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The story of the film so far...
Discrete random variables X1, . . . ,Xn on the same
probability space have a joint probability mass function:

fX1,...,Xn(x1, . . . , xn) = P({X1 = x1} ∩ · · · ∩ {Xn = xn})

fX1,...,Xn : Rn → [0, 1] and
∑
x1,...,xn fX1,...,Xn(x1, . . . , xn) = 1

X1, . . . ,Xn are independent if for all 2 6 k 6 n and
xi1 , . . . , xik ,

fXi1 ,...,Xik (xi1 , . . . , xik) = fXi1 (xi1) . . . fXik (xik)

h(X1, . . . ,Xn) is a discrete random variable and

E(h(X1, . . . ,Xn)) =
∑

x1,...,xn
h(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)

Expectation is linear: E(
∑
i αiXi) =

∑
i αiE(Xi)
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Expectation of a product
Lemma
If X and Y are independent, E(XY) = E(X)E(Y).

Proof.

E(XY) =
∑
x,y
xyfX,Y(x,y)

=
∑
x,y
xyfX(x)fY(y) (independence)

=
∑
x

xfX(x)
∑
y

yfY(y)

= E(X)E(Y)
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E(XY) is an inner product
The expectation value defines a real inner product.

If X, Y are two discrete random variables, let us define 〈X, Y〉 by

〈X, Y〉 = E(XY)

We need to show that 〈X, Y〉 satisfies the axioms of an inner
product:

1 it is symmetric: 〈X, Y〉 = E(XY) = E(YX) = 〈Y,X〉
2 it is bilinear:

〈aX, Y〉 = E(aXY) = aE(XY) = a 〈X, Y〉
〈X1 + X2, Y〉 = E((X1 + X2)Y) = E(X1Y) + E(X2Y) =
〈X1, Y〉+ 〈X2, Y〉

3 it is positive-definite: if 〈X,X〉 = 0, then E(X2) = 0, whence∑
x x

2f(x) = 0, whence xf(x) = 0 for all x. If x 6= 0, then
f(x) = 0 and thus f(0) = 1. In other words, P(X = 0) = 1
and hence X = 0 almost surely.
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Additivity of variance for independent variables
How about the variance Var(X+ Y)?

Var(X+ Y) = E((X+ Y)2) − E(X+ Y)2

= E(X2 + 2XY + Y2) − (E(X) + E(Y))2

= E(X2) + 2E(XY) + E(Y2) − E(X)2 − 2E(X)E(Y) − E(Y)2

= Var(X) + Var(Y) + 2 (E(XY) − E(X)E(Y))

Theorem
If X and Y are independent discrete random variables

Var(X+ Y) = Var(X) + Var(Y)
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Covariance

Definition
The covariance of two discrete random variables is

Cov(X, Y) = E(XY) − E(X)E(Y)

Letting µX and µY denote the means of X and Y, respectively,

Cov(X, Y) = E((X− µX)(Y − µY))

Indeed,

E((X− µX)(Y − µY)) = E(XY) − E(µXY) − E(µYX) + E(µXµY)
= E(XY) − µXµY
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Example (Max and min for two fair dice)
We roll two fair dice. Let X and Y denote their scores.
Independence says that Cov(X, Y) = 0.

Consider however the
new variables U = min(X, Y) and V = max(X, Y):
U 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 2 3 3 3 3
4 1 2 3 4 4 4
5 1 2 3 4 5 5
6 1 2 3 4 5 6

V 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 2 3 4 5 6
3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6
6 6 6 6 6 6 6

E(U) = 91
36 , E(U2) = 301

36 , E(V) = 161
36 , E(V2) = 791

36 , E(UV) = 49
4

=⇒ Var(U) = Var(V) = 2555
1296 and Cov(U,V) =

(
35
36

)2
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Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X, Y) = 0.

Warning
Uncorrelated random variables need not be independent!

Counterexample
Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fX(−x) = fX(x). Let
Y = X2.

Clearly X, Y are not independent: f(x,y) = 0 unless
y = x2 even if fX(x)fY(y) 6= 0. However they are uncorrelated:

E(XY) = E(X3) =
∑
x

x3fX(x) = 0

and similarly E(X) = 0, whence E(X)E(Y) = 0.

José Figueroa-O’Farrill mi4a (Probability) Lecture 9 8 / 23



Definition
Two discrete random variables X and Y are said to be
uncorrelated if Cov(X, Y) = 0.

Warning
Uncorrelated random variables need not be independent!

Counterexample
Suppose that X is a discrete random variable with probability
mass function symmetric about 0; that is, fX(−x) = fX(x). Let
Y = X2.

Clearly X, Y are not independent: f(x,y) = 0 unless
y = x2 even if fX(x)fY(y) 6= 0. However they are uncorrelated:

E(XY) = E(X3) =
∑
x

x3fX(x) = 0

and similarly E(X) = 0, whence E(X)E(Y) = 0.
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An alternative criterion for independence
The above counterexample says that the following implication
cannot be reversed:

X, Y independent =⇒ E(XY) = E(X)E(Y)

However, one has the following

Theorem
Two discrete random variables X and Y are independent if and
only if

E(g(X)h(Y)) = E(g(X))E(h(Y))

for all functions g,h.

The proof is not hard, but we will skip it.
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The Cauchy–Schwarz inequality
Recall that 〈X, Y〉 = E(XY) is an inner product.

Every inner product obeys the Cauchy–Schwarz inequality :

〈X, Y〉2 6 〈X,X〉 〈Y, Y〉

which in terms of expectations is

E(XY)2 6 E(X2)E(Y2)

Now,

Cov(X, Y)2 = E((X− µX)(Y − µY))
2 6 E((X− µX)

2)E((Y − µY)
2)

whence
Cov(X, Y)2 6 Var(X)Var(Y)
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José Figueroa-O’Farrill mi4a (Probability) Lecture 9 10 / 23



The Cauchy–Schwarz inequality
Recall that 〈X, Y〉 = E(XY) is an inner product.
Every inner product obeys the Cauchy–Schwarz inequality :

〈X, Y〉2 6 〈X,X〉 〈Y, Y〉

which in terms of expectations is

E(XY)2 6 E(X2)E(Y2)

Now,

Cov(X, Y)2 = E((X− µX)(Y − µY))
2 6 E((X− µX)

2)E((Y − µY)
2)

whence
Cov(X, Y)2 6 Var(X)Var(Y)
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José Figueroa-O’Farrill mi4a (Probability) Lecture 9 10 / 23



Correlation
Let X and Y be two discrete random variables with means µX
and µY and standard deviations σX, σY .

The correlation ρ(X, Y)
of X and Y is defined by

ρ(X, Y) = Cov(X, Y)
σXσY

From the Cauchy–Schwarz inequality, we see that

ρ(X, Y)2 6 1 =⇒ −1 6 ρ(X, Y) 6 1

Hence the correlation is a number between −1 and 1:

a correlation of 1 suggests a linear relation with positive
slope between X and Y,
whereas a correlation of −1 suggests a linear relation with
negative slope.
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Example (Max and min for two fair dice – continued)
Continuing with the previous example , we now simply compute

ρ(U,V) = Cov(U,V)√
Var(U)Var(V)

=
352

362

/
2555
362 = 35

73 .

Remark
The funny normalisation of ρ(X, Y) is justified by the following:

ρ(αX+ β,γY + δ) = sign(αγ)ρ(X, Y)

which follows from

Cov(αX+ β,γY + δ) = αγCov(X, Y)

and σαX+β = |α|σX and σγY+δ = |γ|σY .
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Markov’s inequality
Theorem (Markov’s inequality)

Let X be a discrete random variable
taking non-negative values.

Then

P(X > a) 6
E(X)
a

Proof.

E(X) =
∑
x>0

xP(X = x) =
∑

06x<a
xP(X = x) +

∑
x>a

xP(X = x)

>
∑
x>a

xP(X = x) >
∑
x>a

aP(X = x) = aP(X > a)
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Example
A factory produces an average of n items every week. What
can be said about the probability that this week’s production
shall be at least 2n items?

Let X be the discrete random variable counting the number of
items produced. Then by Markov’s inequality

P(X > 2n) 6 n

2n = 1
2 .

So I wouldn’t bet on it!

Markov’s inequality is not terribly sharp; e.g.,

P(X > E(X)) 6 1 .

It has one interesting corollary, though.
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Chebyshev’s inequality
Theorem

Let X be a discrete random variable with
mean µ and variance σ2. Then for any
ε > 0,

P(|X− µ| > ε) 6
σ2

ε2

Proof.
Notice that for ε > 0, |X− µ| > ε if and only if (X− µ)2 > ε2,

so

P(|X− µ| > ε) = P((X− µ)2 > ε2)

6
E((X− µ)2)

ε2 =
σ2

ε2 (by Markov’s)
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Example
Back to the factory in the previous example, let the average be
n = 500 and the variance in a week’s production is 100, then
what can be said about the probability that this week’s
production falls between 400 and 600?

By Chebyshev’s,

P(|X− 500| > 100) 6 σ2

1002 = 1
100

whence

P(|X− 500| < 100) = 1 − P(|X− 500| > 100)
> 1 − 1

100 = 99
100 .

So pretty likely!
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The law of large numbers I
Consider a number n of independent discrete random variables
X1, . . . ,Xn with the same probability mass function.

One says
that they are “independent and identically distributed”,
abbreviated “i.i.d.”. In particular, they have the same mean and
variance.
The law of large numbers says that in the limit n→∞,

1
n
(X1 + · · ·+ Xn)→ µ

in probability.
The law of large numbers justifies the “relative frequency”
interpretation of probability. For example, it says that tossing a
fair coin a large number n of times, the proportion of heads will
approach 1

2 in the limit n→∞, in the sense that deviations from
1
2 (e.g., a long run of heads or of tails) will become increasingly
rare.
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100,000 tosses of a fair (?) coin
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The law of large numbers II
Theorem (The (weak) law of large numbers)
Let X1,X2, . . . be i.i.d. discrete random variables with mean µ
and variance σ2 and let Zn = 1

n(X1 + · · ·+ Xn).

Then

∀ε > 0 P(|Zn − µ| < ε)→ 1 as n→∞

Proof.
By linearity of expectation, E(Zn) = µ, and since the Xi are
independent Var(Zn) = 1

n2 Var(X1 + · · ·+ Xn) = σ2
n . By

Chebyshev,

P(|Zn − µ| > ε) 6
σ2

nε2 =⇒ P(|Zn − µ| < ε) > 1 −
σ2

nε2
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The law of large numbers III
We will now justify probability as relative frequency.

Let (Ω,F,P) be a probability space and let A ∈ F be an event.
Let IA denote the indicator variable of A, a discrete random
variable defined by

IA(ω) =

{
1, ω ∈ A
0, ω 6∈ A

The probability mass function f of an indicator variable is very
simple: f(1) = P(A) and hence f(0) = 1 − P(A). Its mean is
given by

µ = E(IA) = 0× f(0) + 1× f(1) = f(1) = P(A)

and its variance by
σ2 = Var(IA) = (0 − µ)2f(0) + (1 − µ)2f(1)

= P(A)2(1 − P(A)) + (1 − P(A))2P(A)
= P(A)(1 − P(A))

José Figueroa-O’Farrill mi4a (Probability) Lecture 9 20 / 23



The law of large numbers III
We will now justify probability as relative frequency.
Let (Ω,F,P) be a probability space and let A ∈ F be an event.

Let IA denote the indicator variable of A, a discrete random
variable defined by

IA(ω) =

{
1, ω ∈ A
0, ω 6∈ A

The probability mass function f of an indicator variable is very
simple: f(1) = P(A) and hence f(0) = 1 − P(A). Its mean is
given by

µ = E(IA) = 0× f(0) + 1× f(1) = f(1) = P(A)

and its variance by
σ2 = Var(IA) = (0 − µ)2f(0) + (1 − µ)2f(1)

= P(A)2(1 − P(A)) + (1 − P(A))2P(A)
= P(A)(1 − P(A))
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The law of large numbers IV

Now imagine repeating the experiment and counting how
many outcomes belong to A.

Let Xi denote the random variable which agrees with the
indicator variable of A at the ith trial.
Then the X1,X2, . . . are i.i.d. discrete random variables,
with mean P(A) and variance P(A)(1 − P(A)).
Let Zn = 1

n(X1 + · · ·+ Xn). What does Zn measure?
Zn measures the proportion of trials with outcomes in A
after n trials. This is what we had originally called N(A)/n.
The law of large numbers says that in the limit as n→∞,
Zn → P(A) in probability.
This makes precise our initial hand-waving argument of
N(A)/n “converging in some way” to P(A).
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Summary
X, Y independent: E(XY) = E(X)E(Y)

E(XY) defines an inner product
X, Y independent: Var(X+ Y) = Var(X) + Var(Y)
In general: Var(X+ Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
covariance: Cov(X, Y) = E(XY) − E(X)E(Y). If
Cov(X, Y) = 0 we say X, Y are uncorrelated
correlation: ρ(X, Y) = Cov(X, Y)/(σ(X)σ(Y)) measures
“linear dependence” between X, Y
We proved two inequalities:

Markov: P(|X| > a) 6 E(|X|)/a
Chebyshev: P(|X− µ| > ε) 6 σ2/ε2

The law of large numbers “explains” the relative
frequency definition of probability:

it says that if Xi are i.i.d.
discrete random variables, then as n→∞,
1
n(X1 + · · ·+ Xn)→ µ in probability; i.e., deviations from µ

are still possible, but they are increasingly improbable
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José Figueroa-O’Farrill mi4a (Probability) Lecture 9 22 / 23



Summary
X, Y independent: E(XY) = E(X)E(Y)
E(XY) defines an inner product
X, Y independent: Var(X+ Y) = Var(X) + Var(Y)
In general: Var(X+ Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
covariance: Cov(X, Y) = E(XY) − E(X)E(Y). If
Cov(X, Y) = 0 we say X, Y are uncorrelated

correlation: ρ(X, Y) = Cov(X, Y)/(σ(X)σ(Y)) measures
“linear dependence” between X, Y
We proved two inequalities:

Markov: P(|X| > a) 6 E(|X|)/a
Chebyshev: P(|X− µ| > ε) 6 σ2/ε2

The law of large numbers “explains” the relative
frequency definition of probability:

it says that if Xi are i.i.d.
discrete random variables, then as n→∞,
1
n(X1 + · · ·+ Xn)→ µ in probability; i.e., deviations from µ

are still possible, but they are increasingly improbable
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José Figueroa-O’Farrill mi4a (Probability) Lecture 9 22 / 23



Summary
X, Y independent: E(XY) = E(X)E(Y)
E(XY) defines an inner product
X, Y independent: Var(X+ Y) = Var(X) + Var(Y)
In general: Var(X+ Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
covariance: Cov(X, Y) = E(XY) − E(X)E(Y). If
Cov(X, Y) = 0 we say X, Y are uncorrelated
correlation: ρ(X, Y) = Cov(X, Y)/(σ(X)σ(Y)) measures
“linear dependence” between X, Y
We proved two inequalities:

Markov: P(|X| > a) 6 E(|X|)/a

Chebyshev: P(|X− µ| > ε) 6 σ2/ε2

The law of large numbers “explains” the relative
frequency definition of probability:

it says that if Xi are i.i.d.
discrete random variables, then as n→∞,
1
n(X1 + · · ·+ Xn)→ µ in probability; i.e., deviations from µ

are still possible, but they are increasingly improbable
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We proved two inequalities:

Markov: P(|X| > a) 6 E(|X|)/a
Chebyshev: P(|X− µ| > ε) 6 σ2/ε2

The law of large numbers “explains” the relative
frequency definition of probability: it says that if Xi are i.i.d.
discrete random variables, then as n→∞,
1
n(X1 + · · ·+ Xn)→ µ in probability;

i.e., deviations from µ

are still possible, but they are increasingly improbable
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Proof of the Cauchy–Schwarz inequality

The Cauchy–Schwarz inequality says that if x,y are any two
vectors in a positive-definite inner product space, then

| 〈x,y〉 | 6 |x||y| , where |x| =
√
〈x, x〉 is the length.

Any two vectors lie on a plane, so let’s pretend we are in R2,
and diagonalising 〈−,−〉, we take it to be the dot product.

In that case,

x · y = |x||y| cos θ ,

where θ is the angle between x and y.
Since | cos θ| 6 1, the inequality
follows. θ x

y

Back to the main story.
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