
Chapter 1

Linear Algebra

In this part of the course we will review some basic linear algebra. The
topics covered include: real and complex vector spaces and linear maps,
bases, matrices, inner products, eigenvalues and eigenvectors. We start from
the familiar setting in two dimensions and introduce the necessary formalism
to be able to work with vectors in an arbitrary number of dimensions. We
end the chapter with a physical application: the study of normal modes of
an oscillatory system.

1.1 Vector spaces

Physics requires both scalar quantities like mass, temperature, charge which
are uniquely specified by its magnitude in some units, e.g., 300◦K, 7 Kg,...
and also vectorial quantities like velocity, force, angular momentum, which
are specified both by a magnitude and a direction.

In the first part of the course we will study the general features shared
by these vectorial quantities. As this is a course in mathematical techniques,
we must abstract what these quantities have in common (the ‘mathematical’
part) while at the same time keeping a pragmatic perspective throughout
(the ‘techniques’ part). This is not a mathematics course, but nevertheless a
certain amount of formalism is needed. Some of you may not have seen formal
definitions before, so we will start by motivating the notion of a vector space.
For definiteness we will consider displacements in two dimensions; that is, in
the plane.
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1.1.1 Displacements in the plane

Every displacement in the plane has an initial or starting point and a final
point. We will only consider displacements which have a common starting
point: the origin.

Any point in the plane is then understood as the final
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point of a displacement from the origin. We will depict such
displacements by an arrow starting at the origin and ending
at the final point. We will denote such displacements by
boldfaced letters, like u, v. In lecture it is hard to write in
boldface, so we use the notation ~u, ~v which is not just easier
to write but has the added benefit of being mnemonic, since

the arrow reminds us that it is a displacement. We will say that displacements
like u, v are vectors.

What can one do with vectors?
For example, vectors can be multiplied by real numbers
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(the scalars). If λ > 0 is a positive real number and v is a
vector, then λ v is a vector pointing in the same direction
as v but λ times as long as v, e.g., 2v is twice as long as
v but points in the same direction. In the same manner,
−λv is a vector pointing in the direction opposite to v but
λ times as long as v. We call this operation scalar mul-
tiplication. This operation satisfies two properties which are plain to see
from the pictures. The first says that if v is any vector and λ and µ are real
numbers, then λ (µ v) = (λµ) v. The second property is totally obvious from
the picture: 1 v = v.

You should also be familiar from the study of, say, forces, with the fact
that vectors can be added.

Indeed, if u and v are vectors, then their sum u + v is
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u + v + w

the diagonal from the origin to the opposite vertex in the
parallelogram defined by u and v, as in the picture. This
operation is called vector addition or simply addition. It
follows from the picture that u + v = v + u, so that we get
the same result regardless of the order in which we add the
vectors. One says that vector addition is commutative.

Vector addition is also associative. This means that, as
can be seen in the picture, when adding three vectors u, v,
and w it does not matter whether we first add u and v and
add w to the result: (u + v) + w or whether we first add
v and w and add the result to u: u + (v + w).
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Another easy property of vector addition is the existence of a vector 0
such that when added to any vector v gives back v again; that is,

0 + v = v for all vectors v.

Clearly the zero vector 0 corresponds to the trivial displacement which starts
and ends at the origin, or in other words, to no displacement at all.

Similarly, given any vector v there is a vector −v which obeys v+(−v) =
0. We will often employ the notation u− v to denote u + (−v).

Finally, notice that scalar multiplication and addition are compatible:
scalar multiplication and addition can be performed in any order:

λ (u + v) = λ u + λ v and (λ + µ) v = λ v + µ v .

The former identity says that scalar multiplication is distributive over vector
addition. Notice that, in particular, it follows that 0 v = 0 for all v.

1.1.2 Displacements in the plane (revisited)

There is no conceptual reason why one should not consider displacements
in space, i.e., in three dimensions, as opposed to the plane. The pictures
get a little harder to draw, but in principle it can still be done with better
draughtsmanship than mine. In physics, though, one needs to work with
vectors in more than three dimensions—in fact, as in Quantum Mechanics,
one often needs to work with vectors in an infinite number of dimensions.
Pictures like the ones above then become of no use, and one needs to develop
a notation we can calculate with.

Let us consider again the displacements in the plane, but this time with
a more algebraic notation.

The first thing we do is to draw two cartesian axes cen-
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tred at the origin: axis 1 and axis 2. Then every displace-
ment v from the origin can be written as an ordered pair
(v1, v2) of real numbers, corresponding to the components
of the displacement v along the cartesian axes, as in the
figure.

Let us define the set

R2 = {(v1, v2) | vi ∈ R for i = 1, 2}

of ordered pairs of real numbers.
The above notation may need some explaining. The notation ‘vi ∈ R’ is

simply shorthand for the phrase ‘vi is a real number;’ whereas the notation
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‘{(v1, v2) | vi ∈ R for i = 1, 2}’ is shorthand for the phrase ‘the set consisting
of pairs (v1, v2) such that both v1 and v2 are real numbers.’

The set R2 is in one-to-one correspondence with the set of displacements,
for clearly every displacement gives rise to one such pair and every such pair
gives rise to a displacement. We can therefore try to guess how to define the
operations of vector addition and scalar multiplication in R2 in such a way
that they correspond to the way they are defined for displacements.

From the pictures defining addition and scalar multiplication, one sees
that if λ ∈ R is a real number, then

λ (v1, v2) = (λ v1, λ v2) , (scalar multiplication)

and also
(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) . (addition)

The zero vector corresponds with no displacement at all, hence it is given
by the pair corresponding to the origin (0, 0). It follows from the addition
rule that

(0, 0) + (v1, v2) = (v1, v2) .

Similarly, −(v1, v2) = (−v1,−v2). In fact it is not hard to show (do it!) that
addition and scalar multiplication obey the same properties as they did for
displacements.

The good thing about this notation is that there is no reason why we
should restrict ourselves to pairs . Indeed, why not consider the set

RN = {(v1, v2, · · · , vN) | vi ∈ R for i = 1, 2, . . . , N} ,

of ordered N-tuples of real numbers? We can define addition and scalar
multiplication in the same way as above:

(addition)

(u1, u2, . . . , uN) + (v1, v2, . . . , vN)

= (u1 + v1, u2 + v2, . . . , uN + vN) ,

(multiplication by scalars)

λ (v1, v2, . . . , vN) = (λ v1, λ v2, . . . , λ vN) for λ ∈ R.

In the homework you are asked to prove that these operations on RN obey the
same properties that displacements do: commutativity, associativity, distrib-
utivity,... These properties can be formalised in the concept of an abstract
vector space.
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1.1.3 Abstract vector spaces

We are finally ready to formalise the observations made above into the de-
finition of an abstract vector space. We say that this is an abstract vector
space, because it does not refer to any concrete example.

A real vector space consists of the following data:

• Two sets:

– the set of vectors, which we shall denote V, and whose elements
we will write as u, v, w, . . . , and

– the set of scalars, which for a real vector space is simply the set
R of real numbers. We will use lowercase Greek letters from the
middle of the alphabet: λ, µ, . . . to represent real numbers.

• Two operations:

– Scalar multiplication, which takes a scalar λ and a vector v and
produces another vector λ v. One often abbreviates this as

scalar multiplication : R× V→ V
(λ, v) 7→ λ v .

– Vector addition, which takes two vectors u and v and produces a
third vector denoted u + v. Again one can abbreviate this as

vector addition : V× V→ V
(u, v) 7→ u + v .

• Eight properties (or axioms):

V1 (associativity) (u + v) + w = u + (v + w) for all u, v and w;

V2 (commutativity) u + v = v + u for all u and v;

V3 There exists a zero vector 0 which obeys 0 + v = v for all v;

V4 For any given v, there exists a vector −v such that v +(−v) = 0;

V5 λ (µ v) = (λµ) v for all v, λ and µ;

V6 1 v = v for all v;

V7 (λ + µ) v = λ v + µ v for all λ and µ and v;

V8 (distributivity) λ (u + v) = λ u + λ v for all λ, u and v.
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This formidable looking definition might at first seem to be something you
had rather forget about. Actually you will see that after using it in practice
it will become if not intuitive at least more sensible. Formal definitions like
this one above are meant to capture the essence of what is being defined.
Every vector space is an instance of an abstract vector space, and it will
inherit all the properties of an abstract vector space. In other words, we can
be sure that any result that we obtain for an abstract vector space will also
hold for any concrete example.

A typical use of the definition is recognising vector spaces. To go about
this one has to identify the sets of vectors and scalars, and the operations of
scalar multiplication and vector addition and then check that all eight axioms
are satisfied. In the homework I ask you to do this for two very different
looking spaces: RN which we have already met, and the set consisting of
real-valued functions on the interval [−1, 1]. In the course of these lectures
we will see many others.

� You may wonder whether all eight axioms are necessary. For example, you may question
the necessity of V4, given V3. Consider the following subset of R2:

{(v1, v2) | vi ∈ R and v2 ≥ 0} ⊂ R2

consisting of pairs of real numbers where the second real number in the pair is non-negative.
In terms of displacements, it corresponds to the upper half-plane. You can check that the
first two axioms V1 and V2 are satisfied, and that the zero vector (0, 0) belongs to this
subset. However −(v1, v2) = (−v1,−v2) whence if v2 is non-negative, −v2 cannot be
non-negative unless v2 = 0. Therefore V4 is not satisfied. In fact, neither are V5, V7 and
V8 unless we restrict the scalars to be non-negative real numbers. A more challenging
exercise is to determine whether V6 is really necessary.

� The zero vector 0 of axiom V3 is unique. To see this notice that if there were another 0′
which also satisfies V3, then

0′ = 0 + 0′ (by V3 for 0)

= 0′ + 0 (by V2)

= 0 . (by V3 for 0′)

Similarly the vector −v in V4 is also unique. In fact, suppose that there are two vectors
u1 and u2 which satisfy: v + u1 = 0 and v + u2 = 0. Then they are equal:

u1 = 0 + u1 (by V3)

= (v + u2) + u1 (by hypothesis)

= v + (u2 + u1) (by V1)

= v + (u1 + u2) (by V2)

= (v + u1) + u2 (by V1)

= 0 + u2 (by hypothesis)

= u2 . (by V3)
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A final word on notation: although we have defined a real vector space
as two sets, vectors V and real scalars R, and two operations satisfying some
axioms, one often simply says that ‘V is a real vector space’ leaving the other
bits in the definition implicit. Similarly in what follows, and unless otherwise
stated, we will implicitly assume that the scalars are real, so that whenever
we say ‘V is a vector space’ we shall mean that V is a real vector space.

1.1.4 Vector subspaces

A related notion to a vector space is that of a vector subspace. Suppose that
V is a vector space and let W ⊂ V be a subset. This means that W consists of
some (but not necessarily all) of the vectors in V. Since V is a vector space,
we know that we can add vectors in W and multiply them by scalars, but
does that make W into a vector space in its own right? As we saw above
with the example of the upper half-plane, not every subset W will itself be a
vector space. For this to be the case we have to make sure that the following
two axioms are satisfied:

S1 If v and w are vectors in W, then so is v + w; and

S2 For any scalar λ ∈ R, if w is any vector in W, then so is λ w.

If these two properties are satisfied we say that W is a vector subspace of
V. One also often sees the phrases ‘W is a subspace of V’ and ‘W is a linear
subspace of V.’

Let us make sure we understand what these two properties mean. For v
and w in W, v + w belongs to V because V is a vector space. The question
is whether v +w belongs to W, and S1 says that it does. Similarly, if w ∈ W
is a vector in W and λ ∈ R is any scalar, then λ w belongs to V because V is
a vector space. The question is whether λw also belongs to W, and S2 says
that it does.

You may ask whether we should not also require that the zero vector 0
also belongs to W. In fact this is guaranteed by S2, because for any w ∈ W,
0 = 0 w (why?) which belongs to W by S2. From this point of view, it is S2
that fails in the example of the upper half-plane, since scalar multiplication
by a negative scalar λ < 0 takes vectors in the upper half-plane to vectors in
the lower half-plane.

Let us see a couple of examples. Consider the set R3 of ordered triples of
real numbers:

R3 = {(v1, v2, v3) | vi ∈ R for i = 1, 2, 3} ,

and consider the following subsets
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• W1 = {(v1, v2, 0) | vi ∈ R for i = 1, 2} ⊂ R3,

• W2 = {(v1, v2, v3) | vi ∈ R for i = 1, 2, 3 and v3 ≥ 0} ⊂ R3, and

• W3 = {(v1, v2, 1) | vi ∈ R for i = 1, 2} ⊂ R3.

I will leave it to you as an exercise to show that W1 obeys both S1 and S2
whence it is a vector subspace of R3, whereas W2 does not obey S2, and W3

does not obey either one. Can you think of a subset of R3 which obeys S2
but not S1?

1.1.5 Linear independence

In this section we will introduce the concepts of linear independence and basis
for a vector space; but before doing so we must introduce some preliminary
notation.

Let V be a vector space, v1, v2, . . . , vN nonzero vectors in V, and λ1, λ2,
. . . , λN scalars, i.e., real numbers. Then the vector in V given by

N∑
i=1

λi vi := λ1 v1 + λ2 v2 + · · ·+ λN vN ,

is called a linear combination of the {vi}. The set W of all possible linear
combinations of the {v1, v2, . . . , vN} is actually a vector subspace of V, called
the linear span of the {v1,v2, . . . , vN} or the vector subspace spanned by
the {v1, v2, . . . , vN}.

� Recall that in order to show that a subset of a vector space is a vector subspace it is neces-
sary and sufficient to show that it is closed under vector addition and under scalar multipli-
cation. Let us check this for the subset W of all linear combinations of the {v1, v2, . . . , vN}.
Let w1 =

PN
i=1 αi vi and w2 =

PN
i=1 βi vi be any two elements of W. Then

w1 + w2 =
NX

i=1

αi vi +
NX

i=1

βi vi

=
NX

i=1

(αi vi + βi vi) (by V2)

=
NX

i=1

(αi + βi) vi , (by V7)

which is clearly in W, being again a linear combination of the {v1, v2, . . . , vN}. Also, if λ
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is any real number and w =
PN

i=1 αi vi is any vector in W,

λ w = λ
NX

i=1

αi vi

=
NX

i=1

λ (αi vi) (by V8)

=
NX

i=1

(λ αi) vi , (by V5)

which is again in W.

A set {v1,v2, . . . , vN} of nonzero vectors is said to be linearly indepen-
dent if the equation

N∑
i=1

λi vi = 0

has only the trivial solution λi = 0 for all i = 1, 2, . . . , N . Otherwise the
{vi} are said to be linearly dependent.

It is easy to see that if a set {v1,v2, . . . , vN} of nonzero vectors is linearly
dependent, then one of the vectors, say, vi, can be written as a linear combi-
nation of the remaining N−1 vectors. Indeed, suppose that {v1,v2, . . . , vN}
is linearly dependent. This means that the equation

N∑
i=1

λi vi = 0 (1.1)

must have a nontrivial solution where at least one of the {λi} is different
from zero. Suppose, for definiteness, that it is λ1. Because λ1 6= 0, we can
divide equation (1.1) by λ1 to obtain:

v1 +
N∑

i=2

λi

λ1

vi = 0 ,

whence

v1 = −λ2

λ1

v2 − λ3

λ1

v3 − · · · − λN

λ1

vN .

In other words, v1 is a linear combination of the {v2, . . . , vN}. In gen-
eral and in the same way, if λi 6= 0 then vi is a linear combination of
{v1, . . . , vi−1, vi+1, . . . , vN}.

Let us try to understand these definitions by working through some ex-
amples.
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We start, as usual, with displacements in the plane. Every nonzero dis-
placement defines a line through the origin. We say that two displacements
are collinear if they define the same line. In other words, u and v are collinear
if and only if u = λ v for some λ ∈ R. Clearly, any two displacements in
the plane are linearly independent provided they are not collinear, as in the
figure.

Now consider R2 and let (u1, u2) and (v1, v2) be two

• * v

R

nonzero vectors. When will they be linearly independent?
From the definition, this will happen provided that the
equation

λ1 (u1, u2) + λ2 (v1, v2) = (0, 0)

has no other solutions but λ1 = λ2 = 0. This is a system of linear homoge-
neous equations for the {λi}:

u1 λ1 + v1 λ2 = 0

u2 λ1 + v2 λ2 = 0 .

What must happen for this system to have a nontrivial solution? It will turn
out that the answer is that u1v2 = u2v1. We can see this as follows. Multiply
the top equation by u2 and the bottom equation by u1 and subtract to get

(u1v2 − u2v1) λ2 = 0 ,

whence either u1v2 = u2v1 or λ2 = 0. Now multiply the top equation by v2

and the bottom equation by v1 and subtract to get

(u1v2 − u2v1) λ1 = 0 ,

whence either u1v2 = u2v1 or λ1 = 0. Since a nontrivial solution must have
at least one of λ1 or λ2 nonzero, we are forced to have u1v2 = u2v1.

1.1.6 Bases

Let V be a vector space. A set {e1, e2, . . .} of nonzero vectors is said to be a
basis for V if the following two axioms are satisfied:

B1 The vectors {e1, e2, . . .} are linearly independent; and

B2 The linear span of the {be1, e2, . . .} is all of V; in other words, any v in
V can be written as a linear combination of the {e1, e2, . . .}.

13



The vectors ei in a basis are known as the basis elements.
There are two basic facts about bases which we mention without proof.

First of all, every vector space has a basis , and in fact, unless it is the trivial
vector space consisting only of 0, it has infinitely many bases. However not
every vector space has a finite basis; that is, a basis with a finite number
of elements. If a vector space does possess a finite basis {e1, e2, . . . , eN}
then it is said to be finite-dimensional. Otherwise it is said to be infinite-
dimensional. We will deal mostly with finite-dimensional vector spaces in
this part of the course, although we will have the chance of meeting some
infinite-dimensional vector spaces later on.

The second basic fact is that if {e1, e2, . . . , eN} and {f 1,f 2, . . . , fM} are
two bases for a vector space V, then M = N . In other words, every basis
has the same number of elements, which is therefore an intrinsic property
of the vector space in question. This number is called the dimension of the
vector space. One says that V has dimension N or that it is N -dimensional.
In symbols, one writes this as dimV = N .

From what we have said before, any two displacements which are non-
collinear provide a basis for the displacements on the plane. Therefore this
vector space is two-dimensional.

Similarly, any (v1, v2) in R2 can be written as a linear combination of
{(1, 0), (0, 1)}:

(v1, v2) = v1 (1, 0) + v2 (0, 1) .

Therefore since {(1, 0), (0, 1)} are linearly independent, they form a basis for
R2. This shows that R2 is also two-dimensional.

More generally for RN , the set given by the N vectors

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}
is a basis for RN , called the canonical basis. This shows that RN has dimen-
sion N .

Let {v1,v2, . . . , vp} be a set of p linearly independent vectors in a vector
space V of dimension N ≥ p. Then they are a basis for the vector subspace
W of V which they span. If p = N they span the full space V, whence they
are a basis for V. It is another basic fact that any set of linearly independent
vectors can be completed to a basis.

One final remark: the property B2 satisfied by a basis guarantees that
any vector v can be written as a linear combination of the basis elements,
but does not say whether this can be done in more than one way. In fact,
the linear combination turns out to be unique.

� Let us prove this. For simplicity, let us work with a finite-dimensional vector space V
with a basis {e1, e2, . . . , eN}. Suppose that a vector v ∈ V can be written as a linear
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combination of the {ei} in two ways:

v =
NX

i=1

viei and v =
NX

i=1

v′iei .

We will show that vi = v′i for all i. To see this consider

0 = v − v

=
NX

i=1

viei −
NX

i=1

v′iei

=
NX

i=1

�
vi − v′i

�
ei .

But because of B1, the {ei} are linearly independent, and by definition this means that
the last of the above equations admits only the trivial solution vi − v′i = 0 for all i. The
numbers {vi} are called the components of v relative to the basis {ei}.

Bases can be extremely useful in calculations with vector spaces. A clever
choice of basis can help tremendously towards the solution of a problem, just
like a bad choice of basis can make the problem seem very complicated. We
will see more of them later, but first we need to introduce the second main
concept of linear algebra, that of a linear map.

1.2 Linear maps

In the previous section we have learned about vector spaces by studying
objects (subspaces, bases,...) living in a fixed vector space. In this section
we will look at objects which relate different vector spaces. These objects
are called linear maps.

1.2.1 Linear maps

Let V and W be two vector spaces, and consider a map A : V→ W assigning
to each vector v in V a unique vector A(v) in W. We say that A is a linear
map (or a homomorphism) if it satisfies the following two properties:

L1 For all v1 and v2 in V, A(v1 + v2) = A(v1) + A(v2); and

L2 For all v in V and λ ∈ R, A(λv) = λA(v).

In other words, a linear map is compatible with the operations of vector
addition and scalar multiplication which define the vector space; that is, it
does not matter whether we apply the map A before or after performing
these operations: we will get the same result. One says that ‘linear maps
respect addition and scalar multiplication.’
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Any linear map A : V→ W sends the zero vector in V to the zero vector
in W. Let us see this. (We will use the notation 0 both for the zero vector in
V and for the zero vector in W as it should be clear from the context which
one we mean.) Let v be any vector in V and let us apply A to 0 + v:

A(0 + v) = A(0) + A(v) ; (by L1)

but because 0 + v = v,

A(v) = A(0) + A(v) ,

which says that A(0) = 0, since the zero vector is unique.

�� Any linear map A : V→ W gives rise to a vector subspace of V, known as the kernel of A,
and written ker A. It is defined as the subspace of V consisting of those vectors in V which
get mapped to the zero vector of W. In other words,

ker A := {v ∈ V | A(v) = 0 ∈ W} .

To check that ker A ⊂ W is really a vector subspace, we have to make sure that axioms S1
and S2 are satisfied. Suppose that v1 and v2 belong to ker A. Let us show that so does
their sum v1 + v2:

A(v1 + v2) = A(v1) + A(v2) (by L1)

= 0 + 0 (because A(vi) = 0)

= 0 , (by V3 for W)

∴ v1 + v2 ∈ ker A .

This shows that S1 is satisfied. Similarly, if v ∈ ker A and λ ∈ R is any scalar, then

A(λ v) = λ A(v) (by L2)

= λ0 (because A(v) = 0)

= 0 , (follows from V7 for W)

∴ λ v ∈ ker A ;

whence S2 is also satisfied. Notice that we used both properties L1 and L2 of a linear map.

There is also a vector subspace, this time of W, associated with A : V → W. It is called
the image of A, and written im A. It consists of those vectors in W which can be written
as A(v) for some v ∈ V. In other words,

im A := {w ∈ W | w = A(v) for some v ∈ V}.

To check that im A ⊂ W is a vector subspace we must check that S1 and S2 are satisfied.
Let us do this. Suppose that w1 and w2 belong to the image of A. This means that there
are vectors v1 and v2 in V which obey A(vi) = wi for i = 1, 2. Therefore,

A(v1 + v2) = A(v1) + A(v2) (by L1)

= w1 + w2 ,

whence w1 + w2 belong to the image of A. Similarly, if w = A(v) belongs to the image
of A and λ ∈ R is any scalar,

A(λ v) = λ A(v) (by L2)

= λ w ,
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whence λ w also belongs to the image of A.

As an example, consider the linear transformation A : R2 → R2 defined by (x, y) 7→
(x− y, y − x). Its kernel and image are pictured below:

• •A−−−−−→

ker A

im A

A linear map A : V → W is said to be one-to-one (or injective or a monomorphism) if
ker A = 0. The reason for the name is the following. Suppose that A(v1) = A(v2). Then
because of linearity, A(v1 − v2) = 0, whence v1 − v2 belongs to the kernel. Since the
kernel is zero, we have that v1 = v2.

Similarly a linear map A : V → W is said to be onto (or surjective or an epimorphism)
if im A = W, so that every vector of W is the image under A of some vector in V. If
this vector is unique, so that A is also one-to-one, we say that A is an isomorphism. If
A : V → W is an isomorphism, one says that V is isomorphic to W, and we write this as
V ∼= W. As we will see below, ‘being isomorphic to’ is an equivalence relation.

Notice that if V is an N -dimensional real vector space, any choice of basis {ei} induces an

isomorphism A : V → RN , defined by sending the vector v =
PN

i=1 vi ei to the ordered
N -tuple made out from its components (v1, v2, . . . , vN ) relative to the basis. Therefore we
see that all N -dimensional vector spaces are isomorphic to RN , and hence to each other.

An important property of linear maps is that once we know how they act
on a basis, we know how they act on any vector in the vector space. Indeed,
suppose that {e1, e2, . . . , eN} is a basis for an N -dimensional vector space
V. Any vector v ∈ V can be written uniquely as a linear combination of the
basis elements:

v =
N∑

i=1

vi ei .

Let A : V→ W be a linear map. Then

A(v) = A

(
N∑

i=1

vi ei

)

=
N∑

i=1

A (vi ei) (by L1)

=
N∑

i=1

vi A (ei) . (by L2)

Therefore if we know A(ei) for i = 1, 2, . . . , N we know A on any vector.

�� The dual space.
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1.2.2 Composition of linear maps

Linear maps can be composed to produce new linear maps. Let A : V → W
and B : U→ V be linear maps connecting three vectors spaces U, V and W.
We can define a third map C : U→ W by composing the two maps:

U B−→ V A−→ W .

In other words, if u ∈ U is any vector, then the action of C on it is defined
by first applying B to get B(u) and then applying A to the result to obtain
A(B(u)). The resulting map is written A◦B, so that one has the composition
rule:

(A ◦B)(u) := A (B(u)) . (1.2)

This new map is linear because B and A are, as we now show. It respects
addition:

(A ◦B)(u1 + u2) = A (B(u1 + u2))

= A (B(u1) + B(u2)) (by L1 for B)

= A (B(u1)) + A (B(u2)) (by L1 for A)

= (A ◦B)(u1) + (A ◦B)(u2) ;

and it also respects scalar multiplication:

(A ◦B)(λ u) = A (B(λu))

= A (λB(u)) (by L2 for B)

= λA (B(u)) (by L2 for A)

= λ (A ◦B)(u) .

Thus A ◦ B is a linear map, known as the composition of A and B. One
usually reads A ◦ B as ‘B composed with A’ (notice the order!) or ‘A pre-
composed with B.’

�� Notice that if A and B are isomorphisms, then so is A ◦ B. In other words, composition
of isomorphisms is an isomorphism. This means that if U ∼= V and V ∼= W, then U ∼= W,
so that the property of being isomorphic is transitive. This property is also symmetric:
if A : V → W is an isomorphism, A−1 : W → V is too, so that V ∼= W implies W ∼= V.
Moreover it is also reflexive, the identity map 1 : V→ V provides an isomorphism V ∼= V.
Hence the property of being isomorphic is an equivalence relation.

1.2.3 Linear transformations

An important special case of linear maps are those which map a vector space
to itself: A : V → V. These linear maps are called linear transformations
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(or endomorphisms). Linear transformations are very easy to visualise in
two dimensions:

• •A−−−−→-
6

j

µ

A linear transformation sends the origin to the origin, straight lines to
straight lines, and parallelograms to parallelograms.

Composition of two linear transformation is another linear transforma-
tion. In other words, we can think of composition of linear transformations
as some sort of multiplication. This multiplication obeys a property remi-
niscent of the associativity V1 of vector addition. Namely, given three linear
transformations A, B and C, then

(A ◦B) ◦ C = A ◦ (B ◦ C) . (1.3)

To see this simply apply both sides of the equation to v ∈ V and use equation
(1.2) to obtain in both cases simply A(B(C(v))). By analogy, we say that
composition of linear transformations is associative. Unlike vector addition,
composition is not commutative; that is, in general, A ◦B 6= B ◦ A.

Let 1 : V → V denote the identity transformation, defined by 1(v) = v
for all v ∈ V. Clearly,

1 ◦ A = A ◦ 1 = A , (1.4)

for any linear transformations A. In other words, 1 is an identity for the
composition of linear transformations. Given a linear transformation A :
V→ V, it may happen that there is a linear transformation B : V→ V such
that

B ◦ A = A ◦B = 1 . (1.5)

If this is the case, we say that A is invertible, and we call B its inverse. We
then write B = A−1.

The composition of two invertible linear transformations is again invert-
ible. Indeed one has

(A ◦B)−1 = B−1 ◦ A−1 .

� To show this we compute
�
B−1 ◦A−1

� ◦ (A ◦B) = B−1 ◦ �A−1 ◦ (A ◦B)
�

(by equation (1.3))

= B−1 ◦ ��A−1 ◦A
� ◦B

�
(by equation (1.3))

= B−1 ◦ (1 ◦B) (by equation (1.5))

= B−1 ◦B (by equation (1.4))

= 1 , (by equation (1.5))
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and similarly

(A ◦B) ◦ (B−1 ◦A−1) = A ◦ �B ◦ �B−1 ◦A−1
��

(by equation (1.3))

= A ◦ ��B ◦B−1
� ◦A−1)

�
(by equation (1.3))

= A ◦ �1 ◦A−1)
�

(by equation (1.5))

= A ◦A−1 (by equation (1.4))

= 1 . (by equation (1.5))

�� This shows that the invertible transformations of a vector space V form a group, called
the general linear group of V and written GL(V).

A group is a set G whose elements are called group elements, together with an operation
called group multiplication and written simply as

group multiplication : G×G → G

(x, y) 7→ xy

satisfying the following three axioms:

G1 group multiplication is associative:

(xy)z = x(yz) for all group elements x, y and z.

G2 there exists an identity element e ∈ G such that

ex = xe = x for all group elements x.

G3 every group element x has an inverse, denoted x−1 and obeying

x−1x = xx−1 = e .

If in addition the group obeys a fourth axiom

G4 group multiplication is commutative:

xy = yx for all group elements x and y,

then we say that the group is commutative or abelian, in honour of the Norwegian math-
ematician Niels Henrik Abel (1802-1829).

When the group is abelian, the group multiplication is usually written as a group addition:
x + y instead of xy. Notice that axioms V1—V4 for a vector space say that, under vector
addition, a vector space is an abelian group.

Groups are extremely important objects in both mathematics and physics. It is an ‘al-
gebraic’ concept, yet its uses transcend algebra; for example, it was using the theory
of groups that quarks were originally postulated in particle physics. The fact that we
now think of quarks as elementary particles and not simply as mathematical construct is
proof of how far group theory has become a part of our description of nature at its most
fundamental.
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1.2.4 The vector space of linear maps

Now we point out that linear maps themselves also form a vector space! In
order to do this, we have to produce the two operations: vector addition and
scalar multiplication, and show that they satisfy the eight axioms V1—V8.
Let A and B be linear maps V→ W, let λ ∈ R be a scalar, and let v ∈ V be
any vector. Then we define the two operations by

(addition)
(A + B)(v) = A(v) + B(v) , (1.6)

(scalar multiplication)

(λA)(v) = λA(v) . (1.7)

Having defined these two operations we must check that the axioms are
satisfied. We leave this as an exercise, except to note that the zero vector
is the transformation which sends every v ∈ V to 0 ∈ W. The rest of the
axioms follow from the fact that W is a vector space.

� This is a general mathematical fact: the space of functions f : X → Y always inherits
whatever algebraic structures Y possesses simply by defining the operations pointwise in
X.

Let L(V,W) denote the vector space of linear maps V → W. What is its
dimension? We will see in the next section when we talk about matrices that
its dimension is given by the product of the dimensions of V and W:

dim L(V,W) = dimV dimW . (1.8)

In particular the space L(V,V) of linear transformations of V has dimension
(dimV)2. We will call this space L(V) from now on.

Because L(V) is a vector space, its elements can be added and as we saw
above, composition allows us to multiply them too. It turns out that these
two operations are compatible:

A ◦ (B + C) = (A ◦B) + (A ◦ C) (1.9)

(A + B) ◦ C = (A ◦ C) + (B ◦ C) . (1.10)

� Let us prove the left and right distributivity properties. Let A, B, and C be linear
transformations of a vector space V and let v ∈ V be an arbitrary vector. Then

(A ◦ (B + C)) (v) = A ((B + C)(v)) (by equation (1.2))

= A (B(v) + C(v)) (by equation (1.6))

= A(B(v)) + A(C(v)) (because A is linear)

= (A ◦B)(v) + (A ◦ C)(v) , (by equation (1.2))

21



which proves (1.9). Similarly

((A + B) ◦ C) (v) = (A + B)(C(v)) (by equation (1.2))

= (A(C(v)) + B(C(v)) (by equation (1.6))

= (A ◦ C)(v) + (B ◦ C)(v) , (by equation (1.2))

which proves (1.10).

Composition of linear transformations is also compatible with scalar mul-
tiplication:

(λ A) ◦B = A ◦ (λB) = λ (A ◦B) . (1.11)

�� In fact, we can summarise the properties (1.9), (1.10) and (1.11) in a very simple way
using concepts we have already introduced. Given a linear transformation A of V we will
define two operations on L(V), left and right multiplication by A, as follows:

LA : L(V) → L(V) and RA : L(V) → L(V)

B 7→ A ◦B B 7→ B ◦A .

Then equations (1.9), (1.10) and (1.11) simply say that LA and RA are linear transfor-
mations of L(V)!

�� The vector space L(V) of linear transformations of V together with the operation of com-
position, the identity 1, the distributive properties (1.9) and (1.10), and the condition
(1.11) is an associative algebra with identity.

An algebra is a vector space A together with a multiplication

multiplication : A× A→ A
(A, B) 7→ A B ,

obeying the following axioms, where A, B, C ∈ A and λ ∈ R:

A1 (left distributivity) A (B + C) = A B + A C;

A2 (right distributivity) (A + B) C = A C + B C;

A3 A (λ B) = (λ A) B = λ (A B).

If in addition A obeys the axiom

A4 (identity) There exists 1 ∈ A such that 1A = A1 = A;

then it is an algebra with identity. If instead A obeys the axiom

A5 (associativity) A (B C) = (A B) C;

it is an associative algebra. Finally if it obeys all five axioms, it is an associative algebra
with identity.

It is a general fact that the invertible elements of an associative algebra with identity form
a group.
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1.2.5 Matrices

Matrices are intimately linked to linear maps. Let A : V → W be a linear
map between two finite-dimensional vector spaces. Let {e1, e2, . . . , eN} be
a basis for V and let {f 1,f 2, . . . , fM} be a basis for W. Let us write each
A(ei) as a linear combination of the basis elements {f j}:

A(ei) =
M∑

j=1

Aji f j , (1.12)

where have introduced a real number Aji for each i = 1, 2, . . . , M and j =
1, 2, . . . , M , a total of N M real numbers. Now let v be a vector in V and
consider its image w = A(v) under A. We can expand both v and w as
linear combinations of the respective bases:

v =
N∑

i=1

vi ei and w =
M∑

j=1

wj f j . (1.13)

Let us now express the wj in terms of the vi:

w = A(v)

= A

(
N∑

i=1

vi ei

)
(by the first equation in (1.13))

=
N∑

i=1

A (vi ei) (by L1)

=
N∑

i=1

vi A (ei) (by L2)

=
N∑

i=1

vi

M∑
j=1

Aji f j (by equation (1.12))

=
M∑

j=1

(
N∑

i=1

Aji vi

)
f j , (rearranging the sums)

whence comparing with the second equation in (1.13) we obtain the desired
result:

wj =
N∑

i=1

Aji vi . (1.14)
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To visualise this equation, let us arrange the components {vi} and {wj} of v
and w as ‘column vectors’ v and w, and the real numbers Aji as an M ×N
matrix A. Then equation (1.14) can be written as

w = A v ,

or explicitly as


w1

w2
...

wM


 =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN







v1

v2
...

vN


 .

Therefore the matrix

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN




represents the linear map A : V→ W relative to the bases {ei} and {f j} of V
and W. It is important to stress that the linear map A is more fundamental
than the matrix A. If we choose different basis, the matrix for the linear map
will change (we will see this in detail below), but the map itself does not.
However if we fix bases for V and W, then there is a one-to-one correspondence
between linear maps V→ W and M ×N matrices.

�� The commuting square: linear maps to matrices...

We saw in Section 1.2.4 that the space L(V,W) of linear maps V→ W is
a vector space in its own right. How are the operations of vector addition
and scalar multiplication defined for the matrices? It turns out that they
are defined entry-wise as for real numbers. Let us see this. The matrix
corresponding to the sum of two linear maps A and A′ is given by

(A + A′)(ei) =
M∑

j=1

(A + A′)ji f j .

On the other hand, from equation (1.6) we have that

(A + A′)(ei) = A(ei) + A′(ei)

=
M∑

j=1

Aji f j +
M∑

j=1

A′
ji f j

=
M∑

j=1

(
Aji + A′

ji

)
f j .

24



Therefore we see that the matrix of the sum is the sum of the matrices:

(A + A′)ji = Aji + A′
ji ;

or in other words, the sum of two matrices is performed entry-by-entry:




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN


 +




A′
11 A′

12 · · · A′
1N

A′
21 A′

22 · · · A′
2N

...
...

...
A′

M1 A′
M2 · · · A′

MN




=




A11 + A′
11 A12 + A′

12 · · · A1N + A′
1N

A21 + A′
21 A22 + A′

22 · · · A2N + A′
2N

...
...

...
AM1 + A′

M1 AM2 + A′
M2 · · · AMN + A′

MN


 .

Similarly, scalar multiplication is also performed entry-by-entry. If λ ∈ R is
a scalar and A is a linear map, then on the one hand we have

(λA)(ei) =
M∑

j=1

(λA)ji f j ,

but from equation (1.7) we have that

(λ A)(ei) = λA(ei)

= λ

M∑
j=1

Aji f j

=
M∑

j=1

λ Aji f j ,

so that the matrix of λ A is obtained from the matrix of A by multiplying
each entry by λ:

(λA)ji = λAji ;

explicitly,

λ




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN


 =




λ A11 λA12 · · · λA1N

λ A21 λA22 · · · λA2N
...

...
...

λAM1 λAM2 · · · λAMN


 .
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The vector space of M ×N matrices has a ‘canonical’ basis given by the
matrices Eji all of whose entries are zero except for the entry sitting in the
intersection of the jth column and the ith row, which is 1. They are clearly
linearly independent and if A is any matrix with entries Aji then

A =
N∑

i=1

M∑
j=1

AjiEji ,

so that their span is the space of all M × N matrices. Therefore they form
a basis for this space. The matrices Eji are known as elementary matrices.
Clearly there are M N such matrices, whence the dimension of the space of
M ×N matrices, and hence of L(V,W), is M N as claimed in equation (1.8).

Now consider a third vector space U of dimension P and with basis
{g1, g2, . . . , gP}. Then a linear map B : U → V will be represented by
an N × P matrix

B =




B11 B12 · · · B1P

B21 B22 · · · B2P
...

...
...

BN1 BN2 · · · BNP




relative to the chosen bases for U and V; that is,

B(gk) =
N∑

i=1

Bik ei . (1.15)

The composition A◦B : U→ W will now be represented by an M×P matrix
whose entries Cjk are given by

(A ◦B)(gk) =
M∑

j=1

Cjk f j . (1.16)

The matrix of A ◦B can be expressed in terms of the matrices A and B. To
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see this, let us compute

(A ◦B)(gk) = A(B(gk)) (by equation (1.2))

= A

(
N∑

i=1

Bik ei

)
(by equation (1.15))

=
N∑

i=1

Bik A(ei) (since A is linear)

=
N∑

i=1

Bik

M∑
j=1

Aji f j (by equation (1.12))

=
M∑

j=1

(
N∑

i=1

Aji Bik

)
f j . (rearranging sums)

Therefore comparing with equation (1.16) we see that

Cjk =
N∑

i=1

Aji Bik , (1.17)

which is nothing else but matrix multiplication:




C11 C12 · · · C1P

C21 C22 · · · C2P
...

...
...

CM1 CM2 · · · CMP




=




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AM1 AM2 · · · AMN







B11 B12 · · · B1P

B21 B22 · · · B2P
...

...
...

BN1 BN2 · · · BNP


 .

In other words,

the matrix of A ◦B is the matrix product A B.

Let us consider now linear transformations L(V) of an N -dimensional vec-
tor space V with basis {e1, e2, . . . , eN}. Matrices representing linear trans-
formations V → V are now a square N × N matrices. We can add them
and multiply them as we do real numbers, except that multiplication is not
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commutative: for two matrices A and B one has that, in general, AB 6= BA.
Let A be an N ×N matrix. If there exists another matrix B which obeys

A B = B A = I

where I is the identity matrix, then we say that A is invertible. Its inverse
B is written A−1. A matrix which is not invertible is called singular. Clearly
a matrix is singular if and only if its determinant is zero.

A useful fact is that a matrix is invertible if and only if its determinant
is different from zero. This allows us to show that the product of invertible
elements is again invertible. To see this notice that the determinant of a
product is the product of the determinants:

det(A B) = det A det B , (1.18)

and that this is not zero because neither are det A nor det B. In fact, the
inverse of a product A B is given by

(A B)−1 = B−1 A−1 . (1.19)

(Notice the order!)

�� Matrices, just like L(V), form an associative algebra with identity. The algebra of N ×N
real matrices is denoted MatN (R). The invertible elements form a group, which is denoted
GLN (R), the general linear group of RN .

1.2.6 Change of basis

We mentioned above that a linear map is more fundamental than the matrix
representing it relative to a chosen basis, for the matrix changes when we
change the basis but the linear map remains unchanged. In this Section
we will explore how the matrix of a linear map changes as we change the
basis. We will restrict ourselves to linear transformations, but the results
here extend straightforwardly to linear maps between different vector spaces.

Let V be an N -dimensional vector space with basis {ei}, and let A : V→ V
be a linear transformation with matrix A relative to this basis. Let {e′i} be
another basis. We want to know what the matrix A′ representing A relative
this new basis is. By definition, the matrix A′ has entries A′

ji given by

A(e′i) =
N∑

j=1

A′
ji e

′
j . (1.20)
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Because {ei} is a basis, we can express each element e′i of the primed basis
in terms of them:

e′i =
N∑

j=1

Sji ej , (1.21)

for some N2 numbers Sji. We have written this equation in such a way
that it looks as if Sji are the entries of a matrix. This is with good reason.
Let S : V → V be the linear transformation defined by S(ei) = e′i for
i = 1, 2, . . . , N . Then using the explicit expression for e′i we see that

S(ei) =
N∑

j=1

Sji ej ,

so that Sji are indeed the entries of a matrix S relative to the basis {ei}.
We can compute both sides of equation (1.20) separately and compare. The
right-hand side gives

A(e′i) = A

(
N∑

j=1

Sji ej

)
(by equation (1.21))

=
N∑

j=1

Sji A(ej) (since A is linear)

=
N∑

j=1

Sji

N∑

k=1

Akj ek (by equation (1.12))

=
N∑

k=1

N∑
j=1

AkjSji ek . (rearranging sums)

On the other hand, the left-hand side gives

N∑
j=1

A′
ji e

′
j =

N∑
j=1

A′
ji

N∑

k=1

Skj ek (by equation (1.21))

=
N∑

k=1

N∑
j=1

SkjA
′
ji ek . (rearranging sums)

Comparing the two sides, we see that

N∑
j=1

AkjSji =
N∑

j=1

SkjA
′
ji ,
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or in terms of matrices,
A S = S A′ . (1.22)

Now, S is invertible. To see this use the fact that because {e′i} is also a
basis, we can write each ei in terms of the {e′i}:

ei =
N∑

j=1

Tji e
′
j . (1.23)

By the same argument as above, the N2 numbers Tji are the entries of a ma-
trix which, relative to the primed basis, represents the linear transformation
T : V → V defined by T (e′i) = ei. The linear transformations S and T are
mutual inverses:

S(T (e′i)) = S(ei) = e′i and T (S(ei)) = T (e′i) = ei ,

so that T ◦ S = S ◦ T = 1; or in other words, T = S−1.
Therefore, we can multiply both sides of equation (1.22) by S−1 on the

left to obtain

A′ = S−1 A S . (1.24)

The operation above taking A to A′ is called conjugation by S. One says
that the matrices A and A′ are conjugate. (This is not be confused with the
notion of complex conjugation.)

� Change of basis for linear maps.

1.2.7 Matrix invariants

Certain properties of square matrices do not change when we change the
basis; one says that they are invariants of the matrix or, more precisely, of
the linear map that the matrix represents.

For example, the determinant is one such invariant. This can be seen
by computing the determinant to both sides of equation (1.24) and using
equation (1.18), to obtain that det A′ = det A. This implies that also the
property of being invertible is invariant.

Another invariant is the trace of a matrix, defined as the sum of the
diagonal elements, and written tr A. Explicitly, if A is given by

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN
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then its trace tr A is given by

tr A =
N∑

i=1

Aii = A11 + A22 + · · ·+ ANN . (1.25)

A matrix whose trace vanishes is said to be traceless.
The fact that the trace is indeed an invariant, will follow from some

fundamental properties of the trace, which we discuss now. The trace satisfies
the following property:

tr (A B) = tr (B A) . (1.26)

� Let us prove this. Let A, B : V→ V be linear maps with matrices A and B relative to some
fixed basis. The matrix product AB is the matrix of the composition A ◦ B. Computing
the trace of the product, using equations (1.17) and (1.25), we find

tr (AB) =
NX

i=1

NX

j=1

Aij Bji

=
NX

j=1

NX

i=1

Bji Aij (rearranging the sums)

=
NX

i=1

NX

j=1

Bij Aji (relabelling the sums)

= tr (B A) .

The fact which allows us to relabel the summation indices is known as the Shakespeare
Theorem: “a dummy index by any other name...” The modern version of this theorem is
due to Gertrude Stein: “a dummy index is a dummy index is a dummy index.”

It follows from equation (1.26) that

tr (A B C) = tr (C A B) = tr (B C A) , (1.27)

which is often called the cyclic property of the trace. Using this property and
computing the trace to both sides of equation (1.24), we see that tr A′ = tr A,
as claimed. Notice that the trace of the identity N ×N matrix I is tr I = N .

� Because the trace is an invariant, it actually defines a function on the vector space of linear
maps L(V). The trace of a linear map A : V→ V is defined as the trace of any matrix of A
relative to some basis. Invariance says that it does not depend on which basis we choose
to compute it with respect to. As a function tr : L(V) → R, the trace is actually linear. It
is an easy exercise to prove that

tr(A + B) = tr A + trB and tr(λ A) = λ trA .
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There are other properties of a matrix which are not invariant under
arbitrary change of basis; but are nevertheless important. For example, given
a matrix A let its transpose, denoted At, be the matrix whose (i, j) entry
equals the (j, i) entry of A. Explicitly,

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN


 ⇒ At =




A11 A21 · · · AN1

A12 A22 · · · AN2
...

...
. . .

...
A1N A2N · · · ANN


 .

In other words, At is obtained from A by reflecting the matrix on the main
diagonal, and because reflection is an involution, it follows that

(
At

)t
= A . (1.28)

It follows from the expression for At that the diagonal entries are not changed,
and hence that

tr At = tr A . (1.29)

It is also easy to see that

(A B)t = Bt At (1.30)

and also that

(A + B)t = At + Bt and (λA)t = λAt . (1.31)

From the former equation it follows that

(
A−1

)t
=

(
At

)−1
. (1.32)

A less obvious identity is

det At = det A , (1.33)

which follows from the fact that the row expansion of the determinant of At is
precisely the column expansion of the determinant of A. A matrix is said to
be symmetric if At = A. It is said to be antisymmetric or skew-symmetric
if At = −A. Notice that an antisymmetric matrix is traceless, since

tr A = tr At = tr(−A) = − tr A .
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The converse is of course false: a traceless matrix need not be antisymmetric.
Generic matrices are neither symmetric nor antisymmetric, yet any ma-

trix is the sum of a symmetric matrix and an antisymmetric matrix. Indeed,
adding and subtracting 1

2
At in a clever way, we see that

A = 1
2

(
A + At

)
+ 1

2

(
A− At

)
.

But now, using equations (1.28) and (1.31), we see that 1
2
(A+At) is symmetric

and 1
2
(A− At) antisymmetric.

A matrix O is said to be orthogonal if its transpose is its inverse:

Ot O = O Ot = I .

� The property of being symmetric or antisymmetric is not invariant under arbitrary changes
of basis, but it will be preserved under certain types of changes of basis, e.g., under
orthogonal changes of basis.

1.3 Inner products

Vectors in physics are usually defined as objects which have both a mag-
nitude and a direction. In that sense, they do not quite correspond to the
mathematical notion of a vector as we have been discussing above. In our de-
finition of an abstract vector space as in the discussion which followed, there
is no mention of how to compute the magnitude of a vector. In this section
we will remedy this situation. Geometrically the magnitude of a vector is
simply its length. If we think of vectors as displacement, the magnitude is
the distance away from the origin. In order to define distance we will need
to introduce an inner product or scalar product , as it is often known.

1.3.1 Norms and inner products

Let us start by considering displacements in the plane. The length ‖v‖ of the
displacement v = (v1, v2) is given by the Pythagorean theorem: ‖v‖2 = v2

1 +
v2

2. This length obeys the following properties which are easily verified. First
of all it is a non-negative quantity ‖v‖2 ≥ 0, vanishing precisely for the zero
displacement 0 = (0, 0). If we rescale v by a real number λ: λv = (λ v1, λ v2),
its length rescales by the absolute value of λ: ‖λ v‖ = |λ| ‖v‖. Finally, the
length obeys the so-called triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖. This
is obvious pictorially, since the shortest distance between two points in the
plane is the straight line which joins them. In any case we will prove it later
in much more generality.
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Now consider RN . We can define a notion of length by generalising slightly
what was done above: if (v1, v2, . . . , vN) ∈ RN , then define its length by

‖(v1, v2, . . . , vN)‖ =
√

v2
1 + v2

2 + · · ·+ v2
N .

It again satisfies the same three properties described above.
We can formalise this into the notion of a norm in a vector space. By a

norm in a real vector space V we mean a function ‖ · ‖ : V → R assigning
a real number to every vector in V in such a way that the following three
properties are satisfied for every vector v and w and every scalar λ:

N1 ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0;

N2 ‖λ v‖ = |λ| ‖v‖; and

N3 (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖.
The study of normed vector spaces is an important branch of modern

mathematics (cf., one of the 1998 Fields Medals). In physics, however, it is
fair to say that the more important notion is that of an inner product. If a
norm allows us to calculate lengths, an inner product will allow us to also
calculate angles.

Consider again the case of displacements in two dimensions, or equiva-
lent R2. Let us define now a function which assigns a real number to two
displacements v = (v1, v2) and w = (w1, w2):

〈v,w〉 := v1 w1 + v2 w2 .

This is usually called the dot product and is written v ·w. We will not use
this notation.

Clearly, 〈v, v〉 = ‖v‖2, so that this construction also incorporates a norm.
If we write the displacements using polar coordinates: v = ‖v‖ (cos θ1, sin θ1)
and similarly for w = ‖w‖ (cos θ2, sin θ2), then we can compute:

〈v,w〉 = ‖v‖ ‖w‖ cos (θ1 − θ2) . (1.34)

In other words, 〈·, ·〉 is essentially the angle between the two displacements.
More generally we can consider RN and define its dot product as follows. If
v = (v1, v2, . . . , vN) and w = (w1, w2, . . . , wN), then

〈v,w〉 :=
N∑

i=1

vi wi = v1 w1 + v2 w2 + · · ·+ vN wN .
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The dot product satisfies the following properties. First of all it is symmetric:
〈v,w〉 = 〈w, v〉. It is also linear in the right-hand slot: 〈v,w + w〉 =
〈v,w〉+ 〈v, w〉 and 〈v, λ w〉 = λ 〈v,w〉; and using the symmetry also in the
left-hand slot. It is also important that the function ‖v‖ :=

√
〈v,v〉 is a

norm. The only non-obvious thing is to prove the triangle inequality for the
norm, but we will do this below in all generality. The vector space RN with
the dot product defined above is called N-dimensional Euclidean space,
and is denoted EN . As a vector space, of course, EN = RN , but EN serves to
remind us that we are talking about the vector space with the dot product.
Notice that in terms of column vectors:

v =




v1

v2
...

vN


 and w =




w1

w2
...

wN


 ,

the dot product is given by

〈v, w〉 = vt w =
(
v1 v2 · · · vN

)



w1

w2
...

wN


 =

N∑
i=1

vi wi .

More generally, we define an inner product (or scalar product) on a real
vector space V to be a function 〈·, ·〉 : V × V → R taking pairs of vectors to
real numbers and obeying the following axioms:

IP1 〈v,w〉 = 〈w,v〉;
IP2 〈u, λ v + µ w〉 = λ 〈u,v〉+ µ 〈u,w〉; and

IP3 ‖v‖2 = 〈v,v〉 > 0 for all v 6= 0.

Notice that IP1 and IP2 together imply that 〈λ u + µ v, w〉 = λ 〈u,w〉+
µ 〈v,w〉.

Let {ei} be a basis for V. Because of IP1 and IP2, it is enough to know
what the inner product of any two basis elements is to be know what it is on
any two vectors. Indeed, let v =

∑N
i=1 vi ei and w =

∑N
i=1 wi ei be any two

vectors. Then their inner product is given by

〈v, w〉 = 〈
N∑

i=1

vi ei,

N∑
j=1

vj ej〉

=
N∑

i,j=1

vi wj 〈ei, ej〉 . (using IP1,2)
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In other words, all we need to know in order to compute this are the real
numbers Gij := 〈ei, ej〉. These can be thought of as the entries of a matrix G.
If we think of v as a column vector v in RN whose entries are the components
of v relative to the basis {ei}, and the same for w, we can compute their
inner product using matrix multiplication:

〈v,w〉 = vt G w .

The matrix G is not arbitrary. First of all from IP1 it follows that it is
symmetric:

Gij = 〈ei, ej〉 = 〈ej, ei〉 = Gji .

Furthermore IP3 imposes a strong condition known as positive-definiteness.
We will see at the end of this section what this means explicitly. Let us
simply mention that IP3 implies that the only vector which is orthogonal
to all vectors is the zero vector. This condition is weaker than IP3. It is
often desirable to relax IP3 in terms of this condition. Such inner products
are called non-degenerate. Non-degeneracy means that the matrix G is
invertible, so that its determinant is non-zero.

Here comes a point which confuses many people, so pay attention! Both
inner products and linear transformations are represented by matrices rel-
ative to a basis, but they are very different objects. In particular, they
transform different under a change of basis and this means that even if the
matrices for a linear transformation and an inner product agree numerically
in a given basis, they will generically not agree with respect to a different
basis. Let us see this in detail. Let {e′i} be a new basis, with e′i = S(ei) for
some linear transformation S. Relative to {ei} the linear transformation S
is represented by a matrix S with entries Sji given by equation (1.21). Let G′

denote the matrix describing the inner product in the new basis: its entries
G′

ij are given by

G′
ij = 〈e′i, e′j〉 (by definition)

= 〈
N∑

k=1

Ski ek,

N∑

l=1

Slj el〉 (by equation (1.21))

=
N∑

k,l=1

Ski Slj 〈ek, el〉 (using IP1,2)

=
N∑

k,l=1

Ski Gkl Slj .
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In other words,

G′ = St G S , (1.35)

to be contrasted with the analogous formula (1.24) for the behaviour of the
matrix of a linear transformation under a change of basis.

� Notice, however, that under an orthogonal change of basis, so that S−1 = St, then both
inner products and linear maps transform the same way.

1.3.2 The Cauchy–Schwartz and triangle inequalities

In this section we prove that ‖v‖ =
√
〈v,v〉 is indeed a norm. Because

axioms N1 and N2 are obvious from the axioms of the inner product, all we
really need to prove is the triangle inequality. This inequality will follow
trivially from another inequality called the Cauchy–Schwartz inequality, and
which is itself quite useful. Consider equation (1.34). Because the cosine
function obeys | cos θ| ≤ 1, we can deduce an inequality from equation (1.34).
Namely that for any two displacements v and w in the plane,

|〈v,w〉| ≤ ‖v‖ ‖w‖ ,

with equality if and only if the angle between the two displacements is zero;
in other words, if the displacements are collinear. The above inequality
is called the two-dimensional Cauchy–Schwartz inequality. This inequality
actually holds in any vector space with an inner product (even if it is infinite-
dimensional).

Let v and w be any two vectors in a vector space V with an inner product
〈·, ·〉. Let λ be a real number and let us consider the following inequality:

0 ≤ ‖v − λ w‖2

= 〈v − λ w,v − λw〉 (by definition)

= ‖v‖2 + ‖λ w‖2 − 2〈v, λ w〉 (expanding and using IP1,2)

= ‖v‖2 + λ2‖w‖2 − 2λ 〈v, w〉 . (using IP2)

Now we want to make a clever choice of λ which allows us to partially cancel
the last two terms against each other. This way we can hope to get an
inequality involving only two terms. The clever choice of λ turns out to be
λ = 〈v,w〉/‖w‖2. Inserting this into the above equation and rearranging the
terms a little, we obtain the following inequality

‖v‖2 ≥ 〈v,w〉2
‖w‖2

.

37



Taking the (positive) square root and rearranging we arrive at the Cauchy–
Schwartz inequality:

|〈v,w〉| ≤ ‖v‖ ‖w‖ . (1.36)

The triangle inequality now follows easily. Let us expand ‖v + w‖2 as
follows:

‖v + w‖2 = 〈v + w,v + w〉
= ‖v‖2 + ‖w‖2 + 2〈v, w〉 (using IP1,2)

≤ ‖v‖2 + ‖w‖2 + 2|〈v,w〉| (since x ≤ |x|)
≤ ‖v‖2 + ‖w‖2 + 2‖v‖ ‖w‖ (using Cauchy–Schwartz)

= (‖v‖+ ‖w‖)2 .

Taking the (positive) square root we arrive at the triangle inequality:

‖v + w‖ ≤ ‖v‖+ ‖w‖ . (1.37)

1.3.3 Orthonormal bases and Gram–Schmidt

Throughout this section we will let V be an N -dimensional real vector space
with an inner product 〈·, ·〉.

We say that two vectors v and w are orthogonal (written v ⊥ w) if their
inner product vanishes: 〈v,w〉 = 0. Any nonzero vector can be normalised
to have unit norm simply dividing by its norm: v/‖v‖ has unit norm. A
basis {ei} is said to be orthonormal if

〈ei, ej〉 = δij :=

{
1 if i = j

0 otherwise.
(1.38)

In other words, the basis elements in an orthonormal basis are mutually
orthogonal and are normalised to unit norm. Notice that the matrix rep-
resenting the inner product relative to an orthonormal basis is the identity
matrix.

The components of a vector v relative to an orthonormal basis {ei} are
very easy to compute. Let v =

∑N
i=1 vi ei, and take its inner product with
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ej:

〈ej,v〉 = 〈ej,

N∑
i=1

vi ei〉

=
N∑

i=1

vi 〈ej, ei〉 (using IP2)

= vj . (using equation (1.38))

This shows that orthonormal vectors are automatically linearly independent.
Indeed, suppose that {ei} are orthonormal vectors. Then suppose that a
linear combination is the zero vector:

∑
i

λi ei = 0 .

Taking the inner product of both sides of this equality with ej we find, on
the left-hand side λj and on the right-hand side 0, hence λj = 0 and thus the
{ei} are linearly independent.

We now discuss an algorithmic procedure by which any basis can be
modified to yield an orthonormal basis. Let {f i} be any basis whatsoever
for V. We will define iteratively a new basis {ei} which will be orthonormal.
The procedure starts as follows. We define

e1 =
f 1

‖f 1‖
,

which has unit norm by construction. We now define e2 starting from f 2

but making it orthogonal to e1 and normalising it to unit norm. A moment’s
thought reveals that the correct definition is

e2 =
f 2 − 〈f 2, e1〉 e1

‖f 2 − 〈f 2, e1〉 e1‖ .

It has unit norm by construction, and it is clearly orthogonal to e1 because

〈f 2 − 〈f 2, e1〉, e1〉 = 〈f 2, e1〉 − 〈f 2, e1〉 ‖e1‖2 = 0 .

We can continue in this fashion and at each step define ei as f i + · · · di-
vided by its norm, where the omitted terms are a linear combination of the
{e1, e2, . . . , ei−1} defined in such a way that the ei is orthogonal to them.
For a finite-dimensional vector space, this procedure stops in a finite time
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and we are left with an orthonormal basis {ei}. The general formulae for the
ei is

ei =
f i −

∑i−1
j=1〈f i, ej〉 ej

‖f i −
∑i−1

j=1〈f i, ej〉 ej‖
. (1.39)

Notice that this formula is recursive: it defines ei in terms of f i and the
{ej<i}.

� Studying this formula we see that each ei is a linear combination

ei =
iX

j=1

Sjifj , (1.40)

where Sii is positive, since it is given by Sii = 1/‖f i + · · · ‖. Now let S be the linear
transformation defined by S(f i) = ei. Relative to the original basis {f i}, S has a matrix
S with entries Sji defined by

ei =
NX

j=1

Sji fj .

Comparing with equation (1.40) we see that Sji = 0 for j > i, so that all the entries of
S below the main diagonal are zero. We say that S is upper triangular. The condition
Sii > 0 says that the diagonal entries are positive.

We can turn equation (1.39) around and notice that f i is in turn given as a linear combi-
nation of {ej≤i}. The linear transformation T defined by f i = T (ei), which is the inverse
of S, has a matrix T relative to the {ei} basis which is also upper triangular with positive
entries on the main diagonal. Now the matrix G with entries Gij = 〈f i, fj〉 representing
the inner product on the {f i} basis, is now given by

G = Tt T .

In other words, since the {f i} were an arbitrary basis, G is an arbitrary matrix representing
an inner product. We have learned then that this matrix can always be written as a
“square” Tt T, where T is an upper triangular matrix with positive entries in the main
diagonal.

1.3.4 The adjoint of a linear transformation

Throughout this section we will let V be an N -dimensional real vector space
with an inner product 〈·, ·〉.

Let A : V → V be a linear transformation. A linear transformation is
uniquely defined by its matrix elements 〈A(v),w〉. Indeed, if A′ is another
linear transformation with 〈A′(v),w〉 = 〈A(v),w〉 for all v and w, then we
claim that A = A′. To see this notice that

0 = 〈A′(v), w〉 − 〈A(v),w〉
= 〈A′(v)− A(v),w〉 . (using IP1,2)
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Since this is true for all w, it says that the vector A′(v)−A(v) is orthogonal
to all vectors, and in particular to itself. Therefore it has zero norm and by
IP3 it is the zero vector. In other words, A′(v) = A(v) for all v, which means
that A = A′.

Given a linear transformation A : V → V we define its adjoint relative
to the inner product, as the linear transformation A† : V → V with matrix
elements

〈A†(v),w〉 = 〈v, A(w)〉 . (1.41)

The adjoint operation obeys several properties. First of all, taking adjoint
is an involution:

A†† = A . (1.42)

Moreover it is a linear operation

(λA + µB)† = λA† + µB† , (1.43)

which reverses the order of a composition:

(A ◦B)† = B† ◦ A† . (1.44)

� These properties are easily proven. The method of proof consists in showing that both
sides of each equation have the same matrix elements. For example, the matrix elements
of the double adjoint A†† are given by

〈A††(v), w〉 = 〈v, A†(w)〉 (by equation (1.41))

= 〈A†(w), v〉 (by IP1)

= 〈w, A(v)〉 (by equation (1.41))

= 〈A(v), w〉 ; (by IP1)

whence they agree with the matrix elements of A.

Similarly, the matrix elements of (λ A + µ B)† are given by

〈(λ A + µ B)†(v), w〉 = 〈v, (λ A + µ B)(w)〉 (by equation (1.41))

= λ 〈v, A(w)〉+ µ 〈v, B(w)〉 (using IP2)

= λ 〈A†(v), w〉+ µ 〈B†(v), w〉 (by equation (1.41))

= 〈(λ A† + µ B†)(v), w〉 , (using IP1,2)

which agree with the matrix elements of λ A† + µ B†.

Finally, the matrix elements of (A ◦B)† are given by

〈(A ◦B)†(v), w〉 = 〈v, (A ◦B)(w)〉 (by equation (1.41))

= 〈v, A(B(w))〉 (by equation (1.2))

= 〈A†(v), B(w)〉 (by equation (1.41))

= 〈B†(A†(v)), w〉 (by equation (1.41))

= 〈(B† ◦A†)(v), w〉 , (by equation (1.2))

which agree with the matrix elements of B† ◦A†.
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A linear transformation is said to be symmetric if A† = A. It is said to be
orthogonal if A† ◦A = A◦A† = 1. In particular, orthogonal transformations
preserve inner products:

〈A(v), A(w)〉 = 〈v, A†(A(w))〉 (by equation (1.41))

= 〈v, (A† ◦ A)(w)〉 (by equation (1.2))

= 〈v, w〉 . (since A is orthogonal)

� Notice that in the above we only used the condition A† ◦ A = 1 but not A ◦ A† = 1. In
a finite-dimensional vector space one implies the other, but in infinite dimensional vector
spaces it may happen that a linear transformation which preserves the inner product obeys
A† ◦A = 1 but does not obey A ◦A† = 1. (Maybe an example?)

To justify these names, notice that relative to an orthonormal basis the
matrix of a symmetric transformation is symmetric and the matrix of an
orthogonal transformation is orthogonal, as defined in Section 1.2.7. This
follows because the matrix of the adjoint of a linear transformation is the
transpose of the matrix of the linear transformation.

Let us prove this. Let {ei} be an orthonormal basis and let A : V→ V be
a linear transformation. The matrix A of A relative to this basis has entries
Aij defined by

A(ei) =
N∑

j=1

Aji ej .

The entries Aij are also given by matrix elements:

〈A(ei), ej〉 = 〈
N∑

k=1

Aki ek, ej〉

=
N∑

k=1

Aki 〈ek, ej〉 (using IP1,2)

= Aji . (using equation (1.38))

In other words, relative to an orthonormal basis, we have the following useful
formula:

Aij = 〈ei, A(ej)〉 . (1.45)

From this it follows that the matrix of the adjoint A† relative to this basis
is given by At. Indeed,

A†
ij = 〈A†(ej), ei〉

= 〈ej, A(ei)〉 (using equation (1.41))

= 〈A(ei), ej〉 (using IP1)

= Aji .
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Therefore if A† = A, then A = At, and the matrix is symmetric. Similarly, if
A ◦ A† = A† ◦ A = 1, then At A = A At = I, and the matrix is orthogonal.

Notice that equations (1.42), (1.43) and (1.44) for the linear transforma-
tions are now seen to be consequences of equations (1.28), (1.31) and (1.30)
applied to their matrices relative to an orthonormal basis.

1.3.5 Complex vector spaces

Much of what we have been saying about vector spaces remains true if we
substitute the scalars and instead of real numbers consider complex numbers.
Only the notion of an inner product will have to be changed in order for it to
become useful. Inner products on complex vector spaces will be the subject
of the next section; in this one, we want to emphasise those aspects of vectors
spaces which remain unchanged when we extend the scalars from the real to
the complex numbers.

As you know, complex numbers themselves can be understood as a real
vector space of dimension two; that is, as R2. If z = x + i y is a complex
number with x, y real and i =

√−1, then we can think of z as the pair
(x, y) ∈ R2. Addition of complex numbers corresponds to vector addition in
R2. Indeed, if z = x + i y and w = u + i v then z + w = (x + u) + i (y + v),
which is precisely what we expect from the vector addition (x, y) + (u, v) =
(x + u, y + v). Similarly, multiplication by a real number λ corresponds to
scalar multiplication in R2. Indeed, λ z = (λx)+i (λ y), which is in agreement
with λ (x, y) = (λx, λ y). However the complex numbers have more structure
than that of a mere vector space. Unlike vectors in a general vector space,
complex numbers can be multiplied: if z = x + i y and w = u + i v, then
zw = (xu− yv) + i (xv + yu). Multiplication is commutative: wz = zw.

� In a sense, complex numbers are more like matrices than vectors. Indeed, consider the
2× 2 matrices of the form �

a −b
b a

�
.

If we take the matrix product

�
x −y
y x

� �
u −v
v u

�
=

�
xu− yv −(xv + yu)
xv + yu xu− yv

�
,

we see that we recover the multiplication of complex numbers. Notice that the complex
number i is represented by the matrix

J =

�
0 −1
1 0

�
,

which obeys J2 = −I.

A real matrix J obeying J2 = −I is called a complex structure.
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We now briefly review some basic facts about complex numbers. Although
you should be familiar with the following concepts, I will briefly review them
here just to set the notation. As we have seen complex number can be added
and multiplied. So far that is as with the real numbers, but in addition
there is a notion of complex conjugation: z = x + i y 7→ z∗ = x − i y.
Clearly conjugation is an involution: (z∗)∗ = z. It also obeys (zw)∗ = z∗w∗.
A complex number z is said to be real if it is invariant under conjugation:
z∗ = z. Similarly a complex number is said to be imaginary if z∗ = −z.
Given z = x + i y, z is real if and only if y = 0, whereas z is imaginary if
and only if x = 0. If z = x + i y, x is said to be the real part of z, written
x = Re z, and y is said to be the imaginary part of z, written y = Im z.
Notice that the imaginary part of a complex number is a real number, not
an imaginary number! Given a complex number z, the product zz∗ is real:
(zz∗)∗ = zz∗. It is written |z|2 and it is called the modulus of z. If z = x+i y,
then |z|2 = x2 + y2, which coincides with the squared norm ‖(x, y)‖2 of the
corresponding vector in the plane. Notice that the modulus is multiplicative:
|zw| = |z||w| and invariant under conjugation: |z∗| = |z|.

After this flash review of complex numbers, it is possible to define the
notion of a complex vector space. There is really very little to do. Every-
thing that was said in Sections 1.1 and 1.2 still holds provided we replace
real with complex everywhere. An abstract complex vector space satisfies
the same axioms, except that the scalars are now complex numbers as op-
posed to real numbers. Vector subspaces work the same way. Bases and
linear independence also work in the same way, linear combinations be-
ing now complex linear combinations. The canonical example of a com-
plex vector space is CN , the set of ordered N -tuples of complex numbers:
(z1, z2, . . . , zN), with the operations defined slot-wise as for RN . The canoni-
cal basis {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} still spans CN , but where
we now take complex linear combinations. As a result CN has (complex)
dimension N . If we only allowed ourselves to take real linear combina-
tions, then in order to span CN we would need in addition the N vec-
tors {(i, 0, . . . , 0), (0, i, . . . , 0), . . . , (0, 0, . . . , i)}, showing that as a real vector
space, CN is 2N -dimensional.

Linear maps and linear transformations are now complex linear and ma-
trices and column vectors now have complex entries instead of real entries.
Matrix invariants like the trace and the determinant are now complex num-
bers instead of real numbers. There is one more operation we can do with
complex matrices, and that is to take complex conjugation. If A is a complex
N ×M matrix, then A∗ is the N ×M matrix whose entries are simply the
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complex conjugates of the entries in A. Clearly, for square matrices,

det(A∗) = (det A)∗ and tr(A∗) = (tr A)∗ .

The only significant difference between real and complex vector spaces is
when we introduce inner products, which we do now.

1.3.6 Hermitian inner products

We motivated the introduction of inner products as a way to measure, in
particular, lengths of vectors. The need to compute lengths was motivated
in turn by the fact that the vectorial quantities used in physics have a mag-
nitude as well as a direction. Magnitudes, like anything else that one ever
measures experimentally, are positive (or at least non-negative) real num-
bers. However if were to simply extend the dot product from RN to CN , we
would immediately notice that for z = (z1, z2, . . . , zN) ∈ CN , the dot product
with itself

z · z =
N∑

i=1

zizi ,

gives a complex number, not a real number. Hence we cannot understand
this as a length. One way to generate a positive real number is to define the
following inner product on CN :

〈z,w〉 =
N∑

i=1

z∗i wi ,

where z = (z1, z2, . . . , zN) and w = (w1, w2, . . . , wN). It is then easy to see
that now

〈z,z〉 =
N∑

i=1

z∗i zi =
N∑

i=1

|zi|2 ,

so that this is a non-negative real number, so that it can be interpreted as
a norm. The above inner product obeys the following property, in contrast
with the dot product in RN : it is not symmetric, so rather than IP1 it obeys
〈z,w〉 = 〈w,z〉∗.

This suggests the following definition. A complex valued function 〈·, ·〉 :
V× V→ C taking pairs of vectors to complex numbers is called a hermitian
inner product if the following axioms are satisfied:

HIP1 〈z,w〉 = 〈w,z〉∗;
HIP2 〈x, λ z + µ w〉 = λ 〈x,z〉+ µ 〈x,w〉; and
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HIP3 ‖z‖2 = 〈z,z〉 > 0 for all z 6= 0,

where here λ and µ are complex scalars.
Except for the fact that 〈·, ·〉 is a complex function, the only obvious

difference is HIP1. Using HIP1 and HIP2 we see that

〈λz + µ w,x〉 = 〈x, λ z + µ w〉∗ (by HIP1)

= (λ 〈x, z〉+ µ 〈x, w〉)∗ (by HIP2)

= λ∗ 〈x,z〉∗ + µ∗ 〈x, w〉∗
= λ∗ 〈z, x〉+ µ 〈w,x〉 , (using HIP1)

so that 〈·, ·〉 is complex linear in the second slot but only conjugate linear
in the first. One says that hermitian inner products are sesquilinear, which
means ‘one and a half’ linear.

Just as in the real case, the inner product of any two vectors is determined
by the matrix of inner products relative to any basis. Let {ei} be a basis for
V. Let v =

∑N
i=1 vi ei and w =

∑N
i=1 wi ei be any two vectors. Then their

inner product is given by

〈v,w〉 = 〈
N∑

i=1

vi ei,

N∑
j=1

vj ej〉

=
N∑

i,j=1

v∗i wj 〈ei, ej〉 . (using HIP1,2)

In other words, all we need to know in order to compute this are the complex
numbers Hij := 〈ei, ej〉, which can be thought of as the entries of a matrix H.
If we think of v as a column vector v in CN whose entries are the components
of v relative to the basis {ei}, and the same for w, we can compute their
inner product using matrix multiplication:

〈v, w〉 = (v∗)t H w .

We saw in the real case that the analogues matrix there was symmetric
and positive-definite, reflecting the similar properties of the inner product.
In the complex case, we expect that H should still be positive-definite but
that instead of symmetry it should obey a property based on HIP1. Indeed,
it follows from HIP1 that

Hij = 〈ei, ej〉 = 〈ej, ei〉∗ = H∗
ji .

This means that the matrix H is equal to its conjugate transpose:

H = (H∗)t . (1.46)
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Such matrices are called hermitian. Property HIP3 means that H is positive-
definite, so that in particular it is non-degenerate.

Let us see how H transforms under a change of basis. Let {e′i} be a new
basis, with e′i = S(ei) for some complex linear transformation S. Relative
to {ei} the linear transformation S is represented by a matrix S with entries
Sji given by equation (1.21). Let H′ denote the matrix describing the inner
product in the new basis: its entries H ′

ij are given by

H ′
ij = 〈e′i, e′j〉 (by definition)

= 〈
N∑

k=1

Ski ek,

N∑

l=1

Slj el〉 (by equation (1.21))

=
N∑

k,l=1

S∗ki Slj 〈ek, el〉 (using HIP1,2)

=
N∑

k,l=1

S∗ki Hkl Slj .

In other words,

H′ = (S∗)t H S , (1.47)

to be contrasted with the analogous formula (1.35).
The Cauchy–Schwartz and triangle inequalities are still valid for her-

mitian inner products. The proofs are essentially the same as for the real
case. We will therefore be brief.

In order to prove the Cauchy–Schwarz inequality, we start the following
inequality, which follows from HIP3,

‖v − λw‖2 ≥ 0 ,

and choose λ ∈ C appropriately. Expanding this out using HIP1 and HIP2
we can rewrite it as

‖v‖2 + |λ|2 ‖w‖2 − λ 〈v,w〉 − λ∗ 〈w,v〉 ≥ 0 .

Hence if we choose λ = 〈w,v〉/‖w‖2, we turn the inequality into

‖v‖2 − |〈v, w〉|2
‖w‖2

≥ 0 ,

which can be rewritten as

|〈v, w〉|2 ≤ ‖v‖2 ‖w‖2 .
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Taking square roots (all quantities are positive) we obtain the Cauchy–
Schwarz inequality (1.36).

In order to prove the triangle inequality, we start with

‖v + w‖2 = 〈v + w,v + w〉
= ‖v‖2 + ‖w‖2 + 2 Re〈v, w〉
≤ ‖v‖2 + ‖w‖2 + 2|〈v, w〉| (since Re z ≤ |z| ∀z ∈ C)

≤ ‖v‖2 + ‖w‖2 + 2‖v‖ ‖w‖ (by Cauchy–Schwarz)

= (‖v‖+ ‖w‖)2 ;

whence taking square roots we obtain the triangle inequality (1.37).
The complex analogue of an orthonormal basis is a unitary basis. Explic-

itly, a basis {ei} is said to be unitary if

〈ei, ej〉 = δij :=

{
1 if i = j

0 otherwise.
(1.48)

The components of a vector v relative to a unitary basis {ei} can be com-
puted by taking inner products, just as in the real case. Let v =

∑N
i=1 vi ei,

and take its inner product with ej:

〈ej,v〉 = 〈ej,

N∑
i=1

vi ei〉

=
N∑

i=1

vi 〈ej, ei〉 (using HIP2)

= vj . (using equation (1.48))

This shows that unitary vectors are automatically linearly independent.
One still has the Gram–Schmidt procedure for hermitian inner products.

It works essentially in the same way as in the real case, so we will not spend
much time on this. Consider a basis {f i} for V. Define the following vectors:

ei =
f i −

∑i−1
j=1〈ej,f i〉 ej

‖f i −
∑i−1

j=1〈ej,f i〉 ej‖
.

It is easily checked that they are a unitary basis. First of all each ei is
clearly normalised, because it is defined as a vector divided by its norm; and
moreover if i > j, then ei is clearly orthogonal to ej.

Finally, we discuss the adjoint of a complex linear map relative to a
hermitian inner product. Let A : V → V be a complex linear map. We
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define its adjoint A† by equation (1.41), where now 〈·, ·〉 is a hermitian inner
product. The properties (1.42) and (1.44) still hold, and are proven in exactly
the same way.

Only property (1.43) changes, reflecting the sesquilinear nature of the
inner product. Indeed notice that

〈(λA + µB)† v,w〉 = 〈v, (λA + µB) w〉 (by (1.41))

= λ 〈v, A w〉+ µ 〈v, B w〉 (by HIP2)

= λ 〈A† v,w〉+ µ 〈B† v, w〉 (by (1.41))

=
(
λ∗ 〈w, A† v〉+ µ∗ 〈w, B† v〉)∗ (by HIP1)

= 〈w,
(
λ∗ A† + µ∗ B†) v〉∗ (by HIP2)

= 〈(λ∗ A† + µ∗ B†) v,w〉 ; (by HIP1)

whence

(λA + µB)† = λ∗ A† + µ∗ B† . (1.49)

A complex linear transformation A is said to be hermitian if A† = A,
and it is said to be anti-hermitian (also skew-hermitian) if A† = −A. As in
the real case, the nomenclature can be justified by noticing that the matrix
of a hermitian transformation relative to a unitary basis is hermitian, as
defined in equation (1.46). The proof is similar to the proof of the analogous
statement in the real case. Indeed,

A†
ij = 〈A†(ej), ei〉 (by equation (1.45))

= 〈ej, A(ei)〉 (using equation (1.41))

= 〈A(ei), ej〉∗ (using HIP1)

= A∗
ji . (by equation (1.45))

Therefore if A† = A, then A = (A∗)t, and the matrix is hermitian. Notice
that if A is a hermitian matrix, then i A is antihermitian, hence unlike the
real case, the distinction between hermitian and anti-hermitian is trivial.

Let us say that a linear transformation U is unitary if U †◦U = U ◦U † = 1.
In this case, its matrix U relative to a unitary basis obeys (U∗)t U = U (U∗)t =
I. This means that the conjugate transpose is the inverse,

U−1 = (U∗)t . (1.50)

Not surprisingly, such matrices are called unitary. Finally let us notice that
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just as in the real case, a unitary transformation preserves the inner product:

〈U(v), U(w)〉 = 〈v, U †(U(w))〉 (by equation (1.41))

= 〈v, (U † ◦ U)(w)〉 (by equation (1.2))

= 〈v, w〉 . (since U is unitary)

1.4 The eigenvalue problem and applications

In this section we study perhaps the most important aspect of linear algebra
from a physical perspective: the so-called eigenvalue problem. We mentioned
when we introduced the notion of a basis that a good choice of basis can often
simplify the solution of a problem involving linear transformations. Given
a linear transformation, it is hard to imagine a better choice of basis than
one in which the matrix is diagonal. However not all linear transformations
admit such a basis. Understanding which transformations admit such basis
is an important part of linear algebra; but one whose full solution requires
more machinery than the one we will have available in this course. We will
content ourselves with showing that certain types of linear transformation of
use in physics do admit a diagonal basis. We will finish this section with two
applications of these results: one to mathematics (quadratic forms) and one
to physics (normal modes).

1.4.1 Eigenvectors and eigenvalues

Throughout this section V shall be an N -dimensional complex vector space.
Let A : V → V be a complex linear transformation. Let v ∈ V be a

nonzero vector which obeys

Av = λ v for some λ ∈ C. (1.51)

We say that v is an eigenvector of A with eigenvalue λ. Let {ei} be a basis
for V. Let v be the column vector whose entries are the components vi of v
relative to this basis: v =

∑
i viei; and let A be the matrix representing A

relative to this basis. Then equation (1.51) becomes

A v = λ v . (1.52)

Rewriting this as
(A− λ I) v = 0 ,

we see that the matrix A− λ I annihilates a nonzero vector, whence it must
have zero determinant:

det (A− λ I) = 0 . (1.53)
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Let λ be an eigenvalue of A. The set of eigenvectors of A with eigenvalue
λ, together with the zero vector, form a vector subspace Vλ of V, known as
the eigenspace of A with eigenvalue λ.

� It is easy to prove this: all one needs to show is that Vλ is closed under vector addition
and scalar multiplication. Indeed, let v and w be eigenvectors of A with eigenvalue λ and
let α, β be scalars. Then

A(α v + β w) = α A(v) + β A(w) (by L1,2)

= α λ v + β λ w (by equation (1.51))

= λ (α v + β w) ,

whence α v + β w is also an eigenvector of A with eigenvalue λ.

�� That Vλ is a subspace also follows trivially from the fact that it is the kernel of the linear
transformation A− λ1.

The dimension of the eigenspace Vλ is called the multiplicity of the eigen-
value λ. One says that an eigenvalue λ is non-degenerate if Vλ is one-
dimensional and degenerate otherwise.

A linear transformation A : V → V is diagonalisable if there exists a
basis {ei} for V made up of eigenvectors of A. In this basis, the matrix A
representing A is a diagonal matrix:

A =




λ1

λ2

. . .

λN


 ,

where not all of the λi need be distinct. In this basis we can compute the
trace and the determinant very easily. We see that

tr(A) = λ1 + λ2 + · · ·+ λN =
N∑

i=1

λi

det(A) = λ1λ2 · · ·λN =
N∏

i=1

λi .

Therefore the trace is the sum of the eigenvalues and the determinant is
their product. This is independent of the basis, since both the trace and the
determinant are invariants.

� This has a very interesting consequence. Consider the identity:

NY

i=1

exp(λi) = exp

 
NX

i=1

λi

!
.
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We can interpret this identity as an identity involving the diagonal matrix A:

det (exp(A)) = exp (tr(A)) ,

where the exponential of a matrix is defined via its Taylor series expansion:

exp(A) = I + A + 1
2
A2 + 1

3!
A3 + · · · =

∞X

n=1

1
n!

An ,

so that for a diagonal matrix, it is simply the exponential of its diagonal entries. Now
notice that under a change of basis given by A 7→ A′, where A′ is given by equation (1.24),

exp(A′) =
∞X

n=1

1
n!

(A′)n

=
∞X

n=1

1
n!

(S−1 AS)n (by equation (1.24))

=
∞X

n=1

1
n!

S−1 An S

= S−1 exp(A)S ;

whence because the trace and determinant are invariants

det
�
exp(A′)

�
= exp

�
tr(A′)

�
.

Hence this equation is still true for diagonalisable matrices. In fact, it follows from the
fact (see next section) that diagonalisable matrices are dense in the space of matrices, that
this identity is true for arbitrary matrices:

det (exp(A)) = exp (tr(A)) . (1.54)

This is an extremely useful formula, particularly in quantum field theory and statistical
mechanics, where it is usually applied to define the determinant of infinite-dimensional
matrices.

1.4.2 Diagonalisability

Throughout this section V is an N -dimensional complex vector space.
It turns out that not every linear transformation is diagonalisable, but

many of the interesting ones in physics will be. In this section, which lies
somewhat outside the main scope of this course, we will state the condition
for a linear transformation to be diagonalisable.

Fix a basis for V and let A be the matrix representing A relative to this
basis. Let us define the following polynomial

χA(t) = det (A− t I) , (1.55)
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known as the characteristic polynomial of the matrix A. Under a change of
basis, the matrix A changes to the matrix A′ given by equation (1.24). The
characteristic polynomial of the transformed matrix A′ is given by

χA′(t) = det (A′ − t I)

= det
(
S−1 A S− tI

)
(by equation (1.24))

= det
(
S−1 (A− tI) S

)
(since S−1 I S = I)

= det
(
S−1

)
det (A− t I) det (S) (by equation (1.18))

=
1

det (S)
χA(t) det (S)

= χA(t) .

In other words, the characteristic polynomial is a matrix invariant and hence
is a property of the linear transformation A. We will therefore define the
characteristic polynomial χA(t) of a linear transformation A : V→ V as the
polynomial χA(t) of the matrix which represents it relative to any basis. By
the above calculation it does not depend on the basis.

The characteristic polynomial is a polynomial of order N where N is the
complex dimension of V. Its highest order term is of the form (−1)N tN and
its zeroth order term is the determinant of A, as can be seen by evaluating
χA(t) at t = 0. In other words,

χA(t) = det(A) + · · ·+ (−1)N tN .

Equation (1.53) implies that every eigenvalue λ of A is a root of its char-
acteristic polynomial: χA(λ) = 0. Conversely it is possible to prove that
every root of the characteristic polynomial is an eigenvalue of A; although
the multiplicities need not correspond: the multiplicity of the eigenvalue is
never larger than that of the root.

This gives a method to compute the eigenvalues and eigenvectors of a
linear transformation A. We simply choose a basis and find the matrix A
representing A. We compute its characteristic polynomial and find its roots.
For each root λ we solve the system of linear homogeneous equations:

(A− λ I) v = 0 .

This approach rests on the following general fact, known as the Funda-
mental Theorem of Algebra: every complex polynomial has a root. In fact,
any complex polynomial of order N has N roots counted with multiplic-
ity. In particular, the characteristic polynomial factorises into a product of
monomials:

P (t) = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,
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where all the λi are distinct and where mi ≥ 1 are positive integers. Clearly
each λi is a root and mi is its multiplicity. Each λi is also an eigenvalue of
A, but mi is not necessarily the multiplicity of the eigenvalue λi. Consider
the matrix

A =

(
1 a
0 1

)
,

where a 6= 0 is any complex number. Its characteristic polynomial is given
by

χA(t) = det(A− t I) =

∥∥∥∥
1− t a

0 1− t

∥∥∥∥ = (1− t)2 = 1− 2t + t2 .

Hence the only root of this polynomial is 1 with multiplicity 2. The number
1 is also an eigenvalue of A. For example, an eigenvector v is given by

v =

(
1
0

)
.

However, the multiplicity of the eigenvalue 1 is only 1. Indeed, if it were 2,
this would mean that there are two linearly independent eigenvectors with
eigenvalue 1. These eigenvectors would then form a basis, relative to which
A would be the identity matrix. But if A = I relative to some basis, A′ = I
relative to any other basis, since the identity matrix is invariant under change
of basis. This violates the explicit expression for A above.

A result known as the Cayley–Hamilton Theorem states that any matrix
A satisfies the following polynomial equation:

χA(A) = 0 ,

where 0 means the matrix all of whose entries are zero, and where a scalar
a is replaced by the scalar matrix a I. For example, consider the matrix A
above:

χA(A) = I− 2A + A2

=

(
1 0
0 1

)
− 2

(
1 a
0 1

)
+

(
1 a
0 1

)2

=

(
1 0
0 1

)
−

(
2 2a
0 2

)
+

(
1 2a
0 1

)

=

(
0 0
0 0

)
.

The Cayley–Hamilton theorem shows that any N × N matrix obeys an
N -th order polynomial equation. However in some cases an N × N matrix
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A obeys a polynomial equation of smaller order. The polynomial µA(t) of
smallest order such that

µA(A) = 0 ,

is called the minimal polynomial of the matrix A. One can show that the
minimal polynomial divides the characteristic polynomial. In fact, if the
characteristic polynomial has the factorisation

χA(t) = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,

the minimal polynomial has the factorisation

µA(t) = (λ1 − t)n1(λ2 − t)n2 · · · (λk − t)nk ,

where 1 ≤ ni ≤ mi. The main result in this topic is that a matrix A is diag-
onalisable if and only if all ni = 1. For the non-diagonalisable matrix above,
we see that its characteristic polynomial equals its minimal polynomial, since
A 6= I.

In particular this shows that if all eigenvalues of a linear transformation
are non-degenerate, then the linear transformation is diagonalisable. Given
any matrix, one need only perturb it infinitesimally to lift any degeneracy its
eigenvalues might have. This then implies that the diagonalisable matrices
are dense in the space of matrices; that is, infinitesimally close to any non-
diagonalisable matrix there is one which is diagonalisable. This is key to
proving many identities involving matrices. If an identity of the form f(A) =
0 holds for diagonalisable matrices then it holds for any matrix provided that
f is a continuous function.

Computing the minimal polynomial of a linear transformation is not an
easy task, hence it is in practice not very easy to decide whether or not a
given linear transformation is diagonalisable. Luckily large classes of linear
transformations can be shown to be diagonalisable, as we will now discuss.

1.4.3 Spectral theorem for hermitian transformations

Throughout this section V is an N -dimensional complex vector space with a
hermitian inner product 〈·, ·〉.

Let A : V → V be a hermitian linear transformation: A† = A. We will
show that it is diagonalisable. As a corollary we will see that unitary trans-
formations U : V→ V such that U † ◦U = U ◦U † = 1 are also diagonalisable.
These results are known as the spectral theorems for hermitian and unitary
transformations.

We will first need to show two key results about the eigenvalues and eigen-
vectors of a hermitian transformation. First we will show that the eigenvalues
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of a hermitian transformation are real. Let v be an eigenvector of A with
eigenvalue λ. Then on the one hand,

〈A(v),v〉 = 〈λ v,v〉
= λ∗ 〈v,v〉 ; (by sesquilinearity)

whereas on the other hand,

〈A(v), v〉 = 〈v, A†(v)〉 (by equation (1.41))

= 〈v, A(v)〉 (since A is hermitian)

= 〈v, λ v〉
= λ 〈v, v〉 . (by HIP2)

Hence,
(λ− λ∗) ‖v‖2 = 0 .

Since v 6= 0, HIP3 implies that ‖v‖2 6= 0, whence λ = λ∗.
The second result is that eigenvectors corresponding to different eigenval-

ues are orthogonal. Let v and w be eigenvectors with distinct eigenvalues λ
and µ, respectively. Then on the one hand,

〈A(v), w〉 = 〈λ v,w〉
= λ 〈v,w〉 . (since λ is real)

On the other hand,

〈A(v),w〉 = 〈v, A†(w)〉 (by equation (1.41))

= 〈v, A(w)〉 (since A is hermitian)

= 〈v, µ w〉
= µ〈v,w〉 . (by HIP2)

Hence,
(λ− µ)〈v,w〉 ,

whence if λ 6= µ, v ⊥ w.
Now we need a basic fact: every hermitian transformation has at least

one eigenvalue.

� This can be shown using variational calculus. Consider the expression

f(v) ≡ 〈v, A(v)〉 .
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We claim that f(v) is a real number:

f(v)∗ = 〈v, A(v)〉∗
= 〈A(v), v〉 (by HIP1)

= 〈v, A†(v)〉 (by equation (1.41))

= 〈v, A(v)〉 (since A is hermitian)

= f(v) .

Therefore f defines a continuous quadratic function from V to the real numbers. We would
like to extremise this function. Clearly,

f(α v) = |α|2f(v) ,

and this means that by rescaling v we can make f(v) be as large or as small as we want.
This is not the type of extremisation that we are interested: we want to see in which
direction is f(v) extremal. One way to do this is to restrict ourselves to vectors such that
‖v‖2 = 1. This can be imposed using a Lagrange multiplier λ. Extremising f(v) subject
to the constraint ‖v‖2 = 1, can be done by extremising the expression

I(v, λ) = f(v)− λ (‖v‖2 − 1) .

The variation of I yields the following expression:

δI = 2 〈δv, (A− λ I) v〉 − δλ (‖v‖2 − 1) .

Therefore the variational equations are ‖v‖2 = 1 and

A v = λ v ,

where we have used the non-degeneracy of the inner product and the fact that we want
δI = 0 for all δλ and δv. Therefore this says that the extrema of I are the pairs (v, λ)
where v is a normalised eigenvalue of A with eigenvalue λ. The function I(v, λ) takes the
value I(v, λ) = λ at such a pair; whence the maxima and minima correspond to the largest
and smallest eigenvalues. It remains to argue that the variational problem has solution.
This follows from the compactness of the space of normalised vectors, which is the unit
sphere in V. The function f(v) is continuous on the unit sphere and hence attains its
maxima and minima in it.

We are now ready to prove the spectral theorem. We will first assume
that the eigenvalues are non-degenerate, for ease of exposition and then we
will relax this hypothesis and prove the general result.

Let v1 be a normalised eigenvector of A with eigenvalue λ1. It exists
from the above discussion and it is the only such eigenvector, up to scalar
multiplication, by the non-degeneracy hypothesis. The eigenvalue is real as
we saw above. Choose vectors {e2, e3, . . .} such that {v1, e2, . . .} is a basis
for V and apply the Gram–Schmidt procedure if necessary so that it is a
unitary basis. Let us look at the matrix A of A in such a basis. Because e1

is an eigenvector, one has

〈A(v1), ej〉 = 〈λ1 v1, ej〉 = λ1 〈v1, ej〉 = 0 ,
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and similarly

〈A(ej),v1〉 = 〈ej, A(v1)〉 = 〈ej, λ1 v1〉 = λ1 〈ej,v1〉 = 0 .

Moreover
〈v1, A(v1)〉 = 〈v1, λ1 v1〉 = λ1 ‖e1‖2 = λ1 .

This means that the matrix takes the form



λ1 0 · · · 0
0 A22 · · · A2N
...

...
. . .

...
0 AN2 · · · ANN


 . (1.56)

The submatrix 


A22 · · · A2N
...

. . .
...

AN2 · · · ANN


 ,

is still hermitian, since for i, j = 2, . . . , N ,

Aij = 〈ei, A(ej)〉 = 〈A(ej), ei〉∗ = 〈ej, A(ei)〉∗ = A∗
ji .

Now we can apply the procedure again to this (N − 1)× (N − 1) matrix:
we find a normalised eigenvector v2, which by assumption corresponds to
a non-degenerate eigenvalue λ2. Starting with this eigenvector we build a
unitary basis {v2, e

′
3, . . .} for the (N − 1)-dimensional subspace spanned by

the {e2, e3, . . .}. The submatrix A(N−1) then takes the form analogous to the
one in equation (1.56), leaving an (N−2)×(N−2) submatrix which is again
still hermitian. We can apply the same procedure to this smaller matrix, and
so on until we are left with a 1×1 hermitian matrix, i.e., a real number: λN .
The basis {vi} formed by the eigenvectors is clearly unitary, since each vi

is normalised by definition and is orthogonal to the preceding {vj<i} by the
way they were constructed. The matrix of A relative to this basis is then

A =




λ1

λ2

. . .

λN


 ,

with real eigenvalues λi.
The case with degenerate eigenvalues works along similar lines. We start

with an eigenvalue λ1 and consider the eigenspace Vλ1 . It may be that the
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dimension m1 of Vλ1 is larger than 1. In any case, every vector in Vλ1 is an
eigenvector of A. Use Gram–Schmidt to find a unitary basis {v1,v2, . . . , vm1}
for Vλ1 . Complete this basis to a unitary basis {v1, . . . , vm1 , em1+1, . . . , eN}
for V, which can be done using Gram–Schmidt if necessary again. The matrix
A representing A in this basis is given by

A =







λ1

. . .

λ1







Am1+1,m1+1 · · · Am1+1,N
...

. . .
...

AN,m1+1 · · · ANN







,

where the off-diagonal blocks have vanishing entries because

〈ei, A(vj)〉 = λ1 〈ei,vj〉 = 0 .

The submatrix 


Am1+1,m1+1 · · · Am1+1,N
...

. . .
...

AN,m1+1 · · · ANN




is again hermitian, so we can apply the procedure again to it, until we are
left with a basis {vi} of eigenvectors of A, so that the matrix is diagonal.

In summary, suppose that we start with a hermitian matrix A, thought
of as the matrix of a hermitian linear transformation A relative to a unitary
basis. Then the above iterative procedure produces a unitary basis relative
to which the matrix for A is diagonal. Because the initial and final basis
are unitary, the change of basis transformation U is unitary. In other words,
given a hermitian matrix A there is a unitary matrix U such that

A′ = U−1 A U = (U∗)t A U

is diagonal. In other words,

Every hermitian matrix can be diagonalised by a unitary transformation.

In fact the unitary matrix U above can be written down explicitly in
terms of the normalised eigenvectors of A. Let {vi} be a set of normalised
eigenvectors which are mutually orthogonal. This is guaranteed if they have
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different eigenvalues, and in the case of degenerate eigenvalues by Gram–
Schmidt. Consider the matrix

U =



↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓


 .

We claim first of all that U is unitary. Indeed,

(U∗)t =




← (v∗1)
t →

← (v∗2)
t →

...
...

...
← (v∗N)t →


 .

Hence

(U∗)t U =




← (v∗1)
t →

← (v∗2)
t →

...
...

...
← (v∗N)t →






↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓




=


 (v∗i )

tvj




= I ,

since the {vi} form a unitary basis. Moreover, paying attention to the way
matrix multiplication is defined and using that the {vi} are eigenvectors of
A, we find

A U =




↑ ↑ · · · ↑
λ1 v1 λ2 v2 · · · λN vN

↓ ↓ · · · ↓




=



↑ ↑ · · · ↑
v1 v2 · · · vN

↓ ↓ · · · ↓







λ1

λ2

. . .

λN




= U A′ .

In other words, A′ = U−1 A U just as above.
There is a real version of this result: if A is real and symmetric, then it

is hermitian. We can diagonalise it with a unitary transformation, which is
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also real, whence it is orthogonal. This then yields the spectral theorem for
symmetric real matrices, which says that any real symmetric matrix can be
diagonalised by an orthogonal transformation.

We can now understand the positive-definiteness condition on the matrix
representing a inner product on a vector space. We saw in Section 1.3.1 that
the matrix G of an inner product in a real vector space is symmetric. Hence it
can be diagonalised by an orthogonal transformation. From equation (1.35),
it follows that there is a basis relative to which the matrix of the inner product
is diagonal. Let {ei} be such a basis and let 〈ei, ej〉 = λi δij. If v =

∑
i viei

is any vector, then

‖v‖2 = 〈v,v〉 =
∑

i

λiv
2
i .

Axiom IP3 says that this quantity has to be positive for all nonzero vectors
v, which clearly implies that λi > 0 for all i. Therefore a symmetric matrix
is positive definite if and only if all its eigenvalues are positive. A similar
statement also holds for hermitian inner products, whose proof is left as an
exercise.

� It is not just hermitian matrices that can be diagonalised by unitary transformations. Let
us say that a linear transformation N is normal if it commutes with its adjoint

N† ◦N = N ◦N† . (1.57)

Then it can be proven that a N is diagonalisable by a unitary transformation. As an
example consider the 3× 3 matrix

P =

0
@

0 1 0
0 0 1
1 0 0

1
A

considered in the Exercises. We saw that it was diagonalisable by a unitary transformation,
yet it is clearly not hermitian. Nevertheless it is easy to check that it is normal. Indeed,

(P∗)t =

0
@

0 0 1
1 0 0
0 1 0

1
A ,

so that
P (P∗)t = (P∗)t P = I ;

in other words, it is unitary.

It follows from the spectral theorem for hermitian transformations that
unitary transformations can also be diagonalised by unitary transformations.
This is known as the Cayley transformation, which is discussed in detail in
the Problems. It follows from the Cayley transformation that the eigenvalues
of a unitary matrix take values in the unit circle in the complex plane. This
can also be seen directly as follows. Let U be a unitary transformation and
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let v be an eigenvector with eigenvalue λ. Then consider ‖U(v)‖2. Because
U is unitary,

‖U(v)‖2 = ‖v‖2 ,

but because v is an eigenvector,

‖U(v)‖2 = ‖λ v‖2 = |λ|2 ‖v‖2 ,

whence |λ|2 = 1.
Spectral theorems are extremely powerful in many areas of physics and

mathematics, and in the next sections we will discuss two such applications.
However the real power of the spectral theorem manifests itself in quantum
mechanics, although the version of the theorem used there is the one for
self-adjoint operators in an infinite-dimensional Hilbert space, which we will
not have the opportunity to discuss in this course.

1.4.4 Application: quadratic forms

In this section we discuss a mathematical application of the spectral theorem
for real symmetric transformations.

Let us start with the simplest case of a two-dimensional quadratic form.
By a quadratic form on two variables (x1, x2) we mean a quadratic polyno-
mial of the form

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 , (1.58)

for some real constants a, b, c. By a quadric we mean the solutions (x1, x2)
of an equation of the form

Q(x1, x2) = d ,

where d is some real number and Q is a quadratic form. For example, we
can take

Q1(x1, x2) = x2
1 + x2

2 ,

in which case the quadrics Q1(x1, x2) = d for d > 0 describe a circle of radius√
d in the plane coordinatised by (x1, x2). To investigate the type of quadric

that a quadratic form gives rise to, it is convenient to diagonalise it: that it,
change to coordinates (y1, y2) for which the mixed term y1 y2 in the quadratic
form is not present. To tie this to the spectral theorem, it is convenient to
rewrite this in terms of matrices. In terms of the column vector x = (x1, x2)

t,
the general two-dimensional quadratic form in equation (1.58) can be written
as

Q(x1, x2) = xt Q x ,
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where Q is the matrix

Q =

(
a b
b c

)
.

Because Q is symmetric, it can be diagonalised by an orthogonal transfor-
mation which is built out of the normalised eigenvectors as was explained
in the previous section. Hence there is an orthogonal matrix O such that
Q = O D Ot, where D is a diagonal matrix with entries λi, for i = 1, 2. That
means that in terms of the new coordinates

y =

(
y1

y2

)
= Ot x ,

the quadratic form is diagonal

Q(y1, y2) = yt D y = λ1 y2
1 + λ2 y2

2 .

We can further rescale the coordinates {yi}: zi = µiyi, where µi is real. This
means that relative to the new coordinates zi, the quadratic form takes the
form

Q(z1, z2) = ε1z
2
1 + ε2 y2

2 ,

where εi are 0,±1.
We can distinguish three types of quadrics, depending on the relative

signs of the eigenvalues:

1. (ε1ε2 = 1) In this case the eigenvalues have the same sign and the
quadric is an ellipse.

2. (ε1ε2 = −1) In this case the eigenvalues have different sign and the
quadric is a hyperbola.

3. (ε1ε2 = 0) In this case one of the eigenvalues is zero, and the quadric
consists of a pair of lines.

The general case is not much more complicated. Let V be a real vector
space of dimension N with an inner product. By a quadratic form we mean
a symmetric bilinear form Q : V×V→ R. In other words, Q satisfies axioms
IP1 and IP2 of an inner product, but IP3 need not be satisfied. Associated
to every quadratic form there is a linear transformation in V, which we also
denote Q, defined as follows

〈v, Q(w)〉 = Q(v,w) .
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Symmetry of the bilinear form implies that the linear transformation Q is
also symmetric:

〈v, Q(w)〉 = Q(v, w) = Q(w,v) = 〈w, Q(v)〉 = 〈Q(v),w〉 .

Hence it can be diagonalised by an orthogonal transformation. Relative to
an orthonormal basis {ei} for V, Q is represented by a symmetric matrix Q.
Let O be an orthogonal matrix which diagonalises Q; that is, Q = O D Ot,
with D diagonal.

We can further change basis to an orthogonal basis whose elements are
however no longer normalised, in such a way that the resulting matrix D′

is still diagonal with all its entries either ±1 or 0. Let (n+, n−, n0) denote,
respectively, the number of positive, negative and zero diagonal entries of D′.
There is a result, known as Sylvester’s Law of Inertia, which says that the
numbers (n+, n−, n0) are an invariant of the quadratic form, so that they can
be computed from the matrix of the quadratic form relative to any basis.
A quadratic form is said to be non-degenerate if n0 = 0. It is said to be
positive-definite if n− = n0 = 0, and negative-definite if n+ = n0 = 0.
Clearly a quadratic form is an inner product when it is positive-definite. A
non-degenerate quadratic form, which is not necessarily positive- or negative-
definite, defines a generalised inner product on V. There are two integers
which characterise a non-degenerate quadratic form: the dimension N of
the vector space, and the signature n+ − n−. Notice that if the signa-
ture is bounded above by the dimension: the bound being saturated when
the quadratic form is positive-definite. There are plenty of interesting non-
degenerate quadratic forms which are not positive-definite. For example,
Minkowski spacetime in the theory of special relativity possesses a quadratic
form with dimension 4 and signature 2.

1.4.5 Application: normal modes

This section discusses the powerful method of normal modes to decouple
interacting mechanical systems near equilibrium. It is perhaps not too exag-
gerated to suggest that theoretical physicists spend a large part of their lives
studying the problem of normal modes in one way or another.

We start with a simple example.
Consider an idealised one-dimensional mechanical sys-k k k

m m tem consisting of two point masses each of mass m con-
nected by springs to each other and to two fixed ends. We

will neglect gravity, friction and the mass of the springs. The springs obey
Hooke’s law with spring constant k. We assume that the system is at equilib-
rium when the springs are relaxed, and we want to study the system around
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equilibrium; that is, we wish to study small displacements of the masses. We
let xi for i = 1, 2 denote the displacements from equilibrium for each of the
two point masses, as shown below.

- -x1 x2

Then the potential energy due to the springs is the sum of the potential
energies of each of the springs:

V = 1
2
k x2

1 + 1
2
k (x2 − x1)

2 + 1
2
k x2

2

= k
(
x2

1 + x2
2 − x1x2

)
.

The kinetic energy is given by

T = 1
2
mẋ2

1 + 1
2
mẋ2

2 .

The equations of motion are then, for i = 1, 2,

d

dt

∂T

∂ẋi

= −∂V

∂xi

.

Explicitly, we have the following coupled system of second order ordinary
differential equations:

mẍ1 = −2kx1 + kx2

mẍ2 = −2kx2 + kx1 .

Let us write this in matrix form. We introduce a column vector xt = (x1, x2).
Then the above system of equations becomes

ẍ = −ω2 K x , (1.59)

where K is the matrix

K =

(
2 −1

−1 2

)
,

and where we have introduced the notation

ω ≡
√

k

m
.
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Notice that K is symmetric, hence it can be diagonalised by an orthogonal
transformation. Let us find its eigenvalues and its eigenvectors. The charac-
teristic polynomial of K is given by

χK(λ) =

∥∥∥∥
2− λ −1
−1 2− λ

∥∥∥∥ = (2− λ)2 − 1 = (λ− 1)(λ− 3) ,

from which it follows that it has as roots λ = 1, 3. The normalised eigenvec-
tors corresponding to these eigenvalues are

v1 =
1√
2

(
1
1

)
, and v3 =

1√
2

(
1

−1

)
,

respectively. We build the following matrix O out of the normalised eigen-
vectors

O =
1√
2

(
1 1
1 −1

)
.

One can check that O is orthogonal: Ot = O−1. One can also check that

K = O D Ot ,

where D is the diagonal matrix

D =

(
1 0
0 3

)
.

Inserting this expression into equation (1.59), we see that

ẍ = −ω2O D Ot x .

In terms of the new variables

y =

(
y1

y2

)
= Ot x ,

the equation of motion (1.59) becomes

ÿ = −ω2 D y . (1.60)

Because the matrix D is diagonal, the equations of motion for the new vari-
ables yi are now decoupled:

ÿ1 = −ω2y1 and ÿ2 = −3ω2y2 .
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One can now easily solve these equations,

y1(t) = A1 cos(ω1 t + ϕ1)

y2(t) = A2 cos(ω2 t + ϕ2) ,

where ω1 = ω, ω2 =
√

3 ω and Ai and ϕi are constants to be determined from
the initial conditions. The physical variables in the original problem are the
displacements xi of each of the point masses. They can be found in terms of
the new decoupled variables yi simply by inverting the change of variables
(1.60). Explicitly,

x1(t) =
A1√

2
cos(ω1t + ϕ1) +

A2√
2

cos(ω2t + ϕ2)

x2(t) =
A1√

2
cos(ω1t + ϕ1)− A2√

2
cos(ω2t + ϕ2) .

Variables like the yi which decouple the equations of motion are called
the normal modes of the mechanical system. Their virtue is that they
reduce an interacting (i.e., coupled) mechanical system around equilibrium
to a set of independent free oscillators. Each of these free oscillators are
mathematical constructs: the normal modes do not generally correspond to
the motion of any of the masses in the original system, but they nevertheless
possess a certain “physicality” and it is fruitful to work with them as if they
were physical. The original physical variables can then be understood as
linear combinations of the normal modes as we saw above. The frequencies
ωi of the normal modes are known as the characteristic frequencies of the
mechanical system. In particle physics, for example, the elementary particles
are the normal modes and their masses are the characteristic frequencies.

To illustrate the simplification in the dynamics which results from con-
sidering the normal modes, in Figure 1.1 we have sketched the motion of the
two masses in the problem and of the two normal modes, with time running
horizontally to the right.

Notice also that although the motion of each of the normal modes is
periodic, the system as a whole is not. This is due to the fact that the
characteristic frequencies are not rational multiples of each other.

� Let us see this. Suppose that we have to oscillators with frequencies ω1 and ω2. That
means that the oscillators are periodic with periods T1 = 2π/ω1 and T2 = 2π/ω2. The
combined system will be periodic provided that N1T1 = N2T2 for some integers Ni. But
this means that

ω1

ω2
=

N1

N2
,

which is a rational number. In the problem treated above, the ratio

ω1

ω2
=

1√
3

=

√
3

3
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(a) Point masses (b) Normal modes

Figure 1.1: Dynamics of point masses and normal modes.

is irrational. Therefore the motion is aperiodic.

If we were to plot the trajectory of the system in the plane, with the
trajectory of one of the point masses along the x-axis and the trajectory of
the other point mass along the y-axis, we see that the orbit never repeats,
and that we end up filling up the available configuration space. In Figure
1.2 we have plotted the cumulative trajectory of the system after letting it
run for T units of time, for different values of T . As you can see, as T grows
the system has visited more and more points in the available configuration
space. Asymptotically, as T → ∞, the system will have visited the whole
available space.

1.4.6 Application: near equilibrium dynamics

In this section we will consider a more general mechanical system near equi-
librium. Throughout the section V will be a real finite-dimensional vector
space with an inner product.

Consider a mechanical system whose configuration space is V. For ex-
ample, it could be a system of n point particles in d dimensions, and then
V would be an (nd)-dimensional vector space. In the previous section we
discussed the case of a one-dimensional system consisting of two point par-
ticles, so that V was two-dimensional. In the Problems we looked at systems
with three-dimensional V. In this section we are letting V be arbitrary but
finite-dimensional.

The potential energy is given by a function V : V→ R. The configurations
of mechanical equilibrium are those for which the gradient of the potential
vanishes. Hence let us consider one such equilibrium configuration q0 ∈ V:

∇V |q0
= 0 .
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(a) T = 10 (b) T = 20 (c) T = 30

(d) T = 50 (e) T = 100 (f) T = 300

Figure 1.2: Trajectory of the mechanical system at different times.

Because the potential energy is only defined up to an additive constant, we
are free to choose it such that V (q0) = 0. We can therefore expand the
potential function V about q0 and the first contribution will be quadratic:

V (q) = V (q0) + 〈∇V |q0
, q − q0〉+ 1

2
〈q − q0, H(q − q0)〉+ · · ·

= 1
2
〈q − q0, H(q − q0)〉 ,

where H : V→ V is a symmetric linear transformation known as the Hessian
of V at q0. Explicitly, if we choose an orthonormal basis {ei} for V, then
let q =

∑
i qiei define some coordinates qi for the configuration space. Then

relative to this basis the Hessian of V has matrix elements

Hij = 〈ei, H(ej)〉 =
∂2V

∂qi∂qj

∣∣∣∣
q0

,

which shows manifestly that it is symmetric: Hij = Hji. Let us define
x = q − q0 to be the displacements about equilibrium. These will be our
dynamical variables. The potential energy in the quadratic approximation is
given by

V = 1
2
〈x, H(x)〉 .
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We will make the assumption that the kinetic energy is quadratic in the
velocities ẋ:

T = 1
2
〈ẋ, M(ẋ)〉 ,

where the mass matrix M is assumed to be symmetric and positive-definite;
that is, all its eigenvalues are positive.

We will now analyse the dynamics of small displacements from equilib-
rium following the following prescription:

1. we will standardise the kinetic energy by diagonalising and normalising
the mass matrix; and

2. we will then diagonalise the potential energy and solve for the normal
modes and characteristic frequencies of this system.

Both steps make use of the spectral theorem for symmetric transforma-
tions. To do the first step notice that relative to an orthonormal basis {ei}
for V, x =

∑
i xiei and we can form a column vector

x =




x1

x2
...

xN




out of the components of x. Relative to this basis, the mass matrix M and
the Hessian H have matrices M and H, respectively. By assumption both are
symmetric, and M is in addition positive-definite. The kinetic and potential
energies become

T = 1
2
ẋt M ẋ and V = 1

2
xt H x .

Because M is symmetric, there is an orthogonal matrix O1 such that
M′ = Ot

1 M O1 is diagonal with positive entries. Let D1 be the diagonal
matrix whose entries are the (positive) square roots of the diagonal entries
of M′. In other words, M′ = D2

1. We can therefore write

M = O1 D2
1 Ot

1 = (O1 D1) (O1 D1)
t ,

where we have used that Dt
1 = D1 since it is diagonal. Introduce then the

following variables
y = (O1 D1)

t x = D1 Ot
1 x .

We can invert this change of variables as follows:

x = O1 D−1
1 y ,
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where we have used that O1 is orthogonal, so that Ot
1 = O−1

1 . This change of
variables accomplishes the first step outlined above, since in terms of y, the
kinetic energy becomes simply

T = 1
2
ẏt ẏ = 1

2
‖ẏ‖2 .

Similarly, the potential energy has become

V = 1
2
yt K y ,

where the matrix K is defined by

K = D−1
1 Ot

1 H O1 D−1
1 ,

which is clearly symmetric since H and D1 are. Therefore we can find a
second orthogonal matrix O2 such that Ot

2 K O2 is diagonal; call this matrix
D. Let us define a new set of variables

z = Ot
2 y ,

relative to which the kinetic energy remains simple

T = 1
2
‖O2 z‖2 = 1

2
‖z‖2 ,

since orthogonal matrices preserve norms, and the potential energy diago-
nalises

V = 1
2
zt D z .

Because D is diagonal, the equations of motion of the z are decoupled:

z̈ = −D z ,

whence the z are the normal modes of the system. Let D have entries

D =




λ1

λ2

. . .

λN


 ,

Then the equations of motion for the normal modes are

z̈i = −λi zi .

We can distinguish three types of solutions:
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1. (λi > 0) The solution is oscillatory with characteristic frequency ωi =√
λi:

zi(t) = Ai cos(ωi t + ϕi) .

2. (λi = 0) The solution is linear

zi(t) = ai + bi t .

Such a normal mode is said to be a zero mode, since it has zero
characteristic frequency.

3. (λi < 0) The solution is exponential

zi(t) = Ai exp
(√

|λi|t
)

+ Bi exp
(
−

√
|λi|t

)
.

If all eigenvalues λi are positive the equilibrium point is said to be stable,
if they are all non-negative then it is semi-stable, whereas if there is a nega-
tive eigenvalue, then the equilibrium is unstable. The signs of the eigenvalues
of the matrix D agree with the sign of the eigenvalues of the Hessian matrix
of the potential at the equilibrium point. The different types of equilibria are
illustrated in Figure 1.3, which shows the behaviour of the potential function
around an equilibrium point in the simple case of a two-dimensional configu-
ration space V. The existence of zero modes is symptomatic of flat directions
in the potential along which the system can evolve without spending any en-
ergy. This usually signals the existence of some continuous symmetry in the
system. In the Figure we see that the semi-stable equilibrium point indeed
has a flat direction along which the potential is constant. In other words,
translation along the flat direction is a symmetry of the potential function.

(a) stable (b) semi-stable (c) unstable

Figure 1.3: Different types of equilibrium points.
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