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The story of the film so far...

@ Discrete random variables Xy, ..., X;, on the same
probability space have a joint probability mass function:

XX (X155 Xn) = P{Xy = x4} NN {Xy = xn})

José Figueroa-O’Farrill mida (Probability) Lecture 9 2/23



The story of the film so far...

@ Discrete random variables Xy, ..., X;, on the same
probability space have a joint probability mass function:

XX (X155 Xn) = P{Xy = x4} NN {Xy = xn})

José Figueroa-O’Farrill mida (Probability) Lecture 9 2/23



The story of the film so far...

@ Discrete random variables Xy, ..., X;, on the same
probability space have a joint probability mass function:

XX (X155 Xn) = P{Xy = x4} NN {Xy = xn})

"] fx1 ..... xﬂ:R“—HO,ﬂand Zx1 ..... anx1 !!!!! xn(X1,...,Xn):1
@ Xy,...,X, are independent if for all 2 < k <n and
Xi1!'-'!Xiks
XXy, (X Xy ) = P (X ) g (x4
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The story of the film so far...

@ Discrete random variables Xy, ..., X;, on the same

probability space have a joint probability mass function:

XX (X155 Xn) = P{Xy = x4} NN {Xy = xn})

"] fx1 ..... xﬂ:R“—HO,ﬂand Zx1 ..... anx1 !!!!! xn(X1,...,Xn):1
@ Xy,...,X, are independent if for all 2 < k <n and
Xi1!' .- !Xiks
XXy, (X Xy ) = P (X ) g (x4
@ h(X4y,...,Xy) is a discrete random variable and
E(h(Xy, .-, Xn)) = Y h(xg,e oo Xn) XX (X155 Xn)
XA geeny Xn
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The story of the film so far...

@ Discrete random variables Xy, ..., X;, on the same
probability space have a joint probability mass function:

XX (X5 o Xn) = PA{Xy = x40 N {Xn = xn})

o fx1 _____ XH:R“—HO,Hand ZX1 ..... anx1 !!!!! XH(X1,...,Xn):1
@ Xy,...,X, are independent if for all 2 < k <n and
Xi1!'-'!Xiks
XXy, (X Xy ) = P (X ) g (x4
@ h(X4y,...,Xy) is a discrete random variable and
E(h(X1,. s Xn)) = Y h0qse, Xn)fx, X (X155 %)

@ Expectation is linear: E(}_ ; «iXi) =Y ; :E(X;)
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Expectation of a product

If X and Y are independent, E(XY) = E(X)E(Y).
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Expectation of a product

If X and Y are independent, E(XY) = E(X)E(Y).

=) xyfxy(xy)
= E xyfx (x)fy(y) (independence)
= Z xfx (x Z yfy(y
=E(X)E(Y)
[]
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E(XY) is an inner product

The expectation value defines a real inner product.

José Figueroa-O’Farrill mida (Probability) Lecture 9 4/23



E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)

We need to show that (X, Y) satisfies the axioms of an inner
product:
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)

We need to show that (X, Y) satisfies the axioms of an inner
product:

@ itis symmetric: (X,Y) = E(XY) =E(YX) = (Y, X)
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)
We need to show that (X, Y) satisfies the axioms of an inner
product:
@ itis symmetric: (X,Y) = E(XY) = E(YX) = (Y, X)
Q@ itis bilinear:
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)
We need to show that (X, Y) satisfies the axioms of an inner
product:
@ itis symmetric: (X,Y) = E(XY) = E(YX) = (Y, X)
Q@ itis bilinear:

@ (aX,Y) =E(aXY) = aE(XY) =a(X,Y)
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)
We need to show that (X, Y) satisfies the axioms of an inner
product:
@ itis symmetric: (X,Y) = E(XY) = E(YX) = (Y, X)
Q@ itis bilinear:

@ (aX,Y) =E(aXY) = aE(XY) =a(X,Y)
o (X1 +X2,Y)=E((Xy+X2)Y) =E(X;Y) + E(XpY) =
<X1 ’ Y> + <X25 Y>
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E(XY) is an inner product

The expectation value defines a real inner product.
If X,Y are two discrete random variables, let us define (X, Y) by

(X,Y) = E(XY)
We need to show that (X, Y) satisfies the axioms of an inner
product:
@ itis symmetric: (X,Y) = E(XY) = E(YX) = (Y, X)
Q@ itis bilinear:

@ (aX,Y) =E(aXY) = aE(XY) =a(X,Y)
o (Xy+X2,Y) =E((X; +X2)Y) =E(X1Y) + E(X2Y) =
X1,Y) + (X2,Y)
© it is positive-definite: if (X, X) = 0, then E(X?) = 0, whence
S x2f(x) = 0, whence xf(x) = 0 for all x. If x # 0, then
f(x) = 0 and thus f(0) = 1. In other words, P(X =0) =1
and hence X = 0 almost surely.
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Additivity of variance for independent variables

How about the variance Var(X +Y)?
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Additivity of variance for independent variables

How about the variance Var(X +Y)?

Var(X+Y) =E((X + Y)2) —E(X + Y)?

E(X2 4 2XY + Y2) — (E(X) + E(Y))?

E(X?) + 2E(XY) + E(Y?) — E(X)? — 2E(X)E(Y) — E(Y)?
Var(X) + Var(Y) + 2 (E(XY) — E(X)E(Y))
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Additivity of variance for independent variables

How about the variance Var(X +Y)?

Var(X+Y) =E((X + Y)2) —E(X + Y)?

E(X2 4 2XY + Y2) — (E(X) + E(Y))?

E(X?) + 2E(XY) + E(Y?) — E(X)? — 2E(X)E(Y) — E(Y)?
Var(X) + Var(Y) + 2 (E(XY) — E(X)E(Y))

If X and Y are independent discrete random variables

Var(X +Y) = Var(X) + Var(Y)
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Covariance

Definition
The covariance of two discrete random variables is

Cov(X,Y) = E(XY) — E(X)E(Y)
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Covariance

Definition
The covariance of two discrete random variables is

Cov(X,Y) = E(XY) — E(X)E(Y)

Letting ux and wy denote the means of X and Y, respectively,

Cov(X,Y) = E((X — pux)(Y — ny))
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Covariance

Definition
The covariance of two discrete random variables is

Cov(X,Y) = E(XY) — E(X)E(Y)

Letting ux and wy denote the means of X and Y, respectively,
Cov(X,Y) = E((X — pux)(Y — ny))
Indeed,

E((X = ux)(Y —uy)) = E(XY) = E(uxY) — E(uyX) + E(uxuy)
= E(XY) — puxpy
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Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X,Y) = 0.
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Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X, Y) = 0. Consider however the
new variables U = min(X,Y) and V = max(X, Y):
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Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X, Y) = 0. Consider however the
new variables U = min(X,Y) and V = max(X, Y):

u 2 3 4 5 6
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Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.

Independence says that Cov(X, Y) = 0. Consider however the

new variables U = min(X,Y) and V = max(X, Y):

ujt 2 3 4 5 6
171 1 1 1 1 1
211 2 2 2 2 2
31 2 3 3 3 3
411 2 3 4 4 4
5(1 2 3 4 5 5
6|1 2 3 4 5 6

vilt 2 3 4 5 6
1/1 2 3 4 5 6
2|12 2 3 4 5 6
33 3 3 4 5 6
414 4 4 4 5 6
SIS I ST
6|6 6 6 6 6 6
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Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X, Y) = 0. Consider however the
new variables U = min(X,Y) and V = max(X, Y):

ui1t 2 3 4 5 6 vVili 2 3 4 5 6
171 1 1 1 1 1 111 2 3 4 5 6
211 2 2 2 2 2 212 2 3 4 5 6
3|1 2 3 3 3 3 3|3 3 3 4 5 6
411 2 3 4 4 4 414 4 4 4 5 6
511 2 3 4 5 5 5|5 5 5 5 5 6
6|1 2 3 4 5 6 6|6 6 6 6 6 6
E(W =3, Eu?) =3, E(v)=18, Ev?) =21, E(uv) =42

José Figueroa-O’Farrill mida (Probability) Lecture 9

7/23



Example (Max and min for two fair dice)

We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X, Y) = 0. Consider however the
new variables U = min(X,Y) and V = max(X, Y):

ui1t 2 3 4 5 6
171 1 1 1 1 1
211 2 2 2 2 2
3|1 2 3 3 3 3
411 2 3 4 4 4
511 2 3 4 5 5
6|1 2 3 4 5 6
E(U) =3, EU?) =3, E(V)
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Definition

Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.
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Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.

Uncorrelated random variables need not be independent!
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Definition

Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.

Uncorrelated random variables need not be independent!

Counterexample

Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fx(—x) = fx(x). Let
Y = X2.
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Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.

Uncorrelated random variables need not be independent!

Counterexample

Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fx(—x) = fx(x). Let
Y = X2. Clearly X, Y are not independent: f(x,y) = 0 unless
y = x?2 even if fx(x)fy(y) # 0.
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Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.

Uncorrelated random variables need not be independent!

Counterexample

Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fx(—x) = fx(x). Let
Y = X2. Clearly X, Y are not independent: f(x,y) = 0 unless

y = x2 even if fx(x)fy(y) # 0. However they are uncorrelated:

E(XY) =E(X%) =Y x*x(x) =0
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Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X,Y) = 0.

Uncorrelated random variables need not be independent!

Counterexample

Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fx(—x) = fx(x). Let
Y = X2. Clearly X, Y are not independent: f(x,y) = 0 unless

y = x2 even if fx(x)fy(y) # 0. However they are uncorrelated:

E(XY) =E(X%) =Y x*x(x) =0

and similarly E(X) = 0, whence E(X)E(Y) = 0.
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An alternative criterion for independence

The above counterexample says that the following implication
cannot be reversed:

X,Y independent = E(XY) =E(X)E(Y)
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An alternative criterion for independence

The above counterexample says that the following implication
cannot be reversed:

X,Y independent = E(XY) =E(X)E(Y)

However, one has the following

Two discrete random variables X and Y are independent if and
only if

for all functions g, h.
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An alternative criterion for independence

The above counterexample says that the following implication
cannot be reversed:

X,Y independent = E(XY) =E(X)E(Y)

However, one has the following

Two discrete random variables X and Y are independent if and
only if

for all functions g, h.

The proof is not hard, but we will skip it.
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The Cauchy—Schwarz inequality

Recall that (X,Y) = E(XY) is an inner product.
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The Cauchy—Schwarz inequality

Recall that (X,Y) = E(XY) is an inner product.
Every inner product obeys the

X, Y)2 < (GX) (Y, Y)
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The Cauchy—Schwarz inequality

Recall that (X,Y) = E(XY) is an inner product.
Every inner product obeys the

(X, V)2 < (X X) (V,Y)
which in terms of expectations is

E(XY)? < E(X?)E(Y?)
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The Cauchy—Schwarz inequality

Recall that (X,Y) = E(XY) is an inner product.
Every inner product obeys the

(X, V)2 < (X X) (Y, Y)
which in terms of expectations is

E(XY)? < E(X?)E(Y?)
Now,

Cov(X,Y)2 = E((X — ux) (Y — py))? S E((X — ux)?)E((Y — uy)?)
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The Cauchy—Schwarz inequality

Recall that (X,Y) = E(XY) is an inner product.
Every inner product obeys the

(X, V)2 < (X X) (Y, Y)
which in terms of expectations is
E(XY)? < E(X?)E(Y?)
Now,
Cov(X,Y)? = E((X — ux) (Y — uy))? S B((X — ux)2)E((Y — py)?)

whence
Cov(X,Y)? < Var(X) Var(Y)
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations oy, ovy.
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations ox, oy. The correlation p(X,Y)
of X and Y is defined by

Cov(X,Y)
O0x0Oy

p(X,Y) =
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations ox, oy. The correlation p(X,Y)
of X and Y is defined by

Cov(X,Y)
O0x0Oy

p(X,Y) =

From the Cauchy—Schwarz inequality, we see that

(X, V)2 <1 = —1<p(X,Y) <1
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations ox, oy. The correlation p(X,Y)
of X and Y is defined by

Cov(X,Y)
O0x0Oy

p(X,Y) =

From the Cauchy—Schwarz inequality, we see that
P Y2 <1 = —1<p(XY) < 1

Hence the correlation is a number between —1 and 1:
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations ox, oy. The correlation p(X,Y)
of X and Y is defined by

Cov(X,Y)
O0x0Oy

p(X,Y) =
From the Cauchy—Schwarz inequality, we see that
P Y2 <1 = —1<p(XY) < 1

Hence the correlation is a number between —1 and 1:

@ a correlation of 1 suggests a linear relation with positive
slope between X and Y,
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Correlation

Let X and Y be two discrete random variables with means px
and py and standard deviations ox, oy. The correlation p(X,Y)
of X and Y is defined by

Cov(X,Y)
O0x0Oy

p(X,Y) =

From the Cauchy—Schwarz inequality, we see that
P Y2 <1 = —1<p(XY) < 1

Hence the correlation is a number between —1 and 1:

@ a correlation of 1 suggests a linear relation with positive
slope between X and Y,

@ whereas a correlation of —1 suggests a linear relation with
negative slope.
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Example (Max and min for two fair dice — continued)

Continuing with the , we now simply compute
Cov(U,V) BeE RS o
U, V = = — —_— = =5,
HEA /Var(U)Var(v) 362/ 362 &
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Example (Max and min for two fair dice — continued)

Continuing with the , we now simply compute
Cov(U,V) BeE RS o
u, V)= =—— / — =3.
HEA /Var(U)Var(v) 362/ 362 &

The funny normalisation of p(X, Y) is justified by the following:

p(aX + B,vY +6) = sign(cy)p(X,Y)
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Example (Max and min for two fair dice — continued)

Continuing with the , we now simply compute
Cov(U,V) BeE RS o
u, V)= =—— / — =3.
HEA /Var(U)Var(v) 362/ 362 &

The funny normalisation of p(X, Y) is justified by the following:

p(oX + B,YY + ) = sign(ay)p(X,Y)
which follows from

Cov(aX + B,vY +8) = ay Cov(X,Y)
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Example (Max and min for two fair dice — continued)
Continuing with the , we now simply compute

2
Sy - Cov vy 35 /2555 a5

JVar(U) Var(v) 362/ 362 73

:

The funny normalisation of p(X, Y) is justified by the following:

p(oX + B,YY + ) = sign(ay)p(X,Y)
which follows from

Cov(aX + B,vY +8) = ay Cov(X,Y)

and oux+p = lalox and oyyis = [yloy.
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Markov’s inequality

Theorem (Markov’s inequality)
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Markov’s inequality

Theorem (Markov’s inequality)

Let X be a discrete random variable
taking non-negative values. Then

E(X)
a

P(X > a) <
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Markov’s inequality
Theorem (Markov’s inequality)

Let X be a discrete random variable
taking non-negative values. Then

E(X)
a

P(X > a) <

EX)=) xP(X=x)= ) xP(X=x)+ ) xP(X=x)

x>0 0<x<a x=>a
> ZXIP’(XZX) > Z aP(X =x) = aP(X > a)
x=a x=a
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Example

A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?
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Example

A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?

Let X be the discrete random variable counting the number of
items produced. Then by Markov’s inequality

n

PX>2n) < =— =
n

N =
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Example

A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?

Let X be the discrete random variable counting the number of
items produced. Then by Markov’s inequality

n

PX>2n) < =— =
n

N =

So | wouldn’t bet on it!
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Example

A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?

Let X be the discrete random variable counting the number of
items produced. Then by Markov’s inequality

n

PX>2n) < =— =
n

N =

So | wouldn’t bet on it!

Markov’s inequality is not terribly sharp; e.g.,

PX>E(X)) <1.
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Example

A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?

Let X be the discrete random variable counting the number of
items produced. Then by Markov’s inequality

n

PX>2n) < =— =
n

N =

So | wouldn’t bet on it!

Markov’s inequality is not terribly sharp; e.g.,

PX>E(X)) <1.

It has one interesting corollary, though.
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Chebyshev’s inequality
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Chebyshev’s inequality

Let X be a discrete random variable with

mean u and variance o2. Then for any
e >0,

2

PIX— > e) < 2
€
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Chebyshev’s inequality

Let X be a discrete random variable with
mean u and variance o2. Then for any
e >0,

2
PIX— > e) < 2
€

Notice that for e > 0, |X — | > ¢ if and only if (X — )2 > €2,
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Chebyshev’s inequality

Let X be a discrete random variable with
mean u and variance o2. Then for any
e >0,

2
PIX— > e) < 2
€

Notice that for ¢ > 0, [X — u| > ¢ if and only if (X — )% > €2, so

P(IX — pul > &) =P((X — p)? > €2)

2 2
S el (by Markov's)
€ €

[
v
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Example

Back to the factory in the previous example, let the average be
n = 500 and the variance in a week’s production is 100, then
what can be said about the probability that this week’s
production falls between 400 and 6007
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Example

Back to the factory in the previous example, let the average be
n = 500 and the variance in a week’s production is 100, then
what can be said about the probability that this week’s
production falls between 400 and 6007
By Chebyshev’s,

0'2 1

P(IX —500] > 100) < 5 = 1ig
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Example

Back to the factory in the previous example, let the average be
n = 500 and the variance in a week’s production is 100, then
what can be said about the probability that this week’s
production falls between 400 and 6007

By Chebyshev’s,

P(IX —500] > 100) < —— = 7=
whence

P(|X — 500| < 100) — 1 — P(]X — 500] > 100)
1 _ 99

100 — 100 -

So pretty likely!
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function.
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”.
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.

The law of large numbers says that in the limit n — oo,

Xy 4+ Xn) o1

in probability.
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.

The law of large numbers says that in the limit n — oo,

Xy 4+ Xn) o1
in probability.

The law of large numbers justifies the “relative frequency”
interpretation of probability.
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.

The law of large numbers says that in the limit n — oo,

Xy 4+ Xn) o1

in probability.

The law of large numbers justifies the “relative frequency”
interpretation of probability. For example, it says that tossing a
fair coin a large number n of times, the proportion of heads will
approach } in the limit n — oo,
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The law of large numbers |

Consider a number n of independent discrete random variables
X1, ..., Xy with the same probability mass function. One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.

The law of large numbers says that in the limit n — oo,

TXy++Xn) o1

in probability.

The law of large numbers justifies the “relative frequency”
interpretation of probability. For example, it says that tossing a
fair coin a large number n of times, the proportion of heads will
approach % in the limit n — oo, in the sense that deviations from
% (e.g., along run of heads or of tails) will become increasingly
rare.
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100,000 tosses of a fair (?) coin
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The law of large numbers Il

Theorem (The (weak) law of large numbers)

Let X4, Xo,... be i.i.d. discrete random variables with mean n
and variance o and let Z, = L(Xqy + - + X»).
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The law of large numbers Il

Theorem (The (weak) law of large numbers)

Let X4, Xo,... be i.i.d. discrete random variables with mean n
and variance o? and let Z,, = 1(Xy +--- + X,,). Then

Ve >0 P(lZ, —pul<e)—1 asn— oo
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The law of large numbers Il

Theorem (The (weak) law of large numbers)

Let X4, Xo,... be i.i.d. discrete random variables with mean n
and variance o? and let Z,, = 1(Xy +--- + X,,). Then

Ve >0 P(lZ, —pul<e)—1 asn— oo

By linearity of expectation, E(Z,,) = u,
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The law of large numbers Il

Theorem (The (weak) law of large numbers)

Let X4, Xo,... be i.i.d. discrete random variables with mean n
and variance o? and let Z,, = 1(Xy +--- + X,,). Then

Ve >0 P(lZ, —pul<e)—1 asn— oo

By linearity of expectation, E(Z,,) = u, and since the X; are
independent Var(Z,) = J; Var(X; + -+ + Xy) = o2

n
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The law of large numbers Il

Theorem (The (weak) law of large numbers)

Let X4, Xo,... be i.i.d. discrete random variables with mean n
and variance o? and let Z,, = 1(Xy +--- + X,,). Then

Ve >0 P(lZ, —pul<e)—1 asn— oo

By linearity of expectation, E(Z,,) = u, and since the X; are
independent Var(Z,,) = # Var(Xy 4+ -+ Xn) = %2 By
Chebyshey,

2 o2

P(Zy — 1> 6) <~y = P(Zn—pl<e) 21—
ne ne
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The law of large numbers IlI
We will now justify probability as relative frequency.
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The law of large numbers |l
We will now justify probability as relative frequency.
Let (Q, F,P) be a probability space and let A € F be an event.
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The law of large numbers |l

We will now justify probability as relative frequency.
Let (Q, F,P) be a probability space and let A € F be an event.

Let 14 denote the indicator variable of A, a discrete random
variable defined by

1, A
IA(w)—{O ZZA
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The law of large numbers |l
We will now justify probability as relative frequency.
Let (Q, F,P) be a probability space and let A € F be an event.
Let 14 denote the indicator variable of A, a discrete random
variable defined by

1, A
IA(w)—{O ZZA

The probability mass function f of an indicator variable is very
simple: f(1) =P(A) and hence f(0) =1 —P(A).
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The law of large numbers |l
We will now justify probability as relative frequency.
Let (Q, F,P) be a probability space and let A € F be an event.
Let 14 denote the indicator variable of A, a discrete random
variable defined by

1, A
IA(w)—{O ZZA

The probability mass function f of an indicator variable is very
simple: f(1) =P(A) and hence f(0) =1 —P(A). Its mean is
given by

nw=E(Ir) =0 x f(0)+ 1 x f(1) = f(1) = P(A)
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The law of large numbers |l
We will now justify probability as relative frequency.
Let (Q, F,P) be a probability space and let A € F be an event.
Let 14 denote the indicator variable of A, a discrete random

variable defined by
La(w) = {1, weA

0, wdA

The probability mass function f of an indicator variable is very
simple: f(1) =P(A) and hence f(0) =1 —P(A). Its mean is
given by

w=E(Ia) =0 x f(0)+1x f(1) = f(1) = P(A)
and its variance by
(0 — w)3F(0) + (1 — w?(1)
P(A)2(1 = P(A)) + (1 - P(A))’P(A)
P(A)(1 —P(A))

02 = Var(lp) =
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.

@ Then the X4, Xs,... arei.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 —P(A)).
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.

@ Then the X4, Xs,... arei.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 —P(A)).

@ LetZ, = L(X{ +--- + X). What does Z,, measure?

José Figueroa-O’Farrill mida (Probability) Lecture 9 21/23



The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.

@ Then the X4, Xs,... arei.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 —P(A)).

@ LetZ, = L(X{ +--- + X). What does Z,, measure?

@ Z,, measures the proportion of trials with outcomes in A
after n trials. This is what we had originally called N(A)/n.
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.

@ Then the X4, Xs,... arei.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 —P(A)).

@ LetZ, = L(X{ +--- + X). What does Z,, measure?

@ Z,, measures the proportion of trials with outcomes in A
after n trials. This is what we had originally called N(A)/n.

@ The law of large numbers says that in the limit as n — oo,
Z,, — P(A) in probability.
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The law of large numbers [V

@ Now imagine repeating the experiment and counting how
many outcomes belong to A.

@ Let X; denote the random variable which agrees with the
indicator variable of A at the ith trial.

@ Then the X4, Xs,... arei.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 —P(A)).

@ LetZ, = L(X{ +--- + X). What does Z,, measure?

@ Z,, measures the proportion of trials with outcomes in A
after n trials. This is what we had originally called N(A)/n.

@ The law of large numbers says that in the limit as n — oo,
Z,, — P(A) in probability.

@ This makes precise our initial hand-waving argument of
N(A)/n “converging in some way” to P(A).
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Summary

@ X,Yindependent: E(XY) = E(X)E(Y)
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Summary

@ X,Yindependent: E(XY) = E(X)E(Y)
@ E(XY) defines an inner product
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Summary

@ X,Yindependent: E(XY) = E(X)E(Y)
@ E(XY) defines an inner product
@ X,Y independent: Var(X +Y) = Var(X) + Var(Y)
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Summary

@ X,Yindependent: E(XY) = E(X)E(Y)

@ E(XY) defines an inner product

@ X,Y independent: Var(X +Y) = Var(X) + Var(Y)

@ In general: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)
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Summary

@ X,Yindependent: E(XY) = E(X)E(Y)

@ E(XY) defines an inner product

@ X,Y independent: Var(X +Y) = Var(X) + Var(Y)

@ In general: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

@ covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If
Cov(X,Y) = 0 we say X, Y are uncorrelated

José Figueroa-O’Farrill mida (Probability) Lecture 9 22/23



Summary

@ X,Yindependent: E(XY) = E(X)E(Y)

@ E(XY) defines an inner product

@ X,Y independent: Var(X +Y) = Var(X) + Var(Y)

@ In general: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

@ covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If
Cov(X,Y) = 0 we say X, Y are uncorrelated

@ correlation: p(X,Y) = Cov(X,Y)/(c(X)o(Y)) measures

“linear dependence” between X, Y
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Summary

X,Y independent: E(XY) = E(X)E(Y)

E(XY) defines an inner product

X, Y independent: Var(X + Y) = Var(X) + Var(Y)

In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If

Cov(X,Y) = 0 we say X, Y are uncorrelated

@ correlation: p(X,Y) = Cov(X,Y)/(c(X)o(Y)) measures
“linear dependence” between X, Y

@ We proved two inequalities:
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Summary

X,Y independent: E(XY) = E(X)E(Y)

E(XY) defines an inner product

X, Y independent: Var(X + Y) = Var(X) + Var(Y)

In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If

Cov(X,Y) = 0 we say X, Y are uncorrelated

@ correlation: p(X,Y) = Cov(X,Y)/(c(X)o(Y)) measures
“linear dependence” between X, Y

@ We proved two inequalities:

e Markov: P(|X| > a) < E(|X])/a
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Summary

X,Y independent: E(XY) = E(X)E(Y)

E(XY) defines an inner product

X, Y independent: Var(X + Y) = Var(X) + Var(Y)

In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If

Cov(X,Y) = 0 we say X, Y are uncorrelated

@ correlation: p(X,Y) = Cov(X,Y)/(c(X)o(Y)) measures
“linear dependence” between X, Y

@ We proved two inequalities:

e Markov: P(|X| > a) < E(|X])/a

@ Chebyshev: P([X — u| > ¢) < 02/¢?
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Summary

X,Y independent: E(XY) = E(X)E(Y)
E(XY) defines an inner product
X, Y independent: Var(X + Y) = Var(X) + Var(Y)
In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If
Cov(X,Y) = 0 we say X, Y are uncorrelated
@ correlation: p(X,Y) = Cov(X,Y)/(c(X)o(Y)) measures
“linear dependence” between X, Y
@ We proved two inequalities:
e Markov: P(|X| > a) < E(|X])/a
@ Chebyshev: P([X — u| > ¢) < 02/¢?
@ The law of large numbers “explains” the relative
frequency definition of probability:
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Summary

X,Y independent: E(XY) = E(X)E(Y)
E(XY) defines an inner product
X, Y independent: Var(X + Y) = Var(X) + Var(Y)
In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If
Cov(X,Y) = 0 we say X, Y are uncorrelated
correlation: p(X,Y) = Cov(X,Y)/(o(X)o(Y)) measures
“linear dependence” between X, Y
@ We proved two inequalities:

e Markov: P(|X| > a) < E(|X])/a

@ Chebyshev: P([X — u| > ¢) < 02/¢?
@ The law of large numbers “explains” the relative
frequency definition of probability: it says that if X; are i.i.d.
discrete random variables, then as n — oo,
L(Xq4 4+ +Xn) — win probability;
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Summary

X,Y independent: E(XY) = E(X)E(Y)
E(XY) defines an inner product
X, Y independent: Var(X + Y) = Var(X) + Var(Y)
In general: Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
covariance: Cov(X,Y) = E(XY) —E(X)E(Y). If
Cov(X,Y) = 0 we say X, Y are uncorrelated
correlation: p(X,Y) = Cov(X,Y)/(o(X)o(Y)) measures
“linear dependence” between X, Y
@ We proved two inequalities:

e Markov: P(|X| > a) < E(|X])/a

@ Chebyshev: P([X — u| > ¢) < 02/¢?
@ The law of large numbers “explains” the relative
frequency definition of probability: it says that if X; are i.i.d.
discrete random variables, then as n — oo,
L(Xqy 4+ +Xn) — win probability; i.e., deviations from p
are still possible, but they are increasingly improbable
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Proof of the Cauchy—Schwarz inequality

The Cauchy—Schwarz inequality says that if x, y are any two
vectors in a positive-definite inner product space, then

[ (x,y)| < [xllyl, where |x| = \/(x,x) is the length.
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Proof of the Cauchy—Schwarz inequality

The Cauchy—Schwarz inequality says that if x, y are any two
vectors in a positive-definite inner product space, then
[ (x,y)| < [xllyl, where |x| = \/(x,x) is the length.

Any two vectors lie on a plane, so let’s pretend we are in R?,
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Proof of the Cauchy—Schwarz inequality

The Cauchy—Schwarz inequality says that if x, y are any two
vectors in a positive-definite inner product space, then

[ (x,y)| < [xllyl, where |x| = \/(x,x) is the length.

Any two vectors lie on a plane, so let’s pretend we are in R?,
and diagonalising (—, —), we take it to be the dot product.
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Proof of the Cauchy—Schwarz inequality

The Cauchy—Schwarz inequality says that if x, y are any two
vectors in a positive-definite inner product space, then

[ (x,y)| < [xllyl, where |x| = \/(x,x) is the length.

Any two vectors lie on a plane, so let's pretend we are in R?,
and diagonalising (—, —), we take it to be the dot product.
In that case,

x-y = [x|[ylcos o,

where 0 is the angle between x and y.
Since |cos 0| < 1, the inequality
follows.
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