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The story of the film so far...
Partition rule: P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

Generalises to a partition {Bi} of the sample space:

P(A) =
∑
i

P(A|Bi)P(Bi)

It also applies to conditional probability:

P(A|C) =
∑
i

P(A|Bi ∩ C)P(Bi|C)

Bayes’s rule allows us to compute P(A|B) from a
knowledge of P(B|A) via

P(A|B) =
P(B|A)P(A)

P(B)
=

P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)

José Figueroa-O’Farrill mi4a (Probability) Lecture 5 2 / 23



The story of the film so far...
Partition rule: P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

Generalises to a partition {Bi} of the sample space:

P(A) =
∑
i

P(A|Bi)P(Bi)

It also applies to conditional probability:

P(A|C) =
∑
i

P(A|Bi ∩ C)P(Bi|C)

Bayes’s rule allows us to compute P(A|B) from a
knowledge of P(B|A) via

P(A|B) =
P(B|A)P(A)

P(B)
=

P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)
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Conditional independence
We discussed the notion of independent events:
events A and B such that P(A ∩ B) = P(A)P(B)

A typical example might be tossing a coin: the events of
“getting a head in the first toss” and “getting a head in the
second toss” are independent
We also have the notion of events A, B which become
independent once a third event C has occured

Definition
Let A, B and C be events.

We say that A and B are
conditionally independent (given C), if

P(A ∩ B|C) = P(A|C)P(B|C)
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Example
Suppose that we have a bag containing two coins: a fair coin
and a double-headed coin. We choose a coin at random and
toss it twice.

Let H1 (resp. H2) denote the event of getting
heads in the first (resp. second) toss.
The events H1 and H2 are not independent, but if we condition
them to the chosen coin, then they are. In other words, let C
stand for the event of having chosen a given coin. Then

P(H1 ∩H2|C) = P(H1|C)P(H2|C)

yet
P(H1 ∩H2) 6= P(H1)P(H2) .
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Example (Continued)
Indeed, by the partition rule and letting F denote the event of
having picked the fair coin,

P(H1 ∩H2) = P(H1 ∩H2|F)P(F) + P(H1 ∩H2|F
c)P(Fc) ,

where P(H1 ∩H2|F) =
1
2 ×

1
2 = 1

4 and P(H1 ∩H2|F
c) = 1, whence

P(H1 ∩H2) = (1
4 ×

1
2) + (1× 1

2) =
5
8 .

On the other hand, the probability of getting a head is 3
4 since

there are four faces in total, three of which are heads, whence

P(H1)P(H2) =
3
4 ×

3
4 = 9

16 .
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 5 / 23



Numerical outcomes
It is often the case that the outcomes of a trial are numbers or
can be converted into numbers.

Notation
We will denote such numerical outcomes by capital letters
X, Y, ... and their values by lowercase x,y, ....

Please observe this convention very carefully!!!

Possible events now include

{a < X 6 b} {X = x} {Y > 0}

and we will denote their probabilities by

P(a < X 6 b) P(X = x) P(Y > 0) ,

respectively.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 6 / 23



Numerical outcomes
It is often the case that the outcomes of a trial are numbers or
can be converted into numbers.
Notation
We will denote such numerical outcomes by capital letters
X, Y, ... and their values by lowercase x,y, ....

Please observe this convention very carefully!!!

Possible events now include

{a < X 6 b} {X = x} {Y > 0}

and we will denote their probabilities by

P(a < X 6 b) P(X = x) P(Y > 0) ,

respectively.
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Discrete probability distributions
Let us consider an experiment whose outcomes X are
integers. The probability distribution of X is the function
p : Z→ R defined by p(x) = P(X = x) for all x ∈ Z.

It obeys 0 6 p(x) 6 1 and (see later)
∑

x∈Z p(x) = 1.

Example (Dice)
Consider rolling a fair die. The possible outcomes are

, , . . . , , which we convert to a numerical outcome
X ∈ {1, 2, . . . , 6} in the obvious way.

Then

p(x) =

{
1
6 , x ∈ {1, 2, 3, 4, 5, 6}
0, otherwise

1
6

1 2 3 4 5 6

Notice that
∑

x∈Z p(x) = 1.
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Example (Uniform distribution)
Generalising the above, we define the uniform distribution on
{1, 2, . . . ,n} by

p(x) =

{
1
n , x ∈ {1, 2, . . . ,n}
0, otherwise

1
n

1 2 n

· · ·

Again notice that
∑

x∈Z p(x) = 1.

Example (Bernoulli trials)
Consider a Bernoulli trial with P(S) = p and P(F) = q = 1 − p. Let
X ∈ {0, 1} denote the number of successes, so that p(0) = q and
p(1) = p and p(x) = 0 for x 6= 0, 1. Of course,

∑
x∈Z p(x) = 1.
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Example (Independent Bernoulli trials)
We could also consider a sequence of n independent Bernoulli
trials, each one with P(S) = p and P(F) = q = 1 − p. We let
X ∈ {0, 1, . . . ,n} denote the number of successes.

X = 0

n = 0 1

1

n = 1 q p

2

n = 2 q2 2pq p2

3

n = 3 q3

3pq2 3p2q

p3

cf. Pascal’s triangle!
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Example (Binomial distribution)
Continuing with the previous example, it is clear that

p(x) =

{(
n
x

)
pxqn−x, x ∈ {0, 1, . . . ,n}

0, otherwise.

It is called the binomial distribution (with parameters n and
p). The quantity p(x) is the probability of getting exactly x
successes in n trials. Notice that

∑
x∈Z

p(x) =

n∑
x=0

(
n

x

)
pxqn−x = (p+ q)n = 1 ,

by the binomial theorem.
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Example (Tossing a fair coin)
Suppose we toss a fair coin n times.

This is just the previous
example with p = q = 1

2 . Let X denote the number of heads.
Then

p(x) =

{(
n
x

)
2−n, 0 6 x 6 n

0, otherwise.

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.05

0.10

0.15

0.20

0.25

0.30
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Example (The problem of the points)
In independent Bernoulli trials with success probability p, what
is the probability that n successes occur before m failures?

This is the probability of there being at least n successes in
the first n+m− 1 trials.
The probability of there being exactly k successes in
n+m− 1 trials is given by the binomial distribution(

n+m− 1
k

)
pkqn+m−1−k

Therefore the probability we are after is

n+m−1∑
k=n

(
n+m− 1

k

)
pkqn+m−1−k
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Example (Benford’s distribution)
Take any large collection of numerical data (e.g., census,
statistical tables, physical constants,...).

What is the probability
distribution of the first significant digit?
For example, consider the sizes of files (in 512K blocks) in my
laptop (excluding directories). It has over 2.5M files and the
distribution of significant digits looks like this:

0.05

0.10

0.15

0.20

0.25

0.30
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 13 / 23



Example (Benford’s distribution)
Take any large collection of numerical data (e.g., census,
statistical tables, physical constants,...). What is the probability
distribution of the first significant digit?
For example, consider the sizes of files (in 512K blocks) in my
laptop (excluding directories). It has over 2.5M files and the
distribution of significant digits looks like this:

0.05

0.10

0.15

0.20

0.25

0.30
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Example (Benford’s distribution – continued)
It is actually very close to Benford’s distribution

p(k) =

{
log10(1 + 1

k), 1 6 k 6 9
0, otherwise.
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Example (Benford’s distribution – continued)
How about the distribution of the first two significant digits?

Again, it is empirically very close to

p(k) =

{
log10(1 + 1

k), 10 6 k 6 99
0, otherwise

which is Benford’s 2-digit distribution.

∑
x∈Z

p(x) =

99∑
k=10

log10()

=

99∑
k=10

(log10(k+ 1) − log10 k)

= log10 100 − log10 10
= 1
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Example (Benford’s distribution under change of base)
Pulponio is an M-class planet, not unlike our own, whose
inhabitants count in base 8.

Their chief scientist, Dr O. Fneb,
observed empirically that the distribution of the most significant
digit in their statistical tables was very close to

p(k) =

{
log8(1 + 1

k), 1 6 k 6 7
0, otherwise.

Should this surprise us? It should not. In fact, if we take our
own statistical tables and re-express the entries in base b
instead of base 10, we still get a distribution which is close to

p(k) =

{
logb(1 + 1

k), 1 6 k 6 b− 1
0, otherwise.
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Example (Benford’s distribution under change of units)
If there is any “truth” to Benford’s observation, it should be
independent of which units are used (e.g., metric vs.
imperial,...).

The effect of changing units is simply to multiply the
numbers by the relevant conversion factor
Under X 7→ αX, log10 X 7→ log10 X+ log10 α

This means that if we instead took the logarithms of the
numbers, the distribution should not change if we add
some constant (log10 α).
The only distribution which does not change under this
transformation is the uniform distribution.
Indeed, Benford’s distribution corresponds to the uniform
distribution of the first significant digit of the logarithms of
the numbers!

José Figueroa-O’Farrill mi4a (Probability) Lecture 5 17 / 23



Example (Benford’s distribution under change of units)
If there is any “truth” to Benford’s observation, it should be
independent of which units are used (e.g., metric vs.
imperial,...).
The effect of changing units is simply to multiply the
numbers by the relevant conversion factor

Under X 7→ αX, log10 X 7→ log10 X+ log10 α

This means that if we instead took the logarithms of the
numbers, the distribution should not change if we add
some constant (log10 α).
The only distribution which does not change under this
transformation is the uniform distribution.
Indeed, Benford’s distribution corresponds to the uniform
distribution of the first significant digit of the logarithms of
the numbers!
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 17 / 23



General properties of discrete probability distributions
Let p : Z→ R be a discrete probability distribution.

It is clear from the definition p(x) = P(X = x), that
0 6 p(x) 6 1.
If x1 6= x2, then {X = x1} and {X = x2} are disjoint, whence

P(X ∈ {x1, x2}) = P(X = x1) + P(X = x2) = p(x1) + p(x2) .

More generally, using the countable additivity of P,

P(X ∈ C) =
∑
x∈C

p(x)

and since P(Ω) = 1, it follows that
∑

x∈Z p(x) = 1.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 18 / 23



General properties of discrete probability distributions
Let p : Z→ R be a discrete probability distribution.

It is clear from the definition p(x) = P(X = x), that
0 6 p(x) 6 1.
If x1 6= x2, then {X = x1} and {X = x2} are disjoint, whence

P(X ∈ {x1, x2}) = P(X = x1) + P(X = x2) = p(x1) + p(x2) .

More generally, using the countable additivity of P,

P(X ∈ C) =
∑
x∈C

p(x)

and since P(Ω) = 1, it follows that
∑

x∈Z p(x) = 1.
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Example (Errors in a bit stream)
Consider a bit stream being transmitted across a noisy channel
in which the probability of a transmission error is p
independently for each bit transmitted. What is the probability
of at least one error in n bits transmitted?

The complementary event is when the n bits have been
transmitted error-free, whose probability is (1 − p)n. Therefore,
the probability we are after is 1 − (1 − p)n.
Now suppose that we transmit each bit three times (“Bellman’s
code”) and the receiver interprets the most common bit as
correct. What is the probability of an incorrect transmission?
The only outcomes resulting in a transmission error are those
where there are at least two bits in error, whose probability is

p3 + 3p2(1 − p) = p2(3 − 2p)
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the probability we are after is 1 − (1 − p)n.
Now suppose that we transmit each bit three times (“Bellman’s
code”) and the receiver interprets the most common bit as
correct. What is the probability of an incorrect transmission?
The only outcomes resulting in a transmission error are those
where there are at least two bits in error, whose probability is

p3 + 3p2(1 − p) = p2(3 − 2p)
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Distribution function
Definition
The function F : Z→ R defined by

F(x) =
∑
t6x

p(t) = P(X 6 x)

is called the distribution function of X.

Example (Rolling a fair die)

F(x) =


0, x ∈ {0,−1,−2, . . . }
x
6 , x ∈ {1, 2, 3, 4, 5, 6}
1, x ∈ {7, 8, 9, . . . }.
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Example (Binomial distribution function with p = 1
2 )

F(x) =


0, x < 0∑x

k=0
(
n
k

)
2−n, 0 6 x 6 n

1, x > n.
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Example (Benford’s distribution function)

F(x) =


0, x 6 0
log10(x+ 1), 1 6 x 6 9
1, x > 10.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 21 / 23



General properties of distribution functions
The distribution function F : Z→ R satisfies the following
general properties:

0 6 F(x) 6 1 for all x
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1
F(x) − F(x− 1) = p(x)
x1 6 x2 if and only if F(x1) 6 F(x2)

This is not unlike an area F(x) =
∫x
−∞ p(y)dy:
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Summary
Experiments with integer outcomes give rise to probability
distributions p : Z→ [0, 1], satisfying

∑
x∈Z p(x) = 1.

We met several famous discrete probability distributions:

uniform on E = {1, 2, . . . ,n}: p(x) =
{

1
n

, x ∈ E
0, x 6∈ E

Benford’s on 1 digit: p(x) =
{

log10(1 + x−1), 1 6 x 6 9
0, otherwise

binomial with parameters n,p:

p(x) =

{(
n
x

)
px(1 − p)n−x, 0 6 x 6 n

0, otherwise
the probability of exactly x successes in n independent
Bernoulli trials with success probability p

Another way to repackage the information in the probability
distribution is in the distribution function F : Z→ [0, 1],
defined by F(x) =

∑
t6x p(t)
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José Figueroa-O’Farrill mi4a (Probability) Lecture 5 23 / 23



Summary
Experiments with integer outcomes give rise to probability
distributions p : Z→ [0, 1], satisfying

∑
x∈Z p(x) = 1.

We met several famous discrete probability distributions:

uniform on E = {1, 2, . . . ,n}: p(x) =
{

1
n

, x ∈ E
0, x 6∈ E

Benford’s on 1 digit: p(x) =
{

log10(1 + x−1), 1 6 x 6 9
0, otherwise

binomial with parameters n,p:

p(x) =

{(
n
x

)
px(1 − p)n−x, 0 6 x 6 n

0, otherwise
the probability of exactly x successes in n independent
Bernoulli trials with success probability p

Another way to repackage the information in the probability
distribution is in the distribution function F : Z→ [0, 1],
defined by F(x) =

∑
t6x p(t)
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