (z)|
|Q(z)| |dz| .

Let the degree of the polynomial P (z) be p and that of Q(z) be q, where by hypothesis
we have that q − p ≥ 2. Recall from our discussion in Section 2.2.6 that for large |z| a
polynomial P (z) of degree N behaves like |P (z)| ∼ c|z|N for some c. Similar considerations
in this case show that the rational function R(z) = P (z)/Q(z) with q = deg Q > deg P = p
obeys

|R(z)| ≤ c

|z|q−p
,

for some constant c independent of |z|. Using this into the estimate of the integral along
C+

ρ , and using that the semicircle has length πρ,

�����
Z

C+
ρ

R(z) dz

����� ≤
cπρ

ρq−p
.

Since q − p ≥ 2, we have that this goes to zero in the limit ρ →∞, as desired.

As an example, let us compute the following integral

I = p. v.

∫ ∞

−∞

x2

(x2 + 1)2
dx .

The integrand is rational and obeys the two criteria above: it is always finite
and the degree of the denominator is 4 whereas that of the numerator is 2,
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whence 4− 2 ≥ 2. In order to compute the integral it is enough to compute
the residues of the rational function

f(z) =
z2

(z2 + 1)2
,

at the poles in the upper half-plane. This function has poles of order 2 at
the points z = ±i, of which only z = +i is in the upper half-plane, hence
from (2.62) we have

I = 2π i lim
z→i

d

dz

[
z2

(z + i)2

]
= 2π i lim

z→i

[
2i z

(z + i)3

]
= 2π i

−i

4
=

π

2
.

Improper integrals of rational and trigonometric functions

The next type of integrals which can be be handled by the method of residues
are of the kind

p. v.

∫ ∞

−∞
R(x) cos(ax) dx and p. v.

∫ ∞

−∞
R(x) sin(ax) dx ,

where R(x) is a rational function which is continuous everywhere in the real
line (except maybe at the zeros of cos(ax) and sin(ax), depending on the
integral), and where a is a nonzero real number.

As an example, consider the integral

I = p. v.

∫ ∞

−∞

cos(3x)

x2 + 4
dx = lim

ρ→∞

∫ ρ

−ρ

cos(3x)

x2 + 4
dx .

From the discussion in the previous section, we are tempted to try to express
the integral over [−ρ, ρ] as a complex contour integral, close the contour and
use the residue theorem. Notice however that we cannot use the function
cos(3z)/(z2 +4) because | cos(3z)| is not bounded for large values of | Im(z)|.
Instead we notice that we can write the integral as the real part of a complex
integral I = Re(I0), where

I0 = lim
ρ→∞

∫ ρ

−ρ

ei3x

x2 + 4
dx .

Therefore let us consider the integral

∫ ρ

−ρ

ei3x

x2 + 4
dx =

∫

γρ

ei3z

z2 + 4
dz ,
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where γρ is the line segment on the real axis from −ρ to ρ. We would like to
close this contour to be able to use the residue theorem, and in such a way
that the integral vanishes on the extra segment that we must add to close it.
Let us consider the upper semicircle C+

ρ . There we have that

∣∣∣∣
ei3z

z2 + 4

∣∣∣∣ =
e−3 Im(z)

|z2 + 4| ≤
e−3 Im(z)

ρ2 − 4
,

where to reach the inequality we used (2.36) as was done above. The function
e−3 Im(z) is bounded above by 1 in the upper half-plane, and in particular along
C+

ρ , hence we have that on the semicircle,
∣∣∣∣

ei3z

z2 + 4

∣∣∣∣ ≤
1

ρ2 − 4
.

Therefore the integral along the semicircle is bounded above by
∣∣∣∣∣
∫

C+
ρ

ei3z

z2 + 4
dz

∣∣∣∣∣ ≤
πρ

ρ2 − 4
→ 0 as ρ →∞.

Therefore we can use the residue theorem to express I0 in terms of the residues
of the function f(z) = exp(i3z)/(z2 +4) at the poles in the upper half-plane.
This function has simple poles at z = ±2i, but only z = 2i lies in the upper
half-plane, whence

I0 = 2π i Res(f ; 2i) = 2π i lim
z→2i

[
ei3z

z + 2i

]
= 2π i

e−6

4i
=

π

2e6
,

which is already real. (One could have seen this because the imaginary part is
the integral of sin(3x)/(x2 +4) which is an odd function and hence integrates
to zero under symmetric integration.) Therefore,

I = Re(I0) =
π

2e6
.

Suppose instead that we had wanted to compute the integral

p. v.

∫ ∞

−∞

e−i3x

x2 + 4
dx .

Of course, now we could do it because this is the complex conjugate of the
integral we have just computed, but let us assume that we had not yet done
the other integral. We would follow the same steps as before, but notice that
now, ∣∣∣∣

e−i3z

z2 + 4

∣∣∣∣ =
e3 Im(z)

|z2 + 4| ,
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which is no longer bounded in the upper half-plane. In this case we would be
forced the close the contour using the lower semicircle C−

ρ , keeping in mind
that the closed contour is now negatively oriented. The lesson to learn from
this is that there is some choice in how to close to contour and that one has
to exercise this choice judiciously for the calculation to work out.

This method of course generalises to compute integrals of the form

p. v.

∫ ∞

−∞
R(x)eiax dx (2.63)

where a is real. Surprisingly the conditions on the rational function R(x) are
now slightly weaker. Indeed, we have the following general result.

Let R(x) = P (x)/Q(x) be a rational function satisfying the following
conditions:

• Q(x) 6= 0,3 and

• deg Q− deg P ≥ 1.

Then the improper integral (2.63) is given by considering the residues of the
function f(z) = R(z)eiaz at its singularities in the upper (if a > 0) or lower
(if a < 0) half-planes. These singularities are either removable or poles, and
again only the poles contribute to the residues. In summary,

p. v.

∫ ∞

−∞
R(x)eiax dx =





2π i
∑

poles zk
Im(zk)>0

Res(f ; zk) if a > 0;

−2π i
∑

poles zk
Im(zk)<0

Res(f ; zk) if a < 0.
(2.64)

This result is similar to (2.62) with two important differences. The first is
that we have to choose the contour appropriately depending on the integrand;
that is, depending on the sign of a. The second one is that the condition on
the rational function is less restrictive than before: now we simply demand
that the degree of Q be greater than the degree of P . This will therefore
require a more refined estimate of the integral along the semicircle, which
goes by the name of the Jordan lemma, which states that

lim
ρ→∞

∫

C+
ρ

eiaz P (z)

Q(z)
dz = 0 ,

whenever a > 0 and deg Q > deg P . Of course an analogous result holds for
a < 0 and along C−

ρ .

3This could in principle be relaxed provided the zeros of Q at most gave rise to remov-
able singularities in the integrand.
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� Let us prove this lemma. Parametrise the semicircle C+
ρ by z(t) = ρ exp(it) for t ∈ [0, π].

Then by (2.25) Z

C+
ρ

eiaz P (z)

Q(z)
dz =

Z π

0
eiaρeit P (ρeit)

Q(ρeit)
ρ i dt .

Let us now estimate the integrand term by term. First we have that

���eiaρeit
��� =

���eiaρ(cos t+i sin t)
��� = e−aρ sin t .

Similarly, since deg Q− deg P ≥ 1, we have that

����
P (ρeit)

Q(ρeit)

���� ≤
c

ρ
,

for ρ large, for some c > 0. Now using (2.24) on the t-integral together with the above
(in)equalities,

�����
Z

C+
ρ

eiaz P (z)

Q(z)
dz

����� =
����
Z π

0
eiaρeit P (ρeit)

Q(ρeit)
ρ i dt

���� ≤ c

Z π

0
e−aρ sin t dt .

We need to show that this latter integral goes to zero in the limit ρ → ∞. First of all
notice that sin t = sin(π − t) for t ∈ [0, π], whence

Z π

0
e−aρ sin t dt = 2

Z π/2

0
e−aρ sin t dt .

Next notice that for t ∈ [0, π/2], sin t ≥ 2t/π. This can be seen pictorially as in the
following picture, which displays the function sin t in the range t ∈ [−π, π] and the function
2t/π in the range t ∈ [0, π/2] and makes the inequality manifest.

π
2

1

sin t

2
π

t

Therefore, Z π/2

0
e−aρ sin t dt ≤

Z π

0
e−2aρ t/π dt =

π

2aρ

�
1− e−2aρπ

�
.

Putting this all together, we see that

�����
Z

C+
ρ

eiaz P (z)

Q(z)
dz

����� ≤
cπ

aρ

�
1− e−2aρπ

�
,

which clearly goes to 0 in the limit ρ →∞, proving the lemma.

As an example, let us compute the integral

I = p. v.

∫ ∞

−∞

x sin x

1 + x2
dx .
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This is the imaginary part of the integral

I0 = p. v.

∫ ∞

−∞

xeix

1 + x2
dx ,

which satisfies the conditions which permit the use of (2.64) with a = 1 and
R(z) = z/(1 + z2). This rational function has simple poles for z = ±i, but
only z = i lies in the upper half-plane. According to (2.64) then, and letting
f(z) = R(z)eiz, we have

I0 = 2π i Res(f ; i) = 2π i lim
z→i

[
z eiz

z + i

]
= 2π i

ie−1

2i
=

iπ

e
=⇒ I =

π

e
.

Improper integrals of rational functions on (0,∞)

The next type of integrals which can be tackled using the residue theorem
are integrals of rational functions but over the half line; that is, integrals of
the form: ∫ ∞

0

R(x) dx ,

where R(x) is continuous for x ≥ 0. Of course, if R(x) were an even function,
i.e., R(−x) = R(x), then we would have

∫∞
0

R(x) dx = 1
2

∫∞
−∞ R(x) dx, and

we could use the method discussed previously. However for more general
integrands, this does not work and we have to do something different.

The following general result is true. Let R(x) = P (x)/Q(x) be a rational
function of a real variable satisfying the following two conditions

• Q(x) 6= 0; and

• deg Q− deg P ≥ 2.

Further let f(z) = log(z) R(z) with the branch of the logarithm chosen to
be analytic at the poles {zk} of R; for example, we can choose the branch
Log0(z) which has the cut along the positive real axis, since Q(x) has no
zeros there. Then,

∫ ∞

0

R(x) dx = −
∑

poles zk

Res(f ; zk) , for f(z) = log(z) R(z). (2.65)

� The details.
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This same method can be applied to integrals of the form
∫ ∞

a

R(x) dx ,

where the rational function R(x) = P (x)/Q(x) satisfies the same conditions
as above except that now Q(x) 6= 0 only for x ≥ a. In this case we must
consider the function f(z) = log(z − a) R(z).

� Details?

Similarly, since
∫ a

0
=

∫∞
0
− ∫∞

a
, we can use this method to compute

indefinite integrals of rational functions.

2.4.4 Application: improper integrals with poles

Suppose that we want to compute the principal value integral

I = p. v.

∫ ∞

−∞

sin x

x
dx .

This integral should converge: the singularity at x = 0 is removable, as we
saw in equation (2.55), so that the integrand is continuous for all x, and the
rational function 1/x satisfies the conditions of the Jordan Lemma. Following
the ideas in the previous section, we would be write

I = Im(I0) where I0 = p. v.

∫ ∞

−∞

eix

x
dx , (2.66)

and compute I0. However notice that now the integrand of I0 has a pole at
x = 0. Until now we have always assumed that integrands have no poles
along the contour, so the methods developed until now are not immediately
applicable to perform the above integral. We therefore need to make sense
out of integrals whose integrands are not continuous everywhere in the region
of integration.

Let f(x) be a function of a real variable, which is continuous in the
interval [a, b] except for a discontinuity at some point c, a < c < b. Then the
improper integrals of f over the intervals [a, c], [c, b] and [a, b] are defined
by

∫ c

a

f(x) dx ≡ lim
r↘0

∫ c−r

a

f(x) dx ,

∫ b

c

f(x) dx ≡ lim
s↘0

∫ b

c+s

f(x) dx ,
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and ∫ b

a

f(x) dx ≡ lim
r↘0

∫ c−r

a

f(x) dx + lim
s↘0

∫ b

c+s

f(x) dx , (2.67)

provided the appropriate limit(s) exist. We have used the notation r ↘ 0 to
mean that r approaches 0 from above; that is, r > 0 as we take the limit. As
an example, consider the function 1/

√
x integrated on [0, 1]:

∫ 1

0

dx√
x

= lim
s↘0

∫ 1

s

dx√
x

= lim
s↘0

2
√

x
∣∣∣
1

s
= lim

s↘0

[
2− 2

√
s
]

= 2 .

If the limits in (2.67) exist, then we can calculate the integral using sym-
metric integration, which defines the principal value of the integral,

p. v.

∫ b

a

f(x) dx ≡ lim
r↘0

[∫ c−r

a

f(x) dx +

∫ b

c+r

f(x) dx

]
.

However the principal value integral may exist even when the improper in-
tegral does not. Take, for instance,

p. v.

∫ 4

1

dx

x− 2
= lim

r↘0

[∫ 2−r

1

+

∫ 4

2+r

]
dx

x− 2

= lim
r↘0

[
Log |x− 2|

∣∣∣
2−r

1
+ Log |x− 2|

∣∣∣
4

2+r

]

= lim
r↘0

[Log r + Log 2− Log r] = Log 2 ,

whereas it is clear that the improper integral
∫ 4

1
dx

x−2
does not exist.

When the function f(x) is continuous everywhere in the real line except
at the point c we define the principal value integral by

p. v.

∫ ∞

−∞
f(x) dx ≡ lim

ρ→∞
r↘0

[∫ c−r

−ρ

f(x) dx +

∫ ρ

c+r

f(x) dx

]
, (2.68)

provided the limits ρ → ∞ and r ↘ 0 exist independently. In the case of
several discontinuities {ci} we extend the definition of the improper integral
in the obvious way: excising a small symmetric interval (ci−ri, ci +ri) about
each discontinuity and then taking the limits ri ↘ 0 and, if applicable,
ρ →∞.

It turns out that principal value integrals of this type can often be eval-
uated using the residue theorem. The residue theorem applies to closed
contours, so in computing a principal value integral we need to close the
contour, not just ρ to −ρ as in the previous session, but also c− r to c + r.
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•c•
c− r

•
c + r

Sr

- -

-

Figure 2.10: Closing the contour around a singularity.

One way to do this is to consider a small semicircle Sr of radius r around the
singular point c, as in Figure 2.10.

Because we are interested in the limit r ↘ 0, we will have to consider the
integral

lim
r↘0

∫

Sr

f(z) dz .

When the singularity of f(z) at z = c is a simple pole, this integral can be
evaluated using the following result, which we state in some generality.

•
c

Ar

r

θ1 − θ0

•

•ª

¾

Figure 2.11: A small circular arc.

Let f(z) have a simple pole at z = c and let Ar be the circular arc in
Figure 2.11, parametrised by z(θ) = c + r exp(iθ) with θ0 ≤ θ ≤ θ1. Then

lim
r↘0

∫

Ar

f(z) dz = i (θ1 − θ0) Res(f ; c) .

Therefore for the semicircle Sr in Figure 2.10, we have

lim
r↘0

∫

Sr

f(z) dz = −i π Res(f ; c) . (2.69)

� Let us prove this result. Since f(z) has a simple pole at c, its Laurent expansion in a
punctured disk 0 < |z − c| < R has the form

f(z) =
a−1

z − c
+

∞X

k=0

ak(z − c)k ,
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where

g(z) ≡
∞X

k=0

ak(z − c)k

defines an analytic function in the disk |z − c| < R. Now let 0 < r < R and consider the
integral Z

Ar

f(z) dz = a−1

Z

Ar

dz

z − c
+

Z

Ar

g(z) dz .

Because g(z) is analytic it is in particular bounded on some neighbourhood of c, so that
|g(z)| ≤ M for some M and all |z − c| < R. Then we can estimate its integral by using
(2.28): ����

Z

Ar

g(z) dz

���� ≤
Z

Ar

|g(z)| |dz| ≤ M`(Ar) = Mr(θ1 − θ0) ,

whence

lim
r↘0

Z

Ar

g(z) dz = 0 .

On the other hand,

Z

Ar

dz

z − c
=

Z θ1

θ0

rieiθ

reiθ
dθ = i

Z θ1

θ0

dθ = i (θ1 − θ0) .

Therefore

lim
r↘0

Z

Ar

f(z) dz = i (θ1 − θ0)a−1 + 0 = i (θ1 − θ0) Res(f ; c) .

Having discussed the basic theory, let us go back to the original problem:
the computation of the integral I0 given in (2.66):

I0 = lim
ρ→∞
r↘0

[∫ −r

−ρ

eix

x
dx +

∫ ρ

r

eix

x
dx

]
,

which for finite ρ and nonzero r can be understood as a contour integral in
the complex plane along the subset of the real axis consisting of the intervals
[−ρ,−r] and [r, ρ]. In order to use the residue theorem we must close this
contour. The Jordan lemma forces us to join ρ and −ρ via a large semicircle
C+

ρ of radius ρ in the upper half-plane. In order to join −r and r we choose a
small semicircle Sr also in the upper half-plane. The resulting closed contour
is depicted in Figure 2.12.

Because the function is analytic on and inside the contour, the Cauchy
Integral Theorem says that the contour integral vanishes. Splitting this con-
tour integral into its different pieces, we have that

[∫ −r

−ρ

+

∫

Sr

+

∫ ρ

r

+

∫

C+
ρ

]
eiz

z
dz = 0 ,

which remains true in the limits ρ → ∞ and r ↘ 0. By the Jordan lemma,
the integral along C+

ρ vanishes in the limit ρ →∞, whence, using (2.69),

I0 = − lim
r↘0

∫

Sr

eiz

z
dz = lim

r↘0

∫

−Sr

eiz

z
dz = iπ Res(0) = iπ ,
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•
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• •−ρ ρ

C+
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-
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Figure 2.12: The contour in the calculation of I0 in (2.66).

since the residue of eiz/z at z = 0 is equal to 1. Therefore, we have that

p. v.

∫ ∞

−∞

sin x

x
dx = Im(iπ) = π .

There are plenty of other integrals which can be calculated using the
residue theorem; e.g., integrals involving multi-valued functions. We will not
have time to discuss them all, but the lesson to take home from this cursory
introduction to residue techniques is that when faced with a real integral, one
should automatically think of this as a parametrisation of a contour integral
in the complex plane, where we have at our disposal the powerful tools of
complex analysis.

2.4.5 Application: infinite series

The final section of this part of the course is a beautiful application of the
theory of residues to the computation of infinite sums.

How can one use contour integration in order to calculate sums like the
following one:

∞∑
n=1

1

n2
? (2.70)

The idea is to exhibit this sum as part of the right-hand side of the
Cauchy Residue Theorem. For this we need a function F (z) which has only
simple poles at the integers and whose residue is 1 there. We already met a
function which has an infinite number of poles which are integrally spaced:
the function cot z has simple poles for z = nπ, n = 0,±1,±2, . . . with residues
equal to 1. Therefore the function F (z) = π cot(πz) has simple poles at
z = n, n an integer, and the residue is still 1:

Res(F ; n) = lim
z→n

π cos(πz)

(sin(πz))′
= lim

z→n

π cos(πz)

π cos(πz)
= 1 .
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Now let R(z) = P (z)/Q(z) be any rational function such that deg Q −
deg P ≥ 2. Consider the function f(z) = π cot(πz)R(z) and let us integrate
this along the contour ΓN , for N a positive integer, defined as the positively
oriented square with vertices (N + 1

2
)(1+ i), (N + 1

2
)(−1+ i), (N + 1

2
)(−1− i)

and (N + 1
2
)(1− i), as shown in Figure 2.13. Notice that the contour misses

the poles of π cot(πz). Assuming that N is taken to be large enough, and
since R(z) has a finite number of poles, one can also guarantee that the
contour will miss the poles of R(z).

•
(N + 1

2
)(1 + i)

•
(N + 1

2
)(−1 + i)

•
(N + 1

2
)(−1− i)

•
(N + 1

2
)(1− i)

•N •
N + 1

ΓN
6

¾

?

-

Figure 2.13: The contour ΓN .

Let us compute the integral of the function f(z) along this contour,

∫

ΓN

π cot(πz)R(z) dz ,

in two ways. On the one hand we can use the residue theorem to say that
the integral will be (2πi) times the sum of the residues of the poles of f(z).
These poles are of two types: the poles of R(z) and the poles of π cot(πz),
which occur at the integers. Let us assume for simplicity that R(z) has no
poles at integer values of z, so that the poles of R(z) and π cot(πz) do not
coincide. Therefore we see that

∫

ΓN

π cot(πz)R(z) dz = 2π i




N∑
n=−N

Res(f ; n) +
∑

poles zk of R
inside ΓN

Res(f ; zk)


 .
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The residue of f(z) at z − n is easy to compute. Since by assumption R(z)
is analytic there and π cot(πz) has a simple pole with residue 1, we see that
around z = n, we have

f(z) = R(z)π cot(πz) = R(z)

(
1

z − n
+ · · ·

)
=

R(z)

z − n
+ h(z) ,

where h(z) is analytic at z = n. Therefore,

Res(f ; n) = lim
z→n

[(z − n)f(z)] = R(n) + 0 ,

and as a result,

∫

ΓN

π cot(πz)R(z) dz = 2π i




N∑
n=−N

R(n) +
∑

poles zk of R
inside ΓN

Res(f ; zk)


 . (2.71)

On the other hand we can estimate the integral for large enough N as
follows. First of all because of the condition on R(z), we have that for large
|z|,

|R(z)| ≤ c

|z|2 .

Similarly, it can be shown that the function π cot(πz) is bounded along the
contour, so that |π cot(πz)| ≤ K for some K independent of N .

� Indeed, notice that

|cot(πz)| =
����
cos(πz)

sin(πz)

���� =
����
eiπz + e−iπz

eiπz − e−iπz

���� =
����
1 + e−2iπz

1− e−2iπz

���� .

Therefore along the segment of the contour parametrised by z(t) = (N + 1
2
) + it for

t ∈ [−N − 1
2
, N + 1

2
], we have that

|cot(πz(t))| =
������
1 + ei2π((N+

1
2
)+it)

1− ei2π((N+
1
2
)+it)

������

=

�����
1− eπ(2N+1) t

1 + eπ(2N+1) t

����� < 1 ;

whereas along the segments of the contour parametrised by z(t) = t − i(N + 1
2
) for

t ∈ [−N − 1
2
, N + 1

2
], we have that

|cot(πz(t))| =
�����
1 + e−iπ(2N+1)(t−i)

1− e−iπ(2N+1)(t−i)

�����

=

��1 + e2πte−π(2N+1)
��

��1− e2πte−π(2N+1)
��

≤ 1 + e−π(2N+1)

1− e−π(2N+1)
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where we have used the triangle inequalities (2.1) on the numerator and (2.36) on the
denominator. But

1 + e−π(2N+1)

1− e−π(2N+1)

is maximised for N = 0, whence it is bounded.

Since the length of the contour ΓN is given by 4(2N +1), equation (2.28)
gives the following estimate for the integral

∣∣∣∣
∫

ΓN

π cot(πz)R(z) dz

∣∣∣∣ ≤
Kc

(N + 1
2
)2

4(2N + 1) ,

which vanishes in the limit N →∞. Therefore, taking the limit N →∞ of
equation (2.71), and using that the left-hand side vanishes, one finds

∞∑
n=−∞

R(n) = −
∑

poles zk of R

Res(f ; zk) .

More generally, if R(z) does have some poles for integer values of z, then we
have to take care not to over-count these poles in the sum of the residues.
We will count them as poles of R(z) and not as poles of π cot(πz), and the
same argument as above yields the general formula:

∞∑
n=−∞
n 6=zk

R(n) = −
∑

poles
zk of R

Res(f ; zk) , for f(z) = π cot(πz) R(z). (2.72)

Let us compute then the sum (2.70). Notice that

∞∑
n=1

1

n2
= 1

2

∞∑
n=−∞

n 6=0

1

n2
.

The function R(z) = 1/z2 has a double pole at z = 0, hence by (2.72)

∞∑
n=1

1

n2
= −1

2
lim
z→0

d

dz
[π cot(πz)] .

Now, the Laurent expansion of π cot(πz) around z = 0 is given by

1

z
− π2 z

3
− π4 z3

45
+ O(z5) , (2.73)

whence ∞∑
n=1

1

n2
= −1

2

[
−π2

3

]
=

π2

6
.
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�� This sum has an interesting history. Its computation was an open problem in the 18th
century for quite some time. It was known that the series was convergent (proven in fact
by one of the Bernoullis) but it was up to Euler to calculate it. His “proof” is elementary
and quite clever. Start with the Taylor series for the sine function:

sin x = x

�
1− x2

3!
+

x4

5!
− · · ·

�
,

and treat the expression in parenthesis as an algebraic equation in x2. Its solutions are
known: n2π2 for n = 1, 2, 3, . . .. Suppose we could factorise the expression in parenthesis:

�
1− x2

π2

��
1− x2

(2π)2

��
1− x2

(3π)2

�
· · ·

= 1− x2

�
1

π2
+

1

(2π)2
+

1

(3π)2
+ · · ·

�
+ O(x4) .

Therefore, comparing the coefficient of x2, we see that

1

3!
=

1

π2
+

1

(2π)2
+

1

(3π)2
+ · · · =

∞X

n=1

1

(nπ)2
,

which upon multiplication by π2 yields the sum.

Similarly, we can compute the sum

∞∑
n=1

1

n4
= −1

2
Res(f ; 0) ,

where f(z) = π cot(πz)/z4, whose Laurent series about z = 0 is can be read
off from (2.73) above:

1

z5
− π2

3z3
− π4

45 z
+ O(z) ,

whence ∞∑
n=1

1

n4
=

π4

90
.

Infinite alternating sums

The techniques above can be extended to the computation of infinite alter-
nating sums of the form

∞∑
n=−∞

(−1)nR(n) ,

where R(z) = P (z)/Q(z) is a rational function with deg Q−deg P ≥ 2. Now
what is needed is a function G(z) which has a simple pole at z = n, for n

181



an integer, and whose residue there is (−1)n. We claim that this function is
π csc(πz). Indeed, the Laurent expansion about z = 0 is given by

π csc(πz) =
1

z
+

π2 z

6
+

7 π4 z3

360
+ O(z5) ; (2.74)

whence its residue at 0 is 1. Because of the periodicity csc(π(z + 2k)) =
csc(πz + 2kπ) = csc(πz) for any integer k, this is also the residue about
every even integer. Now from the periodicity csc(π(z + 1)) = csc(πz + π) =
− csc(πz), we notice that the residue at every odd integer is −1. Therefore
we conclude that for G(z) = π csc(πz), Res(G; n) = (−1)n.

The trigonometric identity

(csc(πz))2 = 1 + (cot(πz))2 ,

implies that csc(πz) is also bounded along the contour ΓN , with a bound
which is independent of N just like for cot(πz). Just as was done above for
the cotangent function, we can now prove that the integral of the function
f(z) = π csc(πz)R(z) along ΓN vanishes in the limit N → 0. This proof is
virtually identical to the one given above. Therefore we can conclude that

∞∑
n=−∞
n 6=zk

(−1)nR(n) = −
∑

poles
zk of R

Res(f ; zk) , for f(z) = π csc(πz) R(z).

(2.75)
As an example, let us compute the alternating sums

S1 =
∞∑

n=1

(−1)n

n2
and S2 =

∞∑
n=1

(−1)n

n4
.

For the first sum we have that

S1 = −1
2
Res(f ; 0) ,

where f(z) = π csc(πz)/z2, whose Laurent expansion about z = 0 can be
read off from (2.74):

f(z) =
1

z3
+

π2

6 z
+

7 π4 z

360
+ O(z3) ,

whence the residue is π2/6 and the sum

S1 = −π2

12
.
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For the second sum we also have that

S2 = −1
2
Res(f ; 0) ,

where the function f(z) = π csc(πz)/z4 has now a Laurent series

f(z) =
1

z5
+

π2

6 z3
+

7 π4

360 z
+ O(z1) ,

whence the residue is 7π4/360 and the sum

S2 = −7 π4

720
.

Sums involving binomial coefficients

There are other types of sums which can also be performed or at least es-
timated using residue techniques, particularly sums whose coefficients are
related to the binomial coefficients, as in

∑∞
n=1

(
2n
n

)
R(n). By definition, the

binomial coefficient
(

n
k

)
is the coefficient of zk in the binomial expansion of

(1 + z)n. In other words, using the residue theorem,

(
n

k

)
=

1

2πi

∮

Γ

(1 + z)n

zk+1
dz ,

where Γ is any positively oriented loop surrounding the origin.
Suppose that we wish to compute the sum

S =
∞∑

n=0

(
2n

n

)
1

5n
.

We can substitute the integral representation for the binomial coefficient,

S =
∞∑

m=0

[
1

2πi

∫

Γ

(1 + z)2n

zn+1
dz

]
1

5n
=

1

2πi

∞∑
n=0

∫

Γ

(1 + z)2n

(5z)n

dz

z
.

Now provided that we choose Γ inside the domain of convergence of the series∑∞
n=0

(1+z)2n

(5z)n then we would obtain that by uniform convergence, the integral
of the sum is the sum of the termwise integrals. Being a geometric series, its
convergence is uniform in the region

∣∣∣∣
(1 + z)2

5z

∣∣∣∣ < 1 ,
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so choose the contour Γ inside this region. For definiteness we can choose
the unit circle, since on the unit circle:

∣∣∣∣
(1 + z)2

5z

∣∣∣∣ ≤
4

5
.

In this case, we can interchange the order of the summation and the integra-
tion:

S =
1

2πi

∫

|z|=1

∞∑
n=0

(1 + z)2n

(5z)n

dz

z
=

5

2πi

∫

|z|=1

1

3z − 1− z2
dz .

Now the integral can be performed using the residue theorem. The integrand
has simple poles at (3 ±√5)/2 of which only the (3 −√5)/2 lies inside the
contour. Therefore,

S = 5 Res

(
f ;

3−√5

2

)
where f(z) =

1

3z − 1− z2
.

Computing the residue, we find Res((3−√5)/2) = 1/
√

5, whence S =
√

5.
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Chapter 3

Integral Transforms

This part of the course introduces two extremely powerful methods to solving
differential equations: the Fourier and the Laplace transforms. Beside its
practical use, the Fourier transform is also of fundamental importance in
quantum mechanics, providing the correspondence between the position and
momentum representations of the Heisenberg commutation relations.

An integral transform is useful if it allows one to turn a complicated
problem into a simpler one. The transforms we will be studying in this part
of the course are mostly useful to solve differential and, to a lesser extent,
integral equations. The idea behind a transform is very simple. To be definite
suppose that we want to solve a differential equation, with unknown function
f . One first applies the transform to the differential equation to turn it into
an equation one can solve easily: often an algebraic equation for the transform
F of f . One then solves this equation for F and finally applies the inverse
transform to find f . This circle (or square!) of ideas can be represented
diagrammatically as follows:

differential equation for f

algebraic equation for F solution: F

solution: f

transform
inverse

transform

6

?

-

-

We would like to follow the dashed line, but this is often very difficult.
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Therefore we follow the solid line instead: it may seem a longer path, but it
has the advantage of being straightforward. After all, what is the purpose of
developing formalism if not to reduce the solution of complicated problems
to a set of simple rules which even a machine could follow?

We will start by reviewing Fourier series in the context of one particular
example: the vibrating string. This will have the added benefit of introduc-
ing the method of separation of variables in order to solve partial differential
equations. In the limit as the vibrating string becomes infinitely long, the
Fourier series naturally gives rise to the Fourier integral transform, which we
will apply to find steady-state solutions to differential equations. In partic-
ular we will apply this to the one-dimensional wave equation. In order to
deal with transient solutions of differential equations, we will introduce the
Laplace transform. This will then be applied, among other problems, to the
solution of initial value problems.

3.1 Fourier series

In this section we will discuss the Fourier expansion of periodic functions of
a real variable. As a practical application, we start with the study of the
vibrating string, where the Fourier series makes a natural appearance.

3.1.1 The vibrating string

Consider a string of length L which is clamped at both ends. Let x denote
the position along the string: such that the two ends of the string are at
x = 0 and x = L, respectively. The string has tension T and a uniform
mass density µ, and it is allowed to vibrate. If we think of the string as
being composed of an infinite number of infinitesimal masses, we model the
vibrations by a function ψ(x, t) which describes the vertical displacement at
time t of the mass at position x. It can be shown that for small vertical
displacements, ψ(x, t) obeys the following equation:

T
∂2ψ(x, t)

∂x2
= µ

∂2ψ(x, t)

∂t2
,

which can be recognised as the one-dimensional wave equation

∂2

∂x2
ψ(x, t) =

1

c2

∂2

∂t2
ψ(x, t) , (3.1)

where c =
√

T/µ is the wave velocity. This is a partial differential equation
which needs for its solution to be supplemented by boundary conditions for
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x and initial conditions for t. Because the string is clamped at both ends,
the boundary conditions are

ψ(0, t) = ψ(L, t) = 0 , for all t. (3.2)

As initial conditions we specify that at t = 0,

∂ψ(x, t)

∂t

∣∣∣∣
t=0

= 0 and ψ(x, 0) = f(x) , for all x, (3.3)

where f is a continuous function which, for consistency with the boundary
conditions (3.2), must satisfy f(0) = f(L) = 0. In other words, the string is
released from rest from an initial shape given by the function f .

� This is not the only type of initial conditions that could be imposed. For example, in the
case of, say, a piano string, it would be much more sensible to consider an initial condition
in which the string is horizontal so that ψ(x, 0) = 0, but such that it is given a blow at

t = 0, which means that
∂ψ(x,t)

∂t
|t=0 = g(x) for some function g. More generally still, we

could consider mixed initial conditions in which ψ(x, 0) = f(x) and
∂ψ(x,t)

∂t
|t=0 = g(x).

These different initial conditions can be analysed in roughly the same way.

We will solve the wave equation by the method of separation of variables.
This consists of choosing as an Ansatz for ψ(x, t) the product of two functions,
one depending only on x and the other only on t: ψ(x, t) = u(x) v(t). We
do not actually expect the solution to be of this form; but because, as we
will review below, the equation is linear and one can use the principle of
superposition to construct the desired solution out of decomposable solutions
of this type. At any rate, inserting this Ansatz into (3.1), we have

u′′(x) v(t) =
1

c2
u(x)v′′(t) ,

where we are using primes to denote derivatives with respect to the variable
on which the function depends: u′(x) = du/dx and v′(t) = dv/dt. We now
divide both sides of the equation by u(x) v(t), and obtain

u′′(x)

u(x)
=

1

c2

v′′(t)
v(t)

.

Now comes the reason that this method works, so pay close attention.
Notice that the right-hand side does not depend on x, and that the left-hand
side does not depend on t. Since they are equal, both sides have to be equal
to a constant which, with some foresight, we choose to call −λ2, as it will be
a negative number in the case of interest. The equation therefore breaks up
into two ordinary differential equations:

u′′(x) = −λ2 u(x) and v′′(t) = −λ2 c2 v(t) .
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The boundary conditions say that u(0) = u(L) = 0.
Let us consider the first equation. It has three types of solutions depend-

ing on whether λ is nonzero real, nonzero imaginary or zero. (Notice that
−λ2 has to be real, so that these are the only possibilities.) If λ = 0, then
the solution is u(x) = a + b x. The boundary condition u(0) = 0 means that
a = 0, but the boundary condition u(L) = 0 then means that b = 0, whence
u(x) = 0 for all x. Clearly this is a very uninteresting solution. Let us
consider λ imaginary. Then the solution is now a exp(|λ|x) + b exp(−|λ|x).
Again the boundary conditions force a = b = 0. Therefore we are left with
the possibility of λ real. Then the solution is

u(x) = a cos λx + b sin λx .

The boundary condition u(0) = 0 forces a = 0. Finally the boundary condi-
tion u(L) = 0 implies that

sin λL = 0 =⇒ λ =
nπ

L
for n an integer.

Actually n = 0 is an uninteresting solution, and because of the fact that the
sine is an odd function, negative values of n give rise to the same solution
(up to a sign) as positive values of n. In other words, all nontrivial distinct
solution are given (up to a constant multiple) by

un(x) ≡ sin λn x , with λn =
nπ

L
and where n = 1, 2, 3, · · · . (3.4)

Let us now solve for v(t). Its equation is

v′′(t) = −λ2c2v(t) ,

whence
v(t) = a cos λct + b sin λct .

The first of the two initial conditions (3.3) says that v′(0) = 0 whence b = 0.
Therefore for any positive integer n, the function

ψn(x, t) = sin λnx cos λnct , with λn =
nπ

L
,

satisfies the wave equation (3.1) subject to the boundary conditions (3.2)
and to the first of the initial conditions (3.3).

Now notice something important: the wave equation (3.1) is linear; that
is, if ψ(x, t) and φ(x, t) are solutions of the wave equation, so is any linear
combination α ψ(x, t) + β φ(x, t) where α and β are constants.
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Clearly then, any linear combination of the ψn(x, t) will also be a so-
lution. In other words, the most general solution subject to the boundary
conditions (3.2) and the first of the initial conditions in (3.3) is given by a
linear combination

ψ(x, t) =
∞∑

n=1

bn sin λnx cos λnct .

Of course, this expression is formal as it stands: it is an infinite sum which
does not necessarily make sense, unless we chose the coefficients {bn} in such
a way that the series converges, and that the convergence is such that we can
differentiate the series termwise at least twice.

We can now finally impose the second of the initial conditions (3.3):

ψ(x, 0) =
∞∑

n=1

bn sin λnx = f(x) . (3.5)

At first sight this seems hopeless: can any function f(x) be represented as
a series of this form? The Bernoullis, who were the first to get this far,
thought that this was not the case and that in some sense the solution was
only valid for special kinds of functions for which such a series expansion is
possible. It took Euler to realise that, in a certain sense, all functions f(x)
with f(0) = f(L) = 0, can be expanded in this way. He did this by showing
how the coefficients {bn} are determined by the function f(x).

To do so let us argue as follows. Let n and m be positive integers and
consider the functions un(x) and um(x) defined in (3.4). These functions
satisfy the differential equations:

u′′n(x) = −λ2
n un(x) and u′′m(x) = −λ2

m um(x) .

Let us multiply the first equation by um(x) and the second equation by un(x)
and subtract one from the other to obtain

u′′n(x) um(x)− un(x) u′′m(x) = (λ2
m − λ2

n) un(x) um(x) .

We notice that the left-hand side of the equation is a total derivative

u′′n(x) um(x)− un(x) u′′m(x) = (u′n(x) um(x)− un(x) u′m(x))
′

,

whence integrating both sides of the equation from x = 0 to x = L, we obtain

(λ2
m − λ2

n)

∫ L

0

um(x) un(x) dx = (u′n(x) um(x)− un(x) u′m(x))
∣∣∣
L

0
= 0 ,
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since un(0) = un(L) = 0 and the same for um. Therefore we see that unless
λ2

n = λ2
m, which is equivalent to n = m (since n, m are positive integers), the

integral
∫ L

0
um(x) un(x) dx vanishes. On the other hand, if m = n, we have

that
∫ L

0

un(x)2 dx =

∫ L

0

(
sin

nπx

L

)2

dx =

∫ L

0

(
1

2
− 1

2
cos

2nπx

L

)
dx =

L

2
.

Therefore, in summary, we have the orthogonality property of the functions
um(x): ∫ L

0

um(x) un(x) dx =

{
L
2

, if n = m, and

0 , otherwise.
(3.6)

Let us now go back to the solution of the remaining initial condition (3.5).
This condition can be rewritten as

f(x) =
∞∑

n=1

bn un(x) =
∞∑

n=1

bn sin
nπx

L
. (3.7)

Let us multiply both sides by um(x) and integrate from x = 0 to x = L:

∫ L

0

f(x) um(x) dx =
∞∑

n=1

bn

∫ L

0

un(x) um(x) dx ,

where we have interchanged the order of integration and summation with
impunity.1 Using the orthogonality relation (3.6) we see that of all the terms
in the right-hand side, only the term with n = m contributes to the sum,
whence ∫ L

0

f(x) um(x) dx = bm
L

2
,

or in other words,

bm =
2

L

∫ L

0

f(x) um(x) dx , (3.8)

a formula due to Euler. Finally, the solution of the wave equation (3.1) with
boundary conditions (3.2) and initial conditions (3.3) is

ψ(x, t) =
∞∑

n=1

bn sin
nπx

L
cos

nπct

L
, (3.9)

1This would have to be justified, but in this part of the course we will be much more
cavalier about these things. The amount of material that would have to be introduced to
be able to justify this procedure is too much for a course at this level and of this length.
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where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx .

Inserting this expression into the solution (3.9), we find that

ψ(x, t) =
∞∑

n=1

[
2

L

∫ L

0

f(y) sin
nπy

L
dy

]
sin

nπx

L
cos

nπct

L

=

∫ L

0

[
2

L

∞∑
n=1

sin
nπy

L
sin

nπx

L
cos

nπct

L

]
f(y) dy

=

∫ L

0

K(x, y; t) f(y) dy ,

where the propagator K(x, y, t) is (formally) defined by

K(x, y; t) ≡
∞∑

n=1

2

L
sin

nπy

L
sin

nπx

L
cos

nπct

L
.

To understand why it is called a propagator, notice that

ψ(x, t) =

∫ L

0

K(x, y; t) ψ(y, 0) dy ,

so that one can obtain ψ(x, t) from its value at t = 0 simply by multiplying
by K(x, y; t) and integrating; hence K(x, y; t) allows us to propagate the
configuration at t = 0 to any other time t.

Actually, the attentive reader will have noticed that we never showed that
the series

∑∞
n=1 bnun(x), with bn given by the Euler formula (3.8) converges

to f(x). In fact, it is possible to show that it does, but the convergence is not
necessarily pointwise (and certainly not uniform). We state without proof
the following result:

lim
N→∞

∫ L

0

(
f(x)−

N∑
n=1

bn un(x)

)2

dx = 0 . (3.10)

In other words, the function

h(x) ≡ f(x)−
∞∑

n=1

bn un(x)

has the property that the integral
∫ L

0

h(x)2 dx = 0 .
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This however does not mean that h(x) = 0, but only that it is zero almost
everywhere.

� To understand this notice consider the (discontinuous) function

h(x) =

(
1 , for x = x0, and

0 , otherwise.

Then it is clear that the improper integral

Z L

0
h(x)2 dx = lim

r,s↘0

�Z x0−r

0
+

Z L

x0+s

�
h(x)2 dx = 0 .

The same would happen if h(x) were zero but at a finite number of points.

Of course, if h(x) were continuous and zero almost everywhere, it would
have to be identically zero. In this case the convergence of the series (3.7)
would be pointwise. This is the case if f(x) is itself continuous.

Expanding (3.10), we find that

∫ L

0

f(x)2 dx− 2
∞∑

n=1

bn

∫ L

0

f(x) un(x) dx

+
∞∑

n,m=1

bn bm

∫ L

0

un(x) um(x) dx = 0 .

Using (3.8) and (3.6) we can simplify this a little

∫ L

0

f(x)2 dx− 2
∞∑

n=1

L

2
b2
n +

∞∑
n=1

L

2
b2
n = 0 ,

whence ∞∑
n=1

b2
n =

2

L

∫ L

0

f(x)2 dx .

Since f(x)2 is continuous, it is integrable, and hence the right-hand side is
finite, whence the series

∑∞
n=1 b2

n also converges. In particular, it means that
limn→∞ bn = 0.

3.1.2 The Fourier series of a periodic function

We have seen above that a continuous function f(x) defined on the interval
[0, L] and vanishing at the boundary, f(0) = f(L) = 0, can be expanded in
terms of the functions un(x) = sin(nπx/L). In this section we will generalise
this and consider similar expansions for periodic functions.
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To be precise let f(x) be a complex-valued function of a real variable
which is periodic with period L: f(x + L) = f(x) for all x. Periodicity
means that f(x) is uniquely determined by its behaviour within a period. In
other words, if we know f in the interval [0, L] then we know f(x) everywhere.
Said differently, any function defined on [0, L], obeying f(0) = f(L) can be
extended to the whole real line as a periodic function. More generally, the
interval [0, L] can be substituted by any one period [x0, x0 + L], for some x0

with the property that f(x0) = f(x0+L). This is not a useless generalisation:
it will be important when we discuss the case of f(x) being a discontinuous
function. The strength of the Fourier expansion is that it treats discontinuous
functions (at least those with a finite number of discontinuities in any one
period) as easily as it treats continuous functions. The reason is, as we stated
briefly above, that the convergence of the series is not pointwise but rather
in the sense (3.10), which simply means that it converges pointwise almost
everywhere.

The functions en(x) ≡ exp(i2πnx/L) are periodic with period L, since
en(x + L) = en(x) exp(i2πn) = en(x). Therefore we could try to expand

f(x) =
∞∑

n=−∞
cn en(x) , (3.11)

for some complex coefficients {cn}. This series is known as a trigonometric
of Fourier series of the periodic function f , and the {cn} are called the
Fourier coefficients. Under complex conjugation, the exponentials en(x)
satisfy en(x)∗ = e−n(x), and also the following orthogonality property:

∫ L

0

em(x)∗ en(x) dx =

∫ L

0

ei2π(n−m)x/L dx =

{
L , if n = m, and

0 , otherwise.

Therefore if we multiply both sides of (3.11) by em(x)∗ and integrate, we find
the following formula for the Fourier coefficients:

cm =
1

L

∫ L

0

em(x)∗ f(x) dx .

It is important to realise that the exponential functions en(x) satisfy the
orthogonality relation for any one period, not necessarily [0, L]:

∫

one
period

em(x)∗ en(x) dx =

{
L , if n = m, and

0 , otherwise;
(3.12)
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whence the Fourier coefficients can be obtained by integrating over any one
period:

cm =
1

L

∫

one
period

em(x)∗ f(x) dx . (3.13)

Again we can state without proof that the series converges pointwise
almost everywhere within any one period, in the sense that

lim
N→∞

∫

one
period

∣∣∣∣∣f(x)−
N∑

n=−N

cn en(x)

∣∣∣∣∣

2

dx = 0 ,

whenever the {cn} are given by (3.13).

� There is one special case where the series converges pointwise and uniformly. Let g(z) be
a function which is analytic in an open annulus containing the unit circle |z| = 1. We saw
in Section 2.3.4 that such a function is approximated uniformly by a Laurent series of the
form

g(z) =
∞X

n=−∞
bn zn ,

where the {bn} are given by equations (2.53) and (2.54). Evaluating this on the unit circle
z = eiθ, we have that

g(eiθ) =
∞X

n=−∞
bn einθ , (3.14)

and the coefficients {bn} are given by

bn =
1

2π

Z 2π

0
g(eiθ) e−inθ dθ , (3.15)

which agrees precisely with the Fourier series of the function g(eiθ) which is periodic with
period 2π. We can rescale this by defining θ = 2πx/L where x is periodic with period L.
Let f(x) ≡ g(exp(i2πx/L)), which is now periodic with period L. Then the Laurent series
(3.14) becomes the Fourier series (3.11) where the Laurent coefficients (3.15) are now give
by the Fourier coefficients (3.13).

Some examples

1

ππ

Figure 3.1: Plot of | sin x| for x ∈ [−π, π].

194



Let us now compute some examples of Fourier series. The first example is
the function f(x) = | sin x|. A graph of this function shows that it is periodic
with period π, as seen in Figure 3.1. We therefore try an expansion of the
form

| sin x| =
∞∑

n=−∞
cn ei2nx ,

where the coefficients {cn} are given by

cn =
1

π

∫ π

0

| sin x| e−i2nx dx =
1

π

∫ π

0

sin x e−i2nx dx .

We can expand sin x into exponentials to obtain

cn =
1

2πi

∫ π

0

(
eix − e−ix

)
e−i2nx dx

=
1

2πi

[∫ π

0

e−i(2n−1)x dx−
∫ π

0

e−i(2n+1)x dx

]

=
1

2πi

[
i

2n− 1

(
e−i(2n−1)π − 1

)− i

2n + 1

(
e−i(2n+1)π − 1

)]

=
1

2πi
(−2i)

[
1

2n− 1
− 1

2n + 1

]

= − 2

π

1

4n2 − 1
.

Therefore,

| sin x| =
∞∑

n=−∞
− 2

π

1

4n2 − 1
ei2nx =

2

π
−

∞∑
n=1

4

π

1

4n2 − 1
cos 2nx .

Notice that this can be used in order to compute infinite sums. Evaluating
this at x = 0, we have that

∞∑
n=1

1

4n2 − 1
= 1

2
,

whereas evaluating this at x = π/2, we have that

∞∑
n=1

(−1)n

4n2 − 1
=

2− π

4
.

Of course, we could have summed these series using the residue theorem, as
explained in Section 2.4.5.

195



1

−1

−2π

−π π

2π

Figure 3.2: Plot of f(x) for x ∈ [−2π, 2π].

As a second example, let us consider the function f(x) defined in the
interval [−π, π] by

f(x) =

{
−1− 2

π
x , if −π ≤ x ≤ 0, and

−1 + 2
π

x , if 0 ≤ x ≤ π.
(3.16)

and extended periodically to the whole real line. A plot of this function for
x ∈ [−2π, 2π] is shown in Figure 3.2. It is clear from the picture that f(x)
has periodicity 2π, whence we expect a Fourier series of the form

f(x) =
∞∑

n=−∞
cn einx ,

where the coefficients are given by

cn =
1

2π

∫ π

−π

f(x) e−inx dx

=
1

2π

[∫ 0

−π

(−1− 2

π
x) e−inx dx +

∫ π

0

(−1 +
2

π
x) e−inx dx

]

=
1

2π

∫ π

0

(−1 +
2

π
x)

[
einx + e−inx

]
dx

= − 1

π

∫ π

0

cos(nx) dx +
2

π2

∫ π

0

x cos(nx) dx .

We must distinguish between n = 0 and n 6= 0. Performing the elementary
integrals for both of these cases, we arrive at

cn =

{
2

π2 n2 [(−1)n − 1] , for n 6= 0, and

0 , for n = 0.
(3.17)
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Therefore we have that

f(x) =
∞∑

n=−∞
n 6=0

2

π2 n2
[(−1)n − 1] einx

=
∞∑

n=1

4

π2 n2
[(−1)n − 1] cos nx

=
∞∑

n=1
n odd

− 8

π2 n2
cos nx

=
∞∑

`=0

8

π2

−1

(2` + 1)2
cos(2` + 1) x .

1

−1

−3π −2π

−π π 2π

3π

Figure 3.3: Plot of g(x) for x ∈ [−3π, 3π].

Finally we consider the case of a discontinuous function:

g(x) =
x

π
, where x ∈ [−π, π],

and extended periodically to the whole real line. The function has period
2π, and so we expect a series expansion of the form

g(x) =
∞∑

n=−∞
cn einx ,

where the Fourier coefficients are given by

cn =
1

2π

∫ π

−π

g(x) e−inx dx

=
1

2π2

∫ π

−π

x e−inx dx .
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We must distinguish the cases n = 0 and n 6= 0. In either case we can
perform the elementary integrals to arrive at

cn =

{
0 , if n = 0,

i
π n

(−1)n , otherwise.

Therefore,

g(x) =
∞∑

n=−∞
n6=0

i

π n
(−1)neinx =

∞∑
n=1

−2

π n
(−1)n sin n x .

Now notice something curious: the function g(x) is discontinuous at x = (2`+
1)π. Evaluating the series at such values of x we see that because sin n(2` +
1)π = 0, the series sums to zero for these values. In other words, g(x) is
only equal to the Fourier series at those values x where g(x) is continuous.
At the values where g(x) is discontinuous, the Fourier series can be shown to
converge to the mean of the left and right limits of the function: in this case,
limx↘π g(x) = −1 and limx↗π g(x) = 1, and the average is 0, in agreement
with what we just saw.

3.1.3 Some properties of the Fourier series

In this section we explore some general properties of the Fourier series of a
complex periodic function f(x) with period L.

Let us start with the following observation. If f(x) is real, then the
Fourier coefficients obey c∗n = c−n. This follows from the following. Taking
the complex conjugate of the Fourier series for f(x), we have

f(x)∗ =

( ∞∑
n=−∞

cn en(x)

)∗

=
∞∑

n=−∞
c∗n e−n(x) ,

where we have used that en(x)∗ = e−n(x). Since f(x) is real, f(x) = f(x)∗

for all x, whence

∞∑
n=−∞

cn en(x) =
∞∑

n=−∞
c∗n e−n(x) =

∞∑
n=−∞

c∗−n en(x) .

Multiplying both sides of the equation by e∗m(x), integrating over one period
and using the orthogonality relation (3.12), we find that cm = c∗−m.
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Fourier sine and cosine series

Suppose that f(x) is periodic and also even, so that f(−x) = f(x). Then
this means that

f(x) = 1
2
[f(x) + f(−x)] .

If we substitute its Fourier series

f(x) =
∞∑

n=−∞
cn en(x) ,

we see that

f(x) =
∞∑

n=−∞

1
2
cn [en(x) + en(−x)] =

∞∑
n=−∞

cn cos λn x ,

where λn = 2πn/L. Now we use the fact that cos λ−nx = cos λnx to rewrite
the series as

f(x) = c0 +
∞∑

n=1

[cn + c−n] cos λn x = 1
2
a0 +

∞∑
n=1

an cos λn x ,

where an ≡ [cn + c−n]. Using (3.13) we find the following expression for the
{an}:

an =
2

L

∫

one
period

cos λnx f(x) dx .

The above expression for f(x) as a sum of cosines is known as a Fourier
cosine series and the {an} are the Fourier cosine coefficients.

Similarly, one can consider the Fourier series of an odd periodic function
f(−x) = −f(x). Now we have that

f(x) = 1
2
[f(x)− f(−x)] ,

which, when we substitute its Fourier series, becomes

f(x) =
∞∑

n=−∞

1
2
cn [en(x)− en(−x)] =

∞∑
n=−∞

i cn sin λnx .

Now we use the fact that sin λ−nx = − sin λnx, and that λ0 = 0, to rewrite
the series as

f(x) =
∞∑

n=1

i [cn − c−n] sin λnx =
∞∑

n=1

bn sin λnx ,

199



where bn ≡ i [cn − c−n]. Using (3.13) we find the following expression for the
{bn}:

bn =
2

L

∫

one
period

sin λnx f(x) dx .

The above expression for f(x) as a sum of sines is known as a Fourier sine
series and the {bn} are the Fourier sine coefficients.

Any function can be decomposed into the sum of an odd and an even
function and this is reflected in the fact that the complex exponential en(x)
can be decomposed into a sum of a cosine and a sine: en(x) = cos λnx +
i sin λnx. Therefore for f(x) periodic, we have

f(x) =
∞∑

n=−∞
cn en(x) =

∞∑
n=−∞

cn [cos λnx + i sin λnx]

= 1
2
a0 +

∞∑
n=1

an cos λnx +
∞∑

n=1

bn sin λnx ,

where the first two terms comprise a Fourier cosine series and the last term
is a Fourier sine series.

Parseval’s identity

Let f(x) be a complex periodic function and let us compute the following
integral

‖f‖2 ≡ 1

L

∫

one
period

|f(x)|2 dx ,

using the Fourier series.

‖f‖2 =
1

L

∫

one
period

∣∣∣∣∣
∞∑

n=−∞
cn en(x)

∣∣∣∣∣

2

dx .

Expanding the right-hand side and interchanging the order of integration and
summation, we have

‖f‖2 =
1

L

∞∑
n,m=−∞

c∗n cm

∫

one
period

en(x)∗ em(x) dx =
∞∑

n=−∞
|cn|2 ,

200



where we have used the orthogonality relation (3.12). In other words, we
have derived Parseval’s identity:

∞∑
n=−∞

|cn|2 = ‖f‖2 . (3.18)

�� Explain the Fourier series as setting up an isometry between L2 and `2.

The Dirac delta “function”

Let us insert the expression (3.13) for the Fourier coefficients back into the
Fourier series (3.11) for a periodic function f(x):

f(x) =
∞∑

n=−∞




1

L

∫

one
period

en(y)∗ f(y) dy


 en(x) .

Interchanging the order of summation and integration, we find

f(x) =

∫

one
period

[ ∞∑
n=−∞

1

L
en(y)∗ en(x)

]
f(y) dy =

∫

one
period

δ(x− y) f(y) dy ,

where we have introduced the Dirac delta “function”

δ(x− y) ≡
∞∑

n=−∞

1

L
en(y)∗ en(x) =

∞∑
n=−∞

1

L
ei(x−y)2πn/L . (3.19)

Despite its name, the delta function is not a function, even though it is a limit
of functions. Instead it is a distribution. Distributions are only well-defined
when integrated against sufficiently well-behaved functions known as test
functions. The delta function is the distribution defined by the condition:

∫

one
period

δ(x− y) f(y) dy = f(x) .

In particular, ∫

one
period

δ(y) dy = 1 ,
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hence it depends on the region of integration. This is clear from the above
expression which has an explicit dependence on the period L. In the following
section, we will see another delta functions adapted to a different region of
integration: the whole real line.

3.1.4 Application: steady-state response

We now come to one of the main applications of the Fourier series: finding
steady-state solutions to differential equations.

Consider a system governed by a differential equation

d2φ(t)

dt2
+ a1

dφ(t)

dt
+ a0 φ(t) = eiωt .

The function φ(t) can be understood as the response of the system which
is being driven by a sinusoidal force eiωt. After sufficient time has elapsed,
or assuming that we have been driving the system in this fashion for an
infinitely long time, say, for all t < 0, a realistic system will be in a so-called
steady state: in which φ(t) = A(ω)eiωt. The reason is that energy dissipates
in a realistic system due to damping or friction, so that in the absence of the
driving term, the system will tend to lose all its energy: so that φ(t) → 0 in
the limit as t → ∞. To find the steady-state response of the above system
one then substitutes φ(t) = A(ω)eiω t in the equation and solves for A(ω):

d2φ(t)

dt2
+ a1

dφ(t)

dt
+ a0 φ(t) = A(ω)

(−ω2 + i a1 ω + a0

)
eiωt = eiωt ,

whence

A(ω) =
1

−ω2 + i a1 ω + a0

.

In practice, one would like however to analyse the steady-state response
of a system which is being driven not by a simple sinusoidal function but
by a general periodic function f(t), with period T . This suggests that we
expand the driving force in terms of a Fourier series:

f(t) =
∞∑

n=−∞
cn ei2πnt/T ,

where the coefficients are given by

cn =
1

T

∫

one
period

f(t) e−i2πnt/T dt .
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Above we found the steady-state response of the system for the sinusoidal
forces exp(i2πnt/T ), namely

φn(t) =
1

−4π2n2/T 2 + i a1 2π n/T + a0

ei2πnt/T .

Because the equation is linear, we see that the response to a force which is
a linear combination of simple sinusoids will be the same linear combination
of the responses to the simple sinusoidal forces. Assuming that this can be
extended to infinite linear combinations2, we see that since φn(t) solves the
differential equation for the driving force exp(i2πnt/T ), then the series

φ(t) =
∞∑

n=−∞
cn φn(t)

solves the differential equation for the driving force

f(t) =
∞∑

n=−∞
cne

i2πnt/T .

As an example, let us consider the differential equation

d2φ(t)

dt2
+ 2

dφ(t)

dt
+ 2 φ(t) = f(t) ,

where f(t) is the periodic function defined in (3.16). This function has period
T = 2π and according to what was said above above, the solution of this
equation is

φ(t) =
∞∑

n=−∞

cn

−n2 + 2i n + 2
eint ,

where the coefficients cn are given in (3.17). Explicitly, we have

φ(t) =
∞∑

n=−∞
n 6=0

2 ((−1)n − 1)

π2 n2

eint

−n2 + 2i n + 2
.

2Fourier series, since they contain an infinite number of terms, are limiting cases of
linear combinations and strictly speaking we would have to justify that, for example, the
derivative of the series is the series of termwise derivatives. This would follow if the series
were uniformly convergent, for example. In the absence of general theorems, which will
be the case in this course, one has to justify this a posteriori .
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We would now have to check that φ(t) is twice differentiable. It could not
be differentiable three times because, by the defining equation, the second
derivative is given by

d2φ(t)

dt2
= f(t)− 2

dφ(t)

dt
− 2 φ(t) ,

and f(t) is not differentiable. The twice-differentiability of φ(t) follows from
the uniform convergence of the above series for φ(t). To see this we apply
the Weierstrass M-test:

∣∣∣∣
2 ((−1)n − 1)

π2 n2

eint

−n2 + 2i n + 2

∣∣∣∣ ≤
8

π2 n4
,

and the series ∞∑
n=−∞

n 6=0

8

π2 n4

is absolutely convergent. Every time we take a derivative with respect to t,
we bring down a factor of i n, hence we see that the series for φ(t) can be
legitimately differentiated termwise only twice, since the series

∞∑
n=−∞

n 6=0

8

π2 n3
and

∞∑
n=−∞

n6=0

8

π2 n2

are still absolutely convergent, but the series

∞∑
n=−∞

n6=0

8

π2 n

is not.

Green’s functions

Let us return for a moment to the general second order differential equation
treated above:

d2φ(t)

dt2
+ a1

dφ(t)

dt
+ a0 φ(t) = f(t) , (3.20)

where f(t) is periodic with period T and can be expanded in a Fourier series

f(t) =
∞∑

n=−∞
cn ei2πnt/T .
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Then as we have just seen, the solution is given by

φ(t) =
∞∑

n=−∞

cn ei2πnt/T

−4π2n2/T 2 + i a1 2π n/T + a0

,

where the coefficients cn are given by

cn =
1

T

∫

one
period

f(t) e−i2πnt/T dt .

Inserting this back into the solution, we find

φ(t) =
∞∑

n=−∞




1

T

∫

one
period

f(τ) e−i2πnτ/T dτ




ei2πnt/T

−4π2n2/T 2 + i a1 2π n/T + a0

Interchanging the order of summation and integration,

φ(t) =

∫

one
period

[
1

T

∞∑
n=−∞

ei2πn(t−τ)/T

−4π2n2/T 2 + i a1 2π n/T + a0

]
f(τ) dτ ,

which we can write as

φ(t) =

∫

one
period

G(t− τ) f(τ) dτ , (3.21)

where

G(t) ≡
∞∑

n=−∞

T ei2πnt/T

−4π2n2 + i a1 2π nT + a0 T 2

is the Green’s function for the above equation. It is defined (formally) as
the solution of the differential equation

d2G(t)

dt2
+ a1

dG(t)

dt
+ a0 G(t) = δ(t) , (3.22)

where

δ(t) =
1

T

∞∑
n=−∞

ei2πnt/T
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is the Dirac delta “function.” In other words, the Green’s function is the
response of the system to a delta function. It should be clear that if G(t)
satisfies (3.22) then φ(t) given by (3.21) satisfies the original equation (3.20):

d2φ(t)

dt2
+ a1

dφ(t)

dt
+ a0 φ(t)

=

∫

one
period

(
d2G(t− τ)

dt2
+ a1

dG(t− τ)

dt
+ a0 G(t− τ)

)
f(τ) dτ

=

∫

one
period

δ(t− τ) f(τ) dτ = f(t) .

3.2 The Fourier transform

In the previous section we have seen how to expand a periodic function as a
trigonometric series. This can be thought of as a decomposition of a periodic
function in terms of elementary modes, each of which has a definite frequency
allowed by the periodicity. If the function has period L, then the frequencies
must be integer multiples of the fundamental frequency k = 2π/L. In this
section we would like to establish a similar decomposition for functions which
are not periodic. A non-periodic function can be thought of as a periodic
function in the limit L →∞. Clearly, the larger L is, the less frequently the
function repeats, until in the limit L → ∞ the function does not repeat at
all. In the limit L →∞ the allowed frequencies become a continuum and the
Fourier sum goes over to a Fourier integral. In this section we will discuss
this integral as well as some of its basic properties, and apply it to a variety
of situations: solution of the wave equation and steady-state solutions to
differential equations. As in the previous section we will omit most of the
analytic details which are necessary to justify the cavalier operations we will
be performing.

3.2.1 The Fourier integral

Consider a function f(x) defined on the real line. If f(x) were periodic with
period L, say, we could try to expand f(x) in a Fourier series converging to
it almost everywhere within each period

f(x) =
∞∑

n=−∞
cn ei2πnx/L ,
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where the coefficients {cn} are given by

cn =
1

L

∫ L/2

−L/2

f(x) e−i2πnx/L dx , (3.23)

where we have chosen the period to be [−L/2, L/2] for convenience in what
follows. Even if f(x) is not periodic, we can still define a function

fL(x) =
∞∑

n=−∞
cn ei2πnx/L , (3.24)

with the same {cn} as above. By construction, this function fL(x) is periodic
with period L and moreover agrees with f(x) for almost all x ∈ [−L/2, L/2].
Then it is clear that as we make L larger and larger, then fL(x) and f(x)
agree (almost everywhere) on a larger and larger subset of the real line. One
should expect that in the limit L → ∞, fL(x) should converge to f(x) in
some sense. The task ahead is to find reasonable expressions for the limit
L →∞ of the expression (3.24) of fL(x) and of the coefficients (3.23).

� The continuum limit in detail.

This prompts us to define the Fourier (integral) transform of the func-
tion f(x) as

F {f} (k) ≡ f̂(k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx , (3.25)

provided that the integral exists. Not every function f(x) has a Fourier
transform. A sufficient condition is that it be square-integrable; that is, so
that the following integral converges:

‖f‖2 ≡
∫ ∞

−∞
|f(x)|2 dx .

If in addition of being square-integrable, the function is continuous, then one
also has the inversion formula

f(x) =

∫ ∞

−∞
f̂(k) eikx dk . (3.26)
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More generally, one has the Fourier inversion theorem, which states that if
f(x) is square-integrable, then the Fourier transform f̂(k) exists and more-
over

∫ ∞

−∞
f̂(k) eikx dk =

{
f(x), if f is continuous at x, and
1
2
[limy↗x + limy↘x] f(y), otherwise.

In other words, at a point of discontinuity, the inverse transform produces
the average of the left and right limiting values of the function f . This was
also the case with the Fourier series. In any case, assuming that the function
f(x) is such that its points of discontinuity are isolated, then the inverse
transform will agree with f(x) everywhere but at the discontinuities.

Some examples

Before discussing any general properties of the Fourier transform, let us com-
pute some examples.

Let f(x) = 1/(4+x2). This function is clearly square-integrable. Indeed,
the integral

‖f‖2 =

∫ ∞

−∞

1

(4 + x2)2
dx

can be computed using the residue theorem as we did in Section 2.4.3. We
will not do the calculation in detail, but simply remark that ‖f‖2 = π/16.
Therefore its Fourier transform exists:

f̂(k) =
1

2π

∫ ∞

−∞

e−ikx

4 + x2
dx .

We can compute this integral using the residue theorem. According to equa-
tion (2.64), we have that for k < 0, we pick up the residues of the poles in
the upper half-plane, whereas for k > 0 we pick up the poles in the lower
half-plane. The function exp(ikz)/(4 + z2) has simple poles at z = ±2i.
Therefore we have

f̂(k) =

{
1
2π

2πi Res(2i) , if k ≤ 0, and
1
2π

(−2πi) Res(−2i) , if k ≥ 0;

=

{
1
4
e2k , if k ≤ 0, and

1
4
e−2k , if k ≥ 0;

=
1

4
e−2|k| .
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We can also verify the inversion formula. Indeed,

f(x)
?
=

∫ ∞

−∞

1

4
e−2|k| eikx dk

=

∫ 0

−∞

1

4
e2k eikx dk +

∫ ∞

0

1

4
e−2k eikx dk

=

∫ ∞

0

1

4
e−2k−ikx dk +

∫ ∞

0

1

4
e−2k+ikx dk

=
1

4

[
1

2 + ix
+

1

2− ix

]

=
1

4 + x2
.

As our second example consider the Fourier transform of a pulse:

f(x) =

{
1 , for |x| < π, and

0 , otherwise.
(3.27)

It is clearly square-integrable, with ‖f‖2 = 2π. Its Fourier transform is given
by

f̂(k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx =

1

2π

∫ π

−π

e−ikx dx =
sin πk

πk
.

We will not verify the inversion formula in this example. If we were to do
this we would be able to evaluate the integral in the inversion formula for
x 6= ±π and we would obtain f(x) for those values. The residue methods
fail at the discontinuities x = ±π, and one has to appeal to more advanced
methods we will not discuss in this course.

Finally consider the Fourier transform of a finite wave train:

f(x) =

{
sin x , for |x| ≤ 6π; and

0 , otherwise.

This function is clearly square-integrable, since

‖f‖2 =

∫ 6π

−6π

(sin x)2 dx = 6π .
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Its Fourier transform is given by

f̂(k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx

=
1

2π

∫ 6π

−6π

sin x e−ikx dx

=
1

4πi

∫ 6π

−6π

(
eix − e−ix

)
e−ikx dx

=
1

4πi

∫ 6π

−6π

(
ei(1−k)x − e−i(1+k)x

)
dx

=
1

4πi

[
i

k − 1

(
e−ik6π − eik6π

)− i

1 + k

(
e−ik6π − eik6π

)]

=
i sin 6πk

2π

[
1

1− k
+

1

1 + k

]

=
i sin 6πk

π(1− k2)
.

We will not verify the inversion formula for this transform; although in this
case the formula holds for all x since the original function is continuous.

3.2.2 Some properties of the Fourier transform

In this section we will discuss some basic properties of the Fourier transform.
All the basic properties of Fourier series extend in some way to the Fourier
integral. Although we will not discuss all of them, it would be an instructive
exercise nevertheless to try and guess and prove the extensions by yourself.

The first basic property is that if f̂(k) is the Fourier transform of f(x),
then f̂(−k)∗ is the Fourier transform of f(x)∗. This follows simply by taking
the complex conjugate of the Fourier integral (3.25):

f̂(k)∗ =
1

2π

∫ ∞

−∞
f(x)∗ eikx dx = F {f(x)∗} (−k) ,

whence f̂(−k)∗ = F {f(x)∗} (k). Therefore we conclude that if f(x) is real,
then f̂(k)∗ = f̂(−k).

Suppose that f ′(x) = df(x)
dx

is also square-integrable. Its Fourier transform
is given by

F {f ′(x)} (k) =
1

2π

∫ ∞

−∞
f ′(x) e−ikx dx .
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Let us integrate by parts:

F {f ′(x)} (k) =
1

2π

∫ ∞

−∞
(ik) f(x) e−ikx dx ,

where we have dropped the boundary terms since f(x) is square-integrable
and hence vanishes in the limit |x| → ∞. In other words,

F {f ′(x)} (k) = ik F {f(x)} (k) . (3.28)

More generally, if the n-th derivative f (n)(x) is square-integrable, then

F
{
f (n)(x)

}
(k) = (ik)n F {f(x)} (k) . (3.29)

This is one of the most useful properties of the Fourier transform, since it
will allow us to turn differential equations into algebraic equations.

Another version of the Dirac delta function

Let f(x) be a continuous square-integrable function. In this case, the Fourier
inversion theorem says that the inversion formula is valid, so that

f(x) =

∫ ∞

−∞
f̂(k) eikx dk .

If we insert the definition of the Fourier transform f̂(k) in this equation, we
obtain

f(x) =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
f(y) e−iky dy

]
eikx dk .

If f is in addition sufficiently well-behaved3 we can exchange the order of
integrations to obtain

f(x) =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
eik(x−y) dk

]
f(y) dy =

∫ ∞

−∞
δ(x− y) f(y) dy ,

where we have introduced the Dirac delta function

δ(x) ≡ 1

2π

∫ ∞

−∞
eikx dk .

3Technically, it is enough that f belong to the Schwarz class, consisting of those
infinitely differentiable functions which decay, together with all its derivatives, sufficiently
fast at infinity.

211



Notice that we can also write this as

δ(x) ≡ 1

2π

∫ ∞

−∞
e−ikx dk , (3.30)

which makes it clear that it is the Fourier transform of the constant function
f(x) = 1. Of course, this function is not square-integrable, so this statement
is purely formal. We should not expect anything better because the Dirac
delta function is not a function. This version of the Dirac delta function is
adapted to the integral over the whole real line, as opposed to the one defined
by equation (3.19), which is adapted to a finite interval.

Parseval’s identity revisited

Another result from Fourier series which extends in some fashion to the
Fourier integral transform is the one in equation (3.18). We will first attempt
to show that the Fourier transform of a square-integrable function is itself
square-integrable. Let us compute

‖f̂‖2 =

∫ ∞

−∞
|f̂(k)|2 dk

=

∫ ∞

−∞

∣∣∣∣
1

2π

∫ ∞

−∞
f(x) e−ikx dx

∣∣∣∣
2

dk

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

4π2
f(x) f(y)∗ e−ikx eiky dx dy dk .

Being somewhat cavalier, let us interchange the order of integration so that
we do the k-integral first. Recognising the result as 2πδ(x−y), with δ(x−y)
the delta function of (3.30), we can simplify this to

‖f̂‖2 =

∫ ∞

−∞

1

2π
f(x) f(x)∗ dx =

1

2π

∫ ∞

−∞
|f(x)|2 dx =

1

2π
‖f‖2 .

Therefore since ‖f‖2 is finite, so is ‖f̂‖2, and moreover their norms are related
by Parseval’s identity:

‖f̂‖2 =
1

2π
‖f‖2 , (3.31)

which is the integral version of equation (3.18).

� For many applications this factor of 1/2π is a nuisance and one redefines the Fourier
transform so that

F̂ {f} (k) ≡ 1√
2π

Z ∞

−∞
f(x) e−ikx dx ,
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and the inversion formula is more symmetrical

f(x) =
1√
2π

Z ∞

−∞
F̂ {f} (k) eikx dk .

In this case, Parseval’s identity becomes simply

‖F̂ {f} ‖2 = ‖f‖2 .

�� One should mention that the Fourier transform is an isometry from L2 to L2.

3.2.3 Application: one-dimensional wave equation

Let us now illustrate the use of the Fourier transform to solve partial dif-
ferential equations by considering the one-dimensional wave equation (3.1)
again. This time, however, we are not imposing the boundary conditions
(3.2) for x. Instead we may impose that at each moment in time t, ψ(x, t)
is square-integrable, which is roughly equivalent to saying that the wave has
a finite amount of energy. As initial conditions we will again impose (3.3),
where f(x) is a square-integrable function.

We will analyse this problem by taking the Fourier transform of the wave
equation. From equation (3.29) with n = 2 we have that

F

{
∂2

∂x2
ψ(x, t)

}
= −k2 ψ̂(k, t) ,

where

ψ̂(k, t) ≡ 1

2π

∫ ∞

−∞
ψ(x, t) e−ikx dx ,

is the Fourier transform of ψ(x, t). Similarly, taking the derivative inside the
integral,

F

{
∂2

∂t2
ψ(x, t)

}
=

∂2

∂t2
ψ̂(k, t) .

Therefore the wave equation becomes

1

c2

∂2

∂t2
ψ̂(k, t) = −k2ψ̂(k, t) .

The most general solution is given by a linear combination of two sinusoids:

ψ̂(k, t) = â(k) cos kct + b̂(k) sin kct ,

where the “constants” â and b̂ can still depend on k. The first of the initial
conditions (3.3) implies that

∂ψ̂(k, t)

∂t

∣∣∣∣∣
t=0

= 0 ,
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whence we have that b̂(k) = 0. Using the inversion formula (3.26), we can
write

ψ(x, t) =

∫ ∞

−∞
â(k) cos kct eikx dk .

Evaluating at t = 0, we have that

ψ(x, t) = f(x) =

∫ ∞

−∞
â(k) eikx dk ,

whence comparing with the inversion formula (3.26), we see that â(k) = f̂(k),
so that

ψ(x, t) =

∫ ∞

−∞
f̂(k) cos kct eikx dk , (3.32)

where

f̂(k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx .

Inserting back this expression into the solution (3.32) and interchanging the
order of integration, we have

ψ(x, t) =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
f(y) e−iky dy

]
cos kct eikx dk

=

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
cos kct eik(x−y) dk

]
f(y) dy

=

∫ ∞

−∞
K(x− y, t) f(y) dy ,

where we have introduced the propagator K(x, t) defined by

K(x, t) ≡ 1

2π

∫ ∞

−∞
cos kct eikx dk .

Notice that K(x, t) clearly satisfies the wave equation (3.1):

∂2

∂x2
K(x, t) =

1

c2

∂2

∂t2
K(x, t) ,

with initial conditions
∂K(x, t)

∂t

∣∣∣∣
t=0

= 0 ,

and
K(x, 0) = δ(x) ,

according to (3.30).
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3.2.4 Application: steady-state response

Another useful application of the Fourier transform is to solve for the steady-
state solutions of linear ordinary differential equations. Suppose that we have
a system governed by a differential equation

d2φ(t)

dt2
+ a1

dφ(t)

dt
+ a0 φ(t) = f(t) ,

where f(t) is some driving term. We saw that when f(t) is periodic we
can use the method of Fourier series in order to solve for φ(t). If f(t) is
not periodic, then it makes sense that we try and use the Fourier integral
transform. Let us define the Fourier transform φ̂(ω) of φ(t) by

F {φ(t)} (ω) ≡ φ̂(ω) =
1

2π

∫ ∞

−∞
φ(t) e−iωt dt .

Similarly, let f̂(ω) denote the Fourier transform of f(t). Then we can take
the Fourier transform of the differential equation and we obtain an algebraic
equation for φ̂(ω):

−ω2 φ̂(ω) + i a1ω φ̂(ω) + a0 φ̂(ω) = f̂(ω) ,

which can be readily solved to yield

φ̂(ω) =
1

−ω2 + i a1ω + a0

f̂(ω) .

Now we can transform back via the inversion formula

φ(t) =

∫ ∞

−∞
φ̂(ω) eiωt dω =

∫ ∞

−∞

eiωt

−ω2 + i a1ω + a0

f̂(ω) dω .

Using the definition of f̂(ω), we have

φ(t) =

∫ ∞

−∞

eiωt

−ω2 + i a1ω + a0

[
1

2π

∫ ∞

−∞
f(τ) e−iτω dτ

]
dω .

If, as we have been doing without justification in this part of the course, we
interchange the order of integration, we obtain

φ(t) =

∫ ∞

−∞
G(t− τ) f(τ) dτ ,

where we have introduced the Green’s function G(t), defined by

G(t) =
1

2π

∫ ∞

−∞

eiωt

−ω2 + i a1ω + a0

dω .
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Notice that as in the case of the Fourier series, G(t) satisfies the equation

d2G(t)

dt2
+ a1

dG(t)

dt
+ a0 G(t) = δ(t) ,

so that it is the response of the system to a delta function input.
As a concrete illustration of the method, let us find a steady-state solution

to the following differential equation:

d2φ(t)

dt2
+ 2

dφ(t)

dt
+ 2 φ(t) = f(t) ,

where f(t) is the pulse defined in (3.27). Let us first compute the Green’s
function for this system:

G(t) =
1

2π

∫ ∞

−∞

eiωt

−ω2 + 2i ω + 2
dω .

We can compute this using the residue theorem and, in particular, equation
(2.64). The integrand has simple poles at i± 1, which lie in the upper half-
plane. Therefore it follows immediately from equation (2.64), that G(t) = 0
for t ≤ 0. For t > 0, we have that

G(t) =
1

2π
2π i [Res(i + 1) + Res(i− 1)] .

We compute the residues to be

Res(i + 1) = −e−t+it

2
and Res(i− 1) =

e−t−it

2
,

whence for t > 0, we have

G(t) = − e−t sin t .

In summary, the Green’s function for this system is

G(t) =

{
0 , for t < 0, and

− e−t sin t , for t ≥ 0.

Notice that although it is continuous at t = 0, its first derivative is not
continuous there, and hence the second derivative does not exist at t = 0.
This is to be expected, since the second derivative of G(t) at t = 0 is related
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to the delta function, which is not a function. In any case, we can now
integrate this against the pulse f(t) to find the solution:

φ(t) =

∫ ∞

−∞
G(t− τ) f(τ) dτ

=

∫ π

−π

G(t− τ) dτ .

Taking into account that G(t) = 0 for t < 0, we are forced to distinguish
between three epochs: t < −π, −π ≤ t ≤ π, and t > π, corresponding to the
time before the pulse, during the pulse and after the pulse. We can perform
the integral in each of these three epochs with the following results:

φ(t) =





0 , for t < −π,

−1
2
− 1

2
e−π−t (cos t + sin t) , for t ∈ [−π, π], and

e−t sinh π(cos t + sin t) , for t > π.

Notice that before the pulse the system is at rest, and that after the pulse
the response dies off exponentially. This is as we expect for a steady-state
response to an input of finite duration.

3.3 The Laplace transform

In the previous section we introduced the Fourier transform as a tool to
find steady-state solutions to differential equations. These solutions can be
interpreted as the response of a system which has been driven for such a
long time that any transient solutions have died out. In many systems,
however, one is also interested in the transient solutions, and in any case,
mathematically one usually finds the most general solution of the differential
equation. The Laplace transform will allow us to do this. In many ways the
Laplace transform is reminiscent of the Fourier transform, with the important
difference that it incorporates in a natural way the initial conditions.

3.3.1 The Heaviside D-calculus

Let us start by presenting the D-calculus introduced by Heaviside. The
justification for this method is the Laplace transform. An example should
suffice to illustrate the method, but first we need to introduce a little bit of
notation.
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Differential operators

The result of taking the derivative of a function is another function: for
example, d/dt (tn) = ntn−1 or d/dt sin t = cos t. Therefore we can think
of the derivative as some sort of machine to which one feeds a function as
input and gets another function in return. Such machines are generally called
operators. It is convenient to introduce symbols for operators and, in the
case of the derivative operator, it is customary to call it D. Therefore, if f is
a function, Df is the function one obtains by having D act on f . A function
is defined by specifying its values at every point t. In the case of Df we have

Df(t) =
df(t)

dt
.

Operators can be composed. For example we can consider D2 to be the
operator which acting on a function f gives D2f = D(Df), or

D2f(t) = D(Df)(t) =
dDf(t)

dt
=

d2f(t)

dt2
.

Therefore D2 is the second derivative. Operators can be multiplied by func-
tions, and in particular, by constants. If a is a constant, the operator aD is
defined by

(aD)f(t) ≡ aDf(t) = a
df(t)

dt
.

Similarly, if g(t) is a function, then the operator gD is defined by

(gD)f(t) ≡ g(t) Df(t) = g(t)
df(t)

dt
.

Operators can also be added: if g and h are functions, then the expression
gD2 + hD is an operator, defined by

(gD2 + hD)f(t) = g(t)
d2f(t)

dt2
+ h(t)

df(t)

dt
.

In other words, linear combinations of operators are again operators. Oper-
ators which are formed by linear combinations with function coefficients of
D and its powers are known as differential operators. A very important
property shared by all differential operators is that they are linear. Let us
consider the derivative operator D, and let f(t) and g(t) be functions. Then,

D(f + g)(t) =
d(f(t) + g(t))

dt
=

df(t)

dt
+

dg(t)

dt
= Df(t) + Dg(t) .
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In other words, D(f + g) = Df + Dg. Similarly, it is easy to see that this is
still true for any power of D and for any linear combination of powers of D.
In summary, differential operators are linear.

The highest power of D which occurs in a differential operator is called
the order of the differential operator. This agrees with the nomenclature
used for differential equations. In fact, a second order ordinary differential
equation, like this one

a(t)
d2f(t)

dt2
+ b(t)

df(t)

dt
+ c(t) f(t) = h(t) ,

can be rewritten as an operator equation Kf(t) = h(t), where we have
introduced the second order differential operator K = aD2 + bD + c.

An example

Suppose we want to solve the following differential equation

d2f(t)

dt2
+ 3

df(t)

dt
+ 2 f(t) = eit . (3.33)

We first write it down as an operator equation:

(D2 + 3D + 2) f(t) = eit .

Next we will manipulate the operator formally as if D were a variable and
not an operator:

D2 + 3D + 2 = (D + 2)(D + 1) ;

whence formally

f(t) =
1

(D + 2)(D + 1)
eit =

[
1

D + 1
− 1

D + 2

]
eit , (3.34)

where we have used a partial fraction expansion: remember we are treating
D as if it were a variable z, say. Now we do something even more suspect
and expand each of the simple fractions using a geometric series:

1

D + 1
=

∞∑
j=0

(−1)jDj and
1

D + 2
=

∞∑
j=0

(−1)j 1

2j+1
Dj .

Now notice that D eit = i eit; hence

1

D + 1
eit =

∞∑
j=0

(−1)jDj eit =
∞∑

j=0

(−1)jij eit =
1

i + 1
eit ,

1

D + 2
eit =

∞∑
j=0

(−1)j 1

2j+1
Dj eit =

∞∑
j=0

(−1)j ij

2j+1
eit =

1

i + 2
eit .
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Therefore into equation (3.34), we obtain

f(t) =

[
1

i + 1
− 1

i + 2

]
eit =

1− 3i

10
eit ,

which can be checked to obey equation (3.33) by direct substitution.
Of course this is only a particular solution to the differential equation

(3.33). In order to obtain the most general solution we have to add to
it the complementary solution, which is the most general solution of the
associated homogeneous equation:

Kf(t) = (D + 1)(D + 2)f(t) =
d2f(t)

dt2
+ 3

df(t)

dt
+ 2 f(t) = 0 .

The reason for this is that if g(t) solves the equation Kg(t) = 0, and Kf(t) =
eit, then, by linearity, K(f + g)(t) = Kf(t) + Kg(t) = eit + 0 = eit. To find
the complementary solution, notice that

(D + 1)(D + 2)f(t) = 0

has two kinds of solutions:

(D + 1)f1(t) = 0 and (D + 2)f2(t) = 0 .

These first order equations can be read off immediately:

f1(t) = a e−t and f2(t) = b e−2t ,

where the constants a and b are to be determined from the initial conditions:
f(0) and f ′(0), say. In summary, we have the following general solution to
the differential equation (3.33):

f(t) =
1− 3i

10
eit + a e−t + b e−2t , (3.35)

which can be checked explicitly to solve the differential equation (3.33). No-
tice that the first term corresponds to the steady-state response and the last
two terms are transient.

3.3.2 The Laplace transform

The D-calculus might seem a little suspect, but it can be justified by the use
of the Laplace transform, which we define as follows

L {f} (s) ≡ F (s) =

∫ ∞

0

f(t) e−st dt , (3.36)
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provided that the integral exists. This might restrict the values of s for which
the transform exists.

A function f(t) is said to be of exponential order if there exist real
constants M and α for which

|f(t)| ≤ M eαt .

It is not hard to see that if f(t) is of exponential order, then the Laplace
transform F (s) of f(t) exists provided that Re(s) > α.

� To see this let us estimate the integral

|F (s)| =
����
Z ∞

0
f(t) e−st dt

���� ≤
Z ∞

0
|f(t)| |e−st| dt ≤

Z ∞

0
M eαt e−Re(s)t dt .

Provided that Re(s) > α, this integral exists and

|F (s)| ≤ M

Re(s)− α
.

Notice that in particular, in the limit Re(s) →∞, F (s) → 0. This can be proven in more
generality: so that if a function F (s) does not approach 0 in the limit Re(s) → ∞, it
cannot be the Laplace transform of any function f(t).

We postpone a more complete discussion of the properties of the Laplace
transform until later, but for now let us note the few properties we will need
to justify the D-calculus solution of the differential equation (3.33) above.

The first important property is that the Laplace transform is linear.
Clearly, if f(t) and g(t) are functions whose Laplace transforms F (s) and
G(s) exist, then for those values of s for which both F (s) and G(s) exist, we
have that

L {f + g} (s) = L {f} (s) + L {g} (s) = F (s) + G(s) .

Next let us consider the function f(t) = exp(at) where a is some complex
number. This function is of exponential order, so that its Laplace transform
exists provided that Re(s) > Re(a). This being the case, we have that

L
{
eat

}
(s) =

∫ ∞

0

eat e−st dt =
1

s− a
. (3.37)

Suppose now that f(t) is a differentiable function. Let us try to compute
the Laplace transform of its derivative f ′(t). By definition,

L {f ′} (s) =

∫ ∞

0

f ′(t) e−st dt ,
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which can be integrated by parts to obtain

L {f ′} (s) =

∫ ∞

0

s f(t) e−st dt + f(t) e−st
∣∣∣
∞

0

= sL {f} (s)− f(0) + lim
t→∞

f(t) e−st .

Provided the last term is zero, which might imply conditions on f and/or s,
we have that

L {f ′} (s) = sL {f} (s)− f(0) . (3.38)

We can iterate this expression in order to find the Laplace transform of
higher derivatives of f(t). For example, the Laplace transform of the second
derivative is easy to find by understanding f ′′(t) as the first derivative of
f ′(t) and iterating the above formula:

L {f ′′} (s) = L {(f ′)′} (s)

= s L {f ′} (s)− f ′(0)

= s (sL {f} (s)− f(0))− f ′(0)

= s2 L {f} (s)− s f(0)− f ′(0) ,

provided that f(t) exp(−st) and f ′(t) exp(−st) both go to zero in the limit
t →∞.

The D-calculus justified

We are now ready to justify the D-calculus solution of the previous section.
This serves also to illustrate how to solve initial value problems using the
Laplace transform.

Consider again the differential equation (3.33):

d2f(t)

dt2
+ 3

df(t)

dt
+ 2 f(t) = eit ,

and let us take the Laplace transform of both sides of the equation. Since
the Laplace transform is linear, we can write this as

L {f ′′} (s) + 3 L {f ′} (s) + 2 L {f} (s) = L
{
eit

}
(s) .

Letting F (s) denote the Laplace transform of f , we can use equations (3.37)
and (3.38) to rewrite this as

s2F (s)− sf(0)− f ′(0) + 3 (sF (s)− f(0)) + 2F (s) =
1

s− i
,

222



which can be solved for F (s):

F (s) =
1

s2 + 3s + 2

[
1

s− i
+ (s + 3)f(0) + f ′(0)

]
.

Expanding this out, and factorising s2 + 3s + 2 = (s + 1)(s + 2), we have

F (s) =
1

(s− i)(s + 1)(s + 2)
+

(s + 3)f(0) + f ′(0)

(s + 1)(s + 2)
.

We now decompose this into partial fractions:

F (s) =
1
10

(1− 3i)

s− i
+

2f(0) + f ′(0)− 1
2
(1− i)

s + 1
+

1
5
(2− i)− f(0)− f ′(0)

s + 2
.

Using linearity again and (3.37) we can recognise this as the Laplace trans-
form of the function

f(t) =
1− 3i

10
eit +

(
2f(0) + f ′(0)− 1− i

2

)
e−t

+

(
2− i

5
− f(0)− f ′(0)

)
e−2t ,

which agrees with (3.35) and moreover displays manifestly the dependence of
the coefficients a and b in that expression in terms of the initial conditions.

The inverse Laplace transform

The Laplace transform is applicable to a wide range of initial value problems.
The main difficulty stems from inverting the transform, which might be dif-
ficult. In practice one resorts to tables of Laplace transforms, like Table 3.1
below; but if this does not work, there is an inversion formula, as for the
Fourier transform, which we will state without proof. It says that if F (s) is
the Laplace transform of a function f(t), then one can recover the function
(except maybe at points of discontinuity) by

f(t) =
1

2πi

∫ i∞

−i∞
F (s) est ds ,

where the integral is meant to be a contour integral along the imaginary axis.
In other words, parametrising s = iy, we have

f(t) =
1

2π

∫ ∞

−∞
F (iy) eiyt dy .
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It may happen, however, that Laplace transform F (s) does not make sense
for Re(s) = 0, because the integral (3.36) does not converge. Suppose instead
that there is some positive real number a such that the Laplace transform
of f(t) e−at does exist for Re(s) = 0. In this case, we can use the inversion
formula to obtain

f(t) e−at =
1

2πi

∫ i∞

−i∞
L

{
f(t) e−at

}
(s) est ds .

Using the shift formula (3.43), L {f(t) e−at} (s) = F (s + a), whence, multi-
plying by eat on both sides of the inversion formula:

f(t) =
1

2πi

∫ i∞

−i∞
F (s + a) e(s+a)t ds .

Changing variables of integration to u = s + a, we have

f(t) =
1

2πi

∫ a+i∞

a−i∞
F (u) eut du , (3.39)

which can now be interpreted as a contour integral along the line u = a. In
other words, we can for free shift the original contour of integration to the
right until F (s) makes sense on it.

3.3.3 Basic properties of the Laplace transform

We shall now discuss the basic properties of the Laplace transform. We have
already seen that it is linear and we computed the transform of a simple
exponential function exp(at) in equation (3.37). From this simple result, we
can compute the Laplace transforms of a few simple functions related to the
exponential.

Let ω be a real number. From the fact that exp(iωt) = cos ωt + i sin ωt,
linearity of the Laplace transform implies that

L
{
eiωt

}
(s) = L {cos ωt} (s) + i L {sin ωt} (s)

=
1

s− iω
=

s

s2 + ω2
+ i

ω

s2 + ω2
,

from where we can read off the Laplace transforms of cos ωt and sin ωt. Notice
that these expressions are valid for Re(s) > 0, since this is the condition for
the existence of the Laplace transform of the exponential.

Similarly, let β be a real number and recall the trigonometric identities
(2.16), from where we can deduce that

cosh βt = cos iβt and sinh βt = −i sin iβt .
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As a result, we immediately see that the Laplace transforms of the hyperbolic
functions are given by

L {cosh βt} (s) =
s

s2 − β2
and L {sinh βt} (s) =

β

s2 − β2
,

where the condition is now Re(s) > |β|.
Putting a = 0 in (3.37), we see that the Laplace transform of the constant

function f(t) = 1, is given by

L {1} (s) =
1

s
,

which is valid for Re(s) > 0.
Suppose that f(t) has Laplace transform F (s). Then by taking derivatives

with respect to s of the expression (3.36) for F (s), we arrive at

L {tn f(t)} (s) = (−1)nF (n)(s) , (3.40)

which is valid for those values of s for which the Laplace transform F (s) of
f(t) exists. In particular, if we take f(t) = 1, we arrive at

L {tn} (s) = (−1)n dn

dsn

1

s
=

n!

sn+1
, (3.41)

valid for Re(s) > 0.
How about if n is a negative integer? Let us consider the Laplace trans-

form of g(t) ≡ f(t)/t, and let us call it G(s). From equation (3.40) for n = 1,
we have that

L {f(t)} (s) = L {tg(t)} (s) = −G′(s) ,

so that G(s) in an antiderivative for −F (s); that is,

G(s) = −
∫ s

a

F (σ) dσ .

If we demand that G(s) vanishes in the limit s → ∞, then we must choose
a = ∞, and hence

L {f(t)/t} (s) =

∫ ∞

s

F (σ) dσ . (3.42)

Another important property of the Laplace transform is the shifting for-
mula:

L
{
eatf(t)

}
(s) = L {f(t)} (s− a) = F (s− a) , (3.43)

which is evident from the definition (3.36) of the Laplace transform. Related
to this property is the following. Given a function f(t), let τ be a positive
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real constant, and introduce the notion of the delayed function fτ (t), defined
by

fτ (t) =

{
f(t− τ) , for t ≥ τ , and

0 , otherwise.
(3.44)

In other words, the delayed function is the same as the original function, but
it has been translated in time by τ , hence the name. The Laplace transform
of the delayed function is given by

L {fτ} (s) =

∫ ∞

0

fτ (t) e−st dt

=

∫ ∞

τ

f(t− τ) e−st dt

= e−sτ

∫ ∞

0

f(u) e−su du

= e−sτL {f} (s) ,

where we have changed the variable of integration from t to u = t − τ . In
other words,

L {fτ} (s) = e−sτF (s) . (3.45)

Although the delta function δ(t−τ) is not a function, we can nevertheless
attempt to compute its Laplace transform:

L {δ(t− τ)} (s) =

∫ ∞

0

δ(t− τ) e−st dt =

{
e−sτ , if τ ≥ 0, and

0 , otherwise.

Introducing the Heaviside step function θ(t), defined as

θ(t) =

{
1 , for t ≥ 0, and

0 , for t < 0;

we see that
L {δ(t− τ)} (s) = θ(τ) e−sτ .

Finally let us consider the Laplace transforms of integrals and deriva-
tives of functions. In the previous section we derived equation (3.38) for
the Laplace transform of the derivative f ′(t) of a function f(t). Iterating
this expression we can find a formula for the Laplace transform of the n-th
derivative of a function:

L
{
f (n)

}
(s) = sn F (s)−

n−1∑

k=0

sn−1−k f (k)(0) , (3.46)
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where by f (0) we mean the original function f . This formula is valid whenever
limt→∞ f (n)(t) exp(−st) = 0. How about integration? Consider the function

g(t) =

∫ t

0

f(τ) dτ .

What is its Laplace transform? We know that since g(t) is an antiderivative
for f , g′(t) = f(t) and moreover, from the definition, that g(0) = 0. Therefore
we can compute the Laplace transform of f(t) = g′(t), in two ways. On the
one hand it is simply F (s), but using (3.38) we can write

L {f} (s) = L {g′} (s) = sL {g} (s)− g(0) = sL {g} (s) ,

whence

L

{∫ t

0

f(τ) dτ

}
(s) =

F (s)

s
.

These properties are summarised in Table 3.1.

3.3.4 Application: stability and the damped oscillator

In this section we will use the Laplace transform to characterise the notion
of stability of a dynamical system which is governed by a linear ordinary
differential equation.

Many systems are governed by differential equations of the form

K f(t) = u(t) , (3.47)

where K is an n-th order differential operator which we will take, for sim-
plicity, to have constant coefficients and such that the coefficient of the term
of highest degree is 1 ; that is,

K = Dn + an−1 Dn−1 + · · ·+ a1 D + a0 .

The differential equation (3.47) describes the output response f(t) of the
system to an input u(t). For the purposes of this section we will say that
a system is stable if in the absence of any input all solutions are transient;
that is,

lim
t→∞

f(t) = 0 ,

regardless the initial conditions.

� Often one extends the notion of stability to systems for which f(t) remains bounded as
t → ∞: for example, if the solutions oscillate; but we will not do this here. In any case,
the method we will employ extends trivially to this weaker notion of stability.
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Function Transform Conditions

f(t) F (s) convergence

eat 1

s− a
Re(s) > Re(a)

cos ωt
s

s2 + ω2
ω ∈ R and Re(s) > 0

sin ωt
ω

s2 + ω2
ω ∈ R and Re(s) > 0

cosh βt
s

s2 − β2
β ∈ R and Re(s) > |β|

sinh βt
β

s2 − β2
β ∈ R and Re(s) > |β|

tn
n!

sn+1
n = 0, 1, . . . and Re(s) > 0

eat f(t) F (s− a) convergence

tn f(t) (−1)n F (n)(s) same as for F (s)

f(t)

t

∫ ∞

s

F (σ) dσ same as for F (s)

fτ (t) e−sτ F (s) τ > 0 and same as for F (s)

δ(t− τ) θ(t− τ) e−sτ none

f (n)(t) snF (s)−
n−1∑

k=0

sn−1−k f (k)(0) lim
t→∞

f (k)(t)e−st = 0

∫ t

0

f(τ) dτ
F (s)

s
same as for F (s)

Table 3.1: Some Laplace transforms

Stability can be analysed using the Laplace transform. In order to see
this let us take the Laplace transform of the equation (3.47). Letting F (s)
and U(s) denote the Laplace transforms of f(t) and u(t) respectively, we
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have

(sn + an−1 sn−1 + · · ·+ a1 s + a0)F (s) = U(s) + P (s) , (3.48)

where P (s) is a polynomial in s of order at most n − 1 depending on the
initial conditions: f (k)(0) for k = 0, 1, . . . , n−1. In fact, a little bit of algebra
using equation (3.46) shows that

P (s) =
n−1∑
i=0

pi s
i , with pi =

n−i−1∑
j=0

aj+i+1f
(j)(0) ,

with the conventions that an = 1. We will not need its explicit expression,
however. We can solve for F (s) in the transformed equation (3.48):

F (s) =
U(s)

sn + · · ·+ a0

+
P (s)

sn + · · ·+ a0

.

Notice that the first term in the right-hand side of the equation depends
on the input, whereas the second term depends on the initial conditions.
Moreover the common denominator depends only on the differential operator
K; that is, it is intrinsic to the system. It is convenient to define the function

H(s) =
1

sn + · · ·+ a0

.

It is called the transfer function of the system and it encodes a great deal of
information about the qualitative dynamics of the system. In particular we
can will be able to characterise the stability of the system by studying the
poles of the transfer function in the complex s-plane.

Let us start with the case of a first order equation:

(D + a0)f(t) = u(t) .

Taking the Laplace transform and solving for the Laplace transform F (s) of
f(t) we have

F (s) =
U(s)

s + a0

+
f(0)

s + a0

.

In the absence of any input (u = 0), the solution of this equation is given by

f(t) = f(0) e−a0 t .

This solution is transient provided that Re(a0) > 0. This is equivalent to
saying that the pole −a0 of the transfer function 1/(s + a0) lies in the left
half of the plane.
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Let us now consider a second order equation:

(D2 + a1D + a0)f(t) = u(t) .

Taking the Laplace transform and solving for F (s), we find

F (s) = H(s) U(s) + H(s) [(s + a1) f(0) + f ′(0)] , (3.49)

where the transfer function is given by

H(s) =
1

s2 + a1 s + a0

.

The poles of H(s) occur at the zeros of s2 + a1 s + a0. Two possibilities can
occur: the zeros are simple and distinct: s± say, or there is one double zero at
s0. In either case we will decompose the right-hand side of the transformed
equation (3.49) with u(t) and hence U(s) set to zero, into partial fractions.
In the case of distinct zeros, we have

F (s) =
A1

s− s+

+
A2

s− s−
,

where A1 and A2 are constants depending on f(0) and f ′(0). The transform
is trivial to invert:

f(t) = A1 es+ t + A2 es− t ,

which is transient for all A1 and A2 if and only if Re(s±) < 0; in other words,
if and only if the poles of the transfer function lie in the left side of the plane.
On the other hand, if the zero is double, then we have

F (s) =
B1

s− s0

+
B2

(s− s0)2
,

where again B1 and B2 are constants depending on f(0) and f ′(0). We can
invert the transform and find that

f(t) = B1 es0 t + B2 t es0 t ,

which is transient for all B1 and B2 if and only if Re(s0) < 0; so that s0 lies
in the left side of the plane.

In fact this is a general result: a system is stable if all the poles of the
transfer function lie in the left side of the plane. A formal proof of this
statement is not hard, but takes some bookkeeping, so we will leave it as an
exercise for the industrious reader.

Notice that if one relaxes the condition that the solutions should be tran-
sient for all initial conditions, then it may happen that for certain types of
initial conditions non-transient solutions have a zero coefficient. The system
may therefore seem stable, but only because of the special choice of initial
conditions.
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The damped harmonic oscillator

Stability is not the only property of a system that can be detected by studying
the poles of the transfer function. With some experience one can detect
change in the qualitative behaviour of a system by studying the poles. A
simple example is provided by the damped harmonic oscillator.

This system is defined by two parameters µ and ω, both positive real
numbers. The differential equation which governs this system is

(D2 + 2µD + ω2) f(t) = u(t) .

The transfer function is

H(s) =
1

s2 + 2µ s + ω2
,

which has poles at
s± = −µ±

√
µ2 − ω2 .

We must distinguish three separate cases:

(a) (overdamped) µ > ω
In this case the poles are real and negative:

s± = −µ

(
1∓

√
1− ω2

µ2

)
.

(b) (critically damped) µ = ω
In this case there is a double pole, real and negative: s+ = s− = −µ.

(c) (underdamped) µ < ω
In this case the poles are complex:

s± = −µ± iω

√
1− µ2

ω2
.

Hence provided that µ is positive, the system is stable.
Suppose that we start with the system being overdamped so that the

ratio % ≡ ω/µ is less than 1: % < 1. As we increase % either by increasing
ω or decreasing µ, the poles of the transfer function, which start in the
negative real axis, start moving towards each other, coinciding when % = 1.
If we continue increasing % so that it becomes greater than 1, the poles move
vertically away from each other keeping their real parts constant. It is the
transition from real to complex poles which offers the most drastic qualitative
change in the behaviour of the system.
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3.3.5 Application: convolution and the tautochrone

In this section we discuss a beautiful application of the Laplace transform.
We also take the opportunity to discuss the convolution of two functions.

The convolution

Suppose that f(t) and g(t) are two functions with Laplace transforms F (s)
and G(s). Consider the product F (s) G(s). Is this the Laplace transform of
any function? It turns out it is! To see this let us write the product F (s) G(s)
explicitly:

F (s) G(s) =

(∫ ∞

0

f(u) e−su du

) (∫ ∞

0

g(v) e−sv dv

)
.

We can think of this as a double integral in the positive quadrant of the
(u, v)-plane:

F (s) G(s) =

∫∫
e−s(u+v) f(u) g(v) du dv . (3.50)

If this were the Laplace transform of anything, it would have to be of the
form

F (s) G(s)
?
=

∫ ∞

0

h(t) e−st dt . (3.51)

Comparing the two equations we are prompted to define t = u + v. In the
positive quadrant in the (u, v)-axis, t runs from 0 to ∞: lines of constant
t having slope −1. Therefore we see that integrating (u, v) in the positive
quadrant is the same as integrating (t, v) where t runs from 0 to ∞ and for
every t, v runs from 0 to t:

u

v

t

∫∫
k(u, v) du dv =

∫ ∞

0

dt

∫ t

0

k(t− v, v) dv

In other words, we can rewrite equation (3.50) as

F (s) G(s) =

∫ ∞

0

e−st

∫ t

0

f(t− v) g(v) dv .
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Comparing with equation (3.51), we see that this equation is true provided
that

h(t) =

∫ t

0

f(t− v) g(v) dv .

This means that h(t) is the convolution of f and g. The convolution is often
denoted f ? g:

(f ? g)(t) ≡
∫ t

0

f(t− τ) g(τ) dτ , (3.52)

and it is characterised by the convolution theorem:

L {f ? g} (s) = F (s) G(s) . (3.53)

Notice that f ? g = g ? f . This is clear from the fact that F (s) G(s) =
G(s) F (s), but can also be checked directly by making a change of variables
τ = t− σ in the integral in (3.52).

Abel’s mechanical problem and the tautochrone

As an amusing application of the convolution theorem for the Laplace trans-
form, let us consider Abel’s mechanical problem. In short, the problem can
be described as follows. Consider a bead of mass m which can slide down a
wire frame under the influence of gravity but without any friction. Suppose
that the bead is dropped from rest from a height h. Let τ(h) denote the time
it takes to slide down to the ground. If one knows the shape of the wire it
is a simple matter to determine the function τ(h), and we will do so below.
Abel’s mechanical problem is the inverse: given the function τ(h) determine
the shape of the wire. As we will see below, this leads to an integral equation
which has to be solved. In general integral equations are difficult to solve, but
in this particular case, the integral is in the form of a convolution, whence
its Laplace transform factorises. It is precisely this feature which makes the
problem solvable.

� To see what I mean, consider the following integral equation for the unknown function
f(t):

f(t) = 1 +

Z t

0
f(t− τ) sin τ dτ . (3.54)

We can recognise the integral as the convolution of the functions f(t) and sin t, whence
taking the Laplace transform of both sides of the equation, we have

F (s) =
1

s
+ F (s)

1

s2 + 1
,
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which we can immediately solve for F (s):

F (s) =
1

s
+

1

s3
,

which is the Laplace transform of the function

f(t) = 1 + 1
2

t2 .

One can verify directly that this function obeys the original integral equation (3.54).

x

y

h

•m

y = y(x)

Figure 3.4: Abel’s mechanical problem

In order to set up Abel’s mechanical problem, it will prove convenient to
keep Figure 3.4 in mind. We will assume that the wire has no torsion, so
that the motion of the bead happens in one plane: the (x, y) plane with y the
vertical displacement and x the horizontal displacement. We choose our axes
in such a way that wire touches the ground at the origin of the plane: (0, 0).
The shape of the wire is given by a function y = y(x), with y(0) = 0. Let `
denote the length along the wire from the origin to the point (x, y = y(x))
on the wire. We drop the bead from rest from a height h. Because there is
no friction, energy is conserved. The kinetic energy of the bead at any time
t after being dropped is given by

T = 1
2
m

(
d`

dt

)2

,

whereas the potential energy is given by

V = −mg (h− y) .

Conservation of energy says that T + V is a constant. To compute this
constant, let us evaluate this at the moment the bead is dropped, t = 0.
Because it is dropped from rest, d`/dt = 0 at t = 0, and hence T = 0.
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Since at t = 0, y = h the potential energy also vanishes and we have that
T + V = 0. This identity can be rewritten as

1
2
m

(
d`

dt

)2

= mg (h− y) ,

from which we can find a formula for d`/dt:

d`

dt
= −

√
2g (h− y) , (3.55)

where we have chosen the negative sign for the square root, because as the
bead falls, ` decreases. Now, the length element along the wire is given by

d` =
√

dx2 + dy2 ,

where dx and dy are not independent since we have a relation y = y(x).
Inverting this relation gives x as a function of y and we can use this to write

d` =

√
1 +

(
dx

dy

)2

dy ≡ f(y) dy , (3.56)

which defines the function f(y). Clearly, f(y) encodes the information about
the shape of the wire: knowing f(y) for all y allows us to solve for the
dependence of x on y and viceversa. Indeed, suppose that f(y) is known,
then solving for dx/dy, we have that

dx

dy
=

√
f(y)2 − 1 ,

from where we have
dx =

√
f(y)2 − 1 dy , (3.57)

which can then be integrated to find x as a function of y, and by inverting
this, y as a function of x.

Let us rewrite equation (3.55) as

dt = − 1√
2g (h− y)

d` .

and insert equation (3.56) in this equation, to obtain

dt = − f(y)√
2g (h− y)

dy .
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Finally we integrate this along the trajectory of the bead, as it falls from
y = h at t = 0 until y = 0 at t = τ(h):

∫ τ(h)

0

dt = −
∫ 0

h

f(y)√
2g (h− y)

dy ,

whence

τ(h) =
1√
2g

∫ h

0

f(y)
1√

h− y
dy . (3.58)

This formula gives us how long it takes for the bead to fall along the wire
from a height h: so if we know the shape of the wire, and hence f(y), we
can compute τ(h) just by integrating. On the other hand, suppose that we
are given τ(h) and we want to solve for the shape of the wire. This means
solving equation (3.58) for f(y) and then finding y = y(x) from f(y). The
latter half of the problem is a first order differential equation, but the former
half is an integral equation. In general this problem would be quite difficult,
but because we notice that the integral in the right hand side is in the form
of a convolution, we can try to solve this by using the Laplace transform.

Before doing so, however, let us check that we have not made a mistake,
by testing the integral expression for τ(h) in a some cases where we know
the answer. Suppose, for instance, that the wire is completely vertical. This
means that dx/dy = 0, whence f(y) = 1. In this case, equation (3.58)
simplifies enormously, and we get

τ(h) =
1√
2g

∫ h

0

dy√
h− y

=

√
2h

g
,

as expected from elementary newtonian mechanics. Similarly, if the wire is
inclined θ degrees from the horizontal, so that y(x) = tan θ x. Then dx/dy =
cot θ, and hence f(y) is given by

f(y) =

√
1 +

(
dx

dy

)2

=
√

1 + (cot θ)2 = csc θ .

Therefore, the time taken to fall is simply csc θ times the vertical time of fall:

τ(h) = csc θ

√
2h

g
,

which, since csc(π/2) = 1, agrees with the previous result.
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Let us now take the Laplace transform of both sides of equation (3.58),
thinking of them both as functions of h; in other words, the Laplace transform
F (s) of a function g(h) is given by

G(s) =

∫ ∞

0

e−sh g(h) dh .

(This is Shakespeare’s theorem yet again!) Applying this to equation (3.58),
we find

T (s) =
1√
2g

F (s) L

{
1√
h

}
(s) ,

where T (s) is the Laplace transform of the function τ , and F (s) is the Laplace
transform of the function f . The Laplace transform of the function 1/

√
h

was worked out in the problems and the result is:

L

{
1√
h

}
(s) =

√
π

s
. (3.59)

We can then solve for F (s) in terms of T (s) as follows:

F (s) =

√
2g

π

√
s T (s) , (3.60)

which can in principle be inverted to solve for f , either from Table 3.1 or, if
all else fails, from the inversion formula (3.39).

Let us apply this to solving for the shape that the wire must have for it to
have the curious property that no matter what height we drop the bead from,
it will take the same amount of time to fall to the ground. Such a shape is
known as the tautochrone. Clearly, the tautochrone is such that τ(h) = τ is
constant, whence its Laplace transform is T (s) = τ/s. Into equation (3.60),
we get

F (s) =

√
2g

π

√
s

τ

s
=

√
2g

τ

π

√
π

s
,

where we have rewritten it in a way that makes it easy to invert. From
equation (3.59) we immediately see that

f(y) =
√

2g
τ

π

1√
y

.

To reconstruct the formula for the shape of the wire, we apply equation
(3.57) to obtain

dx =

√
2gτ 2

π2

1

y
− 1 dy ,
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which can be integrated to

x =

∫ y

0

√
2gτ 2

π2

1

y
− 1 dy =

∫ y

0

√
2gτ2

π2 − y
√

y
dy . (3.61)

Notice that the constant of integration is fixed to 0 since the wire is such
that when x = 0, y = 0. This integral can be performed by a trigonometric
substitution. First of all let us define

b ≡ 2gτ 2

π2
,

and let y = b (sin φ)2, so that

dy = 2b sin φ cos φ dφ .

Into the integral in (3.61), we find

x =

∫ φ(y)

0

2b (cos φ)2 dφ =
b

2
[2φ(y) + sin 2φ(y)] ,

where

y = b (sin φ(y))2 =
b

2
(1− cos 2φ(y)) .

If we define a = b/2 and θ = 2φ(y), we have the following parametric repre-
sentation for the curve in the (x, y) plane defining the wire:

x = a(θ + sin θ) and y = a(1− cos θ) .

This curve is called a cycloid. It is the curve traced by a point in the rim of
a circle of radius a rolling upside down without sliding along the line y = a,
as shown in the Figure 3.5.

•
θ

•

a •
θ

Figure 3.5: The cycloid

The cycloid also has another interesting property: it is the brachis-
tochrone, namely the shape of the wire for which the time τ(h) is minimised.
Although the proof is not hard, we will not do it here.
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3.3.6 The Gamma and Zeta functions

This section falls outside the main scope of these notes, but since it allows a
glimpse at some of the deepest and most beautiful aspects of mathematics,
I could not resist the temptation to include it.

It is possible to consider the Laplace transform of complex powers tz,
with z some complex number. We see that

L {tz} (s) =

∫ ∞

0

tz e−st dt =
1

sz+1

∫ ∞

0

uz e−u du ,

where we have changed the variable of integration from t to u = st. Let us
introduce the Euler Gamma function

Γ(z) ≡
∫ ∞

0

tz−1 e−t dt , (3.62)

which converges for Re(z) > 0. Then we have that

L {tz} (s) =
Γ(z + 1)

sz+1
.

Comparing with equation (3.41), we see that Γ(n + 1) = n!, whence we
can think of the Gamma function as a way to define the factorial of a com-
plex number. Although the integral representation (3.62) is only defined
for Re(z) > 0 it is possible to extend Γ(z) to a holomorphic function with
only isolated singularities in the whole complex plane: simple poles at the
nonpositive integers.

To see this notice that for Re(z) > 0, we can derive a recursion relation
for Γ(z) extending the well-known n! = n (n − 1)! for positive integers n.
Consider

Γ(z + 1) =

∫ ∞

0

tz e−t dt .

Integrating by parts,

Γ(z + 1) =

∫ ∞

0

z tz−1 e−t dt− tz e−t
∣∣∣
∞

0
= z Γ(z) + lim

t→0
tz e−st .

Provided that Re(z) > 0, the boundary term vanishes and we have

Γ(z + 1) = z Γ(z) . (3.63)

Turning this equation around, we have that

Γ(z) =
Γ(z + 1)

z
.

239



Since Γ(1) = 1, which incidentally justifies the usual claim that 0! = 1, we
see that Γ(z) has a simple pole at z = 0 with residue 1. Using this recursion
relation repeatedly, we see that Γ(z) has simple poles at all the nonpositive
integers, with residue

Res(Γ;−k) =
(−1)k

k!
,

and these are all the singularities.
The Gamma function is an extremely important function in mathematics,

not least of all because it is intimately related to another illustrious function:
the Riemann Zeta function ζ(z), defined for Re(z) > 1 by the converging
series

ζ(z) =
∞∑

n=1

1

nz
.

To see the relation notice that
∫ ∞

0

tz−1 e−nt dt =
1

nz

∫ ∞

0

uz−1 e−u du =
Γ(z)

nz
,

where we have changed variables of integration from t to u = nt. Summing
both sides of this identity over all positive integers n, we have, on the one
hand ∞∑

n=1

Γ(z)

nz
= Γ(z) ζ(z) ,

and on the other

∞∑
n=1

∫ ∞

0

tz−1 e−nt dt =

∫ ∞

0

tz−1

∞∑
n=1

e−nt dt =

∫ ∞

0

tz−1 1

et − 1
dt .

where we have interchanged the summation inside the integral, and summed
the geometric series. (This can be justified, although we will not do so here.)
As a result we have the following integral representation for the Zeta function

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt .

The only source of singularities in the integral is the zero of et − 1 at the
origin, so we can split the integral into two as follows:

ζ(z) =
1

Γ(z)

[∫ 1

0

tz−1

et − 1
dt +

∫ ∞

1

tz−1

et − 1
dt

]
.

It is possible to show that Γ(z) has no zeros, whence 1/Γ(z) is entire. Simi-
larly, the second integral

∫∞
1

is also entire since the integrand is continuous
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there. Hence the singularity structure of the Zeta function is contained in
the first integral. We can do a Laurent expansion of the integrand around
t = 0:

1

et − 1
=

1

t
− 1

2
+

t

12
+ O(t3) ,

where only odd powers of t appear after the first. Therefore integrating
termwise, which we can do because Laurent series converge uniformly, we
have that ∫ 1

0

tz−1

et − 1
dt =

1

z − 1
− 1

2

1

z
+

1

12

1

z + 1
+ · · · , (3.64)

where the terms which have been omitted are all of the form ak/(z+k) where

k is a positive odd integer. This shows that the integral
∫ 1

0
has simple poles

at z = 1, z = 0, and z = −k with k a positive odd integer. Because the
integral is multiplied by 1/Γ(z), and the Gamma function has simple poles
at the nonnegative integers we see immediately that

• ζ(z) has a simple pole at z = 1 with residue Γ(1) = 1, and is analytic
everywhere else; and

• ζ(−2n) = 0 where n is any positive integer: these are the zeros of
1/Γ(z) which are not cancelled by the poles in (3.64).

The celebrated Riemann hypothesis states that all other zeros of ζ(z) occur
in the line Re(z) = 1

2
. Now that Fermat’s Last Theorem has been proven,

the Riemann hypothesis remains the most important open problem in math-
ematics today.

The importance of settling this hypothesis stems from the intimate rela-
tionship between the Zeta function and the theory of numbers. The key to
this relationship is the following infinite product expansion for ζ(z), valid for
Re(z) > 1:

1

ζ(z)
=

∏
primes

p

(
1− 1

pz

)
,

which follows from the unique factorisation of every positive integer into a
product of primes. To see this notice that since, for Re(z) > 1, one has

ζ(z) = 1 +
1

2z
+

1

3z
+

1

4z
+

1

5z
+ · · · ,

then it follows that

1

2z
ζ(z) =

1

2z
+

1

4z
+

1

6z
+

1

8z
+

1

10z
+ · · · ;
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whence (
1− 1

2z

)
ζ(z) = 1 +

1

3z
+

1

5z
+

1

7z
+

1

9z
+ · · · .

In other words we have in the right-hand side only those terms 1/nz where
n is odd. Similarly,

(
1− 1

3z

)(
1− 1

2z

)
ζ(z) = 1 +

1

5z
+

1

7z
+

1

11z
+

1

13z
+ · · · ,

where now we have in the right-hand side only those terms 1/nz where n is
not divisible by 2 or by 3. Continuing in this fashion, we have that

∏
primes

p

(
1− 1

pz

)
ζ(z) = 1 .

By the way, this shows that ζ(z) has no zeros for Re(z) > 1.
The Zeta function and its generalisations also play a useful role in physics:

particularly in quantum field theory, statistical mechanics, and, of course,
in string theory. In fact, together with the heat kernel, introduced in the
problems, the (generalised) Zeta function proves invaluable in computing
determinants and traces of infinite-dimensional matrices

Areas of spheres

As a minor application of the Gamma function, let us compute the area of a
unit sphere in n dimensions, for n ≥ 2.

What do we mean by a unit sphere in n dimensions? The unit sphere
in n dimensions is the set of points in n-dimensional euclidean space which
are a unit distance away from the origin. If we let (x1, x2, . . . , xn) be the
coordinates for euclidean space, the unit sphere is the set of points which
satisfy the equation

n∑
i=1

x2
i = x2

1 + x2
2 + . . . x2

n = 1 .

In n = 2 dimensions, the unit “sphere” is a circle, whereas in n = 3 dimen-
sions it is the usual sphere of everyday experience. For n > 3, the sphere is
harder to visualise, but one can still work with it via the algebraic description
above.

What do we mean by its area? We mean the n− 1-dimensional area: so
if n = 2, we mean the circumference of the circle, and if n = 3 we mean
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the usual area of everyday experience. Again it gets harder to visualise for
n > 3, but one can again tackle the problem algebraically as above.

Clearly every point in n-dimensional space lies on some sphere: if it is a
distance r away from the origin then, by definition, it lies on the sphere of
radius r. There are an uncountable number of spheres in euclidean space,
one for every positive real number. All these spheres taken together with the
origin (a “sphere” of zero radius) make up all of euclidean space. A simple
scaling argument shows that if we double the radius, we multiply the area of
the sphere by 2n−1. More generally, the area of the sphere at radius r will
be rn−1 times the area of the unit sphere. Therefore the volume element in
n-dimensions is

dnx = rn−1 dr dΩ ,

where dΩ is the area element of the unit sphere. We will now integrate
the function exp(−r2) over all of the euclidean space. We can compute this
integral in either of two ways. On the one hand,

I ≡
∫
· · ·

∫
e−r2

dnx

=

∫
· · ·

∫
e−x2

1−x2
2−···−x2

n dx1dx2 · · · dxn

=

(∫ ∞

−∞
e−x2

1 dx1

) (∫ ∞

−∞
e−x2

2 dx2

)
· · ·

(∫ ∞

−∞
e−x2

n dxn

)

=

(∫ ∞

−∞
e−x2

dx

)n

,

which is computed to give (
√

π)n after using the elementary gaussian result:∫∞
−∞ exp(−x2) dx =

√
π. On the other hand,

I =

∫
· · ·

∫
e−r2

rn−1 dr dΩ =

(∫ ∞

0

e−r2

rn−1 dr

)(∫
· · ·

∫
dΩ

)
.

The integral of dΩ is simply the area A of the unit sphere, which is what
we want to calculate. The radial integral can be calculated in terms of the
Gamma function after changing the variable of integration from r to t = r2:

∫ ∞

0

e−r2

rn−1 dr =

∫ ∞

0

e−t 1
2
t(n−2)/2 dt =

Γ(n/2)

2
.

Equating both ways to compute the integral, we arrive at the following for-
mula for the area A(n) of the unit sphere in n dimensions:

A(n) =
2 πn/2

Γ(n/2)
. (3.65)
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To see that this beautiful formula is not obviously wrong, let us see that
it reproduces what we know. For n = 2, by the area of the unit sphere we
mean the circumference of the unit circle, that is 2π. In n = 3, we expect the
area of the standard unit sphere and that is 4π. Let us see if our expectations
are born out. According to the formula,

A(2) =
2π

Γ(1)
= 2π ,

as expected. For n = 3 the formula says

A(3) =
2 π3/2

Γ(3/2)
.

We can compute the half-integral values of the Gamma function as follows.
First we have that

Γ(1
2
) =

∫ ∞

0

t−1/2 e−t dt .

Changing variables to t = u2, we have

Γ(1
2
) = 2

∫ ∞

0

e−u2

du =

∫ ∞

−∞
e−u2

du =
√

π .

Now using the recursion relation (3.63), we have that

Γ(k + 1
2
) =

2k − 1

2

2k − 3

2
· · · 1

2
Γ(1

2
) =

(2k − 1)!!

2k

√
π .

In particular, Γ(3
2
) =

√
π

2
, whence

A(3) =
2π3/2

Γ(3/2)
= 4π ,

as expected.

�� How about for n = 1? This case is a little special: in one dimension the unit sphere
consists of the points ±1. So that it is a zero-dimensional set. Is there an intrinsic notion
of area for a zero-dimensional set? If we evaluate the above formula for A(n) at n = 1,
we get an answer: A(1) = 2, which is counting the number of points: in other words,
zero-dimensional area is simply the cardinality of the set: the number of elements. This
is something that perhaps we would not have expected. As someone said once, some
formulae are more clever than the people who come up with them.

Now that we trust the formula, we can compute a few more values to
learn something new. First let us simplify the formula by evaluating the
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Gamma function at the appropriate values. Distinguishing between odd and
even dimensions, we find

A(n) =





2 π`

(`− 1)!
, for n = 2`, and

2`+1 π`

(2`− 1)!!
, for n = 2` + 1.

(3.66)

The next few values are

A(4) = 2 π2 , A(5) =
8π3

3
, A(6) = π3 , A(7) =

16π3

15
, A(8) =

π4

3
.

� In case you are wondering whether this is at all useful, it actually comes in handy when
normalising electromagnetic fields in higher-dimensional field theories so that they have
integral fluxes around charged objects (e.g., branes and black holes).

Let us end with another nice formula. How about the n-dimensional
volume V (n) of the unit ball, i.e., the interior of the unit sphere? We can
compute this by integrating the areas of the spheres from radius 0 to radius
1. The area of the sphere of radius r will be rn−1 times the area of the sphere
of unit radius, so that the volume is then

V (n) =

∫ 1

0

A(n)rn−1 dr =
A(n)

n
.

Using the formula (3.65), we see that

V (n) =
2πn/2

nΓ(n/2)
=

πn/2

(n/2)Γ(n/2)
=

πn/2

Γ((n + 2)/2)
,

where we have used the recursion formula (3.63). Because the the unit sphere
is inscribed inside the cube of length 2, the ratio of the volume of the unit
ball to that of the cube circumscribing it is given by

%(n) =
V (n)

2n
=

πn/2

2n Γ(n
2

+ 1)
.

If we were to plot this as a function of n we notice that it starts at 1 for
n = 1 and then decreases quite fast, so that the ball takes up less and less of
the volume of he cube which circumscribes it.
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