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Public Service Announcement
Next week it is Innovative Learning Week.

There are no lectures or tutorials for mi4.

The next tutorial will be Tuesday 28 February.
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Continuous random variables I

After discrete random variables, it is now time to study
“continuous” random variables; namely, those taking
values in an uncountable set, e.g., R
For example, choose at random a real number between 0
and 1. What is the probability of choosing 1

7 ?
“At random” means that every number is equally likely, so
the probability of choosing 1

7 is the same as that of any
other number. Let’s call that proability ε. What can ε be?
We can write the certain event [0, 1] as the disjoint union

[0, 1] =
⋃

x∈[0,1]
{x}

We know that P([0, 1]) = 1, but this is not a countable
disjoint union.
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Continuous random variables II
So let us break up [0, 1] into a countable disjoint union:

[0, 1] = A0 ∪
∞⋃
n=1

{
1
n
}

where A0 is simply the complement of {1, 1
2 , 1

3 , . . . }.

Assuming that { 1
n } is an event for all n, we apply P to obtain

1 = P(A0) +
∞∑
n=1

ε

=⇒ ε = 0

This shows, by the way, why one limits the additivity of P to
countable unions; otherwise one would conclude that
P([0, 1]) = 0 — a contradiction.
This argument also shows that any countable subset of R
has zero probability: rationals, algebraic numbers,...
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Continuous random variables III
Definition
A continuous random variable X on a probability space
(Ω,F,P) is a function X : Ω→ R such that for all x ∈ R

1 {X 6 x} is an event, and
2 P(X = x) = 0

Remark
The definition requires {X = x} to be an event. Let’s prove it.

Let Bn = {X 6 x− 1
n } for n = 1, 2, . . . . They are events, whence

so are their union
⋃∞
n=1 Bn = {X < x}, its complement {X > x},

and finally their intersection

{X = x} = {X > x} ∩ {X 6 x} .
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José Figueroa-O’Farrill mi4a (Probability) Lecture 10 5 / 25



Continuous random variables III
Definition
A continuous random variable X on a probability space
(Ω,F,P) is a function X : Ω→ R such that for all x ∈ R

1 {X 6 x} is an event, and
2 P(X = x) = 0

Remark
The definition requires {X = x} to be an event. Let’s prove it.

Let Bn = {X 6 x− 1
n } for n = 1, 2, . . . . They are events, whence

so are their union
⋃∞
n=1 Bn = {X < x}, its complement {X > x},

and finally their intersection

{X = x} = {X > x} ∩ {X 6 x} .
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Example
The probability space modelling the motivating example of
choosing a number at random in [0, 1], is then the triple
(Ω,F,P), where

1 Ω = [0, 1];
2 F consists of the intervals [0,a] with 0 6 a 6 1 together with

and any other subsets they generate by iterating
complementation and countable unions; and

3 P([0,a]) = a.

Definition
The distribution function F of a continuous random variable X
is the function F(x) = P(X 6 x). In the above example, F(x) = x.
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Probability density functions

In this course we will be dealing
exclusively with continuous
random variables whose
distribution function F is given
by integrating a function f:

F(x) =

∫x
−∞ f(y)dy .

The function f is called a
“probability density function”
(p.d.f.) and the function F is
called a “cumulative distribution
function” (c.d.f.).
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PDFs and CDFs
Definition
A probability density function is a function f(x) > 0
normalised such that ∫∞

−∞ f(x)dx = 1

Given f, the non-decreasing function F defined by

F(x) =

∫x
−∞ f(y)dy

is called the cumulative distribution function of f.

Discrete random variables have probability mass functions, but
continuous random variables have probability density
functions.
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Continuous random variables and PDFs
As with discrete random variables, we often just say

Let X be a continuous random variable with probability
density function f(x)...

without specifying the probability space on which X is defined.

The basic property of the probability density function for a
continuous random variable X is that

P(X ∈ A) =
∫
x∈A

f(x)dx

assuming that {X ∈ A} is an event.
This prompts the following

Question
For which subsets A ∈ R is {X ∈ A} an event?
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Borel sets
Such subsets are called Borel sets.

By definition, (−∞, x] is a Borel set for
all x ∈ R.
So are (−∞, x) =

⋃∞
n=1(−∞, x− 1

n ].
By complementation, so are (x,∞) and
[x,∞)

By intersection, [x,y] = (−∞,y] ∩ [x,∞)

and similarly (x,y), [x,y), (x,y],...
The Borel sets are the smallest σ-field
containing the intervals.
In fact, all subsets of R you will ever be
likely to meet are Borel.
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Properties of cumulative distribution functions
Let f be a probability density function with cumulative
distribution function F.

Remember that

F(x) =

∫x
−∞ f(y)dy f(x) > 0 .

Then F satisfies the following properties:

F(−∞) = 0 and F(∞) = 1
if x > y, then F(x) > F(y)
F ′(x) = f(x)

F(b) − F(a) =
∫b
a f(x)dx
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Example (The uniform distribution)
The p.d.f. of the uniform distribution on [a,b] is given by

f(x) =


0, x < a

1
b−a , a 6 x 6 b

0, x > b

and the c.d.f. is given by

F(x) =


0, x < a
x−a
b−a , a 6 x 6 b

1, x > b
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Example (Waiting for the bus)
Between 4pm and 5pm, buses arrive at your stop at 4pm and
then every 15 minutes until 5pm. You arrive at the stop at a
random time between 4pm and 5pm. What is the probability
that you will have to wait at least 5 minutes for the bus?

Your arrival time at the stop is uniformly distributed
between 4pm and 5pm.
You will have to wait at least 5 minutes if you arrive
between the time a bus arrives and 10 minutes after that.
That’s 10 minutes in every 15 minutes, so the probability is
10
15 = 2

3 .
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Example (The standard normal distribution)
The p.d.f. of the standard normal distribution is

f(x) =
1√
2π
e−x

2/2

It is also called a gaussian distribution.
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Example (The standard normal distribution – continued)
The proof that f(x) is a probability density function follows from
a standard trick.

Let

I =
1√
2π

∫∞
−∞ e−x

2/2dx

which we have to show to be equal to 1. We compute I2:

I2 =

( 1√
2π

∫∞
−∞ e−x

2/2dx

)2

=

( 1√
2π

∫∞
−∞ e−x

2/2dx

)( 1√
2π

∫∞
−∞ e−y

2/2dy

)
=

1
2π

x
e−(x2+y2)/2dxdy

where the integral is over the whole (x,y)-plane. We now
change to polar coordinates.
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Example (The standard normal distribution – continued)

x = r cos θ y = r sin θ r > 0 0 6 θ < 2π

so that
x2 + y2 = r2 dxdy = r dr dθ

Into I2,

I2 =
1

2π
x

e−(x2+y2)/2dxdy

=
1

2π

∫2π

θ=0

∫∞
r=0

e−r
2/2r dr dθ

=

∫∞
0
e−r

2/2d(1
2r

2)

=

∫∞
0
e−udu = 1
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Example (The normal distribution)
The normal distribution with parameters µ and σ2 has
probability density function

f(x) =
1

σ
√

2π
e
−

(x−µ)2
2σ2

The standard normal
distribution has µ = 0
and σ = 1. We will see
that µ and σ2 are the
mean and variance,
respectively.
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Example (The error function)
The cumulative distribution function of the normal distribution is

F(x) = 1
2 + 1

2 erf
(
x− µ√

2σ

)

where erf is the error function, defined by

erf(x) = 2√
π

∫x
0
e−t

2
dt
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Example (The exponential distribution)
The p.d.f. of the exponential distribution with parameter λ is

f(x) =

{
λe−λx, x > 0
0, x < 0

and the c.d.f. is given by

F(x) =

{
1 − e−λx, x > 0
0, x < 0
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The exponential distribution has no memory
Let X be exponentially distributed with parameter λ.

Then
P(X 6 x) = F(x) = 1 − e−λx for x > 0, whence

P(X > x) = 1 − P(X 6 x) = e−λx

If x,y > 0, from e−λ(x+y) = e−λxe−λy we have that

P(X > x+ y) = P(X > x)P(X > y)

or equivalently, partitioning Ω = {X > x} ∪ {X 6 x},

P(X > x+ y) = P(X > x+ y | X > x)P(X > x)
+ P(X > x+ y | X 6 x)P(X 6 x)

whence cancelling the P(X > x) from both sides,

P(X > x+ y | X > x) = P(X > y)
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Example
Let X denote the time it takes for a computer programme to
crash

It is sensible to assume that X is exponentially distributed
The conditional probability of it not crashing after a time
x+ y given that it didn’t crash after a time x is
P(X > x+ y | X > x)

which was shown to equal P(X > y)
which is the probability of not crashing after a time y
so the fact that it didn’t crash for a time x is of no relevance
i.e., the exponential distribution simply does not remember
that fact.
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Expectations
Let X be a continuous random variable with probability density
function f(x).

Then we define its expectation (or mean) by

E(X) =
∫∞
−∞ xf(x)dx

(provided the integral exists)

Notice that if f is symmetric, so that f(−x) = f(x), then
E(X) = 0.

Example (The mean of the exponential distribution)
Let X be exponentially distributed with parameter λ. Then

E(X) =
∫∞

0
xλe−λxdx = λ

∫∞
0
xe−λxdx

= −λ
d

dλ

∫∞
0
e−λxdx = −λ

d

dλ

1
λ
=

1
λ
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Example (The mean of the uniform distribution)
Let X be uniformly distributed in [a,b].

Then

E(X) =
∫b
a

x

b− a
dx = 1

2(b−a) x
2
∣∣∣b
a
=
b2 − a2

2(b− a) =
b+ a

2

In other words, the mean is the midpoint in the interval.

Example (Waiting for the bus – continued)
In the example about waiting for the bus , what is your expected
waiting time?
Your expected arrival time is uniformly distributed, but you are
interested in the expectatation of the waiting time. Because of
the periodicity of the buses, it is enough to consider a
15-minute interval: 4pm-4:15pm, say. Then the waiting time is
the same as the arrival time, and hence the expectation is the
midpoint of the interval, so 7 1

2 minutes.
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Example (The mean of the normal distribution)
Let X be normally distributed with parameters µ and σ2.

Then

E(X) =
1

σ
√

2π

∫∞
−∞ xe−(x−µ)2/2σ2

dx

We change coordinates to y = x− µ, so that

E(X) =
1

σ
√

2π

∫∞
−∞(y+ µ)e−y

2/2σ2
dy

=
1

σ
√

2π

∫∞
−∞ ye−y

2/2σ2
dy+

1
σ
√

2π

∫∞
−∞ µe−y

2/2σ2
dy

= 0 + µ = µ

where the first term vanishes because of symmetric integration
and the second equals µ by using the normalisation of the
normal probability density function.
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Summary
X a continuous random variable: for all x, {X 6 x} is an
event and P(X = x) = 0

Continuous random variables have continuous
distribution functions F(x) = P(X 6 x)
F is often defined by a probability density function f:

F(x) =

∫x
−∞ f(y)dy f(x) > 0

∫∞
−∞ f(x)dx = 1

and is called a cumulative distribution function
We have met several probability density functions:

uniform: f(x) = 1
b−a for x ∈ [a,b]

normal: f(x) = 1
σ
√

2πe
−(x−µ)2/2σ2

exponential: f(x) = λe−λx for x > 0

(has no memory!)

The mean µ =
∫∞
−∞ xf(x)dx, and equals a+b

2 , µ and 1
λ for

the above p.d.f.s, respectively.
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