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The story of the film so far...
Let X be a discrete random variable with mean E(X) = µ.

For any function h, Y = h(X) is a discrete random variable
with mean E(Y) =

∑
x h(x)fX(x).

X has a moment generating function MX(t) = E(etX)
from where we can compute the mean µ and standard
deviation σ by

µ = E(X) =M ′
X(0)

σ2 = E(X2) − µ2 =M ′′
X(0) −M ′

X(0)2

For binomial (n,p): µ = np and σ2 = np(1 − p)

For Poisson λ: µ = σ2 = λ

The Poisson distribution with mean λ approximates the
binomial distribution with parameters n and p in the limit
n→∞, p→ 0, but np→ λ

“Rare” events occurring at a constant rate are distributed
according to a Poisson distribution
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Two random variables
It may happen that one is interested in two (or more)
different numerical outcomes of the same experiment.

This leads to the simultaneous study of two (or more)
random variables.
Suppose that X and Y are discrete random variables on the
same probability space (Ω,F,P).
The values of X and Y are distributed according to fX and
fY , respectively.
But whereas fX(x) is the probability of X = x and fY(y) that
of Y = y, they generally do not tell us the probability of
X = x and Y = y.
That is given by their joint distribution.
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Joint probability mass function
Let X and Y be two discrete random variables in the same
probability space (Ω,F,P).

Then the subsets {X = x} and
{Y = y} are events and hence so is their intersection.

Definition
The joint probability mass function of the two discrete
random variables X and Y is given by

fX,Y(x,y) = P({X = x} ∩ {Y = y})

Notation: often written just f(x,y) if no ambiguity results.

Being a probability, 0 6 f(x,y) 6 1.
But also

∑
x,y f(x,y) = 1, since every outcome ω ∈ Ω belongs

to precisely one of the sets {X = x} ∩ {Y = y}. In other words,
those sets define a partition of Ω, which is moreover countable.
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Examples (Fair dice: scores, max and min)
We roll two fair dice.

1 Let X and Y denote their scores. The joint probability mass
function is given by

fX,Y(x,y) =
{

1
36 , 1 6 x,y 6 6
0, otherwise

2 Let U and V denote the minimum and maximum of the two
scores, respectively. The joint probability mass function is
given by

fU,V (u, v) =


1

36 , 1 6 u = v 6 6
1

18 , 1 6 u < v 6 6
0, otherwise
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Marginals
The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables.

These are called the marginals:

fX(x) =
∑
y

f(x,y) and fY(y) =
∑
x

f(x,y) .

This holds because the sets {Y = y}, where y runs through all
the possible values of Y, are a countable partition of Ω.
Therefore,

{X = x} =
⋃
y

{X = x} ∩ {Y = y} .

and computing P of both sides:

fX(x) = P({X = x}) =
∑
y

P({X = x} ∩ {Y = y}) =
∑
y

fX,Y(x,y) .

A similar story holds for {Y = y}.
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Examples
1 Toss a fair coin. Let X be the number of heads and Y the

number of tails:

fX(0) = fX(1) = fY(0) = fY(1) = 1
2

fX,Y(0, 0) = fX,Y(1, 1) = 0 fX,Y(1, 0) = fX,Y(0, 1) = 1
2

2 Toss two fair coins. Let X be the number of heads shown
by the first coin and Y the number of heads shown by the
second:

fX(0) = fX(1) = fY(0) = fY(1) = 1
2

fX,Y(0, 0) = fX,Y(1, 1) = fX,Y(1, 0) = fX,Y(0, 1) = 1
4

Moral: the marginals do not determine the joint distribution!
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More than two random variables
There is no reason to stop at two discrete random variables: we
can consider a finite number X1, . . . ,Xn of discrete random
variables on the same probability space.

They have a joint
probability mass function fX1,...,Xn : Rn → [0, 1], defined by

fX1,...,Xn(x1, . . . , xn) = P({X1 = x1} ∩ · · · ∩ {Xn = xn})

and obeying ∑
x1,...,xn

fX1,...,Xn(x1, . . . , xn) = 1 .

It has a number of marginals by summing over the possible
values of any k of the Xi.
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Independence
In the second of the above examples , we saw that fX,Y(x,y) = fX(x)fY(y).

This is explained by the fact that for all x,y the events {X = x}

and {Y = y} are independent:

fX,Y(x,y) = P({X = x} ∩ {Y = y})

= P({X = x})P({Y = y}) (independent events)
= fX(x)fY(y) .

Definition
Two discrete random variables X and Y are said to be
independent if for all x,y,

fX,Y(x,y) = fX(x)fY(y)
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Example (Bernoulli trials with a random parameter)
Consider a Bernoulli trial with probability p of success.

Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X+ Y = 1: so
fX,Y(1, 1) = 0, yet fX(1)fY(1) = p(1 − p).
Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean λ. I claim that X and Y are now independent!
We first determine the probability mass functions of X and Y.
Conditioning on the value of N,

fX(x) =

∞∑
n=1

P(X = x|N = n)P(N = n) =

∞∑
n=x

(
n

x

)
pxqn−xe−λ

λn

n!

=
(λp)x

x! e−λ
∞∑
m=0

qm

m! λ
m =

(λp)x

x! e−λeλq =
(λp)x

x! e−λp

So X has a Poisson probability mass function with mean λp.
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Example (Bernoulli trials with a random parameter – continued)
One person’s success is another person’s failure, so Y also has
a Poisson probability mass function but with mean λq.

Therefore

fX(x)fY(y) =
(λp)x

x! e−λp
(λq)y

y! e−λq = e−λ
λx+y

x!y! p
xqy

On the other hand, conditioning on N again,

fX,Y(x,y) = P({X = x} ∩ {Y = y})

= P({X = x} ∩ {Y = y}|N = x+ y)P(N = x+ y)

=

(
x+ y

x

)
pxqye−λ

λx+y

(x+ y)!

= e−λ
λx+y

x!y! p
xqy = fX(x)fY(y)
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Independent multiple random variables
Again there is no reason to stop at two discrete random
variables and we can consider a finite number X1, . . . ,Xn of
discrete random variables.

They are said to be independent when all the events {Xi = xi}

are independent.
This is the same as saying that for any 2 6 k 6 n variables
Xi1 , . . . ,Xik of the X1, . . . ,Xn,

fXi1 ,...,Xik (xi1 , . . . , xik) = fXi1 (xi1) . . . fXik (xik)

for all xi1 , . . . , xik .
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Making new random variables out of old
Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables.

Then let Z = h(X, Y) be defined
by Z(ω) = h(X(ω), Y(ω)) for all outcomes ω.

Theorem
Z = h(X, Y) is a discrete random variable with probability mass
function

fZ(z) =
∑
x,y

h(x,y)=z

fX,Y(x,y)

and mean
E(Z) =

∑
x,y
h(x,y)fX,Y(x,y)

The proof is mutatis mutandis the same as in the one-variable
case. Let’s skip it!
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Proof
The cardinality of the set Z(Ω) of all possible values of Z is at
most that of X(Ω)× Y(Ω), consisting of pairs (x,y) where x is a
possible value of X and y is a possible value of Y.

Since the
Cartesian product of two countable sets is countable, Z(Ω) is
countable.
Now,

{Z = z} =
⋃
x,y

h(x,y)=z

{X = x} ∩ {Y = y}

is a countable disjoint union. Therefore,

fZ(z) =
∑
x,y

h(x,y)=z

fX,Y(x,y) .
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x,y

h(x,y)=z

fX,Y(x,y) .
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Proof – continued
The expectation value is

fZ(z) =
∑
z

zfZ(z)

=
∑
z

z
∑
x,y

h(x,y)=z

fX,Y(x,y)

=
∑
x,y
h(x,y)fX,Y(x,y)
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Functions of more than two random variables
Again we can consider functions h(X1, . . . ,Xn) of more than two
discrete random variables.

This is again a discrete random variable and its expectation is
given by the usual formula

E(h(X1, . . . ,Xn)) =
∑

x1,...,xn
h(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)

The proof is basically the same as the one for two variables and
shall be left as an exercise.
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Linearity of expectation I

Theorem
Let X and Y be two discrete random variables.

Then

E(X+ Y) = E(X) + E(Y)

Proof.

E(X+ Y) =
∑
x,y

(x+ y)f(x,y)

=
∑
x

x
∑
y

f(x,y) +
∑
y

y
∑
x

f(x,y)

=
∑
x

xfX(x) +
∑
y

yfY(y) = E(X) + E(Y)
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Linearity of expectation II
Together with E(αX) = αE(X),... this implies the linearity of the
expectation value:

E(αX+ βY) = αE(X) + βE(Y)

NB: This holds even if X and Y are not independent!

Trivial example
Consider rolling two fair dice. What is the expected value of
their sum?
Let Xi, i = 1, 2, denote the score of the ith die.
We saw earlier that E(Xi) = 7

2 , hence

E(X1 + X2) = E(X1) + E(X2) =
7
2 + 7

2 = 7 .
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José Figueroa-O’Farrill mi4a (Probability) Lecture 8 18 / 25



Linearity of expectation II
Together with E(αX) = αE(X),... this implies the linearity of the
expectation value:

E(αX+ βY) = αE(X) + βE(Y)

NB: This holds even if X and Y are not independent!

Trivial example
Consider rolling two fair dice. What is the expected value of
their sum?
Let Xi, i = 1, 2, denote the score of the ith die.
We saw earlier that E(Xi) = 7

2 , hence

E(X1 + X2) = E(X1) + E(X2) =
7
2 + 7

2 = 7 .
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Linearity of expectation III
Again we can extend this result to any finite number of discrete
random variables X1, . . . ,Xn defined on the same probability
space.

If α1, . . . ,αn ∈ R, then

E(α1X1 + · · ·+ αnXn) = α1E(X1) + · · ·+ αnE(Xn)

(We omit the routine proof.)

Important!
It is important to remember that this is valid for arbitrary discrete
random variables without the assumption of independence.
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Example (Randomised hats)
A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat?

Let us try counting.

If n = 2 then it’s clear: either both men get their own hats
(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is 1

2(2 + 0) = 1.
Now let n = 3. There are 3! = 6 possible permutations of
the hats: the identity permutation has X = 3, three
transpositions have X = 1 and two cyclic permutations
have X = 0. Now we get 1

6(3 + 3× 1 + 2× 0) = 1... again!
How about n = 4? Now there are 4! = 24 possible
permutations of the hats...

There has to be an easier way.
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Example (Randomised hats – continued)
Let X denote the number of men who get their own hats.

We let Xi denote the indicator variable corresponding to the
event that the ith man gets his own hat: Xi = 1 if he does,
Xi = 0 if he doesn’t.
Then X = X1 + X2 + · · ·+ Xn.
(The Xi are not independent! Why?)
Notice that E(Xi) = 1

n , so that

E(X) = E(X1) + E(X2) + · · ·+ E(Xn)

= 1
n + 1

n + · · ·+ 1
n

= 1

On average one (lucky) man gets his own hat!
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Example (The coupon collector problem)
A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all c colours. How
many cereal boxes do you expect to have to buy?

Xi is the number of boxes necessary to collect the ith
colour, having collected already i− 1 colours
X = X1 + · · ·+ Xc is the number of boxes necessary to
collect all c colours
we want to compute E(X) = E(X1) + . . .E(Xc), by linearity
having collected already i− 1 colours, there are c− i+ 1
colours I have yet to collect
the probability of getting a new colour is c−i+1

c

the probability of getting a colour I already have is i−1
c
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Example (The coupon collector problem – continued)

P(Xi = k) =
(
i−1
c

)k−1
c−i+1
c for k = 1, 2, . . .

MXi(t) =

∞∑
k=1

ekt
(
i− 1
c

)k−1
c− i+ 1

c
=

(c− i+ 1)et
c− (i− 1)et

E(Xi) =M ′
Xi
(0) = c

c−i+1 , whence finally

E(X) =
c∑
i=1

c

c− i+ 1

= c

(1
c
+

1
c− 1 + · · ·+ 1

2 + 1
)

= cHc

where Hc = 1 + 1
2 + · · ·+ 1

c is the cth harmonic number
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(c− i+ 1)et
c− (i− 1)et

E(Xi) =M ′
Xi
(0) = c

c−i+1 , whence finally

E(X) =
c∑
i=1

c

c− i+ 1

= c

(1
c
+

1
c− 1 + · · ·+ 1

2 + 1
)

= cHc

where Hc = 1 + 1
2 + · · ·+ 1

c is the cth harmonic number
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Example (The coupon collector problem – continued)

c cHc c cHc
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 10 29
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5 10 15 20 25 30
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40

60

80

100

120

How many expected tosses of a fair coin until both heads
and tails appear? 3
How many expected rolls of a fair die until we get all

, . . . , ? 15
et cetera
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Summary
Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fX,Y(x,y) = P({X = x} ∩ {Y = y})

f : R2 → [0, 1] and
∑
x,y f(x,y) = 1

X, Y independent: fX,Y(x,y) = fX(x)fY(y) for all x,y
h(X, Y) is a discrete random variable and

E(h(X, Y)) =
∑
x,y
h(x,y)fX,Y(x,y)

Expectation is linear: E(αX+ βY) = αE(X) + βE(Y)
All the above generalises straightforwardly to n random
variables X1, . . . ,Xn
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