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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.
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Let X be a discrete random variable with mean E(X) = p.
@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = )} h(x)fx(x).
@ X has a moment generating function Mx(t) = E(e'X)

from where we can compute the mean p and standard
deviation o by
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with mean E(Y) = )} h(x)fx(x).
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deviation o by
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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.
@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = )} h(x)fx(x).
@ X has a moment generating function Mx(t) = E(e'X)

from where we can compute the mean p and standard
deviation o by

o p=E(X)=M(0)
0 02 =E(X?) — p? = M¥(0) — M%(0)2

@ For binomial (n,p): p=np and 02 =np(1 —p)
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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.
@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = )} h(x)fx(x).
@ X has a moment generating function Mx(t) = E(e'X)

from where we can compute the mean p and standard
deviation o by
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@ For Poisson A: 1= 0% =A
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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.
@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = )} h(x)fx(x).
@ X has a moment generating function Mx(t) = E(e'X)

from where we can compute the mean p and standard
deviation o by

o p=E(X)=M(0)
0 02 =E(X?) — p? = M¥(0) — M%(0)2

@ For binomial (n,p): p=np and 02 =np(1 —p)
@ For Poisson A: 1= 0% =A

@ The Poisson distribution with mean A approximates the
binomial distribution with parameters n and p in the limit
n—oo,p—0,butnp — A
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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.

@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = )} h(x)fx(x).

@ X has a moment generating function Mx(t) = E(e'X)

from where we can compute the mean p and standard
deviation o by

o u=E(X)=M(0)
0 02 =E(X?) — p? = M¥(0) — M%(0)2
@ For binomial (n,p): p=np and 02 =np(1 —p)
@ For Poisson A: 1= 0% =A
@ The Poisson distribution with mean A approximates the

binomial distribution with parameters n and p in the limit
n—oo,p—0,butnp — A

@ “Rare” events occurring at a constant rate are distributed
according to a Poisson distribution
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Two random variables

@ |t may happen that one is interested in two (or more)
different numerical outcomes of the same experiment.
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@ Suppose that X and Y are discrete random variables on the
same probability space (Q, F,P).
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@ Suppose that X and Y are discrete random variables on the
same probability space (Q, F,P).

@ The values of X and Y are distributed according to fx and
fy, respectively.

José Figueroa-O’Farrill mida (Probability) Lecture 8 3/25



Two random variables

@ |t may happen that one is interested in two (or more)
different numerical outcomes of the same experiment.

@ This leads to the simultaneous study of two (or more)
random variables.

@ Suppose that X and Y are discrete random variables on the
same probability space (Q, F,P).

@ The values of X and Y are distributed according to fx and
fy, respectively.

@ But whereas fx(x) is the probability of X = x and fv(y) that
of Y =y, they generally do not tell us the probability of
X=xandY =uy.
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Two random variables
@ |t may happen that one is interested in two (or more)
different numerical outcomes of the same experiment.

@ This leads to the simultaneous study of two (or more)
random variables.

@ Suppose that X and Y are discrete random variables on the
same probability space (Q, F,P).

@ The values of X and Y are distributed according to fx and
fy, respectively.

@ But whereas fx(x) is the probability of X = x and fv(y) that
of Y =y, they generally do not tell us the probability of
X=xandY =uy.

@ That is given by their joint distribution.
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, &, P).
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, F,P). Then the subsets {X = x} and
{Y =y} are events and hence so is their intersection.
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, F,P). Then the subsets {X = x} and
{Y =y} are events and hence so is their intersection.

Definition
The joint probability mass function of the two discrete
random variables X and Y is given by

fx,y(x,y) =P{X=x}n{Y =y})
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Definition
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random variables X and Y is given by
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Notation: often written just f(x,y) if no ambiguity results.
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, F,P). Then the subsets {X = x} and
{Y =y} are events and hence so is their intersection.

Definition
The joint probability mass function of the two discrete
random variables X and Y is given by

fx,y(x,y) =P{X=x}n{Y =y})

Notation: often written just f(x,y) if no ambiguity results.

Being a probability, 0 < f(x,y) < 1.
Butalso 3, , f(x,y) =1, since every outcome w € Q belongs
to precisely one of the sets {X = x} N{Y =y}
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, F,P). Then the subsets {X = x} and
{Y =y} are events and hence so is their intersection.

Definition
The joint probability mass function of the two discrete
random variables X and Y is given by

fx,y(x,y) =P{X=x}n{Y =y})

Notation: often written just f(x,y) if no ambiguity results.

Being a probability, 0 < f(x,y) < 1.

Butalso 3, , f(x,y) =1, since every outcome w € Q belongs
to precisely one of the sets {X = x} N {Y =y}. In other words,
those sets define a partition of Q, which is moreover countable.
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Examples (Fair dice: scores, max and min)
We roll two fair dice.

@ Let X and Y denote their scores. The joint probability mass
function is given by

4, 1<x,y<6
f X, _ 36! ~ L) ~
xv(xy) {0, otherwise
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Examples (Fair dice: scores, max and min)
We roll two fair dice.

@ Let X and Y denote their scores. The joint probability mass
function is given by

4, 1<x,y<6
f X, _ 36! ~ L) ~
xv(xy) {0, otherwise

©Q Let U and V denote the minimum and maximum of the two
scores, respectively. The joint probability mass function is

given by
1 _
fuvw,v) =<4, 1<u<v<6
0, otherW|se
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Marginals

The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables.
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Marginals

The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables. These are called the marginals:

fx(x) =) flx,y) and  fy(y)=) flx,y).
Yy X
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Marginals

The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables. These are called the marginals:

fx(x) =) flx,y) and  fy(y)=) flx,y).
Yy X

This holds because the sets {Y =y}, where y runs through all
the possible values of Y, are a countable partition of Q.
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probability mass functions of the individual discrete random
variables. These are called the marginals:

fx(x) =) flx,y) and  fy(y)=) flx,y).
Yy X

This holds because the sets {Y =y}, where y runs through all
the possible values of Y, are a countable partition of Q.
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X=x}=JX=x}n{y=y}.
Yy
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Marginals

The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables. These are called the marginals:

fx(x) =) flx,y) and  fy(y)=) flx,y).
Yy X

This holds because the sets {Y =y}, where y runs through all
the possible values of Y, are a countable partition of Q.
Therefore,

X=x}=JX=x}n{y=y}.
Yy

and computing P of both sides:

fx(x) =P(X=x}) =) PX=x}n{Y=y) =) fxy(xy).
Yy Yy
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Marginals

The joint probability mass function f(x,y) of two discrete
random variables X and Y contains the information of the
probability mass functions of the individual discrete random
variables. These are called the marginals:

fx(x) =) flx,y) and  fy(y)=) flx,y).
Yy X

This holds because the sets {Y =y}, where y runs through all
the possible values of Y, are a countable partition of Q.
Therefore,

X=x}=JX=x}n{y=y}.
Yy

and computing P of both sides:

fx(x) =P(X=x}) =) PX=x}n{Y=y) =) fxy(xy).
Yy Yy

A similar story holds for {Y = y}.
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@ Toss a fair coin. Let X be the number of heads and Y the
number of tails:
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Examples

@ Toss a fair coin. Let X be the number of heads and Y the

number of tails:
fx(0) = fx(1) = fy(0) = fy(1) =}
fx,v(0,0) =fxy(1,1)=0  fxv(1,0) =fx,y(0,1) =}
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Examples

@ Toss a fair coin. Let X be the number of heads and Y the
number of tails:

fx(0) = fx(1) = fy(0) = fy(1) = %
fx,v(0,0) = fxy(1,1) =0  fxy(1,0) =fxy(0,1) =3
© Toss two fair coins. Let X be the number of heads shown
by the first coin and Y the number of heads shown by the
second:
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Examples

@ Toss a fair coin. Let X be the number of heads and Y the
number of tails:
fx(0) =fx(1) =

fy(0) = fy(1) =
fx,v(0,0) =fxy(1,1) =0

2

fx,v(1,0) = fxv(0,1) = %

© Toss two fair coins. Let X be the number of heads shown
by the first coin and Y the number of heads shown by the
second:

x(0)

=
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@ Toss a fair coin. Let X be the number of heads and Y the
number of tails:

fx(0) = fx(1) = fy(0) = fy(1) = ]
fx,v(0,0) = fx y(1,1)

=0 fxy(1,0) =

2

fx,v(0,1) =1

© Toss two fair coins. Let X be the number of heads shown
by the first coin and Y the number of heads shown by the
second:

fx(0) = fx(1) = fy(0) = fy(1) = }
fx,v(0,0) = fx v (1,1) = fxy(1,0) = fx,v(0,1) =

FNEN

Moral: the marginals do not determine the joint distribution!
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More than two random variables

There is no reason to stop at two discrete random variables: we
can consider a finite number Xj, ..., X, of discrete random
variables on the same probability space.
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More than two random variables

There is no reason to stop at two discrete random variables: we
can consider a finite number Xj, ..., X, of discrete random
variables on the same probability space. They have a joint
probability mass function fx, . x, :R™ — [0, 1], defined by

XX (X150 Xn) = PUXy =xq4} N N{Xn = xn})
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More than two random variables

There is no reason to stop at two discrete random variables: we
can consider a finite number Xj, ..., X, of discrete random
variables on the same probability space. They have a joint
probability mass function fx, . x, :R™ — [0, 1], defined by

XX (X150 Xn) = PUXy =xq4} N N{Xn = xn})

It has a number of marginals by summing over the possible
values of any k of the X;.
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Independence

In the , we saw that fx y(x,y) = fx(x)fy(y).
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Independence

In the , we saw that fx y(x,y) = fx(x)fy(y).
This is explained by the fact that for all x, y the events {X = x}
and {Y = y} are independent:
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Independence

In the , we saw that fx y(x,y) = fx(x)fy(y).
This is explained by the fact that for all x, y the events {X = x}
and {Y = y} are independent:

fx,y(x,y) =P{X=x}N{Y =1y}
=P{X =x})P{Y =y} (independent events)

= fx()fy(y) .
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Independence

In the , we saw that fx y(x,y) = fx(x)fy(y).
This is explained by the fact that for all x, y the events {X = x}
and {Y = y} are independent:

fxy(x,y) =P{{X=x}n{Y =y}
=P{X =x})P{Y =y} (independent events)

= fx()fy(y) .

Definition
Two discrete random variables X and Y are said to be
independent if for all x, y,

fx,y(x,y) = fx(x)fy(y)
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Example (Bernoulli trials with a random parameter)
Consider a Bernoulli trial with probability p of success.
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Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures.
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Example (Bernoulli trials with a random parameter)
Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,y(1,1) =0, yet fx(1)fy(1) =p(1 —p).
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Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,v(1,1) = 0, yet fx(1)fy(1) =p(1 —p).

Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean A.
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Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,v(1,1) = 0, yet fx(1)fy(1) =p(1 —p).

Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean A. | claim that X and Y are now independent!
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Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,v(1,1) = 0, yet fx(1)fy(1) =p(1 —p).

Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean A. | claim that X and Y are now independent!
We first determine the probability mass functions of X and Y.
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Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,v(1,1) = 0, yet fx(1)fy(1) =p(1 —p).

Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean A. | claim that X and Y are now independent!
We first determine the probability mass functions of X and Y.
Conditioning on the value of N,
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Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X
and Y denote the number of successes and failures. Clearly
they are not generally independent because X +Y = 1: so
fx,v(1,1) = 0, yet fx(1)fy(1) =p(1 —p).

Now suppose that we repeat the Bernoulli trial a random
number N of times, where N has a Poisson probability mass
function with mean A. | claim that X and Y are now independent!
We first determine the probability mass functions of X and Y.
Conditioning on the value of N,

So X has a Poisson probability mass function with mean Ap.
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Example (Bernoulli trials with a random parameter — continued)

One person’s success is another person’s failure, so Y also has
a Poisson probability mass function but with mean Aq.
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Example (Bernoulli trials with a random parameter — continued)
One person’s success is another person’s failure, so Y also has
a Poisson probability mass function but with mean Aq.
Therefore

x y X+y
(}\3) e—)\p O\qg e—)\q _ e—?\)\ — _pqu
! y! xly!

fx(x)fy(y) =
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Example (Bernoulli trials with a random parameter — continued)
One person’s success is another person’s failure, so Y also has
a Poisson probability mass function but with mean Aq.
Therefore

x y X+y
(}\3) e—)\p O\qg e—)\q _ e—?\)\ — _pqu
! y! xly!

fx(x)fy(y) =

On the other hand, conditioning on N again,

fx,y(x,y) =P{{X=x}Nn{Y =y}
=P{X=x}N{Y=y}IN=x+y)P(N =x+1y)
_ X+y x —A A*TY
(e wr

_ 7\x+y

le' pqu = fX(X)fY(y)
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Independent multiple random variables

Again there is no reason to stop at two discrete random
variables and we can consider a finite number Xy, ..., X, of
discrete random variables.

José Figueroa-O’Farrill mida (Probability) Lecture 8 12/25



Independent multiple random variables

Again there is no reason to stop at two discrete random
variables and we can consider a finite number Xy, ..., X, of
discrete random variables.

They are said to be independent when all the events {X; = x;}
are independent.
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Independent multiple random variables

Again there is no reason to stop at two discrete random
variables and we can consider a finite number Xy, ..., X, of
discrete random variables.

They are said to be independent when all the events {X; = x;}
are independent.

This is the same as saying that for any 2 < k < n variables
Xi1,...,Xik of the X4y Xn,

(xiys oo Xy ) = fxg,

(xi,) - g, (xq)

forall xi ,...,xq,.
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Making new random variables out of old

Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables.
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Making new random variables out of old

Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables. Then let Z = h(X, Y) be defined
by Z(w) = h(X(w), Y(w)) for all outcomes w.
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Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables. Then let Z = h(X, Y) be defined
by Z(w) = h(X(w), Y(w)) for all outcomes w.

Theorem
Z = h(X,Y) is a discrete random variable with probability mass

function
fz(z)= Y fxv(xy)

X,y
h(x,y)=z
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any function of two variables. Then let Z = h(X, Y) be defined
by Z(w) = h(X(w), Y(w)) for all outcomes w.

Theorem
Z = h(X,Y) is a discrete random variable with probability mass
function

fz(z)= Y fxv(xy)

X,y
h(x,y)=z

and mean
E(Z) =) h(xy)fxy(xy)
x,y
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Making new random variables out of old

Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables. Then let Z = h(X, Y) be defined
by Z(w) = h(X(w), Y(w)) for all outcomes w.

Theorem
Z = h(X,Y) is a discrete random variable with probability mass
function

fz(z)= Y fxv(xy)

X,y
h(x,y)=z

and mean

E(Z) =) h(xy)fxy(xy)
XY

The proof is mutatis mutandis the same as in the one-variable
case.
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Proof

The cardinality of the set Z(Q) of all possible values of Z is at
most that of X(Q) x Y(Q), consisting of pairs (x,y) where x is a
possible value of X and y is a possible value of Y.
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Proof

The cardinality of the set Z(Q) of all possible values of Z is at
most that of X(Q) x Y(Q), consisting of pairs (x,y) where x is a
possible value of X and y is a possible value of Y. Since the
Cartesian product of two countable sets is countable, Z(Q) is
countable.
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possible value of X and y is a possible value of Y. Since the
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Now,

{Z=23= |J) X=xn{v=y}

X,y
h(x,y)=z

is a countable disjoint union.
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Proof

The cardinality of the set Z(Q) of all possible values of Z is at
most that of X(Q) x Y(Q), consisting of pairs (x,y) where x is a
possible value of X and y is a possible value of Y. Since the
Cartesian product of two countable sets is countable, Z(Q) is
countable.

Now,

{Z=23= |J) X=xn{v=y}

X,y
h(x,y)=z

is a countable disjoint union. Therefore,

fz(z)= Y fxv(xy).

X,y
h(x,y)=z
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Proof — continued

The expectation value is

fz(z) =) zfz(2)

=Yz ) fxy(xy)

X,y
h(x,y)=z

— Zh(x,y)fx,v(xay)

x,Y
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Functions of more than two random variables

Again we can consider functions h(Xj, ..., X;,) of more than two
discrete random variables.
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Functions of more than two random variables

Again we can consider functions h(Xj, ..., X;,) of more than two
discrete random variables.

This is again a discrete random variable and its expectation is
given by the usual formula

EM(X1, o Xn)) = ) Ags e X)X X (X152 X))
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Functions of more than two random variables

Again we can consider functions h(Xj, ..., X;,) of more than two
discrete random variables.

This is again a discrete random variable and its expectation is
given by the usual formula

EM(X1, o Xn)) = ) Ags e X)X X (X152 X))

The proof is basically the same as the one for two variables and
shall be left as an exercise.
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Linearity of expectation |
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Linearity of expectation |

Let X and Y be two discrete random variables.
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Linearity of expectation |

Let X and Y be two discrete random variables. Then

E(X+Y)=E(X) +E(Y)
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Linearity of expectation |

Let X and Y be two discrete random variables. Then

E(X+Y)=E(X) +E(Y)

EX+Y) =) (x+y)f(x,y)

x,Y
=Y Y e+ Yy Y fxy)
X y Yy %

= xfx(x)+ ) yfy(y) =E(X)+E(Y)
w y
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Linearity of expectation Il

Together with E(xX) = «lE(X),... this implies the linearity of the
expectation value:

E(aX + BY) = «E(X) + BE(Y)
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Linearity of expectation Il
Together with E(xX) = «lE(X),... this implies the linearity of the
expectation value:

E(aX + BY) = «E(X) + BE(Y)

NB: This holds even if X and Y are not independent!
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Together with E(xX) = «lE(X),... this implies the linearity of the
expectation value:

E(aX+ BY) = aE(X) + BE(Y)

NB: This holds even if X and Y are not independent!

Trivial example

Consider rolling two fair dice. What is the expected value of
their sum?
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Linearity of expectation Il

Together with E(xX) = «lE(X),... this implies the linearity of the
expectation value:

E(aX+ BY) = aE(X) + BE(Y)

NB: This holds even if X and Y are not independent!

Trivial example

Consider rolling two fair dice. What is the expected value of
their sum?
Let X;, i =1, 2, denote the score of the ith die.
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Linearity of expectation Il

Together with E(xX) = «lE(X),... this implies the linearity of the
expectation value:

E(aX+ BY) = aE(X) + BE(Y)

NB: This holds even if X and Y are not independent!

Trivial example

Consider rolling two fair dice. What is the expected value of
their sum?

Let Xi, i =1, 2, denote the score of the ith die.

We saw earlier that E(X;) = % hence

E(X1 +X2) =E(X{) +E(Xp) =5+ 5=7.

NI~
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Linearity of expectation |

Again we can extend this result to any finite number of discrete
random variables X4, ..., X;, defined on the same probability
space.
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Again we can extend this result to any finite number of discrete

random variables X4, ..., X;, defined on the same probability
space.
If o¢q,...,0n € R, then

E(o1X1 4+ -4+ anXn) = qE(Xq) + - - + oan E(X)
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Linearity of expectation |

Again we can extend this result to any finite number of discrete

random variables X4, ..., X;, defined on the same probability
space.
If o¢q,...,0n € R, then

E(o1X1 4+ -4+ anXn) = qE(Xq) + - - + oan E(X)

(We omit the routine proof.)
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Linearity of expectation |

Again we can extend this result to any finite number of discrete

random variables X4, ..., X;, defined on the same probability
space.
If o¢q,...,0n € R, then

E(ot4Xq + -+ anXn) = qE(Xy) + - + anE(Xy)

(We omit the routine proof.)

It is important to remember that this is valid for arbitrary discrete
random variables without the assumption of independence.
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat?
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat? Let us try counting.
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During

the dinner the hats get mixed up so that when they leave, the

probability of getting their own hat is 1/n. What is the expected

number of men who get their own hat? Let us try counting.

@ If n =2thenit’s clear: either both men get their own hats

(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is }(2 +0) = 1.
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat? Let us try counting.
@ If n =2thenit’s clear: either both men get their own hats
(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is }(2 +0) = 1.

@ Now let n = 3. There are 3! = 6 possible permutations of
the hats: the identity permutation has X = 3, three
transpositions have X = 1 and two cyclic permutations
have X = 0. Now we get (3 +3 x 1+2 x 0) = 1... again!
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat? Let us try counting.

@ If n =2thenit’s clear: either both men get their own hats
(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is }(2 +0) = 1.

@ Now let n = 3. There are 3! = 6 possible permutations of
the hats: the identity permutation has X = 3, three
transpositions have X = 1 and two cyclic permutations
have X = 0. Now we get (3 +3 x 1+2 x 0) = 1... again!

@ How about n = 4? Now there are 4! = 24 possible
permutations of the hats...
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat? Let us try counting.

@ If n =2thenit’s clear: either both men get their own hats
(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is }(2 +0) = 1.

@ Now let n = 3. There are 3! = 6 possible permutations of
the hats: the identity permutation has X = 3, three
transpositions have X = 1 and two cyclic permutations
have X = 0. Now we get (3 +3 x 1+2 x 0) = 1... again!

@ How about n = 4? Now there are 4! = 24 possible
permutations of the hats...

There has to be an easier way.
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Example (Randomised hats — continued)

@ Let X denote the number of men who get their own hats.
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Example (Randomised hats — continued)

@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the
event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.
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Example (Randomised hats — continued)

@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the
event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.

@ Then X =X; +Xo+ -+ Xqn.
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Example (Randomised hats — continued)

@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the
event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.

@ Then X =X; +Xo+ -+ Xqn.
@ (The X; are not independent! Why?)
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Example (Randomised hats — continued)
@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the
event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.

@ Then X =X; +Xo+ -+ Xqn.
@ (The X; are not independent! Why?)
@ Notice that E(X;) = 1, so that

E(X) =E(X1) +E(X2) +--- + E(Xn)

+
_ 1
— oot

1)
1

— 3l
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Example (Randomised hats — continued)
@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the
event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.

@ Then X =X; +Xo+ -+ Xqn.
@ (The X; are not independent! Why?)
@ Notice that E(X;) = 1, so that

E(X) =E(X1) +E(X2) +--- + E(Xn)

+
_ 1
— oot

1)
1

— 3l

On average one (lucky) man gets his own hat!
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Example (The coupon collector problem)

A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?
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distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours
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distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours

@ X =X4+---+ X is the number of boxes necessary to
collect all ¢ colours
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A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours

@ X =X4+---+ X is the number of boxes necessary to
collect all ¢ colours

@ we want to compute E(X) = E(Xq) +...E(Xc), by linearity

José Figueroa-O’Farrill mida (Probability) Lecture 8 22/25



Example (The coupon collector problem)

A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours

@ X =X4+---+ X is the number of boxes necessary to
collect all ¢ colours

@ we want to compute E(X) = E(Xq) +...E(Xc), by linearity
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colours | have yet to collect
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any one colour. You are trying to collect all ¢ colours. How
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Example (The coupon collector problem)

A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours

@ X =X4+---+ X is the number of boxes necessary to
collect all ¢ colours

@ we want to compute E(X) = E(Xq) +...E(Xc), by linearity

@ having collected already i — 1 colours, there are ¢ — i+ 1
colours | have yet to collect

@ the probability of getting a new colour is <=1
@ the probability of getting a colour | already have is %
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Example (The coupon collector problem — continued)

. k—1 .
@ P(X; =k) = (d) e=itl fork =1,2,...

C
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Example (The coupon collector problem — continued)

C

. k—1 .
@ P(X; =k) = (d) e=itl fork =1,2,...

k—1

e g (i1 c—it+1  (c—i+1)et
Mxi(t)_zet< c > c  c—(i—T)et
k=1
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Example (The coupon collector problem — continued)

C

. k—1 .
@ P(X; =k) = (d) e=itl fork =1,2,...

o0 q k—1 q Q t

B kit (1—1 c—i+1 (c—i+1)e

Mxi(t)_zet< c > ¢ c_(-Te
k=1

@ E(Xi) =My, (0) = whence finally

_c
c—i+1?
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Example (The coupon collector problem — continued)

. k—1 .
@ P(X; =k) = (d) e=itl fork =1,2,...

C

o0 q k—1 q Q t

B kit (1—1 c—i+1 (c—i+1)e

Mxi(t)_zet< c > ¢ c_(-Te
k=1

@ E(Xi) =My, (0) = whence finally

_c
c—i+1?

B =3 =5y

=

P (LR L
¢ ¢c c—1 2
= @lrle

where He =1+ } + - + 1 is the cth harmonic number

José Figueroa-O’Farrill mida (Probability) Lecture 8

23/25



Example (The coupon collector problem — continued)

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 || 10 29

120

100

80

60

2

20+
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Example (The coupon collector problem — continued)

120

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 || 10 29

100

80

60

2

20+

@ How many expected tosses of a fair coin until both heads

and tails appear?
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Example (The coupon collector problem — continued)

120

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
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100

80

60
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Example (The coupon collector problem — continued)

120

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 || 10 29

100

80

60

2

20+

@ How many expected tosses of a fair coin until both heads

and tails appear? 3
@ How many expected rolls of a fair die until we get all

C),... 67
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Example (The coupon collector problem — continued)

120

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 || 10 29

100

80

60

2

20+

@ How many expected tosses of a fair coin until both heads

and tails appear? 3
@ How many expected rolls of a fair die until we get all

(),...,E69? 15
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Example (The coupon collector problem — continued)

120

¢ | cH¢ ¢ | cH¢
1 1 2 3
3 6 4 8
5 11 6 15
7 18 8 22
9 25 || 10 29

100

80

60

2

20+

@ How many expected tosses of a fair coin until both heads

and tails appear? 3
@ How many expected rolls of a fair die until we get all

(),...,E69? 15

@ et cetera
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{X=x}N{Y =y})
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{X=x}N{Y =y})

@ f:R?—[0,1]and 3  f(x,y) =1
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{X=x}N{Y =y})

@ f:R?2 - [0,1] and Zx,y f(x,y) =1
@ X,Y independent: fx v(x,y) = fx(x)fy(y) for all x,y
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{{X=x}N{Y =y}
@ f:R2—[0,1and Y, flx,y) =1
@ X,Y independent: fx v(x,y) = fx(x)fy(y) for all x,y

@ h(X,Y) is a discrete random variable and

E(h(X,Y)) = D h(xy)fxy(xy)
X,y
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{{X=x}N{Y =y}
@ f:R?2 - [0,1] and Zx,y f(x,y) =1
@ X,Y independent: fx v(x,y) = fx(x)fy(y) for all x,y

@ h(X,Y) is a discrete random variable and

E(h(X,Y)) = D h(xy)fxy(xy)
X,y

@ Expectation is linear: E(aX + BY) = «E(X) + BE(Y)
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Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{X=x}N{Y =y})

@ f:R?>—1[0,1] and 2y flxy) =1
@ X,Y independent: fx v(x,y) = fx(x)fy(y) for all x,y
@ h(X,Y) is a discrete random variable and

E(h(X,Y)) = D h(xy)fxy(xy)
X,y

@ Expectation is linear: E(aX + BY) = «E(X) + BE(Y)

@ All the above generalises straightforwardly to n random
variables X4,...,Xn
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