
Mathematics for Informatics 4a
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The story of the film so far...
A discrete random variable X in a probability space
(Ω,F,P) is a function X : Ω→ R which can take only
countably many values and such that the subsets {X = x}

are events.

Since they are events, they have a probability P(X = x),
which defines a probability mass function
fX(x) = P(X = x) obeying 0 6 fX(x) 6 1 and

∑
x fX(x) = 1.

Given a discrete random variable X with probability mass
function fX, its expectation value is E(X) =

∑
x xfX(x).

For fX a uniform distribution, E(X) is simply the average.
For fX the Poisson distribution with parameter λ, E(X) = λ.
For fX the binomial distribution with parameters n and p,
E(X) = np.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 7 2 / 25



New random variables out of old
Suppose that X is a discrete random variable with probability
mass function fx and let h : R→ R be a function; e.g., h(x) = x2.

Let Y : Ω→ Z be defined by Y(ω) = h(X(ω)), written Y = h(X).

Lemma
Y = h(X) is a discrete random variable with probability mass
function

fY(y) =
∑

{x|h(x)=y}

fX(x) .

e.g., if h(x) = x2, then fY(4) = fX(2) + fX(−2).

Proof.
By definition fY(y) is the probability of the event
{ω ∈ Ω|Y(ω) = y} = {ω ∈ Ω|h(X(ω)) = y}, but this is the disjoint
union of {ω ∈ Ω|X(ω) = x} for all x such that h(x) = y.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 7 3 / 25



New random variables out of old
Suppose that X is a discrete random variable with probability
mass function fx and let h : R→ R be a function; e.g., h(x) = x2.
Let Y : Ω→ Z be defined by Y(ω) = h(X(ω)), written Y = h(X).

Lemma
Y = h(X) is a discrete random variable with probability mass
function

fY(y) =
∑

{x|h(x)=y}

fX(x) .

e.g., if h(x) = x2, then fY(4) = fX(2) + fX(−2).

Proof.
By definition fY(y) is the probability of the event
{ω ∈ Ω|Y(ω) = y} = {ω ∈ Ω|h(X(ω)) = y}, but this is the disjoint
union of {ω ∈ Ω|X(ω) = x} for all x such that h(x) = y.
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What is the expectation value of Y = h(X)?

Luckily we don’t have to determine fY in order to compute it.

Theorem

E(Y) = E(h(X)) =
∑
x

h(x)fX(x)

Proof.
By definition and the previous lemma,

E(Y) =
∑
y

yfY(y) =
∑
y

y
∑
x

h(x)=y

fX(x)

=
∑
y

∑
x

h(x)=y

yfX(x) =
∑
x

h(x)fX(x)
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Examples
Let a be a constant.

1 Let Y = X+ a. Then

E(Y) =
∑
x

(x+ a)fX(x) =
∑
x

xfX(x) +
∑
x

afX(x) = E(X) + a

2 Let Y = aX. Then

E(Y) =
∑
x

axfX(x) = a
∑
x

xfX(x) = aE(X)

3 Let Y = a. Then

E(Y) =
∑
x

afX(x) = a
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José Figueroa-O’Farrill mi4a (Probability) Lecture 7 5 / 25



Examples
Let a be a constant.

1 Let Y = X+ a. Then

E(Y) =
∑
x

(x+ a)fX(x) =
∑
x

xfX(x) +
∑
x

afX(x) = E(X) + a

2 Let Y = aX. Then

E(Y) =
∑
x

axfX(x) = a
∑
x

xfX(x) = aE(X)

3 Let Y = a. Then

E(Y) =
∑
x

afX(x) = a
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Moment generating function
A special example of this construction is when h(x) = etx,
where t ∈ R is a real number.

Definition
The moment generating function MX(t) is the expectation
value

MX(t) := E(etX) =
∑
x

etxfX(x)

(provided the sum converges)

Lemma

1 MX(0) = 1
2 E(X) =M ′

X(0), where ′ denotes derivative with respect to t.
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Example
Let X be a discrete random variable whose probability mass
function is given by a binomial distribution with parameters n
and p.

Then

MX(t) =

n∑
x=0

(
n

x

)
px(1 − p)n−xetx

=

n∑
x=0

(
n

x

)
(etp)x(1 − p)n−x

= (etp+ 1 − p)n .

Differentiating with respect to t,

M ′
X(t) = n(e

tp+ 1 − p)n−1pet

whence setting t = 0, M ′
X(0) = np, as we obtained before.

(This way seems simpler, though.)
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Example
Let X be a discrete random variable whose probability mass
function is a Poisson distribution with parameter λ.

Then

MX(t) =

∞∑
x=0

e−λ
λx

x! e
tx

=

∞∑
x=0

e−λ
(λet)x

x!

= eλ(e
t−1) .

Differentiating with respect to t,

M ′
X(t) = e

λ(et−1)λet ,

whence setting t = 0, M ′
X(0) = λ, as we had obtained before.

(But again this way is simpler.)
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Variance and standard deviation I
The expectation value E(X) (also called the mean) of a discrete
random variable is a rather coarse measure of how X is
distributed.

For example, consider the following three
situations:

1 I give you £1000
2 I toss a fair coin and if it is head I give you £2000
3 I choose a number from 1 to 1000 and if can guess it, I give

you £1 million

Let X be the discrete random variable corresponding to your
winnings. In all three cases, E(X) = £1000, but you will agree
that your chances of actually getting any money are quite
different in all three cases.
One way in which these three cases differ is by the “spread” of
the probability mass function. This is measured by the variance.
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Variance and standard deviation II
Let X be a discrete random variable with mean µ.

The variance
is a weighted average of the (squared) distance from the mean.
More precisely,
Definition
The variance Var(X) of X is defined by

Var(X) = E((X− µ)2) =
∑
x

(x− µ)2fX(x)

(provided the sum converges.)

Its (positive) square root is called the standard deviation and
is usually denoted σ, whence

σ(X) =

√∑
x

(x− µ)2fX(x)

One virtue of σ(X) is that it has the same units as X.
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Variance and standard deviation III
Let us calculate the variances and standard deviations of the
above three situations:

1 I give you £1000.

There is only one outcome and it is the
mean, hence the variance is 0.

2 I toss a fair coin and if it is head I give you £2000.

Var(X) = 1
2(2000 − 1000)2 + 1

2(0 − 1000)2 = 106

whence σ(X) = £1, 000.
3 I choose a number from 1 to 1000 and if can guess it in

one attempt, I give you £1 million.

Var(X) = 10−3(106 − 103)2 + 999× 10−3(0 − 103)2 ' 109

whence σ(X) ' £31, 607.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 7 11 / 25



Variance and standard deviation III
Let us calculate the variances and standard deviations of the
above three situations:

1 I give you £1000. There is only one outcome and it is the
mean, hence the variance is 0.

2 I toss a fair coin and if it is head I give you £2000.

Var(X) = 1
2(2000 − 1000)2 + 1

2(0 − 1000)2 = 106

whence σ(X) = £1, 000.
3 I choose a number from 1 to 1000 and if can guess it in

one attempt, I give you £1 million.

Var(X) = 10−3(106 − 103)2 + 999× 10−3(0 − 103)2 ' 109

whence σ(X) ' £31, 607.
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Another expression for the variance

Theorem
If X is a discrete random variable with mean µ, then

Var(X) = E(X2) − µ2

Proof.

Var(X) =
∑
x

(x− µ)2fX(x) =
∑
x

(x2 − 2µx+ µ2)fX(x)

=
∑
x

x2fX(x) − 2µ
∑
x

xfX(x) + µ
2 ∑
x

fX(x)

= E(X2) − 2µE(X) + µ2 = E(X2) − µ2
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Properties of the variance

Theorem
Let X be a discrete random variable and α a constant. Then

Var(αX) = α2 Var(X) and Var(X+ α) = Var(X)

Proof.
Since E(αX) = αE(X) and E(X+ α) = E(X) + α,

Var(αX) = E(α2X2) − α2µ2 = α2 Var(X)

and

Var(X+ α) = E((X+ α− (µ+ α))2) = E((X− µ)2) = Var(X)
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Variance from the moment generating function
Let X be a discrete random variable with moment generating
function MX(t).

Theorem

Var(X) =M ′′
X(0) −M ′

X(0)2

Proof.
Notice that the second derivative with respect to t of MX(t) is
given by

d2

dt2

∑
x

etxfX(x) =
∑
x

x2etxfX(x) ,

whence M ′′
X(0) = E(X2). The result follows from the expression

Var(X) = E(X2) − µ2 and the fact that µ =M ′
X(0).
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Example
Let X be a discrete random variable whose probability mass
function is a binomial distribution with parameters n and p.

It
has mean µ = np and moment generating function

MX(t) = (etp+ 1 − p)n

Differentiating twice

M ′′
X(t) = n(n− 1)(etp+ 1 − p)n−2p2e2t + np(etp+ 1 − p)n−1et ,

Evaluating at 0, M ′′
X(0) = n(n− 1)p2 + np and thus

Var(X) = n(n− 1)p2 + np− (np)2 = np(1 − p)
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Example
Let X be a discrete random variable with probability mass
function given by a Poisson distribution with mean λ.

Its
moment generating function is

MX(t) = e
λ(et−1)

Differentiating twice

M ′′
X(t) = e

λ(et−1)λet + eλ(e
t−1)(λet)2

Evaluating at 0, M ′′
X(0) = λ+ λ2 and thus

Var(X) = λ+ λ2 − λ2 = λ
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Approximations
The Poisson distribution is a limiting case of the binomial
distribution.

Suppose that X is a discrete random variable whose
probability mass function is a binomial distribution with
parameters n and p.
Then for x = 0, 1, . . . ,n, fX(x) is given by(
n

x

)
px(1 − p)n−x =

n(n− 1) · · · (n− x+ 1)
x! px(1 − p)n−x

We rewrite this as

pn(pn− p) · · · (pn− px+ p)

x! (1 − np
n )n−x
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Now we let np = λ and write p = λ
n in the expression

pn(pn− p) · · · (pn− px+ p)

x! (1 − np
n )n−x

to get
λ(λ− λ

n) · · · (λ− (x− 1) λn)
x! (1 − λ

n)
n−x

or equivalently

λx

x! (1 −
1
n
) · · · (1 −

x− 1
n

)(1 −
λ

n
)n−x

which, in the limit n→∞, and using

lim
n→∞(1 −

k

n
) = 1 and lim

n→∞(1 −
λ

n
)n = e−λ

becomes λx

x! e
−λ, which is the Poisson distribution.
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Example (Overbooking)
A flight can carry 400 passengers.

Any given passenger has a
1% probability of not showing up for the flight, so the airline
sells 404 tickets. What is the probability that the flight is actually
overbooked?
Overbooking results if less than 4 passengers fail to show up.
With p = 0.01 and n = 404, the probability of exactly k of them
failing to show up is(

n

k

)
pk(1 − p)n−k ≈ λ

k

k! e
−λ

with λ = np = 4.04. The probability of overbooking is then

3∑
k=0

(4.04)k
k! e−4.04 ' 0.426.

(Using the binomial distribution the result would be ' 0.425.)
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Example (Overbooking – continued)
Or in fact, exactly

0.424683631192536528200013549116793673026524259040461049452495072968650914837300206
709158040615150407329585535240015120608219272553117981017641384828705922878440370
321524207546996027284835313308829697975143168227319629816601917560644850756341881
742709406993813613377277271057343766544478075676178340690648658612923475894822832
297859172633112693660439822342275313531378295457268742238146456308290233599014111
615480034300074542370402850563940255882870886364953875049514476615747889802955241
921909126317479754644289655961895552129584437472783180772859838984638908099511670
786738177347568229057659219954622594116676934630413343951161190275195407185240714
940186311498218519219119968253677856140792902214787570204845499188084336275774032
5308776995642818675652301492781568473913485123520777596849334453681459063892599

(808 decimal places)
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Poisson distribution and the law of rare events I
There is a more “physical” derivation of the Poisson distribution,
which has the virtue of illustrating where it is that we might
expect it to arise.

Consider a random process, such as radioactive decay, buses
arriving at the bus stop, cars passing through a given
intersection, calls arriving at an exchange, requests arriving at a
server,...
All these processes have in common that whatever it is that we
are interested in measuring: decays, buses, cars, calls,
requests,... can happen at any time.
We are interested in the question:

how many events take place in a given time interval?
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Poisson distribution and the law of rare events II
Let us model a randomly occurring event: requests arriving at a
server, say. We wish to know how many requests will arrive in a
given time interval [0, t].

We will assume that requests arrive at a constant rate λ; that is,
the probability of a request arriving in a small interval of time δt
is proportional to δt: p = λδt.
To find out how many requests arrive in the interval [0, t], we
subdivide [0, t] into n subintervals of size δt = t/n. We assume
that δt is so small that the probability of two or more requests
arriving during the same subinterval is negligible.
Therefore the number X of requests arriving in [0, t] has a
binomial distribution with parameters n and p = λt/n:

P(X = k) =

(
n

k

)
pk(1 − p)k ≈ e−λt (tλ)

k

k!
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Example
Requests arrive at a server at a rate of 3 per second. Compute
the probabilities of the following events:

1 exactly one request arrives in a one-second period
2 exactly ten arrive in a two-second period

We model the number of requests as a discrete random
variable X with a Poisson distribution with rate λ = 3:

P(X = k in [0, t]) = e−3t (3t)k
k!

1 P(X = 1 in [0, 1]) = 3e−3 ' 0.15
2 P(X = 10 in [0, 2]) = 610

10!e
−6 ' 0.04

Poisson processes do not only model temporal distributions,
but also spatial and spatio-temporal distributions!
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Prussian cavalry fatalities of “death by horse”

In the 20 years from 1875 until 1894, the Prussian army kept
detailed yearly records of horse-kick-induced fatalities among
14 cavalry regiments. In total there were 196 recorded fatalities
distributed among 20× 14 = 280 regiment-years. Ladislaus
Bortkiewicz analysed this data using a Poisson distribution:

The number of regiment-years with precisely k fatalities should
be approximately N(k) = 280e−λ λk

k! , where λ = 196
280 = 7

10 .

æ

æ

æ

æ

æ

20

40

60

80

100

120

140
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Summary
Let X be a discrete random variable with mean E(X) = µ.

If h be any function, then Y = h(X) is again a discrete
random variable with

probability mass function fY(y) =
∑
x|h(x)=y fX(x), and

mean E(Y) =
∑
x h(x)fX(x)

moment generating function MX(t) = E(etX) and
E(X) =M ′

X(0).
variance Var(X) = E(X2) − µ2 =M ′′

X(0) −M ′
X(0)2 and

standard deviation σ =
√

Var(X) measure the “spread”:

For binomial (n,p): µ = np and σ2 = np(1 − p)

For Poisson λ: µ = σ2 = λ

In the limit n→∞ and p→ 0, but np→ λ,

Binomial(n,p) −→ Poisson(λ)

Rare events occurring at a constant rate are distributed
according to a Poisson distribution.
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