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ANNALS OF MATHEMATICS
Vol. 48, No. 3, July, 1947

IRREDUCIBLE UNITARY REPRESENTATIONS
OF THE LORENTZ GROUP

By V. BARGMANN
(Received September 18, 1946)

Part I
Introduction

It is the purpose of this paper to construct and to analyze the irreducible
unitary representations of the Lorentz group which satisfy certain regularity
conditions stated below. More specifically, we deal with the proper Lorentz
group, i.e., the group of all homogeneous linear transformations in four vari-
ables z°, x1,2°, z* which leave the quadratic form (2% — (z)? — (%)% — (2°)?
invariant, have the determinant 1, and do not reverse the direction of time
(the variable z°). This group will be denoted by € . It is known that %
(as well as the group £; defined below) has only infinite-dimensional unitary
representations (by operators in Hilbert space) except for the trivial one-dimen-
sional case, where every group element is represented by 1 [Wigner, p. 165).!
In addition to %, we shall also investigate the corresponding group s of all
homogeneous linear transformations in the three variables z°, ', z* which leave
the form (z)* — (¢')* — (2%)® invariant—with the same restrictions as above.

Apart from possible applications in Mathematical Physics [cf. Dirac 2] this
investigation has an intrinsic mathematical interest as a detailed analysis of
the unitary representations of a non-compact group. This holds in particular
in the case of & where the results are fairly explicit and complete. Moreover,
the representations of both £ and 2 play a part in Wigner’s classification of
the unitary representations of the snhomogeneous Lorentz group [Wigner, p. 192],
% being the “little group” in the case P < 0, and & being the little group in
the case 0y (the representations of these two groups are not classified in Wigner’s
paper). It should be noted however that the conditions which we impose on
the representations are more stringent than Wigner’s.

PrAN oF THE INVESTIGATION. We shall discuss both single- and double-
valued representations and hence deal with the corresponding spinor groups
©; and &; rather than with & and &. If & (which stands here for either
©; or &) is represented on a Hilbert space $ by unitary operators U(a) which
are continuous in a (a is a group element of &), every one parameter subgroup
may be expressed, by Stone’s theorem, in the form U, = exp (—itH) where H
is a self-adjoint operator on $. Since on the other hand, every one parameter
subgroup is generated by an infinitesimal transformation (an element of the
Lie algebra 8) of the group &, there is a correspondence between the operators
H and the elements of 8. Our main assumption will be that the operators H
define a representation of 8 which will be called an infinitesimal representation of

1 See bibliography at the end of the paper.
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©. It is sufficient to require that the sum of two elements of 8 is mapped into
the sum of the corresponding operators H. The H being unbounded, their
sum can only be properly defined if the common part of the domains of the
different H is large enough. We need, therefore, a condition about these domains,
which will be stated in §5. If these requirements are satisfied the possible ir-
reducible infinitesimal representations of & may be classified. By an explicit
construction it is shown that to every infinitesimal representation corresponds
an irreducible unitary representation of & itself. In each case the Hilbert space
© is defined as a function space over a properly chosen manifold N on which
© acts as a transformation group (to every element a of & corresponds a homeo-
morphism of 9t into itself denoted by y = ax, where z, y are points on It.
The group property requires that a(bz) = (ab)x). The operators U(a) are
obtained as follows. If f(z) is an element of ©, then U(a)f(z) = u(a, a'7)-
f(a™'x), where u(a, 2) is a fixed non-vanishing function of the group element a
and the point x which satisfies the condition u(ab, ) = u(a, bz)-p(b, x), and
is called a multiplier of the transformation group. Itis easily seen that U(ab) =
U(a)U(b), and with a suitable definition of the inner product the operators
U(a) are unitary. We turn now to a brief summary of the results obtained.
« I. The group ©;. The infinitesimal representation contains three linearly
independent elements Hy, Hx, and Ho, where Hj; corresponds to a trans-
formation of the (k — I) plane into itself. For any irreducible representation
the operator

Q = (Ho)' + (Hw)® — (Hp)’

is a scalar, i.e., it has the form Q = ¢-1, ¢ being a real number. Moreover, Hy,
whose spectrum is always discrete, has simple proper values m which are either
all ¢ntegral or all half-integral and which characterize the representations of the
rotations in the (1 — 2) plane. In the half-integral case we obtain a double-
valued representation of €. The representations may be classified according
to the value of ¢ and the values of m. The following possibilities are found:
¢)) 03 : ¢ may be any positive number while m assumes all integral values 0, &1,

)] C::q may be any number in the interval 1 < ¢ < », while m assumes
all half integral values =3, &%, ---. (3) Di:k may be one of the numbers
11,4, ---; q has the value k(1 — k), and m assumes all values k, k + 1,k + 2,
.+.. (4) Di:% may be one of the numbers 3, 1, §, ---; g is equal to k(1 — k),
and m assumes all values —k, —(k + 1), —(k + 2), ---. The two classes
€3 and ¢} are termed continuous because in each case the possible values of ¢
fill an interval. By contrast, the two classes Di are termed discrete, because ¢
may only assume the values k(1 — k).

The unitary representations of &; corresponding to the two continuous classes
C5 and 03 may be realized on a function space over the unit circle, which is
the manifold 9% mentioned above, with suitably chosen multipliers. The group
2—and hence also the group &s—acts on 9 as the group of the projective
transformations of 9 into itself. Aslongasq 2 4, the Hilbert space § consists
of all square integrable functions over I, while the inner product in $ is defined
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by a positive definite integral form depending on ¢ if ¢ is in the “exceptional
interval” 0 < ¢ < 1

The representations of the discrete class are realized on a space of analytic
functions of a complex variable z which are regular on the open unit circle
| 2| < 1, with suitably chosen multipliers and a suitable definition of the inner
product in $. M is the open unit circle, and the transformation group is the
group of all conformal transformations of 9 into itself.

If the proper vectors fm of H,, are chosen as basic vectors of §, the matrix
elements umn(a) = (fm, U(a)f,) may be explicitly determined for every represen-
tation, and may be studied as functions of a. They are always analytic in a,
and if the f, are multiplied with suitably chosen complex numbers of absolute
value one they are also analytic in ¢ for each of the classes Cy and C?} (including
the exceptional interval 0 < ¢ < % for C). It is particularly interesting to
study the asymptotic behavior of the matrix elements « (we omit the indices
m, n) on the group manifold &;. For this purpose we introduce the non-
negative parameter r defined by the relation cosh r = (1 — »*)} where v is
the relative velocity of two frames of reference connected by a Lorentz trans-
formation a. We thus obtain the following asymptotic expressions for large 7:
For the classes Cq and C} (¢ > 1) u ~ ™ (s = (¢ — DY. For C°
O<g<Hu~e (0 = +& — @Y. ForDfu~e™.

It is evident that the matrix elements of Cy where ¢ is in the exceptional
interval 0 < ¢ < % exhibit an asymptotic behavior which differs markedly from
that of the other matrix elements of the continuous class: They are not oscil-
latory, and they decrease less rapidly. It is reasonable to relate the asymptotic
behavior of the matrix elements to the invariant measure of &;, which, inci-
dentally, is both right- and left-invariant. The portion of the group manifold
between 7 and 7 + d7 has the volume const.sinh 7 d7. Therefore only the
matrix elements of Di with k > } are square integrable over S;. Square in-
tegrable functions may also be formed by integrating the matrix elements of
C% and C,§ (where ¢ > %) with respect to s. These results may be generalized
s0 as to be independent of the basis in the representation space .

The matrix elements of the representations Cy (¢ > 1), C}, and DF (k > 3)
satisfy orthogonality relations similar to those which hold for irreducible represen-
tations of a compact group. Finally, it may be shown that the matrix elements
of DF (k > 1) and integrals (with respect to s) of the matrix elements of Cj
(¢ > 1) and Cf, are dense in the Hilbert space of square integrable functions
over ©;. (It is interesting that this holds for the matrix elements of only part
of all unitary representations.)

II. The group &,. We may choose the following linearly independent
elements of an infinitesimal representation: Hy, Hy, Hy, Hy, He, He .
For an irreducible representation the two operators

Q = (Hw' + (He)' + (Hw)' — (Ho)® — (Hw)' — (Hn)’
R = HuHy + HeHy + HypHy
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are scalars, i.e., @ = ¢-1, R = r-1, where ¢ and r are real numbers. The spec-
trum of the operator (Hw)? + (Hx)’ + (Ha)® is always discrete and consists of
numbers of the form j(j + 1) related to the (2j + 1)-dimensional irreducible
representations of the three-dimensional rotation group, every one of which
occurs at most once. The values j are either all integral or all half-integral,
the latter case corresponding to a double-valued representation of the group .
The possible representatons may be classified as follows: (1) Cy : ¢ may be any

positive number, while j assumes all values, 0, 1, 2, ---, andr=0. (2)Cr,:7
may be any real number, k may have one of the values 3, 1,4, ---. In this case
¢g=1-F+ (r/k)?, and j assumes all values k, k + 1,k + 2, ---. Thereis

no counterpart of the discrete class which we found for the grcup €;. For the
representations Cy there exists an “exceptional interval,” viz., 0 < ¢ < 1.

The realization of the unitary representations of & is quite similar to the
one described above. In all cases, the manifold 9 is the unit sphere, and the,
transformation group operating on it is the group of projective transformations
of the sphere into itself. With suitably chosen multipliers we obtain unitary
transformations U(a), the Hilbert space $ being defined by all square integrable
functions over the unit sphere except for the representations Cy with ¢ in the
exceptional interval 0 < ¢ < 1, in which case the inner product in 9 is again
defined by a positive definite integral form depending on g.

With respect to the matrix elements of the representations, the results are
not as simple and complete as they are for the group €; . However, the analytic
pature as well as the asymptotic behavior of the matrix elements are easily
determined. As a basis we use vectors f;. in § which are proper vectors of
both operators (Hy)® + (Hz)® + (Hy)® and Hy, . Omitting the indices, and
using the same parameter 7 as above, we have for large 7: For Cy@>1u~
e s = (g— DY, ForCQ 0 <g<Du~e'e (0 =+0—gh.
For Cy,u ~ ¢ "e€™"* The same remarks as above apply to the matrix ele-
ments of C where g is in the exceptional interval 0 < ¢ < 1.

In the case of &, the portion of the group manifold between r and = + dr
has the volume const-(sinh 7)?dr, and it follows that none of the matrix ele-
ments is square integrable, and that by integrating the matrix elements of C?
(¢ > 1) over s and the matrix elements of C;, over r we may obtain square
integrable functions on the group manifold. Orthogonality relations may
again be derived excepting the representations C3 for the exceptional interval.

In an appendix to Part II, Dirac’s exrpansor representations [Dirac 2] are
analyzed. They are reducible, and it is shown that they contain all representa-
tions C with ¢ > 1 and the representations Cio. Moreover, the equivalence
of different homogeneous expansor representations is demonstrated.

Contents of Part I. Part I of this paper deals mainly with the group Ss,
Part II deals with &, . It should be noted, though, that §§1-3 as well as part
of §5 form the basis for the discussion of both groups and that, generally speak-
ing, the method applied to analyze ©; is a straight-forward generalization of
the method used in Part I. In §1, Lie groups and the multipliers associated
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with them are surveyed to the extent necessary for the following investigation.
§§2 and 3 contain a discussion of the Lorentz groups and the spinor groups,
©;, ©;. §4 treats the group &; and its manifold in greater detail. In §5
the infinitesimal representations of &; are classified, and the construction of
the corresponding unitary representations of &; is carried out in §§6-9. §§10-11
deal with the matrix elements as functions on the group manifold, the orthog-
onality relations are derived in §12, and the completeness of the matrix ele-
ments is demonstrated in §13. The appendix contains some remarks on the
spectra of the infinitesimal operators.

At a later occasion, the writer intends to discuss several questions not treated
in this paper, in particular the connection with the representations of the in-
homogeneous Lorentz group, and with the field equations for particles of higher
spin ([Dirac 1], [Fierz, 1, 2]).

The main results of this paper were worked out during the years 1940-1942.
In the intervening years the writer did not have the opportunity to complete
the manuseript.

AckNOWLEDGEMENT. The writer wishes to express his sincere gratitude to
Professor W. Pauli for suggesting the subject of this paper, for his interest in
the progress of the investigation, and for many stimulating discussions. He is
also indebted to Professors J. von Neumann and E. Wigner for valuable sug-
gestions.

§1. Preliminary remarks on Lie groups and multipliers

In this section we shall collect a number of formulas and introduce the nota-
tions which will be used in the present paper. In particular, we shall be con-
cerned with a discussion of the multipliers mentioned in the introduction.

la. Introduction. Let & be an n-dimensional connected Lie group. Its
elements will be denoted by a, b, - - -, its unit element by e. We assume that
the group manifold, which we also denote by ®, can be covered by one single
coordinate system, so that every group element a is described by n real variables
a', -+, a", the parameters of the group.®> (The range of the a* will be specified
in each particular case.)

The parameters of the product ab are defined by = analytic functions &*

(ab)* = &*(d’, ---,a" b, -+, b™) = @*(a, b) 1<¢=n

and the parameters of the inverse a™' of the group element a are given by n
analytic functions 6*

IIA
o,
1A

(a—l)‘ = oi(alf ) a‘") = oi(a) 1 n.

2 In the second part of the paper we shall have to use what amounts to polar coordinates
on a sphere, i.e., coordinates which are not everywhere regular. However, this will not lead
to any difficulties, and we disregard this complication in the present discussion.



REPRESENTATIONS OF THE LORENTZ GROUP 573

It is known that the partial derivatives of the functions &' with respect to the
variables ¢* may be expressed as follows:
a(ab)’ 8% _ i, .\

(1.1) B adF x:(ab)¥i(a).
We use the convention of tensor calculus that a summation is to be carried out
with respect to repeated indices. The x, _are n’ analytic functions, and the
¥4 are related to them by the equations x:(a)yi(a) = &, i.e., the matrix (Vi)
is the inverse of the matrix (xf). The functions xi(a) are uniquely determined
by the values which they assume for the unit element e; these values xx(e) may
be arbitrarily chosen, provided that their determinant be different from zero.’

Finally, the xi, which determine the infinitesimal transformations of the
group, satisfy the commutation rules

axi(a) . axi(a

(1.2) XJc( ) (a) _ Xl( )

oa “3a* Xl:(a) = cl:lx::(a)

where cx; denote the structure constants of the group. We have o= —cik.
If we derive the functions = (ab)® with respect to the parameters of b,

we obtain a set of equations similar to (1.1), viz.:
a(ab)’ _ 8®' _ i iy
T R+ (ab)Yi(b)

where %i(a)¢i(a) = & . Again, the %i(a) are determined by the values x4,
and we choose them such that

(1.3a) i@ = xie).

The commutation rules for the x: are given by

1.3)

dxila As ki as roas
19 60 sr0) — KD 1) = il

with the same constants c¢. (Other relations between the xi and the ¥& will
not be discussed here.)

1b. One parameter subgroups. The Lie algebra of &, and the adjoint group.
A one-parameter subgroup of ® is defined by an analytic curve C: a(t) on the
group manifold (— @ < ¢ < ) on which the relations’

(1.5) a(s)a(t) = a(s + 1)
hold for any two values s and ¢t. Clearly a(0) = e, and a(—s) = (a(s)™ Tt

da

7 (¢ =12, ---,n) are

follows from (1.5) that the n expressions & = Yi(a)

3 If the equations (1.1) hold for two systems xi'(a) and xj(a), then xi'(a) = xS (@)
with constants vf whose determinant is different from zero.
«We include the degenerate case that C reduces to one point, so that at) = e, for all t.
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constant along C, so that we have

da’ ;
1.6 — =« x
(1.6) 7 = ¥ x(0)
with constant «". Conversely, every set of differential equations of the form
(1.6)—with arbitrarily chosen constants x™—gives rise to a one-parameter
subgroup. It should be noted that on C we have likewise

da’ ;
1. — =K%
(1.6a) X ()
with the same constants «” (in consequence of the normalization (1.3a)).
Set x'(a) = «"xi(a), and denote by x the vector field (x'(a), - - -, x"(a)) on @.

We say, then, that the one-dimensional subgroup a(f) is generated by the
infinitessmal transformation x, and we write

(1.7) a(t) = exp (&)

If « is a constant different from zero, it is readily seen that

(1.7a) exp ('x") = exp (&x), X' = ax, ¢ =alt

which shows that x and ax generate the same subgroup. If we denote by x.
the vector field (x}(a), - -, x,*(a)), we may represent x as a linear combination
(with constant coefficients) of the x. , viz.:

(1.8) x = kxa + 0+ xn = xe.

Therefore, the infinitesimal transformations x of our group ® form an n-dimen-
sional vector space g, the Lie algebra of . In fact, if x and x’ are any two
elements of g, every linear combination ax + o'x’ (with constant coefficients
« and o) belongs to g, and by (1.8) g contains precisely n linearly independent
elements, e.g., the x, (1 < r =< n). (The independence of the x, follows from
the fact that the determinant of the x; does not vanish.)

Moreover, the product, or bracket, [xx’] of two elements x, x’ of g is defined
as follows: Let x*, x’*, and x””* be the components of x, x', and x”’ = [xx'] respec-
tively. Then

: ax" . X
"meo_ s — 19X
(1.9) X X 30 3"

The commutation rules (1.2) show that the bracket of any two elements x and
x’ of g belongs to g. More precisely, if x = «'x,, X’ = «"xr, then X/ = P’
= «"""x,, where

K= cixx
In terms of the n basic elements x, the commutation rules may be written as
follows:
(1.10) ixx] = ckixe-
They characterize the Lie algebra g.
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The bracket [xx'] is antisymmetric in x and x/, i.e. [x'x] = — [xx'], it is linear
in each factor, and for any three elements x, x’, X"’ we have Jacobi’s identity:
Xb'x" + KIX'x)] + X'D’l) = 0.

Let a(f) = exp (tx) (x € g) be a one parameter subgroup of ©, and b a fixed
element of ®. If we set a/(f) = ba(f)b™', then a’(s)a’(f) = a’(s + ). Hence
a’(f), too, is a one parameter subgroup of ®, conjugate to a(t), which is gen-
erated by some infinitesimal transformation x’ e g. We shall denote x' by
bxb~", so that we have

(1.11) bexp (tx)b™" = exp t(bxb ™).

This equation may be considered as the definition of the symbol bxb™. Itis
known that bxb™" is linear in x, i.e., for any two infinitesimal transformations
x, X, and any two constants a, o', we have b(ax + o'y )bt = abxb™' + o'bx’ b
Consequently, for a fixed group element b of ®, the operation bxb™' defines a
linear transformation of the Lie algebra g into itself. Let x = «'x- be an ele-
ment of g; then x' = bxb™' = «k''x,, where ¥'" = si(b)s. The coefficients si(b)
of this linear transformation may be defined by the equations

(1.12) bxib ! = si(®)xr, 1 <1< n

From the linearity of the transformation bxb~’, and from the relations exe ' =

x, b'(bxb )b = ('b)x(b'd) " we infer that
(1.13) sie) = &7, si()si(d) = si(b'b)

for any two group elements b, b’ of ®. The equations (1.13) show that the
linear transformations s3(b) form a group, the adjoint group of @, which is a
linear representation of ©.

ReMARK. As was pointed out in §la, the functions x+(a) are determined
by the choice of the xi(e) subject to the condition that their determinant be
different from zero. It is seen from the foregoing discussion that this amounts
to the choice of n linearly independent basic elements x1 , - - -, x» 0f g.

le. Group invariant integration. Let »,.(a) be a positive continuous function
defined on @. It defines a right invariant group integration if for every con-
tinuous function f(a) and every fixed group element b of @ we have

(1.14) L ff(a)v,(a) dd'--- da" = L ff(ab)v,(a) da'--- da”,

provided these two integrals exist. They are extended over the whole group
manifold. Once such a function »,is found, a theory of right invariant Lebesque
integration can be developed, and the equation (1.14) may be extended to
measurable functions [cf. Weil]. It is easily inferred from the equations (1.1)
that the condition on », is equivalent to the equation v,(a)A(a) = const, where
A(a) is the determinant of the xi(a). Consequently,

(1.15) v(@) = v-(A@)~,  Afa) = Det (x:(a))

where the constant v is so chosen that »,.(a) be positive.
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Correspondingly, left invariant group integration is defined by

(1.16) L cee ff(a)v;(a) da'--- da" = j;, e ff(ba)v;(a) da'-

with the same conditions on » and f as above. For v;(a) we find, with a con-
stant v,

(1.17) vi(@) = v-(A@@)™",  A(a) = Det (3i(a)).

The two constants in (1.15) and (1.17) may be chosen equal to each other, since
the normalization is arbitrary.
The functions »,(a) and »,(a) coincide if and only if

(1.18) ch=0 1<r=n.
In fact, it may be shown that x; 8/0a’ (log A(a) — log A(a)) = ci. If the n
conditions (1.18) are satisfied, the integral f f f@)v(a)da' --- da™, with
v(a) = v.(a) = vi(a),is both right and left ilﬁraria.nt and it will be shortly de-
noted by L f(a)da. In what follows we shall only deal with groups for which

v(a) = via).

1d. Realization of the group ® by transformations of a manifold M. Let M
be a real (or complex) m—d1mens10nal manifold described by the m real (or
complex) coordinates z', - - -, z™. Its points will be denoted by z,y, ---. The
group ® is said to act on I if to every a ¢ ® a transformation (homeomorphism)
¥ = az of M onto itself is defined, such that ex = z, and b(ax) = (ba)z for any
two elements a, b of . In particular it follows that a '(az) = a(a™'z) = z.

More specifically, we assume the transformation to be analytic, i.e., defined
by m analytic functions

(1.19) (a2)* = Z*@a, -+-,a", 2, - -+, 2™) = Z%(a, 7) 17 =m.

The partial derivatives of the Z* with respect to the a* may be expressed in
the form

a(ax)

(1.20) ok aak

= \r(az)¥i(a) 1= k

A

1A

m, 1

IIA

n.

The m-n quantities A\j(z) are analytic functions of the 2!, - - -, z™. They char-
acterize the infinitesimal transformations, and they satisfy the commutation
rules

37\1: (x) I\ 1 (1?)

(1.21) )\’( ) )\k( ) = c“)\,(x) 1= m, 1= k, l=n.
The transformations y = az give rise to linear transformations of the functions

f(z) over M. In fact, with a function f(x) we may -associate a function 9(y)
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defined by g(y) = f(z), where y = az, i.e., g(y) = f(a'y). Since g depends on a
we write, more specifically,

(1.22) gla, y) = T@fy) = flay).

The operators T(a) defined by this equation are clearly linear in f. Moreover
we have

(1.23) T(@)(T®)f) = T(ab)f, or T(a)T(b) = T(ab),

and T(e) is the unit operator, i.e., T(e)f = f. Therefore the T(a) furnish a
linear representation of the group ® which will be called the standard representation.
If f has continuous second derivatives (or is analytic, in the case of a complex
manifold M) we may obtain the infinitesimal operators related to T'(a). By
(1.22), g(a,ay) = f(y) is independent of a, and hence we obtain from (1.20)

(1.24) 9

((;;,kx) + i@ i(z) %:ﬂ) =0 1<k<n.

We now introduce the differential operators
;]

(1.25) A = —A(x) 3 1sr=n
and
(1.26) x = x@) o 1sr<an

(Notice that we use for the differential operator (1.26) the same symbol as for
the corresponding element of the Lie algebra g.) More generally, if x = «'x
is an element of g, we set

(1.27) x = x'(a) 'a%"’ x'(a) = ¥ x:(a)

and

(1.28) A= =M@ o, M@ = NG

We, then, derive from (1.24) the relation

(1.29) x9(a, ) = x(T(@)f(x)) = Ag(a, x) = A(T(a)f(x))

for every x € g, where x is the differential operator (1.27).
With the help of the operator x, the equations (1.20) may be replaced by

(1.29a) x(az)’ = Ai(az).
Let a(f) = exp (tx) be a one parameter subgroup, and denote the operator
T(a(®)) by T.. Since da‘/dt = x'(a), it follows from (1.24) that

(1.30) o (T:J@) = AT f@). -
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Consider the operators (1.27) corresponding to the elements x, x’ of g. The
linear operator xx’ — x’x then corresponds to the bracket [xx] as is seen from
(1.9). We may, therefore, define in a consistent way the bracket of any two
linear operators A, B as their commutator, i.e.

(1.31) [AB] = AB — BA.

With this definition we obtain from (1.21), if the operators A; and A, are applied
to a function f which has continuous second derivatives (we use the fact that
8/9x*-of/ax" = 9/9a"-af/0x"),

(132) [AI,AI] = C;:lAr.

By (1.28) it follows that Ay+arxy = aAy + a’A, for any two constants
a, o’ and any two elements x, x’ of . Comparing (1.32) with (1.10) we may
add to this that

(1.33) [AxAy] = Arxrx -

(This relation may also be proved directly from (1.29), cf. §lg, in particular
(1.48).)

le. Remarks on linear representations of the group ®. Let the manifold Mt
be a real or complex m-dimensional vector space, and the transformations y = ax
linear transformations on M. Then ar = U(a)r, where U(a) is a matrix de-
pending on the group element a. We have U(e) = 1 (unit matrix), U(a) U(b) =
U(ab), and U(a™) = (U(a))™. The A(z) introduced in §1d must be linear
in z, so that M\i(z) = l;:,ac" . If L. denotes the constant matrix with the elements
Z;', we obtain from (1.20) and (1.21)

dU(a)

(1.34) Fyal ¥i(a)L, U(a)
and
(1.35) [L:L)] = LiLy — L,Ly = ciiL, .

We mention here that the derivatives of U(a) may be expressed in the equiva-
lent form

aU(a)

(1.34a) = $i(a)U(a)L,

with the same matrices L, .
With any element x = «"x, of the Lie algebra g we associate the matrix L, =
«'L,. We then obtain a representation of g by matrices, i.e., we have

(1.36) Laxtarxn = aLy + o'Lyr, Lixxn = [LyLyl.
The equations (1.34) may be replaced by
(1.37) xU(a) = L,U(a)



REPRESENTATIONS OF THE LORENTZ GROUP 579

where on the left hand side x denotes the differential operator (1.27). For a
one-parameter subgroup a(f) = exp (&x) we find (dU,)/dt = L, U,, with U, =
U(a(t)). Since U, = 1, the solution of this differential equationis U, = exp (tL),
the exponential function being defined by the power series’ exp(tL,) =
> o t*/k! LY. Consider, now, for a fixed element b of G, the subgroup a’(f) =
ba({)b™" = exp(tx’), with x¥’ = bxb™", and the corresponding matrices U; =
U'(t)) = UOGU,UGB)™. Then dU;/dt = L, U,, and we immediately
obtain

(1.38) L, = U®LU®b)™, x' = bxb™.

Applying this equation to x;, and using our previous results concerning the
adjoint group (cf. (1.12)) we find

(1.39) U®LU®B)™ = si(b)L, 1 =1

Later, in constructing the unitary representations of the Lorentz group
(cf. §5), we shall extend the equations of this subsection to the case of infinite
matrices (operators in Hilbert space). The matrices U(a) and L, will be
replaced by operators of the type T'(a) and A, respectively. The close analogy
of the-equations (1.29), (1.33) with (1.37) and (1.36) is evident.

1f. Multipliers. In what follows we shall need a certain generalization of the

standard representation introduced above (cf. (1.22)). Define, for every func-
tion f(z) over the manifold I and the group element a ¢ ®, a tranformation
T(a)f by the equation
(1.40) g(a, 2) = T(@)f(@) = ula, a'z)-fla " '2)
where u(a, x) is a fixed real or complex function of a ¢ @ and = ¢ I (i.e. u is the
same for all functions f considered). The T'(a) are linear operators, and the
question arises under which conditions they furnish a representation of the group
® such that (1) T(e)f = f,(2) T(a)(T®)f) = T(ab)f for every function f. If
u(a, ) = 1, we are led back to the standard representation, which, in the re-
mainder of this section, will be designated by the superscript 0 (T°(a)f = f(a™'z)).
For the function u we have
(1.41) ple, ) = 1,  u(ad, 2) = u(a, bx)-p, ).
The first condition follows from T'(e)f = f. To obtain the second, set fi =
T®)f, and f; = T(a)f1, for an arbitrary function f(z). From (1.40) we find
fi@) = u(b, b)) -f(b7'2), faly) = wu(a, a”'y)-fia™'y) = w(a, a'y)-ub, b'a'y)-
f('a'y). The function fo(y) = T(a)(T()f) coincides with fs(y) = T(ab)f =
u(ab, b'a7'y) -f(b'a”"y) if and only if the second equation (1.41) holds as is
seen by inserting z = b"'a 'y, bx = a”'y.

DEFINITION 1. Let the group ® act on a manifold IN, and denote the transforma-
tionsof Mbyy = azx (e e, z, vy e M). A function u(a, x) which satisfies the equa-
tions ple, ) = 1, pladb, ) = p(a, bx)-ud, z) is called a multiplier associated

1A
fIA

n.

5 In this expression the superscript k denotes of course the kth power.
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with this group of transformations. The transformations T(a)f(x) = u(a, a 'z)-
f(a7'z) of the functions f(x) over M define the corresponding multiplier representa-
tion of ©.

The following properties of multipliers are evident. u(a, ) = 1 is a mul-
tiplier; with any multiplier u(a, z) its reciprocal, also, is a multiplier, and with
any two multipliers ui(a, ), p(a, ), their product is a multiplier. This shows
that the multipliers themselves form a group with respect to multiplication.
It should also be mentioned that any (not necessarily integral) power of a mul-
tiplier is again a multiplier provided that the power may be properly defined
(which is not always the case for complex multipliers).

On setting b = a™* we find from (1.41)

(1.42) wla, a'z) -p@™’, ) = 1.

A special class of multipliers can be constructed in a very simple way. Let
p(z) be a non-vanishing function over . Then

1.43 g, 7) = P(3)

(1.43) u(a, ) @
satisfies the conditions (1.41). It is evident that, for all a,
(1.43a) T(a)p(z) = p(x).

Conversely, if there exists a non-vanishing function p(x) which is invariant
under all transformations T(a) of a given multiplier representation, the cor-
responding multiplier u(a, ) is given by (1.43). Moreover, u(a, ) = 1 when-
ever axr = I.

1g. Infinitesimal multipliers. Assuming u(a, x) to be analytic in all its
variables we next compute xu(a, ) = x*(a)d/0a*- u(a, ), where x*(a) = «"xi(a).
On replacing in (1.41) @ and b by ab and b™" respectively, we obtain u(a, z) =
u(ab, b 'z)-u(d’, ). We now apply the differential operator x to both sides
of this equation. If we denote du(a, x)/8a” by w(a, z) we find

xu(a, ) = x'(a) a(;l? pe(ab, b )u(®7, ).
By (1.1) x*(a)a(ab)*/aa’ = x*(ab). Consequently,
(1.44) xu(a, z) = {x"(ab)m(ab, b'2)}u(®d7, ).

In this equation we set b = a . If we denote {xu(a, z)} ¢ = by 7,(z), which

for a given element x of the Lie algebra g is a function of x, the curly bracket in
(1.44) assumes the value 7,(azx) for b = a™, and we finally obtain

(1.45) xu(a, ) = 74(ax)-p(a, z) Tx = {xu(a, 7)}om..

The function 7,(z) is called the infinitessmal multiplier associated with u(a, z),
and corresponding to the element x of g. The infinitesimal multiplier cor-
responding to x; will be denoted by =x(x).

¢ Multipliers will be further discussed in Part II of this péper.
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Infinitesimal transformations of the multiplier representation. We assume here
that the functions f(z) under consideration have continuous second derivatives
(or are analytic in the case of a complex manifold 9?). To obtain the expression
x(T(a)f(fv)) we set T(a)f(z) = u(a, a_lx) T%(a)f(z), so that x(T(a)f(x)) =
{xu(a, a7'z)} - T°(a)f(x) + wu(a, a_l:c) (1° (a)f(x)). 1If the infinitesimal operator
of the standard representatlon —\(x)8/8x’ (cf. (1.28)) is denoted by A,‘ , wWe
have x(T%a)f(x)) = A (To(a)f(x), and hence

XT@f(@) = {xu(a, a”'0)} - T'@f=) + e, a ' DAUT(@f().
Furthermore, by (1.45) and (1.29) xu(a, ¢ 'z) = 7,(@)-ua, alz) +
Adu(a, a”'z). Consequently,

x(T@f) = @) -T@fx) + Axlue, a”0)T(a)f(@)}
or
(1.46) x(T(@)f(x) = Ax(T(a)f(x)).

A, is an infinitesimal operctor of the multiplier representation. It only involves
the coordinates of the point z, and it is defined by

147)  AJE@ = @ @) + A f@, A= Mg

The operator corresponding to x; will be denoted by Ax = 7. + AL.

Clearly A(.x_,_a,x,, = aAy + o’A, for any two constants a, o’ and any two
elements x, x’ of g. To obtain the operator corresponding to the bracket
[x'x] we first apply x' to the equatlon (1.46). The operators x’ and A, com-
mute, since x’ operates on the a* only, and hence x'x(T(a)f) = x'{A x(T(a)f)}

x{x'(T(a)f)} = A A (T(a)f). Similarly, xx'(T(a)f) = Ay Ay (T(a)f). There-
fore we have

Xx — xXNT@f) = (Axhy — ApA)(T(a))
which may be written as
(1.48) [AxAx] = Aprxre

This equation has the same form as the equation (1.33) previously derived for
the standard representation. On setting x = xx, X’ = xi, we obtain the
analogue of (1.32).

By a straightforward computation we find from (1.47)

Apyaf= (A?x’x] =+ T[x'x])f = [AiAi:]f—i— (Agﬂ'x’ - A?c”'x) -f.
Since Al = [AYA%] (cf. (1.33)), iy x is given by
(1.49) Ton = AyTe = Ay
where A) 7, equals —M\.37,(x)/82" ete. In particular, for x = xi, x
(1.49a) Ay — A = curr.

Il
>
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Additional remarks. (1) If p is a multiplier, and 7, the associated infinitesi-
mal multiplier, then any power of u, say ", has the infinitesimal multiplier
hry (cf. (1.45)).

(2) Let p, p’ be any two multipliers and let 7,, r, be the associated in-
finitesimal multipliers. The product y’’ = u-u’ has the infinitesimal multiplier
7',,: = Ty P 7'; (cf. (1.45)).

(3) Let u(a, z) be a multiplier of the special form p(az)/p(z) (cf. (1.43)), where
p(x) is an analytic function. Then T'(a)p(x) = p(z), and hence x(T'(a)p(z)) = O.
This implies that A,(T(a)p(z)) = A,p(x) = 0. Consequently, by (1.47) the in-
finitesimal multiplier 7, may be expressed as

(1.50) 7x(@) = — (p(x)) T A%Yp(2).

Moreover, for any differentiable function g(z), Ax(p-g) = (Ayp) g + p-A%g =
pA%g, so that, with f = p-g,

(1.51) Af@) = o)Ay (o)~ f(x)).
This is the infinitesimal analogue of the relation
(1.52) T(a)f(z) = p(2) T"(a)(p(z) "f(x)).

1h. A method of constructing multipliers. Let ® act on a real or a complex
m-dimensional manifold 9%, where m > 1, and assume that coordinates z’,
-+, " may be so chosen on ¢ that the (real or complex) variable 2™ does not
assume the value zero and that furthermore the transformation y = az is de-
scribed by equations of the following form (cf. (1.19))

1.53) (ax)' = Z(a, ) = Z'(a, 2", -+, 2™) 12im-—1

( (ax)m = Zm(a; Cl?) = xm':u(ay xl’ Ty xm—l)'
The first (m — 1) equations (1.53) define a group of transformations of the
variables z* (1 < ¢ < m — 1) among themselves, i.e., a group of transformations
of a manifold 9t* defined by points z* with the coordinates z', - - -, ™. The
function u(a, z*) in the last equations (1.53) is a multipier for this transformation
group, because the group properties ex = z, and a(bx) = (ab)z imply the rela-
tions u(e, z*) = 1, and u(ab, *) = u(a, bx*) - u(b, x*) as is readily verified. (Con-
versely, if a multiplier u(a, 2*) is defined on a manifold ¥*, we may construct
a manifold I (a fiber space over IMM*) by including a new variable ™, and define
a transformation group on I by the equations (1.53).)

If y = az, we may write

(1.54) y* = az*, y" = z"-ula, z¥).
Since the functions A} (y) (cf. (1.20)) may be defined as x.y* = x,(az)* (1 Si = m)
the following may be inferred from (1.54): (1) If 1 £ 7 £ m — 1, A} is inde-

pendent of y™, and hence a function of y*. (2) \!' = xy" = 2" xu(a, z*) =
Y™ (u(a, %) x.p(a, *). Since A\J is a function of y™ and y*, it is therefore

3



REPRESENTATIONS OF THE LORENTZ GROUP 583

of the form y™ 7,(y*), and we obtain x.u(a, z¥) = 7(az*)-u(a, z*) in accordance
with (1.45). For any element x = «'x, of g, we finally get
(1.55) ' =MEH U =i=m—1); "=y ).
with A = «"\}, 74 = «'7r.

Multiplier representations on MM*. We at once construct the multiplier repre-
sentation on 9* which corresponds to the Rt power of u(a, 2*). Its transforma-
tions will be denoted by T'(a), while the transformations of the standard represen-

tation on the manifold I will be denoted by T%a). On applying T%a) to a
function F(z) over I of the particular form

(1.56) F(z) = @)@, -, 2™ ) = (@) 7 f@¥)
we obtain
TQF@) = Fla™2) = (@)™ ™ fla7'2*) = @™ @™, %) "'2¥).
From (1.42) we therefore find
(157 T@)F@ = @), a'2%)"f@ e = @) T(@)f@¥).
The application of the differential operator x to the preceding equation leads to
x(T°@)F (@) = @™ x(T(@f(@*).
On the other hand, we have x(T°(@)F(x)) = A‘;(To(a)F(:v)) and x(T(a)f(z*)) =

A(T(a)f(z*)), which implies A(T@)F(z)) = (™A (T(a)f(z*)). For
a = e we have

(1.58) A = @ AUEE).

Here A% = — (7o M(@®a/ax’) — & 7,(a*)9/ox™ (cf. (1.55)) is an infinitesi
mal transformation of the standard representation on M, and consequently
A, = —(CTEIN(zY0/82)) + hry(2¥) in accordance with (1.47). It is also
seen that

(1.58a) A Af@® = @™ A(E™ ().

These relations will be used in the sequel.

Remark on projective transformations. Denote the coordinates on I by
£ (1 £ ¢ < m) and assume that y = az is a linear transformation of ¢ into
itself given by 7 = wi(a)¢’, n* being the coordinates of y. If, on M, £™ is dif -
ferent from zero, we may introduce new variables

d=F/frQsism—1, a"=¢".

With these variables we have

{ (ax) = (Lwi@)? + wh(@)lu(e, 2% 1=i=m-—1

(1.59) (az)"™ = 2™ u(a, o*), ula, 2¥) = 2 miw(a)z’ + wh(a).
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The first (m — 1) equations (1.59) define a group of projective transformations
of the (m — 1) variables z', ---, ™, and u(a, z*) is evidently a multiplier.

li. Inmvariant densities. Let ® act on a real m-dimensional manifold I,
let u(a, x) be a multiplier, and let T(a) be the transformations of the correspond-
ing multiplier representation. Denote, for a continuous function f(xr), by I(a)

the integral

@) = [ (F@f@)e dX

extended over the whole manifold I, where dX = dz' --- dz™, and where v is
a fixed positive continuous function. If for every f for which all I(a)[f] exist
I(a)[f] is independent of the group element a, w(x) will be called an snvariant
density with respect to the multiplier representation under consideration.
(Clearly such a function w(z) also defines an invariant Lebesque integration
on M.)

We introduce the variables y' = (a7 'z), so that T(a)f(x) = u(a, y)f(y), and
we denote by J,(y) the Jacobian a(z', ---, z™)/a(y", -+ -, y™). Then

I = [ J@)u(a, Yolan)Tu) 4V

Consequently, w(z) is an invariant density if
(1.60) 1(a,y) = p(a, y)w(ay) J.(y) = w(y)

for all a and all y.

If » is a differentiable function (1.60) may be replaced by the condition
that the partial derivatives of n(a, ) with respeet to all @' vanish, or by the
condition that x,n(a, y) = 0 (1 = r = n). To compute x,7(a, y) We remember
that x, u(a, y) = (ay)-u(a, y) = 7,(z)-u(a, y), and that xw(ay) = dw(x)/oz’
M(z) (cf. (1.292)). Finally,

w10 = I {Z (v 2N = r & L e} = ) - 2 0.

o

I IA

(Cf. (1.292))". Collecting terms, we have x.,n(a, y) = nu(a, ¥)-Ja®)-
{0/8x'(w(z)A\;(x)) + r.(x)w(x)}. Therefore a positive differentiable function
w(z) is an invariant density if and only if

(1.61) Mw(z) =0 1=r=n
where M,f(z) = 8/82°(\i(x)f(x)) + =.(x)f(x). It may be shown that
(1.62) MM, — MM, = cuM.

if these operators are applied to a function with continuous second derivatives.

7 To apply (1.29a) the variables z and y must be interchaliged.
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§2. The infinitesimal transformations of the Lorentz and rotation groups

2a. Linear transformations which leave a quadratic form invariant. We con-
sider here the group of linear tranformations on an m-dimensional real vector
space It which leave a non-singular quadratic form invariant. (By specializing
the dimension m and the quadratic form in question we shall later on obtain
relations for the Lorentz group aswell as the orthogonal group in three variables.)

More specifically, we discuss the (connected) component of the group which
contains the identity. It will be denoted by ®. @ is an n-dimensional con-
nected Lie group, where n = im(m — 1). (In the case of the Lorentz group,
® consists of all Lorentz transformations of determinant 1 which do not reverse
the direction of time (proper Lorentz transformations). In the case of the
orthogonal group, ® consists of all transformations of determinant 1, i.e., of
all rotations.)

The elements of @ will be called a, b, ---. We shall not yet introduce any
specific parameters on the group mamfold (this will be done in later sectlons)
The following notation is used. A pomt z of M has the coordinates z', - - -, z™.
The quadratic form is given by g;;z"z’, where g., = g;. The contravariant
symmetric tensor g*’ is defined by the equations g*gx; = & ; g:; and ¢*’ are used
to lower and to raise indices. In a suitable coordinate system g;; is diagonal,
with elements +1, i.e.

@1 gu =M, g2 =M, ' gnm = 1m; gy = 0if ¢ 7 j,n=£1

We apply here the results of §le. To every group element a of & corresponds
a transformation y = axr = U(a)z, where U(a) is a matrix with the elements
w';(@). We then have

2.2) ¥ = w'a)x’.

The conditions for g;;z'z’ to remain invariant under the transformation (2.2)
may be written in the two equivalent forms

(2.3) wi@wi@ = &; wi@wi@ = &

where w’ = gig”w’; . Every element x of the Lie algebra g of the group ®
gives rise to an infinitesimal transformation L, with the constant matrix ele-
ments I; (cf. (1.37))° so that

(2.4) xv = Ly, xy' =1y,

Since, for every a, g:y Wi = guz'z’, it follows that x(giy'y) = 20::0)y’ =
20:°w'y = 2y y’ = 0. Consequently,

(2.5) lij + 1l = 0.

Conversely, it is readily seen that every matrix L whose elements I; satisfy
the relations (2.5) corresponds to an element x of g.

8 For convenience we suppress here the subscript x.
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Every Lx may be expressed as a linear combination of the transformations
Ly, defined as follows:

(2.6) Lew) = Gigy; — o)y’ = olys — olys.

(1) Ly, is of the required form, because its covariant matrix element (¢, j) is
equal to gag:; — gugri, and consequently (2.5) is satisfied. (2) If a matrix
L has antisymmetric covariant matrix elements l;, it may be expressed as
L = }*'Ly,. Since, by the definition (2.6), Ly = — L, only im(m — 1)
of the Ly, are linearly independent—for example those for which ¥ < I. The
corresponding xz; may be chosen as a basis of the Lie algebra g. The use of
double indices for characterizing this basis seems to be more appropriate, al-
though this does not quite correspond with the notation used in §1 (cf., however,
§2e below). In what follows we shall mostly use all Li; without restricting the
indices k,  in any way.
From (2.6) we immediately obtain the commutation rules

(2.7 [LiiLei) = galii — gaLji + gaLaw — gL .

These equations define (implicitly) the structure constants of &. A simple
discussion shows that the analogue of (1.18) holds, i.e., that on & right and
left invariant group integration coincide.

Operators of the standard representation. Let T°(a)f(z) = f(a 'z), then
x(T'(@)f(z)) = AY(T°(a)f(x)), where

i ;9
(2.8) A = =1 x’%{
if L is defined by (2.4). (Cf. (1.28). For xi; we have thercfore
0 g9 _ .9
(2.8a) A = x; 3 T et

One parameter subgroups. If the tensor g;; is chosen in diagonal form it
is very simple to obtain explicit expressions for the transformations of the

one parameter subgroup y(f) = exp(tLi))xr. We distinguish the two cases
m=m=mnandmn=—n9 =1
(1) For m« = n; = 1, we find
(2.9) Y () = costa* + psintz’ | y'(f) = —nsintz* + costz’,
V() =2 G #=kl.
(2) For nx = —n; = 9, we find
(2.9a) y*(t) = coshta2® — gsinhtz’, y'() = —nsinh¢2* + cosh¢ z!

yv'@t) = 2 (@ # k).

It is seen that L, generates transformations of the (k — 1) plane into itself.
2b. The adjoint group of ®. By (1.38), L, = UL, U®)7, if ¥ = bxdb ™"
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Denoting the matrix elements of L, and L, by l”i and I*; respectively, we
therefore have

" = wh®)lFw )
or
(2.10) U = whd)w,®)F

i.e., the I*" transform as the components of a skewsymmetric tensor. The
corresponding equations for the x;; are

(2.10a) biip ' = W)W (D).

2c. The operators Q and K. Let Li; be a set of linear operators so chosen
that L;; = — Ly and that the commutation rules (2.7) hold, and let

(2.11) Q = 3LuL*' = iYL,

(The precise nature of these operators is immaterial, provided that they can
be multiplied without restrictions.) Then @ commutes with all L;;, as is
readily verified. (Q is Casimir’s operator which can be constructed for every
semi-simple group [Casimir].)

In the case of a four-dimensional manifold I a second <nvariant operator
(i.e., an operator commuting with all L;;) exists, viz.

(2.11a) R = 19"ML;Ly,
where »”* is antisymmetric in any two indices, and 5

The two operators Q and R (the latter in the case of &) will later serve to
characterize the irreducible representations of & and & .

2d. The Lorentz group ¥ (m = 4). The coordinates will be denoted by
2, 2, «*, ©*; the metric tensor ¢;; has the components go = 1,91 = g2 = @38
= —1,¢;; = 0 (z £ j). Since we consider only proper Lorentz transforma-
tions the determinant of the w'; is equal to 1, and w’ > 0. The operators Q
and R are given by

(2.12) Q = (L)* + (La)® + (Le)* — (Le)* — (Lew)* — (Los)*
(2.12a) R = LyLy + LsLy + LiLs .

2e. The case m = 3. We now turn to a more detailed discussion of the
case m = 3 which will be treated in the first part of this paper. The well known
equivalence of vectors and antisymmetric tensors in three-dimensional vector
algebra (with respect to the transformations of the group &) may be used for
the following simplification. We define the infinitesimal tranformations x,
and L, by the equations

1234
= 1.

(2.13) Xr = %nrkzg"jg"'xs;, L. = %ﬂrktL“

. . .. . . N Kkl i 1
where 7,4, is antisymmetric in any two indices, s = 1, and L*' = ¢¥g“L;; .
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Hence
(2.14) Li=L* L =L" L= L"
and similarly for the x, . Correspondingly we write
X = kKxr, Ly = 'Ly,
with ' = ls, & = ls, & = lz. (This is in accordance with the notation
used in §1. The x, form a base for the Lie algebra g.) Instead of (2.4) we
now may write
(2.15) (Lz); = 2° — &2, (La), = «'2° — 2, (La); = K'z' — 'z’

The transformations of the adjoint group may be expressed as follows. Let
x = bxb~!, where x = «"x, ,and x’ = ", . Then

(2.16) K = wi(b)x’.
Furthermore,
(2.17) bxd = wi®)x .

This is true because the transformations w'; considered have the determinant 1.

Finally, we shall specify these relations for the two groups which we have
to discuss, viz., the group R of rotations, and the Lorentz group % .

The group R. The metric tensor will be chosen as gn = g» = gz = —1,
gi; = 0 (if 7 ¢ 7). (The negative sign is chosen because we consider here R
as a subgroup of €, for which the choice g = 1 is the most convenient.) From
(2.7) we obtain

(2.18) [LiLs] = Ls, [LoLs] = Ly, [LsLy) = L .

By (2.16) any two one-parameter subgroups of & are conjugate if they are
generated by non-vanishing x. Since x and ax (a # 0) generate the same
subgroup (cf. (1.7a)), only the direction of the vector (x") matters, and by a
suitable rotation any direction may be transformed into a given direction.

For the operator @ we find

(2.19) Q = (L)’ + (L)* + (Ly)* = —¢“LiL;

(except for a constant factor, the well known expression for the angular momen-
tum in Quantum Mechanics.)

The group R5. We use the coordinates z°, z', 2°, replacing the index 3 by
the index 0. The metric tensor is then given by goo = 1,91 = g2 = —1,¢:;; =0
(if ¢ # j). The equations (2.14) and (2.15) are then replaced by

(2.20) L= L% L = L* L, = L"
and

(2.21) (Lz)s = i’z — &'2%, (La), = 2" — 2", (Lx)e = «'2° — «"z'.
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The commutation rules are
(222) [LoLl] = Lg y [L1L2] = —Lo y [LzLo] = L1 .

(Note the minus sign in the second equation which is due to the indefinite metric.)

Since the transformation (2.16) preserves the expression g;x'x’ = «'x;, we
now have three different classes of one-parameter subgroups for non-vanishing x
corresponding to the three cases «'k; > 0, x'x; < 0, and «'x; = 0. Within each
class any two subgroups are conjugate, because with a suitably chosen a, any
space-like (time-like or null) vector (x") can be transformed into a given space-
like (time-like or null) vector (ax’”) by some transformation of the group L.
These three classes will be respectively called elliptic (x'x; > 0), hyperbolic
(K'x; < 0), and parabolic (x'x; = 0) subgroups. (Cf. §4f.)

The operator Q is given by

(2.23) Q = (L)* — (I)* — (L) = ¢“LiL; .

§3. The spinor groups

In this section we briefly discuss the spinor groups which correspond to %,
% and R, and which will be denoted by &,, &;, and &; respectively. (For
this section c.f. [v.d. Waerden, §16, §20].)

3a. The group ©,. Let x be a point of a four-dimensional vector space with
the coordinates z°, z', 2%, 2°. With = we associate the Hermitian second order
matrix (wherei = 4/ —1.

8.1) x 2L+ 2 — i
: - PRI R R °
Conversely, every Hermitian matrix may be written in this, form (with real

z). The determinant of X, which we denote by D(X), has the value (z")* —
@) — (@) — (@) = g'2*z’. If the matrix

32) W=<°‘ ﬂ)
v o

with complex elements «, 83, v, §, has the determinant 1, and if
a ¥
()
)
is its Hermitian adjoint, then

(] 3 1 . 2

vty oy —w
(3.3) Y = WXW*, Y = ( . 2 o 8)

ytw y —y
defines a linear transformation, ¥* = w*z*, with real coefficients w';, for which
D(Y) = D(X), i.e., a real Lorentz transformation. Moreover, the determinant
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of the w*; is equal to one, and w’ = %(aa + 8B + v¥ + 83) = 1 (since ad —
By = 1). Hence this transformation is a proper Lorentz transformation, i.e.,
an element of the group &, .

The matrices W (3.2) with determinant 1 form a six-dimensional connected
Lie group, &,, (we count real dimensions), whose elements will be denoted by
a, b, ---. We have seen that to every element ¢ ¢ &, corresponds an element,
say a’, of & . It is readily verified that the mapping a — a’ has the following
properties: (1) e — e, (2) a~' — (a’)”", (3) ab — a’'b’. This mapping is two-to-
one. Every proper Lorentz transformation may be represented in the form
(3.3), however W and (— W) (but no other matrix) give rise to the same Lorentz
transformation. Let us denote the elements of &, which correspond to Wand
(—W) by a and (—a) respectively. Then a and (—a) are mapped into the
same element a’ of & . More specifically, &, is isomorphic to the factor group
©,/M, where N is the invariant subgroup of &, consisting of the two elements
e and (—e).

The two groups & and &, are locally isomorphic (in a suitably chosen neigh-
borhood of the unit element), and therefore their Lie algebras are the same.
(It is easily seen that this isomorphism is analytic.)

3b. The group ©;. The group & may be considered as the subgroup of all
transformations of & which leave the variable 2° invariant (so that * = 2°).
The group of all matrices W which correspond to these is the group &;. By
(3.3) we have to require that

0 5606 26

Since a6 — By = 1, this is equivalent to 6 = &, v = B. We are, then, dealing
with matrices of the form

(3.4) W=<; B) oi — BB = 1.
a

The variable z° may now be omitted, and we may set

X xo xl _ ixz
xl + 'ix2 :c° )

the equations (3.3) remaining unchanged if W is of the form (3.4).

The relation between £; and &; is the same as that between £ and &, i..,
; is isomorphic with &;/M, and locally isomorphic with &; .

Clearly, 2 might as well be defined by those transformations which leave the
variable z* invariant. Thereby we are led to matrices W which have real
elements (and the determinant 1).° If we omit z° from X (cf. (3.1)) X is a

* They leave (0
i

-1\ . .
invariant.
0
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real symmeiric matrix, and the transformations (3.3) contain only real matrices.
(W* is the transposed of W.) The equivalence of the two realizations of &
may be put in evidence by

. 1 1 —¢
35 =TWT' T=—F .
5 W L <_,- ) )
where W is real, and W of the form (3.4). T is a unitary matrix which trans-

forms (? - 5) into (1 0). Let W have the elements a = o + a2, 8 =

0—1
B1 + B2 (cf. (3.4.)). Then W is the real matrix
(3.6) W = (al —h et B‘).
a; + B a1 + B2

3c. The group ©; . R is the subgroup of all transformations of & which leave
#° invariant. The corresponding matrices W, which define the group &g,
are unitary matrices of the form

3 a B _
3.7 W = _ , as + B8 = 1.
-B a
Again, R is isomorphic with &z/N, and locally isomorphic with g .
3d. Linear transformations of a complex variable. With the matrices W
we may correlate the linear transformations of a complex variable

oz + v

Bz + o

The group (3.8) is, however, isomorphic to &, and not to &,, since both a
and (—a) lead to the same transformation (3.8).

The two realizations of &; which we have discussed have a simple geometric
meaning in terms of the transformations (3.8). To the matrices W of the form
(3.4) correspond the conformal transformations of the interior of the unit
circle onto itself, to the real matrices W (3.6) correspond the conformal trans-
formations of the upper half of the complex plane onto itself (and also the
projective transformations of the real line).

In our later discussion we shall make use of the transformations (3.8).

3e. Single- and double-valued representations. A representation of any one
of the groups &, &, or R is also a representation of the corresponding spinor
group. A representation of the spinor group, however, may be a single- or a
double-valued representation of & , &, or i, depending on whether a and (—a)
are represented by the same transformation (which in turn depends on whether
the two elements e and (—e) are represented by the same transformation).
In this paper we are concerned with the spinor groups &; and &; rather than
with the groups 2, and 2, both for their intrinsic mathematical interest and
for their significance in Mathematical Physics.

The manifold of the matrices W of the form (3. 2), i.e., the group manifold

(3.8) Z =
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&y, is simply connected, and hence &, is the universal covering group of the
proper Lorentz group % . Consequently, any continuous representation of
&, must be single-valued.

By contrast, the group manifold &; has infinite connectivity (cf. §4), and there
exist many-valued unitary representations of &;. On the whole we shall
restrict ourselves to the single-valued representations of &;, but occasionally
we shall also discuss some many-valued representations.

3f. Infinitesimal transformations of the spinor group. We have mentioned
before that & and &, are locally isomorphic and that they have therefore the
same Lie algebra. To derive the infinitesimal transformations we may restrict
ourselves to a sufficiently small neighborhood of the unit element and proceed
as follows. Let y = az, and correspondingly, ¥ = W(a)XW*(a). For an
element x of the Lie algebra, we have xy* = I¥/° (cf. (2.4)), with li; + Iz = 0.
Likewise xW(a) = M ,W(a) with a matrix M, to be determined, and xW*(a) =
W*(@)My. It follows that

3.9) xY = W (a)XW*(a) + W(@)XxW*(a)) = MY + YM>.
Since the determinant of W(a) is constant, the trace of M, must vanish. In-
serting the expressions for xy* in
v (xy° +x' ' — oy
x =
xy' + oy xy — xy’
we obtain from (3.9) by a straightforward computation

( w1 w2
My = %< 2 2>
M1 M2

mo= 10—l = =) =+ 1)

pi= "+ 4@ -, h= -0 -,

By specializing the coefficients ¥;, we may find the infinitesimal transformations
of any subgroup of &, .

From the local isomorphism of &, £, R, with their spinor groups, it follows
that the equations (2.10) as well as (2.17) concerning the adjoint group remain
valid for the spinor group.

3g. Some remarks on spinors. We conclude this section with a few remarks
which will be of use later on. Denote the matrix elements of X (cf. (3.1)) by
z*, those of W by of (o, ¢ = 1, 2), so that

@3.11) X o W @ e
’ le x” ’ ai wf» )

(3.10)

Because of the Hermitian character of X, z¢* = ze. The transformation
(3.3) may be written as
3.12) ylu = a:a"‘x"" : N pypyo =1, 2)

where again the summation convention is used.
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Null vectors. For a null vector = the determinant of X vanishes. One may
therefore choose a two-component spinor £ such that

(3.13) M =PI >0 M= —Prifa <o

The two components £ are determined up to a common factor of absolute
value 1.

Assume z° > 0, so that =" is a non-negative real number. If it is different
from zero, we may set

A

x
(3.14) 2= Eol A=12.

For null vectors the transformations (3.12) assume the form

(3.15) M= L (@™

provided that z* > 0.
If we express the components of a null vector by polar coordinates @ =,
z* = rcos 0, 2 + iz’ = rsin 6¢*®), we have (cf. (3.1))

(3.16) z = r(1 4 cos 6) = 2r cos’ (36), & = rsin 0™
and hence by (3.14)
(3.16a) £ = (2r) cos (39), £ = (2r)}sin 26)e*.

For the group % (and &;), W has to be chosen in the form (3.4), and 2’ set
equal to zero (8 = ix). Instead of (3.16) and (3.16a) we have then

(3.17) 2 = r, 2t = et E o=, £ = e

Denoting the polar coordinates of ¥ by r’ and ¢’, and introducing the matrix
elements a, 8 from (3.4) we find from (3.15)

615 P ooyt = et
and
(3.19) o Y _Btad _ salt Blae”

ozl a+ Be* a1+ (B/a)e®

§4. Detailed study of the group &;

In the remaining sections of Part I, we shall only be concerned with the
groups &; and £ (mainly with &;). We shall therefore omit the subscripts 3
50 that & and ® will be understood to mean &; and &; respectively. The Lie
algebra of & will be denoted by 8.

4a. Introduction of parameters. The universal covering group of &. The
topological nature of the group manifold & may be inferred from the polar
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decomposition of the matrices W (cf. (3.6)). In fact, every real matrix W of
determinant 1 may be written in the form W = OA, where O is an orthogonal
matrix and A a positive definite matrix, both of determinant 1. The matrices
O and A depend analytically on W. For our two dimensional matrices the set
of the O is homeomorphic to a circle, and the set of the A to a Euclidean plane,
so that the group manifold & is the topological product of a circle and a plane.
It follows that the wuniversal covering group of &, which will be denoted by €,
is homeomorphic to a three-dimensional Euclidean space, and that € covers &
infinitely often.
To introduce parameters on & we start from the matrices (ef. (3.4))

a 8 _
(4.1) W =|{._ > oz — BB =1

8 a
and set B/a = v = v; + 7y.. Since a&(l — ¥¥) = 1, we may choose another
real variable w so that

(4.2) a=e“(1l—y)7,  B=c"vy0 -7 (G =m+mn.
By the elements of &, w is only defined mod 2, by the elements of &, w is defined
mod . To any two different values of w correspond, however, different ele-
ments of the covering group G. The three parameters a', o®, a® of a group

element @ will be chosen to be v, 72, w. For convenience we shall often use
¥ = 71 + ¢y: and « instead. Their range is determined as follows

S:—rSw<nm M+ )=y <1
C:— w0 <w < (n)’ + (v2)? = v¥ < 1.

The unit element ¢ has the parameters v = » = 0. (It should be noted that
these parameters are adjusted to the polar decomposition of W which we dis-
cussed above. In particular O is the rotation by the angle w.)

The group operations are easily expressed in terms of ¥ and . Let a and a’
be any two group elements, let ¢’ = a’a, and denote the parameters of a, a’
and a”’ by (v, ), (v/, «’) and (v, »’’). Then

(4.3)

(44) ‘YN —_ ('Y + ,y/e-ﬁw)_. (1 + ’77/6—21'«;)—-1
(45) w// = w + w/ + %;log {(1 + ‘7‘)’,6_2“,)'(1 + 7‘7162{«;)—1}'

These equations are obtained by the multiplication of the corresponding ma-
trices W (cf. (4.1)). Both equations (4.4) and (4.5) hold on & and @€, with the
difference, however, that on & the equation (4.5) is to be understood mod 2.
(4.4) and (4.5) are analytic in the real variables (y1, 72, ) and (y1, vz, «'),
the logarithm being defined by its power series. By (4.4), ¥" has, as it should,
an absolute value less than one since

L =% = (1 = v)-01 =971 + 3e™ [ > 0.
Consider, next, a’ = a~'. Then

(4.6) v = —ye™ 0 = —w.
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Any analytic function of the real variables v1, 72, @ ((v)* + (v2)° < 1) is
an analytic function on @, any analytic function of these variables with the
period 27 in w is an analytic function on & (in particular, any function which
may be expressed as an analytic function of the real and imaginary parts of
a and B, as long as aa — BB = 1).

4b. Infinitesimal tronsformations. Invariant integration. For any element
x = k'xr (r = 0, 1, 2) of the Lie algebra we have

(@) = x(a) 3‘;;@ — MW@ @ =fx@ G=1,23)
@.7) o L
i (% —( — i) .
My = _§<K1—|—ix2 —x°>=KM'.

The expression for M, is obtained from (3.10) if we set Iy = Iy = lpp = 0, and
= lo, k" = lp, & = ly. Since the three matrices W (a) /oa’ are linearly
independent, the functions xi(a) are uniquely determined by (4.7). Using
complex notation, we may express the differential operators x, in the somewhat
condensed form

i) . —2 ) - _\ 0 _ 0
(4.8) X0 = —3% 3%’ xit e =c¢ {1(1 - 77) 3y + 37 6_}

w % w
where 8/dy = 4(8/8y1 — ©9/dys). (The functions x;(a) may be computed in
a similar way from (1.34a), with U, L replaced by W, M).

The determinant A(a) of the xi(a) has by (4.8) the value (1/8)(1 — +¥)™.
As we have seen in §2a the group integration on & is both right and left in-
variant, and hence da = const. (A(a)) 'dyidysdw. (cf. §1c). We choose the
constant equal to 1/16x°, and define

dy: dys do
(4.9) da = m.
The total volume of the group & is obviously infinite.

4c. The parameters u, ¢, v. In the subsequent discussion it will be more
convenient to use a different set of parameters analogous to the Euler angles of
a rotation. Since a@ — BB = 1, it is possible to choose for each pair (e, 8)
three real numbers u, ¢, » such that

(4.10) @ = cosh fe ®*, B = sinh e,

The corresponding matrix W is decomposed as follows:

@11) W= <oz B> B (e"'i“ 0 <cosh§‘ sinh ¢ <e_i' 0
. B & “\o o sinh ¢ cosh¢/ \ 0 ¢ '

By (4.7) the three matrices on the right hand side of this equation are respec-
tively equal to exp (2uMy), exp (2¢M>), and exp (2vM,). We conclude that every
element a of the group & may be expressed as a product

(4.12) a = exp(2uxo) exp (2{x2) exp (2vxo)

with suitably chosen gy, ¢, ».
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By (3.3) the factors of the product (4.12) give rise to the following trans-
formations of the variables z*:
(4.13a) exp (2uxe):y’ = 2°, y" = cos2uz’ — sin 2 #*, y* = sin 2u ' + cos 2u z°
(4.13b) exp (2txz): ¥° = cosh 2¢ 2° + sinh 2¢ ', y* = sinh 2¢ 2° + cosh 2¢ ',

(cf. also (2.9) and (2.9a)). If we write (4.13b) in the familiar form
@19 =01 -""+w), v'=01-NH+a), =2
we have for the velocity v defined by the Lorentz transformation (4.12)
(4.14a) v = tanh2¢, (1 + o){a@ — o)™t = &%
Range of the parameters p, ¢, v. It is evident that the equations (4.10) do

not determine the parameters u, {, » in a unique way. For reasons of sym-
metry, the range of these parameters will be defined by the inequalities

(4.15) 0 =¢ < o, -7 = u v < T

Then sinh { = | 8|, and as long as { 0, there are two sets which correspond
to the same group element, viz. (g, ¢, ») and (u = =, {, » == ) (where the signs
are so chosen that the inequalities (4.15) hold).” If ¢ = 0, only the sum p + »
is defined. We are free to use any values (u, ¢, ») in the equation (4.12) while
the inequalities (4.15) will be mainly applied to integrations over the whole
group manifold &. Our parameters cover & twice except for the set { = 0,
which may be neglected since its measure is zero.

The parameters v and w are obtained as follows.

(4.16) v = tanh e, o = —(u + ») (mod 27).

Infinitesimal transformations; the volume element on &. In terms of the
parameters (u, ¢, ») the equations (4.8) take the form

— 1i = 1¢ 2% ) . ad 1 i _—é)
(4.17) Xo 73#7 X1+@X2 = 3€ {’Ioa—g_ + m cosh 2{ 6” a»

((4.17) may be directly obtained from (4.7)).

We shall later use the second order differential operator @ corresponding to
Q (cf. (2.23)), viz.

(4.18) 2 = () - ' —

Writing @ = (x0)" — 36a + ix)(a — ix) — 30 — ix2)Ga + ixe) we readily
find from (4.17)

—4Q = (sinh 2;)‘1 9 (smh 2¢ r)

(4.19)

. o (@ 3 &
+ (sinh 2¢)7* <82 200sh2§‘ +.'3—,,2)'

10 Any function defined on & remains unchanged if (u, ») are replaced by (u £ =, » = 7).
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Finally, the volume element da is given by
(4.20) da = (2r)7sinh 2¢ df dp dv.

Since the parameters (u, {, ») as defined by (4.15) cover the group manifold
twice an additional factor 3 is included in (4.20)).

4d. Inwariant metric on ©. The group operations on & are linear transforma-
tions of the real and imaginary parts of « and 8 which leave the form a& — 8B
invariant. Clearly the indefinite metric ds* = dada — d8dB = — d)* + (dw)’
+ (dv)® 4 2cosh 2¢ du dv is also invariant under these transformations. We may
write ds® = hidp*dp’, where (o', ¢, p°) = (n, &, ). It follows that the volume
element h'dp'dp’dp’ (where h is the determinant of the hx;) defines a right and
left invariant volume element on the group manifold. Since k' = sinh 2¢
it coincides—up to a constant factor—with (4.20). It should also be noted
that the Laplacian related to the metric ds?, viz., h%a/a0"(K*'h%/9p"), equals
the operator 4Q defined above.

4e. Conformal transformations of the unit circle onto itself. Consider the two-
dimensional® complex manifold 9 described by two complex variables £, &
subject to the inequality £'8 > £F, and let the group & act on I such that, for
any a ¢ S,

421) 7'= () =o' +6, 7 =(ad) =B +a, oea—p=1
Under these transformations the form £'F — £E is invariant, in particular 7' 5 0.
By 4.7)

(422) xr' = =5 (0 — (¢ —id)r),  x’ = =5 (Dt — )
ifx = k% .

The variable z = £/¢' defines a manifold 9%*, the open unit circle 2z < 1.
On 9* the transformation (4.21) induces the conformal mapping
(4.23) Yy =az =

of I* onto itself. The infinitesimal transformation obtained from (4.22)

L 12
18

1.9 21
Xy =\ @) = x(?;) —10m )(nl)zn (xn)

(4.24) :
_% (¢ + i) — 2y + (& — i)y}

As we have seen at the end of §1h, the denominator in (4.23) is a multiplier
of this transformation group,

(4.25) wa, 2) = a + Pz

11 We refer here to complex dimensions.
12 Here y? is the second power of y.
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Consequently, the infinitesimal multiplier 7,(2) is given by {x(a + B2)}eme =
{(xa) + (xB)2} ame (cf. (1.45)), i.e.,

(4.26) @) = ’Q (- + & — ida).

Incidentally, 7,(2) = —3d\,(2)/dz.
With the help of the parameters y and w the transformation (4.23) is written
in the more familiar form

e—2iw z + '7
14 y2°

4f. Remarks on the one-parameter subgroups of ©. The three classes of one
parameter subgroups of & which were defined at the end of §2, viz., the elliptic,
hyperbolic, and parabolic subgroups, may be easily characterized by the fixed
points of the transformations (4.23). A fixed point u of the one-parameter sub-
group a(t) = exp(tx) is determined by the quadratic equation \,(x) = O (cf.
(4.24)). Depending on the sign of 'k, we have the following three cases.

I. Elliptic subgroup (x’k, > 0). We may assume «’ > 0. The equation
Ax(u) = 0 has two different roots » and 1/4 one of which, say u, has an absolute

value less than 1. For the one fixed point in the interior of the unit circle we
find

y:

u =+ i)/ + V), Vx> 0.
If x = xo , this fixed point is the origin.
IT. Hyperbolic subgroup (x'x, < 0). Here we have two fixed points, u.
an u_, both on the circle | z| = 1. They are explicitly given by

w = (" + z\/—_x;c;)/(xl — ).
U
For x: and x; the fixed points are =7 and =1 respectively.

ITI. Parabolic subgroup (k'x» = 0). \,(u) = 0 has a double root u of absolute
value 1. This is a limiting case of both I (|« | — 1) and IT (x4 and u_ coincide).
We have u = («&' + «”)/«". For xo + x1,and xo + x2, w = 1and u = 7 re-
spectively.

§6. The Infinitesimal Representations of S

We now proceed with the construction of irreducible unitary representations
of the group ©@. In the present section, the representations of the Lie algebra
of & will be determined, and the corresponding representations of & will be
constructed in the succeeding §§6-9.

5a. Introductory remarks. Let  be a complex Hilbert space with elements
f, g, --+. 'The inner product of two vectors f, g in § will be denoted by (f, g) =
(9, ), the norm of a vector fby || f|| = (f, /). We assume the inner product
to be linear in the second factor, so that for any complex number A
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We only use strong convergence, i.e., a sequence f, is said to converge to f(f, — f
if || fa — fIl = 0.

If A is any linear oprator with dense domain, its adjoint is denoted by A*.
A linear operator B is an extension of 4 (B O A) if B’s domain of existence
includes that of A and if there Bf = Af.

An irreducible unitary representation of & on $ will be defined as follows

(1) To every a ¢ S corresponds a unitary operator U(a) on 9.
(2) For any two elements a,b ¢ & U(a)U(b) = U(ab). (Representation
property)

(8) If the sequence a, ¢ S converges to a, then U(a,)f — U(a)f for every
f e ©. (Continuity)

(4) No proper closed linear subspace of © is invariant with respect to
all U(a), i.e., if for aclosed linear subspace & the relation U(a)®

| C & holds for all a ¢ &, then R is either {0} or ©.  (Irreducibility) X

(6.2)

A

Ad(2). Sinceae =a,and aa” = ¢, wehave U(a)U(e) = U(a),and U(a) U™’ =
U(e), consequently

(5.3) Ue) =1, U@ = Ua)™!

Ad (3). As is well known, it is sufficient—on account of the representation
property—to require (3) for sequences converging to e.

5b. Criterion for irreducibility. We shall make use of the following well
known criterion:

LeEmMa 1. Let QU be a collection of unitary operators on © which contains with
any U its inverse U~ 1 The collection U is irreducible if and only if any bounded
linear operator A which commutes with all U is of the form A = a-1 (where a is
a complex number).

For the sake of completeness we give the proof of this lemma. Let & be
a closed linear manifold invariant under the transformations U(e®U) so that
Uf ¢ & whenever f ¢ 8 Denote s projection operator by E, ie., E* = E,
E’ = E, every vector of the form Ef(f ¢ ) is in &, and for every f ¢ & Ef = /.
We then have E(UEf) = UES for every f, i.e., EUE = UE. The same equa-
tion holds for U™ = U*, so that EU*E = U*E. Taking adjoints on both
sides, we find EUE = EU, and hence EU = UE. Conversely, if all U com-
mute with a projection operator E, then E(UE) = E(EU) = EU = UE, and
hence the closed linear manifold & defined by E is invariant under the trans-
formations U.

(1) Let first U be reducible. Then there exists an invariant manifold &
different from $ and {0}, whose projection operator E is therefore different
from 1 and 0. Hence all U commute with the bounded operator E not of the
form «-1.

(2) If QU is irreducible, then the only projection operators which commute

13 {0} is the linear manifold which contains only the element f = 0.
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withall Uare E = 1and E = 0. Let B be a bounded self-adjoint operator which
c2

commutes with all U, and let B = f A dE()) be its spectral representation (c;
c1

and ¢, finite). Then every E(A) commutes with all U, and hence the E(\)
are either 0 or 1. It follows that B = §-1. Let, finally, A be any bounded
linear operator commuting with all U. Then AU = UA, and also AU* =
U*A (since U* = U' is contained in QU) and consequently A*U = UA*.
It follows that the two self-adjoint bounded operators B = A* 4+ A and C =
1(A* — A) likewise commute with all U. Hence from the foregoing, B = 8-1,
C = v-1 (with suitable 8, v), and A = }(B + iC) = a1, where « = 3(8 +
7v) q.e.d.

5c. One parameter subgroups. Our discussion is based on Stone’s theorem
(in its weaker form), which may be stated as follows (cf. [Stone 1, 2], [von
Neumann, 2]).

StonE’s THEOREM: (1) Let U (— o < t < ) be a one parameter group of
unitary operators on O such that U,U, = U., . and that for every f e DUf — U.f
whenever t — ty. Then U, may be expressed in the form U, = exp(—th) with

a self-adjoint operator H on §. If H = [ \ dE(N), U, = [ e AEQ) -

(2) Let t, (tn = 0;n = 1,2, --) converge to zero. The sequence ¢, (U, — f
(f € ©) converges if and only zf Hf exists. If Hf exists, t (U, — l)f — —iHf
fort - 0. (t#0.)

We return now to the study of a representation of & characterized by the
conditions (5.2). Let a(f) = exp(tx) be a one parameter subgroup on &, and
let U, = U(a(t)). The operators U, satisfy the conditions of Stone’s theorem
and may be expressed in the form U, = exp(—itH ,) with a self-adjoint opera-
tor H, depending on x. This relation corresponds to what we found for finite-
dimensional representations (cf. §le, where L, stands for (—¢H,)). The H,
will be called the infinitesimal operators of our representation. If x = x,,
we denote the corresponding infinitesimal operator by H, (r = 0, 1, 2).

Conjugate subgroups. In the same way as in §le one can show that exp
(—itHy) = U(®) exp (—itH)U D)™ if x’ = byb™". Consequently

(5.4) H, = UbHU®B)™, x = bxp™"

If D, is the domain of the operator H,, i.e., the linear manifold on which H,
is defined, then by (5.4)

(5.5) Dy = UD)Dy.

We should like to postulate for the operators H, some analogue of the rela-
tions (1.36) in §le which characterize a representation of the Lie algebra 8 of the
group &. However, the operators H, must be expected to be unbounded (it
will turn out that this is the case), and hence linear combinations and com-
mutators of the H, cannot be properly defined unless suitable assumptions
about their domains are introduced. This will be done in what follows.
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5d. Assumptions about the infinitesimal representations. We start with some
observations on the domains D, of the operators H .

DeriNiTION 2. The intersections of all domains Dy is denoted by U, i.e. A is
the linear manifold of the vectors f to which all H x can be applied. The linear mani-
fold of the vectors f to which all products H.-H can be applied (X', x any two
elements of 8) is denoted by B. A and B are the closures of A and B respectively.

It is evident that A D B, A D B.

LemMma 2. For an irreducible representation either U = A = {0} or A =9,
and either 8 = B = {0} or B = .

Tt is sufficient to prove this for 8, since the same arguments apply to B.
From (5.4) and (5.5) we infer that U(b)f ¢ 2 whenever f ¢ ¥ (for every be®),
ie. UM)A C A. Because of the unitary character of U(b) we have also
U®A < ¥. Since & is closed, the assertion follows. (Cf. [Wigner, p. 155].)

Since we want to base our discussion on a representation of the Lie algebra 8
we exclude the possibility 8 = {0} and hence assume that B = 9, and, o
fortiori, ¥ = ©. In addition we introduce the following assumption. If 5
is a vector in D, there exists a sequence-fu(f» € B) such that f, — f, H,f, — H,J.
(This already implies that 8 = $ because the linear manifold D, is dense in
$©.) We shall use this assumption only for the operator H, (cf. (5.17)).

Concerning the representation of the Lie algebra it is sufficient to require that
Haysarxy = aHy + o’Hy on A (for any two constants a, o' and any two
elements x, x’ of 8), or rather that Hy,x, = Hy + Hy, since the relation
H@yp = aH, is evidently satisfied. The commutation rules may then be
derived. We summarize our conditions as follows.

(1) If f s a vector in Dy , the domain of the operator D, , there exisls a
(5.6) sequence f, in B (see Definition 2 above) such that f» — f, H,f,— H,f.
(2) For every vector f in A Hoyaxnf = Hxf + Hyxf.
It follows from (1) that
5.7 A=9 =9
By (2.17) bxidb ™ = w's(b)x:. Applying (5.4) and the condition (2) above, we
obtain for every f ¢ U
(5.8) UGHU®) T = w'w(OH.f k = 0,1, 2).
It also follows that on % every H, is a linear combination of Ho , Hi, and H;*
If we denote the domain of H, by ®,, we may characterize U as the intersection
of Do, D1, and D. .

5e. The operator Q. We define the operator Q as follows. Its domain is

B, and for every f ¢ B

(5.9) Qf = (HY¥ + (Hy’f — (Ho)’f = —¢"H.H.f
(This corresponds to the definition (2.23)). Since the H, are self-adjoint,
(Qf, 9) = (f, Qg) for any two vectors f, g € B, i.e. Q C Q*.

14 If 9(B) contains at least one element f > 0 it is dense in 9.
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From (5.8) we may compute U ®QUM™Y, (feB). In fact we have
g ' UBHHU®G)f =g UDG)H,UG ) U®)H, U®)7f = g"'w*, (0)w' () H.H f =
g" H:H f, using the orthogonality relations (2.3). Hence for every b ¢ &

(5.10) U®RU®™f = @f, (fe®)
or
(5.11) U®Qf = QUMY, (f e B).

The operator @ may be extended to its closure §, whose domain will be de-
noted by €. Since € contains B it is dense in . (Whenever for a converging
sequence f, — f (f» € B) the sequence Qf, also converges, f ¢ €, and Qf = lim Qf. .
On B, we have Qf = Qf). Q'is a closed Hermitian operator, and it follows
from (5.11) that

(5.12) Ub)E C € U®Q = QUOY, (f € ©).

We now construct the Cayley transform of Q, V = (§ — )(Q + o) (cf.

[von Neumann 1, p. 80]). Dy, the domain of V, consists of all vectors 4 of the
formh = (Q + 4)f (f ¢ €), and on Dy Vh = (§ — 7)f. Moreover | VR]| =
[[7]],and Vh 5 h unless k = 0 (i.e.,f = 0). By (5.12)
(5.13) U)oy <€ Dy, UB)Vh = VU(b)h, (h e Dy).
Since Dy is a closed linear manifold and different from {0}, it follows from the
first equation (5.13) and the irreducibility of the U(b) that D, = ®. Therefore
V is defined everywhere on $, it is bounded (|| VA || = || h ||) and by the second
equation (5.13) it commutes with all U(b). Hence it is of the form V = a-1
(cf. Lemma 1 above), where o has the absolute value 1, but is different from 1.
For every f ¢ € we then have (@ — 0)f = a(Q + 9)f, ie., Qf = ¢-f where ¢ is
the real number ¢(1 + a)/(1 — a). (It follows that G = $.) This holds
in particular for f ¢ B, where Qf = Qf. Consequently

(5.14) Qf = qf, (f e B):

From this equation and from the first condition (5.6) we may draw a con”
clusion about ®,, the domain of the operator H,. For every vector feB we
have (f, Qf) = ¢-(f, f) and hence from the definition of Q
(5.15) WHS I+ || Hof |° = || Hof I = || FII™
Let g be a vector in D,. There exists a sequence g,(g, ¢ B) such that g, — g,
Hyg, — Ho. Applying (5.15) to f = g, — g, we have
(5.16) || Higm — Higa||* + || H'gm — Haga ||

= | Hgm — Hgn || * + gl gn — ga || .

The right hand side of (5.16) tends to zero as m, n — «, and it follows that

both sequences H.g, and H,g, are convergent. Since the operators H; and H,

are closed, g is also contained in the two domains ®,; , ®, and hence in the inter-
section of all D, ,i.e.in A. This shows that

(5.17) Do = A
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(Notice that this equality only holds for Dy due to the unsymmetric way in
which the three operators H, enter the expression for @.)

5f. Construction of the infinitesimal representations of ©. The one parameter
subgroup a(f) = exp(ixo) is a compact Abelian group. By comparison of (4.11)
and (4.12) it is seen that exp(4dwxo) = e. It follows that U, = exp(—1itH,) has
a pure point spectrum, i.e., there exists a complete orthonormal system of vectors
gn in § such that®

(5.18) Uiga =€ ™ gn;  Hoga = Magn.

Since a(4w) = e, the proper values N\, may be tntegral or half integral. We may
derive (5.18) directly from Stone’s Theorem, or we may use the fact that a
unitary representation of any compact group may be decomposed into finite-
dimensional irreducible parts (which, for Abelian groups, are one-dimensional
and of the form (5.18)). (Cf. [Wigner, p. 194]).

Choose one of the proper vectors of Hy,. Denote it by g (]| g || = 1) and let A
be the corresponding proper value, so that Hog = Ag. By (5.17) g € ¥, and hence
the equations (5.8) may be applied. We first choose b = exp(ixo), k¥ = 1, 2, and
set U, = exp(—itHy). The only non-vanishing coefficients w' are these:
w' = w? = cos ¢, w'; = —w's = sin ¢ (cf. (4.13a)). Using (5.18) we find

(5.19) e™U,Hyg = (cos ¢t Hy + sin ¢ Hy)g, e™U Hag = (—sin t Hy + cos ¢ Hy)g.
It will be convenient to introduce on ¥ the two operators
(5.20) F = H, + <H,, G =H, —iH,.
From the equations (5.19) we obtain
LU Fg = 'Ry, UGg = ¢ *Vay
and also
U, — 1)Fg = (" *™"* — 1)Fy,
TNU, — 1)Gg = (" — 16y (t # 0).

If we let ¢ tend to zero, the right hand sides of the last two equations tend to
—i(A + 1)Fgand —i(\ — 1)Gg respectively. The left hand sides must converge
to the same limits, and it follows from Stone’s Theorem that both Fg and Gg are
in ©y , and hence in ¥, and furthermore that

(5.21) HyFg) = A\ + 1DFg,  Ho(Gg) = (A — 1)Gy.

Since the preceding argument was based on the equation Hog = Ag (we did not

18 In the following the summation convention will only be applied to quantities intro-
duced in §1 and §2, in particular to xj , &, grs , w;: . In all other cases a superscript is an
exponent unless otherwise indicated and no summation is carried out with respect to
repeated indices. )
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use the fact that g > 0) we may apply it to Fg and Gy instead, replacing A by
A+ 1and N — 1 respectively. By induction we find for any non-negative
integral power of F and G

(65.22) Ho(F’g) = N+ 8)F’g,  Ho(G’9) = (A — 5)G’g

where F’g and G°g are in A. (For s = 0 (5.22) reduces to Hoyg = \g.) All
non-vanishing vectors Fg and G°g are proper vectors of H, with the correspond-
ing proper values A + sand A\ — s.

Since Fg and Gy are in ¥, the same holds for Hyg and H,g, and also for Heyg =
Ag. This shows that g is even contained in 8. More generally, it may be shown
by induction that every finite product of operators H, can be applied to g.

Commutation rules. If we subtract from the two equations (5.21) the equa-
tions F(Heg) = \ Fg and G(Ho) = A Gg we obtain two equations which may be
written in the equivalent forms

(5.228) (HoF — FH)g = Fg,  (HG — GHy)g = —Gy,
(5.22b) (HoH\ — H,H,)g = iHoy, (H:Hy — HoHy)g = iH.g.

It is seen that the equations (5.22b) correspond to the first and third equation
(2.22) respectively, since H, corresponds to ¢L, .

To obtain the analogue of the second equation (2.22) we again apply (5.8),
but this time in the form

H.U®) g = U®) 'w(b)H.g

and with b = exp(ixe), k = 1. The coefficients w", are given by w"s = sinh ¢,
w'; = cosh ¢, w? = 0 (cf. (4.13b)). Hence, with U, = exp(itH,),

H\U g = Usinh t Hy 4+ cosh ¢t Hy)g
and

H{t'(U, — 1)g} = t'sinh ¢ U,Hyg + ¢ Y(cosh t U, — 1)Hy, (t = 0).

We use here the fact that for every vector f € D, and every differentiable func-
tion (1), lime~o ¢ ($()U: — ¢(0))g = ¢(0)Hag + ¢'(0)g, where ¢'(?) is the
derivative of ¢(f). Hence the right hand side of the last equation conver-
gences for ¢ — 0 to (H, + ¢H,H,)g, which must coincide with the limit of the
left hand side, tHH.9. Equating these two expressions we obtain the third
commutation rule in the two equivalent forms

(5.23) (H\Hy — H:Hy)g = —iHy, (GF — FG)g = 2Hy.

The relations (5.22) and (5.23) hold evidently for all vectors F*g and G’g. Notice
that, on B, we have

2Q = GF + FG — 2(H,)*
and hence

(GF + FG)g = 2(Q + (Ho) g = 2(g + N\)g.
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Adding and subtracting the second equation (5.23) we find

(5.24a) G(Fg) = pg, =g+ N+ 1)

(5.24Db) F(Gg) = a1-g, o =g+ Mx—1).

Replacing in (5.24a) g by F*'g(s = 1), A\ by A + s — 1, and in (5.24b) ¢ by
G 'g,Aby X — s + 1, we obtain

(5.25a) G(F'9) = pF' g, po=q+A+s—DN+s

(5.25b) FG9) =09, a=qg+O—s+DN—25)

We now use these equations to find recursion formulas for the norms of the
vectors F°g and G’g. Since for any two vectors f; and f, of % (Ffy, f2) = (1, Gf2)
we have

| F**g||® = (F*"g, F*™g) = (F'g, GF*"'g) = poa(F'g, F'g)
and hence, with the corresponding computation for G°g,
(5.26) HF g " = sl Fgll’, 1G9 = ol G9ll’, (52 0).

We proceed now with the discussion of the series F°g, G°g on the basis of the
equations (5.22), (5.25) and (5.26). It will be shown in §5h that the classifica-
tion of these series amounts to the classification of all infinitesimal representa-
tions of S.

5g. Classification of the possible representations. I. The continuous class. As-
sume first that all vectors of the series F'’g, G°g are different from zero. Then
all numbers A\ + s are proper values of H,, and are either all integral or half
integral. Moreover, all numbers p, and o, are positive. (Cf. (5.26)) It follows
from the equations (5.25a) and (5.25b) that, apart from a non-vanishing factor,
every vector of the series may be obtained from any fixed F*°g or G*°g by applying
to it either a suitable power of F or a suitable power of G, i.e., any F*°% or any
G"°g may be substituted for g.

(1) If the sequence \ =+ s is integral, the value 0 occurs in it; for convenience
we choose our basic g as the corresponding proper vector, and assume it to be
normalized (|| ¢ || = 1). We then have

Hy(F’g) = s-F'g, Hy(G’g) = —s-G'g s = 0.
Moreover, we have from (5.26)
||F'g|[=r.,, rs:IIlP*n s21,
(5.27) ,
|Gl =r, ro=IId% sz L.

ne=1

The requirement that all p, and o, be posttive restricts the admissible values of ¢.
From (5.25) and A = 0 we at once obtain the necessary and sufficient condition,
¢ > 0. Ttisalsoseen that p, = ¢, = ¢ + s(s — 1), and hence r, = 7; .
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We finally introduce the following vectors fm (m = 0, 1, £2, - -+ )
(5.28) Jo=mg, fm = (u/rw)F"g, fom = (n_m/r,',.)Gmg (mz1)
where the 7 may be any arbitrarily chosen, complex numbers of absolute value 1.
The f.. form a set of orthogonal unit vectors. 1In fact, by (5.27) || fm|| = 1, and
since Hofn = m-fn , two different vectors of the set are orthogonal to each other.
Using (5.25) (with A = 0) we finally obtain the following equations,
form = 0, 1, £2, .-,

Hofm = mfm , Ffm = wmi(qg + m(m + 1))*fm+l
Gfm = (l/wm)(q + m(m - 1))!fm—l y Wm = ﬂm—l/nm ) I Wm i =1.

(2) A similar analysis applies to the half integral case. The value 3 must
occur in the series N & s, and the corresponding proper vector is chosen as the
basic g (|| g|] = 1), so that

Hy(F'g) = (3 + 9)F'g, Hy(G9) = 3 — 9)G'

(6.27) remaining unchanged. Here we find from (5.25) (for A = X and s = 1)
p=@—-—H+o=0G—-H+ (s -1 Consequently all p, and o, are
positive if and only if ¢ > 1.

In analogy to (5.28), we introduce a set of normalized orthogonal vectors f, ,
where m = 3, &3, --- | by the following definitions:

(5.30) fi=m9  five = (Maa/r)F’g, fios = (/TG (s=1)

1m being complex numbers of absolute value 1. The relations (5.29) remain un-
changed, but the numbers m have a different range.

The class considered here is termed “continuous class’ because the admissible
values of ¢ fill an (infinite) interval in the integral as well as in the half integral
case.

11. The discrete class.

(1) Assume now that for some positive s F°g = 0. This will also hold for all
succeeding s. If h + 1 (h = 0) is the smallest integer for which this occurs then
the vectors g, - - - , F*g are all different from zero, and it again follows that all
vectors in the series may be obtained from F"g by applying a power of G to it,
and hence we may substitute F*g for the basic vector g of the series. Then
Hy = Ng, Fg = 0,and p = 0. Consequently ¢ = —A(\ + 1) (cf. (5.25a)). All
vectors of the series are of the form G°g, and o, = s(s — 1 — 2)\) (cf. (5.25b)).
Since o1 = 0 it follows that A < 0.

If X = 0, we have o; = 0, and hence Gg = 0. Then the series reduces to the
one vector g, and we have the trivial case Hog = H;g = Hyg = 0. Itisseen that
exp (—7tH,)g = g for all r, and since by (4.12) every group element is a product
of three such exponentials, U(b)g = g for all b e ©. The manifold generated by
the vector g is invariant under the U(b), and is hence the whole representation
space 9. .

If A\ < 0, we set \ = —Fk, where k is integral or half integral. Then

(5.29) {
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o, = 8(s — 1) + 2ks is positive for all s = 1, and hence all G’g are different from
zero. 'The set f,, will be defined for the values m = —k, —(k + 1), --- by the
following equations:

(6.31) foo = n%9  J-tro = (—tesn/10)Geg sz 1.

The equations (5.29) still hold, but the following must be added: For m = —&,
there appears in the equation for Ff_; the vector f__1 which is not defined.
The corresponding coefficient, however, vanishes, and the equation is to be
interpreted as Ff_; = 0.

We notice the relations

(532) q=k(1 —k), g+mm-—+1) = (m+ k)Ym — k+ 1).

(2) The case in which some vector G°g(s = 1) vanishes, is treated in exactly the
same way. Disregarding the trivial one-dimensional representation, we may
state the result as follows: Let g be the proper vector associated with the
lowest proper value k¥ (k > 0). Then Gg = 0, and we define the vectors
fm(m =k, k+ 1, ---) by the equations

(5.33) fv = myg, Sr4s = ("Ih+a/ra)F‘g (s=1).

We have again ¢ = k(1 — k), and the equations (5.29) and (5.32) apply.

The term ‘‘discrete class’ refers to the fact that ¢ can only assume the values
K1 —k),k=1%1,3% ---. Observe that except fork = 3(¢ = ) and k = 1
(g = 0) all these values are negative.

5h. Discussion. (1) In each case the vectors f. span the Hilbert space . It
follows from the equations (5.29) that the operators H, , H: , H, may be applied
to any finite linear combination of the f,, and that they again lead to finite linear
combinations of the f,.. The linear manifold defined by these finite linear
combinations is therefore invariant with respect to the operators H,. From
this it may be shown that the closure of this manifold is invariant with respect to
all U(b), and therefore it must be the whole representation space. It follows
that the classification of the series considered above amounts to a classification
of all possible irreducible infinitesimal representations.

(2) Characterization of the operators H,. Since H, = 3(F + G) and
H, = (¢/2)(G — F), we obtain from (5.29) a set of equations which may be
written in the form

(5.34) Hfm = 2 nhiifm (r=0,1,2)

where ) = hS) , and where A, = 0if |[m — n| > 1. (It is not necessary
to state here the explicit expressions for the 2&).) The range of the m has been
determined in each case. These equations define the operators H, on all finite
linear combinations of the vectors f.. . It is desirable to characterize the opera-
tors H, more explicitly in terms of these equations. This may be done with the
help of the following lemma, which we state without proof.
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LemMA 3. Let three operators K, (r = 0, 1, 2) on $ be defined as follows. The
domain of K, consists of all finite linear combinations of the vectors fn, which span 9,
and on this domain K, is defined by the equations K, fm = 2 n b2 fm . The closure
K, of K, is a self-adjoint operator whose domain D, consists of all vectors g for which
2on | 2oahwia(fn, 9) [* ds finite, and on D, Big = Zom{ Lahit(fa 9) }fm -

We see that the operators H, must coincide with the operators K, of Lemma 3,
and we may conclude that the condition (1) of (5.6) is satisfied. The sequence
mentioned there may even be chosen to consist of finite linear combinations of
the basic vectors f., which are certainly contained in 8. (It should be mentioned
that Lemma 3 holds also when K, is replaced by any combination of K with real
coefficients.)

Concerning the manifolds % and B, the following may be shown from (5.34).

LemMA 4. The manifold ¥ consists of all vectors g for which 3 m m* |(fm, 9)|*
is finite; the manifold B consists of all vectors for which Y mm' |(fm, g)|* is finite.
In other words, N s the domain of the operator Hy, and B is the domain of the
operator Hj .

Finally we mention the following result. Define H, as the closure of the
operators K, of Lemma 3. On 8 we then have the relations

(5-35) [HoHl] = iH, ) [H1H2] = "'iHo, [HzHo] = iH,

and (Hi + H; — Hj)g = q-g, where ¢ is defined by the coefficients of the equa-
tions (5.34).

(3) It has not yet been shown that to every infinitesimal representation which
we have found there corresponds a representation of the group & itself by unitary
operators. This will be proved in the succeeding sections by an actual construc-
tion. However we may assert the following.

A unitary representation is uniquely determined by the operators H, . 1n fact, by
(4.12) every element of © may be expressed as

a = exp(2uxs) -exp (2{x2) -exp (2vxo),
and hence the corresponding operator U is given by
U = exp (—2iuH,) -exp (—2i¢H,) -exp (—2ivH,).

A unitary representation for which the operators H, are defined by the equations
(5.34) is srreductble. To prove this we have to show that every bounded opera-
tor A which commutes with all U(a) is necessarily of the form A = «-1. Apply
the equation U(a)A = AU(a) to a vector g in ¥, and choose U(a) = exp (itH,) =
U.. ThenU,Ag = AU g,and t ((U, — 1)Ag = A{t (U, — 1)}g. If welett
tend to zero, we obtain H,Ag = AH,gforeverygin %. Chooseg = fn,H, = H,.
It follows by familiar arguments that Af, = amfm. For H, we therefore ob-
tain the equations (am — a,)hi = 0 for all m and n. From the explicit ex-
pressions (5.29) we find that all a,, are equal to each other, i.e., that 4 = a-1
q.e.d. '
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5i. Summary. The representations which we have found may be character-
ized by the value of ¢ and by the range of the m, i.e. by the spectrum of the
operator Hy. (It is evident that two representations which differ in both cannot
be equivalent.) We also introduce symbols to denote the different repre-
sentations.

I. Continuous Class.

(1) Integral case Co{g > 0,m =0, =1, + 2, --- }

(2) Half integral case Ci{qg > 2, m = £ %, £}, --- }

II. Discrete Class

(2) Minimalm Df {¢g=k(1 —k)ym =k, k+1,---} k=13%1,% -
(The one-dimensional case is omitted.) In every case the operators H, are de-
fined by the equations (5.29).

ReMARk. We have pointed out in §3e that a representation of & is a single-
valued representation of g if and only if U(—e) = 1. Since by (4.11) and (4.12)
(—e) = exp (2mx0), we have U(—e) = exp (—2wiH,), hence by (5.29) U(—e)fm =
e ™f,.. Consequently U(—e) = 1 in the integral case, and U(—e) = —1in
the half integral case.

§6. Representations of the continuous class, C (g = 1)

It is easy to construct unitary representations of 2 (and hence of &) as long
as they are not required to be irreducible. For example, one may choose in the
Euclidean space of the three variables 2°, ', 2°, the manifold 9 (invariant under
Lorentz transformations) defined by the equation guz‘z’ = d(= const.), and
consider the transformations ¥y = ax which are induced on It by the Lorentz
transformations of the z*. (Depending on the value of d, M is a hyperboloid,
of one sheet (d > 0), or of two sheets (d < 0), or it is a cone (d = 0), the light-
cone of special relativity). A volume element which is invariant with respect
to the standard transformations T°(a)f = f(a 'z) is readily defined on IR.
Therefore the T°(a) are unitary operators on the Hilbert space of all square-
integrable functions over 9, and they furnish a representation of £ since
T°(a)T°(b) = T"(ab).

A simple analysis shows that these representations are reducible. It turns
out that the operators 7°(a) are particularly simple if M is the light-cone. In
what follows we shall show that a further reduction leads to ¢rreductble representa-
tions (of the continuous class Cg).

6a. Transformations on the light-cone. It is sufficient to consider the upper
half of the light-cone (z° > 0), corresponding to the future in the physical inter-
pretation. We therefore define the manifold I by the equations

(6.1) guxkxl =0, 2 > 0.
On M we introduce two sets of parameters, viz. the rectangular coordinates g, e
62 o=g2=¢ J=r=@E"+E) 0<r<w
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and the polar coordinates r, ¢

(6.3) it =re®, =1 0<7r< .

The angle ¢ is defined mod. 2x. All functions occurring are assumed
periodic in ¢.

The infinitesimal operators of the standard representation on 3¢, A} , are ob-
tained from (2.8a). Remembering that Aj = Al , A = Ad,, A3 = Ay, we find

Mo gl gl 0 8 a3

0 = g = Tag’ 1—rafz—cos¢a¢+sm¢rar
]

64) <A = —r sing — — cos¢pr

6_}31 = 9 ar

A il = (2O (L,
Ll“*‘lz—rasz—%agl =e 8¢-—27‘ar.

For the operator corresponding to @ we obtain the simple expression

(6.5) Q= (A" — (A~ (4" = =D + 1) (D = rd/an).
Consider now, for a given constant ¢, the differential equation
(6.62) Qf=q7

where f is a function of r and ¢ which has continuous second derivatives. Its
solutions are

(6.6b) f=1r%(¢) o=+ — ¢}

with an arbitrary function g(¢). Observe that ¢ is imaginary if ¢ > %, and real
if ¢ < 4. This distinction will prove significant in the following discussion.

6b. Transformations on the unit circle. We have seen in §5 that for every
irreducible representation of & the operator @ has a constant value q. There-
fore the equations (6.6) suggest that we confine ourselves to functions of the
form (6.6b) with a constant ¢. In fact, it may be seen in various ways that under
the transformations T°a) on M every f of the form (6.6b) is carried into a func-
tion of the same form with the same value of ¢.

Introduce, for 2° > 0, the variables n* = 2*/2°. Any Lorentz transformation
induces a projective transformation of n' and 74°. On the light-cone I
7' 4 ¢n° = ¢'%, and this is therefore a projective transformation of the unit circle
into itself. (Turning to a physical interpretation, we may also speak of the
transformation of light rays.) If an element a of & carries (r, ¢) into (1, ¢') =
(ar, a¢), we have, by (3.18) and (3.19)

V=”‘Tww@ﬁaww%m@M@@ ¢ = ag)

6.7 .
6 w(a, ¢) = a + Pe”.
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We also notice that for a fixed a

d¢’ 1
6.8 _ =
©8) s ~ [0 9
From the discussion in §1h it follows at once that
(6.9) wa, ¢) = |w(a, ¢) [’

is a multiplier of the group of transformations ¢’ = a¢. The cone is the mani-
fold I, and the unit circle corresponds to Pt*.

With the help of the standard representation on It we define now a multiplier
representation on the unit circle I* by the equations (cf. (1.57))

(6.10) (@) (" 4f(¢)) = r M To(a)f(9).

The muliplier is given by {u(a, ¢)}", h = ¢ + }.

It should be noted that anyjreal or complex power of u(a, ) may be defined in an
unambiguous way. In fact, we may write u(a, ¢) = | @ a + ve*®) (1 + ¢,
u* = exp (h log p), and the logarithm of u is even an analytic function of a and
of ¢, since | « |* is positive, and ¥ = B/« has an absolute value less than one.
Therefore (6.10) holds for any real or complex value of o.

The multiplier transformations 7T,(a) may also be written
(6.11) To(a)f($) = ula, $)**f(a7'9).

The corresponding infinitesimal transformations are defined by
A GH5(9)) = 7YV f(@)
(cf.(1.58)). Hence we obtain from (6.4)

9 o]0
Ao= =35 A1+iA2=6'¢{a_‘;+7:(%+0)}
(6.12)

d d
A1=cos¢3¢:—(%+a)sin¢, A2=sin¢5q"s+(%+a)cos¢.

Consequently, the infinitesimal multiplier is given by
6.13) 70 =0,r=—(+o0)sing, n =3+ o) cose; n+ ir = i(} + 0)e”.
Finally, we introduce the operator
Q = (M) — (A)* — (8’
and we find from (1.58a) and (6.6)
(6.14) Qf@®) = QU Hf@) = ¢-f#) ¢ =

2
- 0.

e

6¢. Discussion of the transformations To(a). Let © be the Hilbert space of all
square-integrable functions f(¢) over the unit circle, and let the inner product
in $ be defined by

(615) () = @ [ 7o) b
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It follows from (6.11) that for any choice of ¢ and 7
(1@, Ta)) = @0 [ F@o@)uta, 0 B ay @ = aly)
and since by (6.8) d/d¢’ = [u(a, ¢)]7,
©16) (L@, T@0) = @0~ [ F@e@)luia, 407" o'

From (6.16) we may draw the following conclusions:

(1) If ¢ = is (s any real number), the operators T,(a) are unitary. In fact,
(Tv(a))—l exists, and (T, (a)f, T.(a)g) = f, 9.

(2) In all cases the operators T.(a) are bounded. (Set ¢ = 7,f = ¢g.) It may
be easily shown that the bound of 7,(a) is equal to ¢'“**' where ¢ is the parame-
ter introduced in §4.

(3) The adjoint of T,(a) is given by T (a) = T_s(a”").

Matriz elements. We choose on § the complete orthonormal set of functions

(6.17) fm = €™ (m=0,%1,42.---).
In this coordinate system the matrix elements of the operator T,(a) are
(6.18) umn(a) = (fm ’ T‘(a)f")‘

It is evident that the matrix elements um.(a) are analytic functions on the group
manifold. (They are also analytic in the exponent ¢.) Clearly umn(e) = 8mn -

6d. Representations of the class C3 (g = 1). We are going to show that the
unitary representation T.(a) (¢ = s) is a representation of the class C5, where
¢g=3%—¢"=1+5" According to the discussion in §5h we must prove:

(1) The operators T,(a) satisfy the continuity condition (3) of (5.2).

(2) The infinitesimal operators satisfy the equations (5.29) where ¢ = 1 — o°.

Ad (1). Consider a fixed vector g of O, and set for every integer N gy =

2ome (s Qfm, by = g — gn. We have, with U(a) = T.(a),
(6.19) || (U(@) — Vgl = || (U(a) — Dgn |l + || (U(@) — Dhx||
S (U@ — Dgwll + 21 hx |
and, since U(a) is a unitary operator,
| (U@@) — Dgnl||* = (U@) = Dgw, gv) + (gn, (U(a) — gn)
= real part {2 2 omaen(g, fm) (Umn(@) — mn) (fa, 9)}.

For a prescribed positive ¢ we may first choose a number N such that 2 || hy || <,
and secondly, a neighborhood of ¢ on & such that for every element a in this
neighborhood the finite sum in (6.20) is smaller than € (since the matrix elements
are continuous in @ and Umn(€) = 8ms). By (6.19) we have || (U(a) — 1)g || < 2¢
for these elements a, q.e.d.

(6.20) {
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Ad (2). Once the continuity of the operators U(a) = T.(a) has been proved,
the existence of infinitesimal operators H, follows from Stone’s theorem. Let
U, = exp(—tH,) = T, (exp tx), and let g(¢) be an analytic function of ¢.
Then for every ¢ ¢ (U, — 1)g(¢) converges to A,g(¢) as t — 0 (cf. (1.30). Since
the convergence is uniform over the unit circle, this implies convergence in the
mean, i.e., convergence in the Hilbert space . Consequently, for every analytic
function ¢ (in particular for f, = ™)

(6.21) H.,g = iAg.
Computing A.f,, (r = 0, 1, 2) from the definitions (6.12) we find
622) {Z:Aofm =.mfm, WA + tA)fm = —(m + § + 0)fmia
(A1 — tA)fm = —(m — 3 — 0)fm
Afw= g n+ 3+ fant s n =3 — s

(6.22a)
Afn =3 (M + 3+ 0)fmir — 3(m — 3 — 0)fms.

The equations (6.22) coincide with (5.29) if we choose the constants n.(s) as
follows (g = 3 — ¢’ = 1 + §°):

mn(o) =1,
h— % h—3— o\
N-m(o) = (=1)" nm(v) (m = 1)

so that for all values of m

—1_ _ Al
(624) wm(o) = Nm-1(0)/m(0) = — ((nvzz — %32 _:2)% = - (m__%_—_l—__) .

m—3 —o0

For imaginary ¢ all 7,,(¢) have the absolute value 1.

So far it has been shown that for analytic functions the operator H, coincides
with 7A, . From the discussion in §5h (cf. in particular Lemma 3) it is seen
that H, is the closure of 7A, . For analytic functions the condition H .y, =
H, + Hy' likewise holds, because it is satisfied by the operators A,, and it
can be extended to the linear manifold % defined in §5. The same is true for
the commutation rules (5.35) which may also be deduced from (1.48). This
shows that the representation T,(a) satisfies all conditions stated in §5. We
may state our result as follows.

THEOREM 1. The multiplier representation T,(a) (¢ = 1is) s an irreducible
unitary representation of & on the Hilbert space © defined by (6.15). It belongs
to the class Cg where ¢ = 1 + $.

The remaining representations Cy where ¢ is in the “exceptional interval”
0 < ¢ < 1 are treated in §8.
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Ge. A new coordinate system in . The functions

(6.25) gm = (1/1m(0))fm

evidently form a complete orthonormal system of vectors in §, if ¢ = 5. With
the definitions (6.23) it follows at once that

(6.26) {M"g'” =mgm, (A1 + iA)gm = (¢ + m(m + 1)) gn
. (A — tAg)Jm = (q + m(m — 1)); Ims

6.27) Agm = ; (g + mm + 1)) gppr + g (@ + mm — 1))} gy
Agn = 3¢ +mm—+ 1)} gnis — 3(g + m(m — 1)) gny .

The matrix elements of T,(a) referred to the system g., will be denoted by

(6-28) vm»(a) = (gm ) Tc(a)gn)-
By (6.18) we have
(6.29) Vmn(@) = (1m(0)/10(0)) Umn(a).

While the vectors f,. are the same for all o, the vectors g, depend explicitly on
the representation T,(a).

RemArk. For later use (§8d) we notice the following. If o is real, and ¢* < 1,
we may still define the g, by (6.25). They will not be normalized in §, but the
equations (6.26) and (6.27) will hold.

§7. Representations of the continuous class C}
7a. The representations T.(a). It has been shown at the end of §51 that

in the half integral case U(—e) = —1, where the group element (—e) has the
parameters « = —1,8 = 0. If we want to obtain a multiplier representation
(7.1) To(a) (@) = nela, a™'¢) f(a™'¢)

(on the unit circle) of class C} we must have

(7.2) me(—e,¢) = —1

since a '¢p = pfora = —e. We set

(7.3) re(a, $) = u(a, $)** »(a, ¢)

where u(a, ¢) is defined by (6.8) and »(a, ¢) is given by

(7.4) v(a, ¢) = w(a, )/ | w(a, ¢) | w(a, ¢) = o + Be*
(cf. (6.7)). The equation (7.1) may be written in the form

(7.5) Te(a) f(@#) = v(a, a7'¢)- Tu(a) f(#)

where T',(a) is the operator defined in the preceding section.
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To prove that v is a multiplier it is sufficient to show that w is a multiplier
(since »(a, ¢) = w(a, ¢)-ula, ¢)_*), and this follows from the fact that w(a, ¢)
coincides with the multiplier o« + Bz (cf. (4.25)) if z = ¢'*. (It is clear that the

discussion in §4e applies to the points |z | = 1.) Moreover, u(—e, ¢) = 1, and
v(—e, ¢) = —1, so that (7.2) holds. Consequently (7.5) defines a multiplier
representation, and T,(—e) = —1. Notice that »(a, ¢) depends analytically
on a and ¢.

By the second equation (6.7) the square of »(a, ¢) equals ¢ **' /e *(¢' = ag).
If we restrict ¢ to a sufficiently small neighborhood of some ¢, , and a to a suffi-
ciently small neighborhood of the unit element on & we may write

(7.6) v(a, ) = p(ad)/p(¢) p(@) = ¢ 2

Hence »(a, ¢) is locally a multiplier of the special form (1.43).
The relation (7.6) will now be used to derive the infinitesimal operator A of
the representation T,(a). By (7.3), (7.5) and (7.6) we have locally

To(a) () = p(¢) Tola)(f(¢)/p(4))
and hence
xTo@)f = A(To@f) = p-x(T(0)(f/p)) = pA(To(a)(f/p))
where T,(a) and A, are defined by (6.11) and (6.12). In particular, for a = e,

7.7) AL f@) = p(®) Ay (f(8)/p(4)) p(@) = e
For the operator Q' = (Ag)* — (A1)* — (A;)® we find from (7.7) and (6.14)
(7.8) Q' f(¢) = o(¢) Q (f(®)/p(¢)) = q-f(®) g=1%-d.

7b. Representations of the class C}. For ¢ = is, T.(a) is a unitary operator
on P because T.(a) is then unitary, and »(a, ¢) has the absolute value 1. We
use on P the same orthonormal set of vectors as before, but it will be convenient
to denote it differently, viz.,

(7.9) fo = € V? (m = 3, £, ---).

If we compute the expressions A;fn (r = 0, 1, 2) from (7.7) we obtain againthe
equations (6.22) and (6.22a), with the difference, however, that the numbers m
are half integral, and that the constants n.(s) of absolute value 1 will be chosen
as follows:

(m =1,

| 3
aay o= 0 == o0 I (G57) mz1)

-0 — ag
= B—mip = (=D (o] (m = 1).
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The expressions for w.(c) are the same as in (6.24). We assume here that ¢ 7 0.
For ¢ = 0 we obtain a unitary representation, but it is reducible, since the mani-
fold spanned by the vectors f,, with positive m and its orthogonal complement
are invariant.

THEOREM 2. The multiplier representation T.(a) (¢ = is, s # 0) is an srreducible
unitary representation of © on the Hilbert space © defined by (6.15). It belongs
the class C} where ¢ = 1 + %

The proof is literally the same as the proof of Theorem 1 given in §6d.

7c. A new coordinate system in $. With the help of the 5.(¢) defined by
(7.10) we may introduce the vectors

(7.11) gm = (1/1m(0)) fm

which form a complete orthonormal system, and which satisfy the equations
(6.26) and (6.27).

The matrix elements of T,(a) referred to the systems f, and gy, will be de-
noted by

(7.12) Unn(@) = (fm, Te(@)f2) Vmn(@) = (gm , To(a)g%)
(7.13) Vmn(@) = (1m(0)/1a(0)) Umn(@).

7d. Remarks on multi-valued representations. It may be mentioned here that
by a similar procedure one obtains irreducible unitary representations of the
covering group € which are no longer single-valued representations of &. We
choose them in the form (7.5), with ¢ = ¢s, where the multiplier », however,
must be defined in terms of the parameters (v, w) introduced in §4, viz.,

w(a, ¢) b 2ihw 1+ 73“’ k

(714) V(a7¢) = (,w(a, ¢)) =e€ (1 + 76—-1’4’) .
The exponent k may be any real number; k and & + 1 give rise to equivalent
representations. (The multiplier (7.4) used above is obtained for h = %.)
We have again Qf = ¢-f, ¢ = + + &

Let a and b be two elements of € which correspond to the same element of &,
so that their respective parameters are given by (v, ») and (v, 2lr + w), I =0,

+1, +2, --- . Then the unitary operators U(a) and U(b) of the representation
considered satisfy the relation
(7.15) U®) = " Ula)

which characterizes the multiplicity of the representation. The spectrum of Hy
consists of the numbers m = h =+ I, and for f, = ¢“™™* one obtains the
equations (6.22).

§8. Representations of the continuous class C;. The exceptional
interval 0 < 1 < ¢.

8a. Determination of the kernel L(¢,¢). As we have seen in §6 the operators
T.(a) are not unitary on 9 if the exponent ¢ is real and different from zero. It
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will now be shown that by a different definition of the inner product, i.e., by a
different definition of the Hilbert space, they may be made unitary if 0 < ¢ < 3.
The inner product will be defined by a positive definite integral form

™

@) (0 = @ [ [ Lo, wi@ow dsdb  —r < 6,9

1A

with a suitably chosen kernel L,(¢, ¢) depending on o. We must require this
inner product to be invariant under the transformations 7'(a), so that

8.2) (To(a)f, To(@)g)e = (f, 9)e -

This leads to the problem of ‘“nvariant densities” treated in §1i. The mani-
fold M of §1i is the product of two unit circles; hence x corresponds to the pair
(¢, ¥), and the multiplier considered there is to be replaced by the product
u(a, $)° ™ u(a, ¥)°™.  Therefore the operator M, is the sum of two such opera-
tors, the first acting on the variable ¢, the second acting on the variable ¢.
Consequently if we assume that L.(¢, ¢) is differentiable we find from (1.61) and
(6.12) the following differential equations:

oL, , 9L,

[MOLv = — +

3¢ a.p:O

8.3)
(M; + iMg)L, = — a% (" L) — % (€% L) + i@ + 0)(e* + ¢¥)L, = 0.

It follows from the first equation that L, is a function of the difference (¢ — )’
and from the second that it has the form

84)  Lo@¥) = Lalo —¥) = - (1 — cos(¢ — )" = c-[2d(s, )]

with a constant ¢ to be determined later. (d(¢, ¢) is the distance between the
two points ¢ and ¥).

Before discussing the properties of the function L, we mention another deriva-
tion which is more easily generalized to the case of the group &, to be treated in
Part II of this paper. From (1.60) we obtain the condition

(e, e, I ¥ L) = Lo, ¥), & = ab, ¥ = ap).

dé dy
Inserting the expression (6.8) for the derivatives we find
(8.5) (u(a, ¢) ua, YI" Lo(ad, o) = Li($, ¥)-

Let z and y be two points on the light-cone with polar coordinates (r, ¢) and
(R, ¥) respectively. The transformation a carries them into (r',¢") and (R’,¢")
where by (6.7) and (6.9) 7' = u(a,¢)r, B’ = u(a,¢)R. Since their scalar product
gut's' = rR(1 — cos(¢ — ¥)) remains invariant, this leads to the equation

8.6) u(a,¢) ua,¥) (1 — cos(@’ —¢)) = 1 — cos(¢ — ¢) (¢' = ad,¥ = ay)
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which shows that the expression (8.4) is a solution of (8.5). It is sufficient to
know one solution of (8.5). In fact, if p(¢, ¥) is the ratio of two solutions, then
p(ag, ay) = p(¢,¥), and outside the lower dimensional region ¢ — ¢ = 0 any pair
(¢, ¥) may be transformed into any other pair (by a suitably chosen a). Hence
p is a constant for all pairs for which ¢ = ¢.

The positive definite character of the kernel L, is discussed below. (cf. (8.14)).

8b. Properties of L.(¢, ). The function (8.4) is finite aslong as ¢ = 1. If
o < } it is infinite for ¢ = y, however, its integral over ¢ and ¥ remains finite for
o > 0. Therefore the expression (8.1) is certainly defined for bounded functions
f,9. Moreover, we may choose the constant in (8.4) in such a way that (f,g), = 1
if f(¢) = g(¢) = 1, which leads to the definition

(8.7) L,(¢) = 2" 7(B(s, 1)) (1 — cos ¢)°* o> 0.

(B(z, y) is Euler’s function I'(x) I'(y)/T(z + ¥).)

We may show now that the integral (8.1) is defined for any square-integrable
functions f and g. By (f, g) (without the subscript ¢) we denote the inner
product introduced by (6.15) for the Hilbert space §, and correspondingly by

|| 1 the norm (f, /)*.
From (8.1) and (8.7) we obtain

(Gl = @0 [ [ 26— ) 15@)|- 19w)| do d

s e [ 20 {(21r>“ [+ 91 1aw| d¢} &

where the variable { = ¢ — ¢ has been introduced. By Schwarz’ inequality
the inner integral is at most equal to || f||-|| ¢ || , and since the integral of £,
has been normalized to one we find

(8.8) LGl =11F1gll-

In particular, it follows from the inequality (8.8) by familiar arguments that
(f, 9)» is continuous in both Hilbert vectors f, g, i.e., if

an _f“ __)Oy “gn - g” __)0:
then (fa, ga)e — (f, 9)o -
Let f. = ¢'™® for all integers m. Then
1

©9) Unfde =0 i mn,  Uufude = g [ Q&)™ do = ha(o).

To compute the Fourier coefficients we notice that X\,, = A_, and that in the
integral (8.9) the exponential function may be replaced by cos m¢. Expressing
cos m¢ (m = 0) by the Tchebysheff polynomial 7'»(cos ¢),

11— A

Tw(z) = (—1)’"II’:I1 @ —-1a -2 =



REPRESENTATIONS OF THE LORENTZ GROUP 619

we find by partial integration
T(l—3—¢
A =1 = —2 - 1 =1
10 @ =1 ame) = (12279 < m 2 1),
An(o) = Anlo).
With the help of I'-functions we also may write for all m

FrG+o) I(m|+3—o0)
8.11 Am = _2 . 2 .
®.11) @) TG —o T'(ml+%i+o0
From (8.10) and (8.11) we may conclude
(1) If 0 < ¢ < %, all Au(0) are positive. If ¢ = 1, at least one coefficient is
smaller than or equal to zero.
(2) For large | m | we have by Stirling’s formula the asymptotic expression

(8.12) An(0) ~ (TG + 0)/TG — o) | m|™.

Let g = > ome—o(fm, @)fmand b = Y o o(fm , h)fn be two elements of the
Hilbert space $. It follows from the continuity of (g, &), , from (8.9) and from
(8.10), that

G0 = 3 @), )G, B
(8.13) B -
(9, 9)s = m;_:ﬁ An(0) | Fmy 9) I £ (9, 9)

(8.14) If 0 < ¢ < 3 and ge 9, then (g, g)s > 0,if g % 0.

(8.14) follows from the fact that all An.(¢) > 0. (It is this property that excludes
larger values of ¢.)

8c. The Hilbert space ,. In what follows we assume that 0 < ¢ < 1.

DEerINtTION 3. The linear manifold Oy consists of all vectors of ©. The inner
product of two vectors f, g of D is defined by (8.1), and the norm of a vector f s
defined by || f |, = (f, )i . The closure of L , which is a Hilbert space, ts denoted
by O .

It has been shown (cf. (8.14)) that (f, g), has all the required properties of an
inner product. The linear manifold §; is not closed with respect to the metric
[lf — glle. Since the A\m(s) tend to zero (cf. (8.12)) there are sequences A in
9, for which || hn — ha ||s — 0 as m, n, — © which have, however, no limit in
9. . The closure §, is obtained in the familiar way of adjoining these sequences
(as ““ideal” elements). Most of the following discussion may be carried out
for 7 , because Hy is dense in P, .

An orthonormal basts for .. By (8.9) the vectors f,, though orthogonal,
are not normalized. A comparison of (8.10) with (6.23) shows that \.(¢) =
(nm(a))® for all m. We obtain therefore an orthonormal set of vectors by the
definition

(8.15) gn = (1/10(@fm, (@)’ = An()
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For any h e ¢ we find by (8.13) (gm, h)e = 1m(e)(fm , k), and hence for any
two b’ , h'' € Oy

(8.16) W, 1", = m_Z_°° (s gm)e(Gm, B'")e -

This equation may be extended to any two vectors in §, , and shows the com-
pleteness of the orthonormal set g .

8d. Representations of the class CC@g=1—-6> On ©? the transformation
T.(a) is unitary, because it leaves the inner products (f, g), invariant and has an
inverse. By continuity it is extended to a unitary transformation T's(a) on L P
Likewise the transformation property T.(a)T.(b) = T.(ab) extends from o
to its closure 9, .

The proof given in §6d can again be applied to show that the multiplier
representation T,(a) is a representation of class C? , because the analytic func-
tions with which we have to operate are in §, so that the explicit definition of
the inner product by (8.1) may be used. We have only to remember that Qf =

1 — ¢Af (cf. (6.14)) and that the expressions A,gn are given by (6.26) as has
been remarked at the end of §8d. The matrix elements

(8.17) Omn(@) = (gm7 To(a)gn)c

are analytic functions on &.

TrEOREM 3. The multiplier representation Ts(a) (0 < ¢ < 3) is an irreductble
unitary representation of & on the Hilbert space Do . It belongs to the class c‘;
where ¢ = ¥ — o'

§9. Representations of the discrete classes Di and Dy *

9a. The multiplier representations T;. We consider here as the manifold 9t
the open unit circle in the complex plane (22 < 1), i.e., the manifold M* of
§4e. On M the group S is realized by the conformal transformations of the
unit circle onto itself. We have

o _a+B o
9.1) 2 =az= BT e (aa — BB =1) (ae,zeM)
(cf. (4.23)). A multiplier of (1) is given by
(9.2) pla,2) = o+ B2
(cf. (4.25)). We observe that
©.3) ¥ w1 -7 = a0 ) ¢ = a).

16 The construction described in this section is closely related to Dirac’s construction of
the expansor representation [Dirac 2]. Cf. also the Appendix to Part II of this paper.
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The functions f(z) introduced here will be analytic functions of z which are
regular on M. TFor an integral exponent [ we define the multiplier representation

(9.4) Ty(a)f(2) = u(a, a72) ' f(a™2).

The invariant density «; . We shall now determine a continuous positive real
function w;(z) (which is not analytic in 2) such that the inner product

©5) (01 = [ w@FGo@ as

remains snvariant under the transformations T;(a). Here dS = dz dy where
z and y are the real and imaginary parts of z.  From (9.4) we obtain the condition

wi(a2)-| u(a, 2) ' Jal2) = wi(?)

where J4(2) is the Jacobian of the transformation (9.1), i.e., Ja(2) = | d2’/dz | * =
| u(a, 2) | ~* (by 9.3). Hence we may write

(9.6) wi(az) | (e, 2) |77 = wi(2).
The second equation (9.3) shows that
9.7 wi(z) = const. (1 — 22)*

is a solution of (9.6). Since the transformation group (9.1) is éransitive on I
it follows that no other solutions exist (cf. the remarks at the end of §8a).

9b. The Hilbert space ;. For the present we consider the expression (9.5)
for arbitrary positive numbers 1 > 1. (If I < 1, the singularity of w;(z) at the

unit circle | z| = 1 is too high.) The constant in (9.7) can be so chosen that

(f,9)1 = 11if both f(2) = 1 and g(2) = 1. We then have

(9.8) w@) = (1 - 1)/m1—22)""

and we define

©9) (o0 ==L [ 4 -G ds @> 1.
T Jm

This definition may now be extended to the case ! = 1:

(9.10) (f, g = lim {l —1 fm 1 = 22)*f()g() ds}.

™
The inner products defined above are easily computed for the powers of z by
introducing polar coordinates. Set f = z™, g = 2", thenforl = 1

— . n m 1 —1+m\™"
9.11) ™ 2") =0ifm=n @™, 2", = m (m=0,1,---).
If f(2) has the power series ) mmo Cmz™, then

9.12) G = om0 (l -1+ ’")_ lon] ™

m
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This equation is to be interpreted as follows: Either both sides have the same
finite value, or both sides are infinite. (9.12) is readily obtained from (9.11) by
first considering the integral (f, f); over a circle | z| < o < 1, and then taking
the limit for p — 1. Moreover, every power series with coefficients c,, for which
the right hand side of (9.12) converges has evidently a radius of convergence at
least equal to one and hence defines an analytic function regular over M. It
is now evident that (9.9) and (9.10) determine a Hilbert space.

DEerFiNITION 4. The Hilbert space ©; (I = 1) consists of those analytic functions
regular on the open unit circle for which (f, f): (defined by (9.9) and (9.10)) s finite.
The inner product 1s deﬁned by (9.9) (or (9.10)) and the norm of an element of £,

is given by || f 1l = (f, N}
For two elements f = > o ocmz™ and g = 2 oo dmz™ in ©; we have

(9'13) (f) g)l = m-0 (l B in+ m>— Cm dm .

The functions

_ 3
9.14) hn(2) = <l o m) - m=01,-
form a complete orthonormal set in 9, , and

(f’ g)l = Z:rau=0 (f; hm)l (hm ) g)l

for any two elements f, g of $; .
An inequaliy. Let f(z) = Do _ocme™ be an element of §;. Then, by
Schwarz’ inequality,

1f@) | = Xm0l eml |2|"

(5 () ) (2 ()

Consequently, by (9.12),

(9.15) 1f@) | = (1 — 227" ||f]

for every z e It. By applying this inequality to the difference of two func-
tions we see that convergence in §; implies poiniwise convergence of the
corresponding functions over .

9c. Representations of the class Di . We now restrict I to positive integral
values, so that the transformations T;(a) are properly defined. It follows from
§9a that they are unitary.

Infinitestmal operators. From our results in §4e it follows that

1@ = @ T 1)

where A\, and 7, are defined by (4.24) and (4.26) respectively. In particular

. . . d . . d
(9.16) 1Ay = zd% + 3, (A + dAg) = —zzd—z — Iz, (A — 7A2) = — 5
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We now obtain

01 Q) = (A0 — (W) — Y1) = ¢ a=4(1-1).

The operators A, can be applied to any analytic function f(z), but the re-
sultant function will not necessarily be an element of §;, even though fe $; .
It is clear from the definitions (9.9) and (9.10) that f ¢ ; if it has a radius of
convergence greater than one. The same will then hold for all A.f and for all
Ti(a)f. These functions may therefore be used in the proof that T;(a) is a
representation of the class Df (k = 3l) instead of the analytic functions which
were used in §6d. To show that the equations (5.29) hold we set

(9.18) gn = (=1D)"*hns m =k, b+ 1,---) k = 3L
The ¢ form an orthonormal basis for §;, and on applying the operators A,
(cf. (9.16)) we obtain equations of the form (6.26) form = k, k + 1, ---, and

with g = £k (1 — k). Thus we have
TueoreM 4. The multiplier representation Ty(a) (I = 1, 2, ---) is an irre-
ducible unitary representation of © on the Hilbert svace O, . It belongs to the class

Df (k = 11).
The matrix elements
(9.19) vmn(a) = (gm; Tl(a') gn)l

are analytic functions on &.

9d. Representations of the class Dy . The representations Dy may be treated
quite briefly. The definition of the Hilbert space ©; is the same, but the
transformations 2’ = az and the multiplier u(a, z) are defined differently, viz.,

az + B

, _ A
(9.20) 2 =a = B+ a ula,2) = & + Be.
The infinitesimal operators (9.16) are replaced by

. d . . d . . d
(9.21) 1A, = —(z 7 + %l) , (A 1A = 7 (A1 — 7A2) = zza—z + Iz

and we choose
(9.22) gm = beem (m = —k, —(k+1),---) k=3l

The equations (9.17) are unchanged.

TuroREM 5. The multiplier representation Ti(a) (I = 1, 2, ---) defined by
(9.20) ¢s an srreducible unitary representation of © on the Hilbert space O, . It
belongs to the class Dy, (k = }).

RemMARK. Non-integral values of [ (I > 1) lead to representations of the
covering group € which are multi-valued representations of &. The multiplier
must be defined in terms of the parameters (v, ) as pointed out in §7d. The
corresponding value of ¢ is k(1 — k) where k = 3I. The spectrum of H, consists



624 V. BARGMANN

of the numbers k, k + 1, -+, or —k, —(k + 1), --- , depending on whether
(9.1) or (9.20) are used.

§10. Explicit expressions for the matrix elements
We shall derive now explicit expressions for the matrix elements v,.(a) 0f
the representations which have been constructed in the preceding sections. In
particular we shall be interested in their dependence on the invariant g, and
in their asymptotic behavior (for large values of the parameters {) on the group
manifold. The results of this section will be used in §12 to obtain orthogonality
relations.

10a. Differential relations. In each case the representation was defined by
unitary operators T'(a) on some Hilbert space, so that

(10.1) (, 9) = (T(a)f, T(a)g).

The notation (10.1) is meant to cover the different inner products introduced in
§§6-9, and hence any subscripts are omitted.

In the present discussion, we only consider functions f which are analytic in
the case of $ and ©., (§§6, 7, 8) or which have a radius of convergence greater
than one in the case of §; (§9). A, f and T'(a)f are then functions of the same
type, and in the inner products we may interchange differentiation with respect
to the group parameters with the integration over the manifold on which these
functions are defined. We always have

(10.2) Qf = ((A)" = (A)" = (8)")f = ¢-f

where the number ¢ is characteristic of the representation in question. The
matrix elements are given by

(10.3) Vmn(@) = (gm , T(a) gn).
The set of orthonormal functions ¢, is defined for each particular case. Since
x(T(@)f) = A (T(a)f) we find

(104) van(a) = (gm ) Ax(T(a) gn))'
By a repeated application of (10.4) we obtain from (10.2)
(10.5) Wmi(a) = (gm, Q(T(@) gs) = qgn, T(a) gn) = q-vma(a).

Q is the operator (xo)* — (x1)® — (xz)° defined in §4 (cf. (4.19)). This shows
that all matrix elements of a given representation satisfy the same second order
partial differential equation. (Incidentally, this equation will be the main tool
for determining the functions v,.(a)).”

On applying the operator x to (10.1) and setting ¢ = ¢ we find

0 = (A, 9) + (f, Ag). )

7 This corresponds to Casimir’s method in the compact case. Cf. [Casimir].
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We use this relation to transform (10.4) and obtain

Xmn(@) = —(Aggm, T(@)gs) = —2i(Axgm, g)(g-, T(a)gn)
(10.6) (@) = o Amtrn(@);  Ame = (Gm, Axg) = —hom.
In our case every equation of the infinite set (10.6) contains at most three terms,
since Amr = 0if [m — 7| > 1 (cf. (6.22)).

If a(t) is a one-parameter subgroup of & and if we set vmn(a(t)) = Vma(D),
then xVms = dvmns/dt, and hence

AV
= 2’; Amrvm(t) Amr = (gm, Axgr)

(10.7) 7

((10.6) and (10.7) correspond to the differential equations for finite-dimensional
Iepresentations discussed in §le). Since va(0) = 6., We obtain from (10.7)
the power series for v,,(f) by successive derivations. Using the fact that A\,., = 0
if [/m — r| > 1 we find in particular

vn”(t) = 1 + DI
th
(10.8) vﬂ+hm(t) = (H’;-l Aﬂ'l'f-ﬂ'f'f—l) ’T! + cte (h = 1’ 2’ e )
th
vn—h.n(t) = (H?—l >\n—-1’.n-1'+l) Z" + - (h = 1) 27 ce )

10b. Form of the matriz elements. To the decomposition

a = exp(2uxo) exp(2¢xz) exp(2vxo)

of every element a ¢ & (cf. (4.12)) corresponds the following decomposition of
vma(a@). Since in every case Hogm = Mgm , we have exp(— 2 pHo)gm = € 2™, .
If we mow set

(109) an(g.) = Umn (eXP 2§-X2)
we obtain
(10.10) Vma(@) = g T g Vonn($)-

The equations (10.8) may be applied t0 Vu,(¢), with x = x2, and ¢t = 2¢. By
(6.27), Amyme1 = —Am1, m = 3(¢ + m(m — 1))}. Consequently,

th(g.) = 9n»(¢1) + e efm(q) =1
h
(10.11)4 Vanin(®) = Ontha(@)¢" + -+ Opinnlg) = 7—:—,;[;]1: @+ @+)n+5—1)

Vn—h,»(g') = en—h.n(q)g-h + - e»—h.n(Q) = (—l)hen.n—h(q)o

Furthermore, it follows from (10.7) that the power series for V contains only
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odd or only even powers of { depending on the parity of h (because only the
matrix elements Am,»—1 and Ap_y,» are different from zero). Hence

(10~12) V"m(_g') = (_l)m_” an(g')-

REMARK. Since the A, are real, all functions Vma(¢) are real.

10c. Discussion of the functions Vma(¢). It is sufficient to consider only
positive values of ¢, and it will prove advantageous to introduce the new variable

(10.13) y = (sinh ¢)* = BB 0sy<ow
on &. Notice that

W — sinh 25 = 2(y(1 + )}
e

and that the volume element on & may be written
(10.14) da = 2m) P dydudy

(cf. (4.20)). If we set

(10.15) V() = Wana(y)

and apply the differential equation Qma(@) = qUma(a) to the matrix element
(10.9) we obtain from (4.19)

Qmn + OWaaly) = 0;
(10.16) fm— n\?

This equation is transformed into a hypergeometric equation for the independent
variable (—v), if we introduce the function Y ,,(y) by the definition

(10.17) Wan@) = ¢"'"" 11 + )™ V().
In fact, we find

(10.18) y(1 + y) "+ (e + e+ )y + C:s) Yonn +cacYm =0

o0 ;}=2(1+lm—n|—|m+nl)ﬂ:a,
a=1+im—nl, o=@-0gk

For small {, y ~ ¢*, hence we have split off a factor ¢!™ " in (10.17), and it
follows by comparison with (10.11) that Y,.(y) is a power series of the form
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Omn + -+ . We must therefore choose that solution of (10.18) which is regular
for y = 0, i.e., we have
(10.20) Ymn(y) = emn(Q) ’F(cl y C2,C3, —y)'

From the well known identity
F(a,b,c,2) = (1 — 2)°*?F(c — b,c — a,c,2)

we obtain a second expression

(10.21) Yony) = Oma (@1 + '™ Fle1, ez, 05, =)
cl

(10.22) t}=%(l+|m—n|+|m+n|):!:a.
C2

10d. Remarks on hypergeometric functions. Since the hypergeometric func
tion has no singularities on the negative real axis the functions in (10.20) and
(10.21) are given by their familiar power series for y < 1 and are obtamed by
analytic continuation for larger values of y. For y > 1 we may write *®

Ve r(e)r®d — a)
r@eric — o

—»T'(c)T'(a — b)
+ 9 ST =)

where the functions on the right hand side may be expressed by power series in
(1/y). This equation holds whenever b — a is not an integer (positive, nega-
tive, or zero). It is particularly suitable for the discussion of F for large values
of y.

" In the case of a hypergeometric polynomial, if a is equal to a negative integer,
say a = —I, the second term in (10.23) vanishes because 1/T'(—1) = 0, and we
have

F(a’ b’ c! y)
(10.23)

F@,14+a—c¢1+a—0b,—1/y)

Fb,1+b—¢,14+b—a, —1/y)

1024) F(=1,b,c, —y) = l)y F(=L1—1—c1—1—b —1/y).

(c, D
We use Appell’s symbol (a, s) defined for non-negative integers s by
N (CE N 1 (s =0)
(10.25) 7 T(a) ia(a +1)--(@a+s—1) (s>0)

(—a’; S) = (_1).(0' +1 - 8, 8)-

18 [Whittaker-Watson, p. 289]. It should be noted that the formula given there is not
correct. The differences a — b, a — ¢, b — a, b — ¢, which appear as arguments of the I'-
function must be replaced by b — a,c — a, a — b, ¢ — b respectively.
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(10.24) is, of course, elementary and may be readily verified. It holds as long
as (b, 1) # 0. We also notice that a hypergeometric polynomial may be ex-
pressed as" 1 s
_Y “Ql+yTTd c+i—1 b—c

10e. Representations of the continuous class. We may now combine (10.10)
and (10.17) with (10.20) and (10.21) to obtain the matrix elements v,,(a) in
terms of the parameters «, 8, where the relation ad@ — 88 = 1 is used. The
results are as follows:

'vmn(a) — emn(q)am-i—n Bm-—n

FG+m+o,34+m—0,14+m—mn,— BB)
(10.272) ] ’ (m 2 mn)
- emn(q)& (m+n) B n

| FG—n+asai—n—0q1+m—n,—BB)
(vmn(a) = emn(q)am-'-”B”—-m
FG+n+o}+n—01+n—m —6)

10.27b m
( ) = Oma(g) & "V B (

L F(%—m-{—a,%—m—a,l—l—n—m,—ﬂﬁ)

These expressions depend analytically on a as well as on ¢q. As for the de-
pendence on ¢ we see first that the hypergeometric functions are symmetric in
o and —o and are therefore analyticin ¢ = 3 — ¢*. (This also follows from the
differential equation (10.18) because its coefficients contain only ¢ and not ¢ it-
self.) Moreover, the constants ©,.,(q) are analytic in ¢ (cf. (10.11)) as long as
g varies in the open interval (0, «) in the integral case, (i.e., including the ex-
ceptional interval (0, 1)) and in the open interval (4, «) in the half integral case,
since m may assume all integral or all half integral values respectively. Notice
that by (10.11) all ©,..(¢) are different from zero. It is noteworthy that the
matrix elements vm,(a) do not show any peculiarity for values of ¢ in the excep-
tional interval (0, ). Later we shall see, however, that they differ in their
asymptotic behavior from the matrix elements of other representations. Observe
that the above statements refer to a particular choice of the basic functions g, .

IIA

n).

10f. Representations of the discrete class.
I. DY Hereq=k(1 —k),o=k— % andm =k, k+1,---. We may writ,,

(vmn(@) = Omalg)a™ "+ g™
Fk—n1—n—Fkl+m—n,—pB) (mz=n)

Omalq) & ™+ B
Fk—m,l—m—Fk,1+n—m,—B8) (m <n)

(10.28a)

19 [Courant-Hilbert, p. 77]
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1 I'm+1—FkI'(m+ k)
(m —n)!\(Tn+1—kTI(n+ k)
emn(ﬂ) = (_I)Hemn(Q)-
II.Dy q=k(l—k)y,o=k—3m=—k —(k+1),---
Vma(@) = emn(Q) o™t g
Fk+m1+m—k1l+m—mn,—BB) m
— Omn(q) am+n Bn—m
Fk+n,1+n—k1+n—m,—pB) (m =n)

(10.28b) Oma(q) =

$
) fm=n

v

n)
(10.29a)

1 Il —k—n)Tk —n)\ .
(m = nl) I‘(l_k—"‘)l’(l‘i—-m)) fmzn

(10.29a) Omn(q) =

O.m(q) = (—1)"" Onal(9)-

It is seen that in each of the equations (10.28a) and (10.29a) the function F
is a hypergeometric polynomial whose degree is the minimum of the two num-
bers (|m| — k,|n| — k).

Denote, more specifically, the matrix elements of Df and Dy by vma(a | k) and
vmn(a | —k) respectively. Then it follows from (10.28) and (10.29) that

(10.29¢) vma(@ | k) = (=1)"7" v_pmn(a| —Fk).

10g. Remarks on finite-dimensional representations of &. Although we are
concerned in this paper with the infinite-dimensional unitary representations of
& we include here, for the sake of comparison, a short account of the irreducible
finite-dimensional representations of &. They are obtained in the same way as
the representations of the rotation group. (Cf. [v.d. Waerden, §16].)

Let the group & operate on two complex variables £, 9 in the form

(10.30) ¢ =at+pBn, 7 =Pp+ay oa-—pB=1
and form, for every integral or half integral j, the (2j 4+ 1) monomials
Ei—!'mnj—-m
G+ m)iG — mn
The transformations (10.30) induce transformations

(10.32) Zn = 2n Umn(@)2n

which leave the indefinite form Y, m(—1)" "2mz, invariant. This representa-
tion is irreducible, the operator @ has the value ¢ = —j(j + 1). The matrix
elements v,.,(a) may be directly computed from (10.30) and (10.31) or from the
differential equation (10.5). We find

(10.31) Zm m= —j,—j+1,-2,j
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(Vma(@) = Omalg) ™" 8™ F(m — j, 1 + m + j, 1 + m — n, —BB)
(m +n2=20,m = n)

Oma(@) @" "B " F(n — j,1 +n +j,1 +n — m, —Bp)
m+nz0,m=n)

(10.33)
=0m(@a """ F(—n —j,1 —n 44,14+ m — n, —6p)
m+n=<0,mz=mn)
=Om(g)a "B " F(—m —j,1+j—m,1+n—m, —BB)
L m+n=0,m=n)
(1034)  Omn() = o - 1 (8 i Z‘))!!((j’ _“;3 :)i if m=n,

Onm (Q) = em»(ﬂ) .

These are all continuous irreducible finite-dimensional representations of &.
REMARK. If we replace 8 by (—8) in (10.30) and (10.33) we obtain the cor-
responding expressions for the rotation group or rather its spinor group &g .

10h. Functional relations. Any relation between the matrix elements of a
representation gives rise to relations between the hypergeometric functions in
terms of which the matrix elements are defined. We mention (1) the equations
(10.6), which are equivalent to linear relations between contiguous hypergeo-
metric functions, and (2) the equations

(1035) vmn(ab) = Z r vmr(a) vrn(b)

which express the representation property. They correspond to addition theo-
rems for hypergeometric functions. (In the case of the finite-dimensional
single-valued irreducible representations of the rotation group, the equation
(10.35), for m = n = 0, is equivalent to the well known addition theorem of
spherical harmonics.)

§11. The asymptotic behavior of the matrix elements.

According to the decomposition (10.1G) of the matrix elements vm.(a) the
asymptotic behavior of v..(a) for large values of ¢ or y is determined by the
function V,,(¢) = Waa(y). Moreover, it follows from the explicit expressions
(10.17) and (10.20), and from the relation ©,,(q) = (—1)™ "On.(q) (cf. (10.11))
that

(11.1) Wan(y) = (=1)" " Waa(y).
Therefore we may confine ourselves to the case m = n.

11a. Representations of the discrete class. If we apply the equation (10.24)
to transform the expression (10.282a) we obtain
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_ (U T+ BT+ R )
(11.2) Wan(y) = T (2k) (I‘I(m +1—kKI(n+1—k)

m+n
(L )T Fk —m, k — n, 2k, —1/y)
y (1 T y> ( ) » 2k, —1/y
for the representation Df . The leading term is const. y ¥ or const. e~
Therefore these matrix elements are square-integrable over the group manifold ©
(with the volume element da (defined by (10.14)) if and only if £ > 3.

By (10.29¢) the matrix elements of Dy show the same asymptotic behavior.

2k¢

11b. Representations of the continuous class. Transforming the second equa-
tion (10.27a) by (10.23) if ¢ ¥ 0” we obtain a result which may be expressed
as follows:

W) = 47w/ + 9)™ ™ Bmnle, — 1/9)Y" + Bun(—0, — 1/9)y "}

B (ax)={ rG+m—o) }*
(11.3) e r¢+n+arfG+n—arG+m+o0)
'I?‘(%L_(Q;?)_*_—G)F(%—m—a,%—n—c,l — 20, ).

If ¢ > %, and hence ¢ = s, we have asymptotically
(114) Wony) ~ 27 *Re(Bualis, 0y} ~ 4 Re(4 ™ Bunlis, 0)¢"]

where Re stands for “real part”’. The functions v..(a) are not square-integrable,
but due to their oscillatory character it is possible to obtain square-integrable
functions by forming ‘“‘wave packets’, i.e., by an integration with respect to the
variable s.

In the exceptional interval 0 < ¢ < %, where 0 < ¢ < %, we have the asymp-
totic expression

(11.5) Won(y) ~ Bun(a, 005" ~ 278,...(q, 0)e %,

These functions are not oscillatory in the parameter ¢, and they decrease more
slowly than those outside the exceptional interval. Therefore their square
integrals cannot be made to converge.

ReEMARK. It may be shown that the matrix elements (10.33) of the finite-
dimensional representations increase as y’.

11c. Computation of | Bma (is, 0) |°. In the next section we shall need the
absolute value of Bna(35,0). By (11.1) | Bmn(is, 0) | = | Bam(3s, 0), and it suffices
to treat the case m = n. We obtain from (11.3)

(11.6) | Bmna(is, 0) > = | T(248) [*/bn, ba=|T(G —n+ i5)T(E + n + 0s) |*
It is easily seen that b, = bn41 , therefore we may replace b, by b, (for Co) or by

20 If ¢ = 0 the equation (10.23) does not apply and an additional logarithmic term appears.



632 V. BARGMANN

bt (for Cf,). Consequently the expression (11.6) is the same for all matrix ele-
ments of a given representation, and it will be denoted by co(s) and ¢;(s) re-
spectively.

Since, for every real number £, | T'(6%) |* = =/t sinh £, | T'(3 + &) |* = =/cosh £,
[ T(L +4¢) |* = £ T@#) [, we find

. 2 _ _ coth s
(11.7a) [ Bmn (g, O)I = cs) = yry— for C:
g=1+s
(11.7b) | Banlis, 0) [* = ¢4(s) = tazrhs"s for C!

§12. Orthogonality relations

12a. We want to discuss now the analogue of the orthogonality relations which
hold for irreducible unitary representations of finite and of compact topological
groups. (These representations are necessarily finite-dimensional.) In the case
of a compact topological group @ they may be stated as follows

(1) Consider a continuous irreducible representation of & by unitary trans-
formations U(a) (a € ®) of an r-dimensional linear space E" into itself. Then,
for any four vectors f, g, ', ¢’ of E",

(12.1) [, 6. 7@a 0, v@) de = A/ G 76, o)

where by da we denote invariant integration on ®, and where the total volume
of the group has been normalized to one.

(2) Let U’(a) define a second continuous irreducible representation of & by
unitary transformations of an r’-dimensional linear space E™ into itself, and
assume this representation to be inequivalent to U(a). If f, g, are two vectors
in E", and f’, ¢’ are two vectors in E”, then

12.2) [ 6. 7@a (7, U@y da=o.

Let fu(1 < m < r) and fn(1 < m =< ) be sets of orthonormal vectors on E"
and E"" respectively. Applying (12.1) to any four vectors of the set f,., we
obtain
(123) f Umn (@) Um'n (@) da = (1/7)8mm’ Snn’ Q@ =mnm,n <7)

©
where Uma(a) = (fm, U(a)fs) . In asimilar way we obtain from (12.2)

(12.4) f U (@) Umew’ (@) da = O A=mns=sr, 1=m,n <7)
®

with Umm(@) = (fur , U'(@)f4). Tt is clear that (12.3) is equivalent to (12.1) and
that (12.4) is equivalent to (12.2).
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With respect to the unitary representations of & the following is evident. The
same type of orthogonality relations can only hold if all matrix elements of the
representation considered are square-integrable over the group manifold. (Set
f=1f,9=g¢in (12.1).) Consequently we may expect this for the discrete class
D{ and Dy where k > % (cf. §11a). Moreover, the factor (1/r) in (12.1) and
(12.3) which is determmed by the dimension of the representation space must
be replaced by some constant characteristic of the representation. For the
representations of the continuous class the orthogonality relations must be
suitably modified.

12b. The representations DI , Dy (k > %). We shall first obtain the orthog-
onality relations in the form (12.3) and (12.4) and later pass to (12.1) and (12.2).
To distinguish the matrix elements of the different representations we denote
them more explicitly by vma(a | k) and vm.(a | —k). Since, by (10.10),

tnala] £ K) = I Wy | £ B)
and by (10.14)
=@r)  dydudv 0 Sy < o, —

IIA
IIA
3

B, v

it is evident that an integral of the form

(12.5) L oon(@] £ Bomen(a| = ¥) da

must vanish unless

(12.6) m = m, n=n'

In particular, the matrix elements of a representation D; (where m, n are
posztwe) are orthogonal to the matrix elements of a representation Dy (Where
m’, n’ are negative). We may therefore discuss the representations Di and
apply our results to Dy with the help of the relations (10.29¢c). Because of the
restrictions (12.6) we are left with the integrals

(12.7) fe Vmn(@ | K)omn(a | k') da = j; Woan( | K)Wan(y | k') dy.

By (11.1) it is sufficient to consider the case m = n. The integrals (12.7) may
then be evaluated by the following procedure commonly used in the treatment
of hypergeometric polynomials. Assume k =< &/, replace the hypergeometric
polynomial in the expression (10.28a) for W.(y | k) by the right hand side of

(10.26), and apply to (12.7) (n — k) successive partial integrations. The result is

l Wmn(y I k) 12 dy = (2k - 1)—1;
(12.8) .
fo Won@ | ) Wonny | K) dy =0 (k 5 K.
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In combination with the conditions (12.6) the second part of this equation
implies that the matrix elements of two inequivalent representations Di and D
(k k') are orthogonal. This could also have been inferred from the fact that,
by (10.5), vma(a | k) and v,...-(a | k') are proper functions of the self-adjoint dif-
ferential operator @ belonging to two different proper values ¢ = k(1 — k) and
¢ =K1 — k). (Because of the restriction m = m’,n = n/, this is most easily
seen from (10.16).) The first equation (12.8) implies equations of the type (12.3),
with r replaced by (2k — 1).

To sum up, we have found

(12.9) /; Vnn(@)Vmn (@) da = 2k — 1) 0mm 8nn'  (Wmn(@) = tma(a] = k));

(12.10) L D@ (a) da = 0

if Vmn and 907, belong to inequivalent representations.

Remark. For D and Dy, (2k — 1) = (1 — 4¢)}. It is worth mentioning
that the dimension r = 2j + 1 which appears in the orthogonality relations for
the spinor rotation group & has the same form, because with our definition
(2.19) the operator @ has the value ¢ = — iG + 1).

12¢c.  Orthogonality relations for arbitrary vectors. As in §10a we denote by
T(a) the operators on a Hilbert space $ which define a representation D , and
by g & complete orthonormal set of vectors on §, 50 that #ma(@) = (gm, T(a)gn).
Let f, g be two vectors in §, with components m = (gm,f) and fm = (gn, )]
respectively. By (12.9) the functions (2k — 1)}»,.,(a) form a set of orthonormal
functions on &. Since

(1211)  (f, T@)9) = Zomn pmn@h — 1}0,n(@),  pma = 2k — 1)yt

and since

Zomal o= @k~ D7 (a5 = @k = DI g |
it follows from the Riesz-Fischer theorem that (f, T'(a)g) is a square-integrable
function™ on & and that the sum in (12.11) converges to (f, T(a)g) in the mean
over &. Consequently

(12.12) L6, 1@0) 1 da = @ — 171711191

Replacing in (12.12) f by vf + v'f’, g by 69 + &'g’ where f, f’, g, ¢’ are any vectors
in , and v, 7/, 8, &’ any complex numbers, we obtain the analogue of (12.1)

21 [ G 1@, T@g) da = @k ~ 1), e, )

because (12.12) holds for any choice of v, v/, 8, 5.

# Due to the continuity of the operators T'(a) on & this function is continuous though in
general not analytic.
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Let the operators T'(a) on a Hilbert space $’ define a representation DE
inequivalent to the one considered above, and let vmn = (g , T'(a)g’:) be its
matrix elements in terms of the orthonormal set grs . By (12.10) the functions
vmar(@) are orthogonal to the functions v..(a). Choose any vectors f, g € §,
and f’, ¢’ ¢ " Then (f/, T'(a)g’) is a linear combination of the matrix elements
vmmr(a) (cf. (12.11)) and hence orthogonal to the function (f, T(a)g). Therefore

(12.14) [ 6. 7@o ¢, T'@q) da = 0.

THEOREM 6. If the unitary operators T(a) on a Hilbert space O define a repre-
sentation of © of the discrete class DE(k > 1), then for any f, g € © the function
(f, T(a)g) ©s squarc-integrable over &, the value of the integral being given by (12.12).
Let the umitary operators T'(a) on ' define an inequivalent representation Df,
(K > 1), and let f', g’ be any vectors of O'. Then the function (f', T(a)g’) s
orthogonal to (f, T(a)g) on &.

ReMARK. This theorem applies in particular to the analytic functions f(2)
and the operators T';(a) discussed in §9.

12d. Representations of the continuous class (g > }). The operators B. In
the following discussion we shall use the matrix elements u..(a) defined by (6.18)
and (7.12) (we omit the prime) because they refer—for different values of g—to
the same set of orthonormal vectors viz., to f, = e'™® in the integral and to
fm = ¢"™P%in the half integral case (cf. (6.17) and (7.9)). Since we have to dis-
tinguish between different values of ¢ and hence of s we write more explicitly
uUmn(a | s), where s is assumed positive, and where ¢ = § + s*. In each case

(12.15) umn(a I 8) = wmn(s)v'nn(a ! S) ‘*’mn(s) = 17,,(’56‘)/17".(1:8)

(cf. (6.29) and (7.13)) where 5,(¢s) are complex numbers of absolute value 1,
defined by (6.23) and (7.10) respectively. According to the decomposition
(10.10) we may write

(12.16) Unn(@ | 8) = wmn(8)e e 2V ma(S | 9) | wma(s) | = 1.

As we have indicated in §11b we must integrate the matrix elements (12.16)
with respect to s in order to obtain square-integrable functions on ©. We pro-
ceed as follows. Let ¢(s) be a complex-valued square-integrable function which
vanishes outside the closed interval I = [s;, s;] where 0 < s; < s, < . Set

(12.17) bun(@) = [ Y(mala | 9) ds.

These equations are meant to hold either for all integral or for all half integral
values of m, n. From (12.16) we infer that

(12.18)  bmn(a) = e e_zmmen(g'); Bun(§) = fl¢(8)wmn(s)Vm(§'|8) ds.
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The bmn(a) are the matrix elements of an operator B(a), viz.,

(12.19) ban(@) = (fmy B@S);  B@) = [ W6)Tulc) ds

where the operators T';,(s) are given by (6.11) for the integral and by (7.5) for
the half integral case. (For integrals of the type (12.19) it is sufficient to define

for any two f, g € § the inner product (f, B(a)g) = f v(8)(f, Ti(a)g) ds.) From
the explicit definitions (6.11) and (7.5) we find

(1220) B@/®) = pla, ™ $Y(8); p(a,8) = [ Wohula, 6 ds
for the integral case, and

(12.21) B(a)f($) = v(a, a" ¢)p(a, a” ¢)f(a™" ¢)
for the half integral case.
The operators B(a) are uniformly bounded by

[ 1w as
(cf. (12.19)) because the unitary operators T have the bound 1. Moreover, it is
easily seen that they are continuousin a.

12e. Orthogonality relations for the operators B. We start with a discussion of
the function B..({) for a fixed pair of integral or of half integral indices m, n.
Introducing in (10.16) the variable { instead of y we have the differential equation

(12.22) {dii‘ (Siﬂh 2 %f—@) — Knn() Vinn(§ | 8) = —45" sinh 20V a(¢ | 8)

Kna(f) = (sinh2¢)7'[m® — 2mn cosh 2¢ + n’| — sinh 2%, ¢ =1% + &
Applying (12.22) to two functions V(¢ |s) and Vaa(¢ | ¢) we find

(12.23) 4(¢* — 5*) sinh 2¢ Vouo(§ | 8) Vina($ | 8) = %[sinh 20{Van(E 1 D), Va($ | 9)}]
where the abbreviation

d@ dF

isused. If we set dmn(S) = wma(8) ¥(s) we obtain from (12.18) and (12.23)
¢
[ l an(g.') |2 Sinh 2;" d;',

- -,:’ f :l S5m0 [ _/: Van(@' | 8)Vma($' | ¢) sinh 2¢7 dg-'] ds dt

8

= f.’ f‘: ¢""‘(s) 4’"m(t) Sinh 2;‘ {an(g' | t)’ V"m(;. I 8)}(4(t’ - sz))—l ds dt.
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It can be shown by familiar arguments that in the limit { — « the functions
Vun(f) = Waa(y) may be replaced by their asymptotic values (11.4), more
specifically, that we have, with vmu(s) = Bmn (75, 0)pmn(s),

[ 1B P sinh 25 ds = 2im [ ["IECT5 0 ) g

{0

tH
= 21rf | Ymn(s) | ds.

We have seen in §11c that, independent of m and n, | Bma(is, 0) |* = ¢(s), where
¢(s) stands for ¢y(s) in the integral and for ¢4(s) in the half integral case (cf. 11.7)).
Since | wma(s) | = 1, we have therefore | yna(s) |* = ¢(s) | ¥(s) |°, and hence

(12.24) j; | Bun(¢) |* sinh 2¢ df = 2x j; c(s) | ¥(s) |* ds.

This equation may be generalized as follows. Let B‘“(a) (a = 1,2) be two
operators defined by the functions ¥“(s) which vanish outside I'°, and
assume that B®(a) and B®(a) are both defined either for the integral or for
the half integral case. Then

(12.25) [%WW%%M%@=%£MW@W®%

where J is the intersection of the two intervals I, , I .

Orthogonality relations for the matrix elements by.(a). Since da = (2r)°
sinh 2¢ d¢ du dv, it follows from (12.18) and from (12.24) that the matrix ele-
ments b,,m(a) are square-integrable over &. Moreover, it is seen that b&)(a)
and b%.(a) are orthagonal on & unless m = m/, n = n/. This implies in par-
ticular that any b2 (a) with integral m, n, is orthogonal to any b%>, (a) with half
integral m’, n’. Consequently we may write

(12.26) f D (b2, (a) da = (21r f, ()PP (s)¢® (s) ds )a,,m,ann,

if (m, n) and (m/, n’) are both integral or both half integral while the integral
(12.26) vanishes in any other case.

The transition to relations of the more general form (12.13) and (12.14) is
now immediate because the discussion in §12¢ applies equally well to the opera-
tors B. In stating the final result we shall denote by B,(a) and By(a) operators
which are defined for the integral and for the half integral case respectively.

TrEOREM 7. Let By(a) and By(a) be operators on the Hilbert space O of square-
integrable functions over the unit circle defined by (12.20) and (12.21) respectively.
For any two elements f, g € © (f, Bo(a)g)and(f, By(a)g) are conlinuous square-inte-
grable functions on ©. For any admissible choice of ¥ (s), ¥®(s), and for any
vectors f, g, f', ¢’ € © we have
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[ G B @ar, B @) do = (2r [ ™G40 as) T, 1000, 0)
[, G B @0, B0 do = (2x [ i@ do) G 7, o)

[ 4 BP@a)(r, B(@)g) da = 0

co(s) = coth ws/4ws ¢y(s) = tanh ws/4ws.

12f. Orthogonality of bma(a) and vm.(a | £k). (k > %).

THEOREM 8. Let B(a) operate on a Hilbert space O, and let the unitary opera-
tors T'(a) on ©' define a representation of the discrete class Di(k > 3). For any
f,0e9, 1,9 €D the functions (f, B(a)g) and (f', T'(a)g’) are orthogonal on &.

It is evidently sufficient to prove the orthogonality of the corresponding matrix
elements. Since the product umn(a|$s)vmn(a|k) decreases at least as
¢ *(k = 1!) one proves the orthogonality of um(a|s) and v,../(a|k) from the
fact that these are proper functions of the self-adjoint operator Q to the different
proper values ¢ = + + s’and ¢’ = k(1 — k) < 0. Integration with respect to s
gives the desired result.

ReEmMARK. The orthogonality of the matrix elements of inequivalent repre-
sentations is partly related to the different range of the values m (i.e., to the
different spectra of H,) and partly to the fact that they are proper functions of ©
to different proper values. The matrix elements of Di and D; (k > %) belong to
the discrete spectrum, those of Ca(g > 1) and of Cﬁ to the continuous spectrum
of Q. The orthogonality relations for the matrix elements of the same represen-
tation cannot be obtained by these arguments alone.

§13. Completeness of the matrix elements on S

In the case of a compact topological group it follows from the theorem of
Peter-Weyl [cf. Weyl, 2] that the matrix elements of its irreducible representa-
tions are complete in the Hilbert space of all square-integrable functions over the
group manifold. We want to show that a similar result holds in our case. The
matrix elements which we have considered are of the form

(13.1) Van(@) = € 2™ W n(y)

where m and n are both integral or both half integral, i.e., 2m and 2n both even
or both odd. As we have observed in §4c the parameters used here cover the
group manifold fwice, and any function on & is unchanged if (u, ») are replaced
by (u == , v &= =). It is easily seen that the Fourier decomposition of such a
function contains only terms in which the two exponents 2m and 2n have the
same parity. Therefore we have to show that for a fixed pair (m, n) linear com-
binations (or integrals over a continuous parameter) of the functions Wn.(y)
which we have found are dense in the Hilbert space of square integrable functions
over the half line0 2 y < ®. The Wn.(y) are solutions of the differentia]
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equation (10.16). Fortunately, this equation has been discussed by H. Weyl
in his investigations on singular differential equations [Weyl, 1, p. 454-455].
His results are stated in terms of three parameters «, v, A which in our case are
the following (cf. (10.22)):

(1382) a=c+ea=14+|m—n|+|m+n|,
v=ea=1+|m—n|, A=g—%
Weyl’s criterion @ = v = 1 is evidently satisfied. The equation (10.16) has a

continuous spectrum consisting of all positive \ if
(13.3) v—(2/2) 20

and if y — (a/2) < 0it has in addition to this a d¢screte spectrum® which consists
of the values

(13.4) =— (/2 —y—=D"1l=0,1,--- ((/2) =y = 1> 0).

Moreover, the solution to be chosen is the one given by (10.21). A simple dis-
cussion shows that we obtain the matrix elements of the continuous class outside
the exceptional interval 0 < ¢ < % for the continuous spectrum, and the matrix
elements of the discrete class with & > 1 for the discrete spectrum (in the latter
case those which are compatible with the values of m and n). For the group
manifold we may state this result as follows.

THEOREM 9. The functions (f, Bo(a)g) and (f, By(a)g) defined in §12, and the
functions (f, T(a)g) where T(a) belongs to the discrete class Di or Dy (k > 1)
span the Hilbert space of square-integrable functions over S.

Proor. It is sufficient to observe that the functions mentioned are linear
combinations and integrals (with respect to the parameter s) of the matrix ele-
ments which satisfy Weyl’s criteria.

ReMark. It might have been expected that the matrix elements of the
unitary representations of & suffice to span the Hilbert space of Theorem 9,
but it is noteworthy that only part of the representations occur since the repre-
sentations Cg with ¢ in the exceptional interval (0, 1) as well as the representa-
tions Df and Dy are excluded.

APPENDIX
The spectra of the infinitesimal operators

We want to add, without proof, a few remarks on the spectra of the infini-
tesimal operators H, for the different representations. As we have seen at the
end of §2, the one-parameter subgroups exp (tx)(x # 0) fall into three different
classes which have been called elliptic, hyperbolic, and parabolic. Within each
class any two subgroups are conjugate. The same holds for the generating ele-
ments x, with the difference, however, that x and ax (a # 0) are not distinguished.
For the elliptic class we may take xo as representative. Since the operator H,

22 The criterion stated in Weyl’s paper is not correct.
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has been sufficiently discussed, we disregard it here. For the remaining
classes the following may be shown:

1. Hyperbolic class. For the representations C and C’* H, has a continuous
spectrum of multiplicity two, extending from — « to + . For the representa-
tions Df H, has a simple continuous spectrum extendmg from —ow to 4 .

II. Parabolzc class. For the representations C% and C} H, has a simple con-
tinuous spectrum extending from — « to 4+ . For the representatlons DifH
has a simple continuous spectrum which extends either from 0 to + or
from — « to 0, depending on the element x chosen.

Added in proof. In the meantime the interesting note by L. Gelfand and M.
Neumark (Journal of Physics (USSR), Vol. X, pp. 93-94, 1946) on the irreducible
unitary representations of the Lorentz group (& in our notation) has arrived in
this country. The results on the classification of the representations which the
authors announce are stronger than ours (cf. the introduction to the present
paper) since no assumptions about the infinitesimal representations are intro-
duced. There is no discussion, however, of the matrix elements as functions on
the group manifold.

The representations obtained by the authors are the same as those mentioned
in our introduction, and even the realization of the representing linear operators
by functional operators is the same—if the space of light rays (or the unit sphere)
is used, as described at the end of their note.

The seclmd class of Gelfand and Neumark consists of the representations Cg
where ¢ is in the exceptional interval 0 < ¢ < 1, their parameter p equals
2(1 — ¢)!. The first class consists of all the remaining representations, viz.,
C%g = 1), wheren = 0, p = 2(g — 1} and Cy, , where n = 22k, p = +2r.

INSTITUTE FOR ADVANCED STUDY
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