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The story of the film so far...

Our first goal in this course is to formalise assertions such as

“the chance of A is p”,

where

the event A is a subset of the set of outcomes of some
experiment, and
p is some measure of the likelihood of event A occuring, by
which we mean that the outcome of the experiment
belongs to A.

The set of outcomes is denoted Ω and the possible events
define a σ-field F of subsets of Ω; that is, a family of subsets
which contains ∅ and Ω and is closed under complementation,
countable union and countable intersection.
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Probability as relative frequency
Imagine repeating an experiment N times.

We let N(A) denote the number of times that the event A
occurs. Clearly, 0 6 N(A) 6 N. If the following limit exists

lim
N→∞ N(A)

N
= P(A) ,

the number P(A) obeys 0 6 P(A) 6 1 and is called the
probability of A occuring.
Since N(Ω) = N, we have P(Ω) = 1.
If A ∩ B = ∅, N(A ∪ B) = N(A) +N(B), whence
P(A ∪ B) = P(A) + P(B). By induction, if Ai is a finite family of
pairwise disjoint events,

P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An) .

As usual, it is (theoretically) convenient to extend this to
countable families.
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Probability measures
Definition
A probability measure on (Ω,F) is a function P : F → [0, 1]
satisfying

P(Ω) = 1
if Ai ∈ F, i = 1, 2, . . . are such that Ai ∩Aj = ∅ for all i 6= j,
then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) .

The triple (Ω,F,P) is called a probability space.

Remark
Since Ω = A ∪Ac is a disjoint union, P(A) + P(Ac) = 1. In
particular, P(∅) = 0.
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Bernoulli trials
Definition
A Bernoulli trial is any trial with only two outcomes.

Example
Tossing a coin is a Bernoulli trial: Ω = {H, T }.

Let us call the two outcomes generically “success” (S) and
“failure” (F), so that Ω = {S, F}. Then we have

P({S}) = p and P({F}) = q .

Since Ω = {S} ∪ {F} is a disjoint union, it follows that q = 1 − p.

Notation
We will often drop the { } when talking about events consisting
of a single outcome and will write P(S) = p and P(F) = 1 − p.
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Fair coins and fair dice
Tossing a coin has Ω = {H, T }. Let P(H) = p and P(T) = 1 − p.
The coin is fair if p = 1

2 , so that both H and T are equally
probable.

Similarly, a fair die is one where every outcome has the same
probability. Since there are six outcomes, each one has
probability 1

6 :

P( ) = P( ) = P( ) = P( ) = P( ) = P( ) = 1
6 .

Fair coins and fair dice are examples of “uniform probability
spaces”: those whose outcomes are all equally likely.
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Uniform probability measures
Suppose that Ω is a finite set of cardinality |Ω|, and suppose
that every outcome is equally likely: P(ω) = p for all ω ∈ Ω.

Since Ω =
⋃
ω∈Ωω is a disjoint union, we have

1 = P

( ⋃
ω∈Ω

ω

)
=

∑
ω∈Ω

P(ω) =
∑
ω∈Ω

p = p|Ω| ,

whence p = 1/|Ω|.
Now let A ⊆ Ω be an event:

P(A) = P

( ⋃
ω∈A

ω

)
=

∑
ω∈A

P(ω) =
∑
ω∈A

1
|Ω|

=
|A|

|Ω|
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Example
You draw a number at random from {1, 2, . . . , 30}. What is the
probability of the following events:

1 A = the number drawn is even
2 B = the number drawn is divisible by 3
3 C = the number drawn is less than 12

There are 30 possible outcomes, all equally likely (“at random”).

1 A = {2, 4, 6, . . . , 30}, so |A| = 15 and hence P(A) = 15
30 = 1

2 .
2 B = {3, 6, 9, . . . , 30}, so |B| = 10 and hence P(B) = 10

30 = 1
3 .

3 C = {1, 2, 3, . . . , 11}, so |C| = 11 and hence P(C) = 11
30 .
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Example
Three fair dice are rolled and their scores added.
Which is more likely: a 9 or a 10?

There are 63 possible outcomes, all equally likely.

6×
6×
3×
3×
6×
1×

P(9) = 25/63

6×
6×
3×
6×
3×
3×

P(10) = 27/63

Therefore P(10) > P(9).
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Example (Continued)
We could have answered this without enumeration. The
average score of rolling three dice is 10 1

2 . Since 10 is closer
than 9 to the average, P(10) > P(9) as a consequence of the
“central limit theorem”.
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5 10 15

5

10

15

20

25
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Example (Continued)

5 10 15 20 25

50

100

150
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Example (Continued)

5 10 15 20 25 30

200

400

600

800
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Example (Alice and Bob’s game)
Alice and Bob toss a fair coin in turn and the winner is the first
one to get H. Suppose that Alice goes first and consider the
three events:

A = Alice wins
B = Bob wins
C = nobody wins

Let ωi be the outcome TT · · · T︸ ︷︷ ︸
i−1

H. Then A = {ω1,ω3,ω5, . . . }

and B = {ω2,ω4,ω6, . . . }. There is a further possible outcome
ω∞, corresponding to the unending game TTT · · · in which
nobody wins. Hence C = {ω∞}. The (countably infinite) sample
space is Ω = {ω1,ω2, . . . ,ω∞}, which is the disjoint union
Ω = A ∪ B ∪ C. Therefore P(A) + P(B) + P(C) = 1.
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Example (continued)
There are 2n possible outcomes of tossing the coin n times, all
equally likely. Hence P(ωn) = 1/2n.

Therefore since
A =

⋃∞
n=0{ω2n+1} is a disjoint union,

P(A) =
∞∑
n=0

P(ω2n+1) =
∞∑
n=0

2−2n−1 = 1
2

∞∑
n=0

1
4n =

1
2

1 − 1
4
= 2

3 .

Similarly, since B =
⋃∞
n=1{ω2n} is also a disjoint union,

P(B) =
∞∑
n=1

P(ω2n) =
∞∑
n=1

2−2n = 1
4

∞∑
n=0

1
4n =

1
4

1 − 1
4
= 1

3 .

Finally, since P(A) + P(B) = 1, we see that P(C) = 0.

Warning
Although P(C) = 0, the event C is not impossible.
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Basic properties of probability measures
Theorem

1 P(Ac) = 1 − P(A)
2 if B ⊇ A then P(B) > P(A)

Proof.

1 Ω = A ∪Ac is a disjoint union, whence

1 = P(Ω) = P(A) + P(Ac) .

2 Write B as the disjoint union B = (B \A) ∪A, whence

P(B) = P(B \A) + P(A) > P(A) .
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Example (The Birthday problem)
What is the probability that among n people chosen at random,
there are at least 2 people sharing the same birthday?

Let An be the event where at least two people in n share the
same birthday. Then Acn is the event that no two people in n
share the same birthday and P(An) = 1 − P(Acn).
There are 365n possible outcomes to the birthdays of n people
and 365× 364× · · · × (365 − n+ 1) possible outcomes
consisting of n different birthdays, hence

P(Acn) =
365× 364× · · · × (365 − n+ 1)

365n =

n−1∏
i=1

(
1 − i

365
)

and

P(An) = 1 −

n−1∏
i=1

(
1 − i

365
)

.
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Example (continued)
For which value of n is the chance of two people sharing the
same birthday better than evens?
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Example (continued)
For which value of n is the chance of two people sharing the
same birthday better than evens?

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5
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Example (continued)
For which value of n is the chance of two people sharing the
same birthday better than evens?

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

Answer: 23 (!)
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Inclusion-exclusion rule
Theorem
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Proof.

A = (A \ B) ∪ (A ∩ B) whence P(A) = P(A \ B) + P(A ∩ B)
B = (B \A) ∪ (A ∩ B) whence P(B) = P(B \A) + P(A ∩ B)
A ∪ B = (A4B) ∪ (A ∩ B) whence

P(A ∪ B) = P(A4B) + P(A ∩ B)
= P(A \ B) + P(B \A) + P(A ∩ B)
= P(A) − P(A ∩ B) + P(B) − P(A ∩ B) + P(A ∩ B)
= P(A) + P(B) − P(A ∩ B)
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Example
Historical meteorological records for a certain seaside location
show that on New Year’s day there is a 30% chance of rain,
40% chance of being windy and 20% chance of both rain and
wind. What is the chance of it being dry? dry and windy? wet or
windy?

P(dry) = 1 − P(wet) = 1 − 3
10 = 7

10
P(dry and windy) = P(windy but not wet) =
P(windy) − P(wet and windy) = 4

10 − 2
10 = 2

10
P(wet or windy) = P(wet) + P(windy) − P(wet and windy) =
3

10 + 4
10 − 2

10 = 1
2
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Boole’s inequality
Theorem
P(A1 ∪A2 ∪ · · · ∪An) 6 P(A1) + P(A2) + · · ·+ P(An)

Proof.
A1 ∪A2 ∪ · · · ∪An = (A1 ∪A2 ∪ · · · ∪An−1) ∪An, and by the
inclusion-exclusion rule,

P(A1 ∪A2 ∪ · · · ∪An) 6 P(A1 ∪A2 ∪ · · · ∪An−1) + P(An)

But now A1 ∪A2 ∪ · · · ∪An−1 = (A1 ∪A2 ∪ · · · ∪An−2) ∪An−1,
so that

P(A1∪A2∪· · ·∪An) 6 P(A1∪A2∪· · ·∪An−2)+P(An−1)+P(An)

et cetera.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 2 20 / 23



General inclusion-exclusion rule
Theorem

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai) −
∑

16i<j>n
P(Ai ∩Aj)

+
∑

16i<j<k6n
P(Ai ∩Aj ∩Ak) − · · ·+ (−1)nP

(
n⋂
i=1

Ai

)

Proof.
Use induction from the simple inclusion-exclusion rule.
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Continuity
Theorem

1 Let A1 ⊆ A2 ⊆ A3 ⊆ · · · and let A =
⋃∞
i=1Ai = limi→∞Ai.

Then P(A) = limi→∞ P(Ai).

2 Let B1 ⊇ B2 ⊇ B3 ⊇ · · · and let B =
⋂∞
i=1 Bi = limi→∞ Bi.

Then P(B) = limi→∞ P(Bi).

Proof.

1 A = A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ · · · is a disjoint union:

P(A) = P(A1) + P(A2 \A1) + P(A3 \A2) + · · ·
= P(A1) + (P(A2) − P(A1)) + (P(A3) − P(A2)) + · · ·
= lim
n→∞P(An).

2 Take complements of the previous proof.
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Summary
Every experiment has an associated probability space
(Ω,F,P), where

Ω is the sample space (set of all outcomes),
F is the σ-field of events, and
P : F → [0, 1] is a probability measure:

normalised so that P(Ω) = 1
countably additive over disjoint unions

Probability spaces with Ω finite and P uniformly distributed (“all
outcomes equally likely”) are particularly amenable to counting
techniques from combinatorial analysis.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 2 23 / 23



Summary
Every experiment has an associated probability space
(Ω,F,P), where

Ω is the sample space (set of all outcomes),
F is the σ-field of events, and
P : F → [0, 1] is a probability measure:

normalised so that P(Ω) = 1
countably additive over disjoint unions

Probability spaces with Ω finite and P uniformly distributed (“all
outcomes equally likely”) are particularly amenable to counting
techniques from combinatorial analysis.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 2 23 / 23


