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The story of the film so far...
Experiments with integer outcomes give rise to probability
distributions p : Z→ [0, 1], satisfying

∑
x∈Z p(x) = 1.

We met several famous discrete probability distributions:

uniform on E = {1, 2, . . . ,n}: p(x) =
{

1
n

, x ∈ E
0, x 6∈ E

2-digit Benford: p(x) =
{

log10(1 + x−1), 10 6 x 6 99
0, otherwise

binomial with parameters n,p:

p(x) =

{(
n
x

)
px(1 − p)n−x, 0 6 x 6 n

0, otherwise
the probability of exactly x successes in n independent
Bernoulli trials with success probability p

We also introduced the distribution function F : Z→ [0, 1]
associated to p, defined by F(x) =

∑
t6x p(t):

monotonically increasing from 0 to 1.
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The mathematics of waiting

Example (Alice and Bob’s favourite game)
We toss a fair coin until it comes up H. How long must we wait
for the game to end?

Let p(k) be the probability of stopping at the kth toss. Clearly,

p(k) =

{
0, k = 0,−1,−2, . . .
(1

2)
k, k = 1, 2, 3, . . .

This is called the geometric distribution with parameter 1
2 . Of

course,

∑
k∈Z

p(k) =

∞∑
k=1

(1
2)
k =

∞∑
k=0

(1
2)
k − 1 =

1
1 − 1

2
− 1 = 1 .
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José Figueroa-O’Farrill mi4a (Probability) Lecture 6 3 / 19



Example
Suppose we decide to toss the coin at most N times,
whether or not a head appears.

Stopping at the Nth toss is equiprobable to getting tails in
the first N− 1 tosses: p(N) = (1

2)
N−1.

The resulting probability distribution is now

p(k) =


0, k 6 0 or k > N
(1

2)
k, k = 1, 2, . . . ,N− 1

(1
2)
N−1, k = N

and is called the truncated geometric distribution with
parameters N and 1

2 .
Again one has

∑
k p(k) =

∑N−1
k=1 (1

2)
k + (1

2)
N−1 = 1.
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Example (Dice instead of coins)
Suppose that now Alice and Bob roll a fair die instead and the
game ends when one of them rolls a . What is the probability
p(k) that the game ends with the kth roll?

Let S denote the event of rolling a . Then P(S) = 1
6 and hence

P(Sc) = 5
6 . The game ends with the kth roll if the first k− 1 rolls

do not show and the kth roll does. The probability of such a
sequence of rolls is then

p(k) =


(

5
6

)k−1 1
6 , k > 1

0, otherwise.

This is called the geometric distribution with parameter 1
6 .
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Geometric distribution
Definition
The geometric distribution with parameter p is given by

p(k) =

{
(1 − p)k−1p, k > 1
0, otherwise.

The number p(k) is the probability that in independent Bernoulli
trials with success probability p, the first success occurs at the
kth trial. Notice that

∑
k∈Z

p(k) =

∞∑
k=1

(1 − p)k−1p = p

∞∑
`=0

(1 − p)`

= p
1

1 − (1 − p)
= 1 .
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Example (Weekly lottery)
Let p be the probability that a given number d is drawn in any
given week. After n successive draws, let p(k) be the
probability that d last appeared k weeks ago. What is p(k)?

The number d appears with probability p and does not appear
with probability 1 − p. Then since d appeared k weeks ago and
has not appeared since, we have

p(k) =

{
p(1 − p)k, 0 6 k 6 n− 1
0, otherwise

Notice that
n−1∑
k=0

p(k) = 1 − (1 − p)n ,

where (1 − p)n is the probability that d does not appear in all n
weeks.
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Negative binomial distribution
The binomial distribution answers the question:

Given n trials, what is the chance of k successes?

Suppose, instead, that we ask:

What is the chance we need n trials to obtain k successes?

A Bernoulli trial is repeated until we attain k successes and let
us call pk(n) the probability that the total number of trials is n.
If we need n trials, it is because there are k− 1 successes in
the first n− 1 trials and the nth trial was a success. By
independence,

pk(n) =

(
n− 1
k− 1

)
pk−1qn−k × p =

(
n− 1
k− 1

)
pkqn−k

for n > k. This is the negative binomial distribution.
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Discrete random variables
We have seen how to assign a probability distribution to
experiments with numerical (particularly, integer)
outcomes. However not all interesting experiments are of
this type.

Even if the outcomes are numerical, we may be interested
in some other numerical measure of the outcome; e.g.,
gamblers might be more interested in the monetary values
of their winnings/losses than in the actual number of times
that they win or lose. Such numerical measures are called
random variables.

Definition
Let (Ω,F,P) be a probability space. A function X : Ω→ R is a
discrete random variable on (Ω,F,P) if

1 it takes countably many values D = {x1, x2, . . . } ⊂ R, and
2 for every xi ∈ D, the set {ω ∈ Ω|X(ω) = xi} ∈ F.
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Examples
If Ω is finite then any function X : Ω→ R is a discrete
random variable.

In many practical situations, if Ω is a countable subset of R
(e.g., Ω = Z) then the identity function X(ω) = ω is a
discrete random variable.
In the game of darts, Ω is uncountable since it contains all
the points in the dartboard on which the dart can land, but
the score X : Ω→ {0, 1, . . . , 60} is a discrete random
variable.

Notation
We will denote random variables by capital letters T ,V,X, Y,Z, ...
and their values by lowercase letters t, v, x,y, z, ....

Please observe this convention very carefully!!!
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Probability mass function
Let X be a discrete random variable on a probability space
(Ω,F,P) taking integer values. (There is no loss of
generality in doing this, since any countable set can be
labelled by integers.)

By definition of a discrete random variable, the subset
Ax = {ω ∈ Ω|X(ω) = x} of Ω is an event and therefore it has
a well-defined probability P(Ax) = P(X = x).
This allows us to define a function fX by fX(x) = P(X = x),
called the probability mass function of X.
Being a probability, 0 6 fX(x) 6 1 for all x ∈ R.
Since the Ax for x ∈ Z are a countable partition of Ω, the
countable additivity of P implies that

∑
x∈Z

fX(x) =
∑
x∈Z

P(Ax) = P

(⋃
x∈Z

Ax

)
= P(Ω) = 1 .
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Remarks
In the case of Ω = Z and X being the identity function
X(ω) = ω, fX(x) is what we called the probability
distribution p(x).

Provided that we are only interested in X (and other
random variables we may build out of X), we can
essentially forget about (Ω,F,P) and work with only the
probability mass function fX.

We often speak about “a
discrete random variable X with probability mass function
fX” without bothering to mention the probability space on
which X is defined.
The probability distributions we have been discussing can
play the rôle of probability mass functions.
One can talk about discrete random variables with uniform,
binomial, geometric, Benford,... probability mass functions.
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Example (Poisson distribution)
Let λ > 0 be a positive real number. The Poisson distribution
with parameter λ is defined by

f(x) =


λxe−λ

x! , x = 0, 1, 2, . . .
0, otherwise

It is clear that f(x) > 0 for all x and that it is nonzero only for a
countable subset of R; namely, the natural numbers. Finally

∞∑
x=0

f(x) =

∞∑
x=0

e−λ
λx

x! = e−λ
∞∑
x=0

λx

x! = e−λeλ = 1

We can therefore talk about discrete random variables whose
probability mass function is Poisson with parameter λ.
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Example (Poisson distribution – continued)
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We will see later that the Poisson distribution is a limit of the
binomial distribution for large n and small p keeping np fixed.

This means that we can use it to approximate the binomial
distribution in that limit.
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Expectation value as a weighted average
Let X be a discrete random variable with probability mass
function fX. The expectation value E(X) of X is defined by

E(X) =
∑
x

xfX(x) .

(provided that
∑

x |x|fX(x) <∞.)

The expectation value agrees with our notion of mean or
average in the case of a uniform distribution.

Example (Dice)
Consider rolling a dice and let X denote the random variable
X( ) = 1, X( ) = 2, et cetera. Then E(X) is the average score:

E(X) =
6∑
x=1

xfX(x) =

6∑
x=1

x1
6 = 1

6(1 + 2 + · · ·+ 6) = 7
2 .
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Example (Betting)
Consider a betting game based on a Bernoulli trial with success
probability p. Every bet costs £1: if you win you get your £1
back and an additional £2, if you lose you get nothing. How
much do you expect to win/lose on average?

Introduce the random variable X with values X(S) = 2 and
X(F) = −1 which measures the amount (in £) you win: in the
case of success you win £2 and in the case of failure you lose
£1, which is the same as winning −£1. We are after the
expectation value of X:

E(X) = X(S)P(S) + X(F)P(F) = 2p+ (−1)(1 − p) = 3p− 1 .

So if p < 1
3 you shouldn’t play!

Notice that
X(S)P(S) + X(F)P(F) = 2fX(2) + (−1)fX(−1) .
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much do you expect to win/lose on average?
Introduce the random variable X with values X(S) = 2 and
X(F) = −1 which measures the amount (in £) you win: in the
case of success you win £2 and in the case of failure you lose
£1, which is the same as winning −£1.

We are after the
expectation value of X:
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José Figueroa-O’Farrill mi4a (Probability) Lecture 6 16 / 19



Example (Betting)
Consider a betting game based on a Bernoulli trial with success
probability p. Every bet costs £1: if you win you get your £1
back and an additional £2, if you lose you get nothing. How
much do you expect to win/lose on average?
Introduce the random variable X with values X(S) = 2 and
X(F) = −1 which measures the amount (in £) you win: in the
case of success you win £2 and in the case of failure you lose
£1, which is the same as winning −£1. We are after the
expectation value of X:

E(X) = X(S)P(S) + X(F)P(F) = 2p+ (−1)(1 − p) = 3p− 1 .

So if p < 1
3 you shouldn’t play!

Notice that
X(S)P(S) + X(F)P(F) = 2fX(2) + (−1)fX(−1) .
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Example (Expectation value of Poisson distribution)
Let X be a discrete random variable with probability mass
function fX given by a Poisson distribution with parameter
λ > 0. What is its expectation value?

By definition

E(X) =
∞∑
x=0

x
e−λλx

x! =

∞∑
x=1

x
e−λλx

x!

= e−λ
∞∑
x=1

λx

(x− 1)! = e−λ
∑
z=0

λz+1

z!

= λe−λ
∑
z=0

λz

z! = λ
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Example (Expectation value of binomial distribution)
Let X be a discrete random variable with probability mass
function fX given by a binomial distribution with parameters n
and p. What is E(X)?

By definition,

E(X) =
n∑
x=0

x

(
n

x

)
pxqn−x =

n∑
x=1

x

(
n

x

)
pxqn−x .

But now for 0 < x 6 n,

x

(
n

x

)
= x

n!
(n− x)!x! =

n!
(n− x)!(x− 1)! = n

(
n− 1
x− 1

)
whence

E(X) =
n∑
x=1

n

(
n− 1
x− 1

)
pxqn−x =

n−1∑
z=0

n

(
n− 1
z

)
pz+1qn−1−z = np .
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Summary
A discrete random variable X in a probability space
(Ω,F,P) is a function X : Ω→ R which can take only
countably many values and such that the subsets {X = x}

are events.

Since they are events, they have a probability P(X = x),
which defines a probability mass function
fX(x) = P(X = x) obeying 0 6 fX(x) 6 1 and

∑
x fX(x) = 1.

Given a discrete random variable X with probability mass
function fX, its expectation value is E(X) =

∑
x xfX(x).

We met the Poisson distribution with parameter λ > 0

f(x) = e−λ
λx

x!

for x ∈ N and f(x) = 0 otherwise. It has expectation value λ.
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