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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0

@ (Some) continuous random variables have probability
density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0
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density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0

@ (Some) continuous random variables have probability
density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:

e uniform: f(x) = ;' for x € [a, b]
e normal: f(x) = %\/ﬁe,(,{,uﬁ/ggz
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0

@ (Some) continuous random variables have probability
density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:

e uniform: f(x) = ;' for x € [a, b]
e normal: f(x) = %me*("*“’z/z"z
e exponential: f(x) =Ae ™ forx >0
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0

@ (Some) continuous random variables have probability
density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:

e uniform: f(x) = ;' for x € [a, b]
e normal: f(x) = %me*("*“’z/zﬁz
e exponential: f(x) = Ae~** for x > 0 (has no memory!)
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The real story of the film so far...

@ X a continuous random variable: for all x, {X < x}is an
eventand P(X =x) =0

@ (Some) continuous random variables have probability
density functions f such that

@ F(x) = P(X < x) is the cumulative distribution function
@ We have met several probability density functions:

e uniform: f(x) = ;' for x € [a, b]
o normal: f(x) = —L—e~(x~1%/2"
e exponential: f(x) = Ae~** for x > 0 (has no memory!)
@ The mean p = [*_xf(x)dx, and equals “°, wand 1 for
the above p.d.f.s, respectively.
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We will usually let f and F denote the probability density and
cumulative distribution functions, respectively, of a continuous
random variable.
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We will usually let f and F denote the probability density and
cumulative distribution functions, respectively, of a continuous
random variable.

However in the case of the standard normal distribution, we
will use the notation ¢ and @ instead.
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We will usually let f and F denote the probability density and
cumulative distribution functions, respectively, of a continuous
random variable.

However in the case of the standard normal distribution, we
will use the notation ¢ and @ instead. In other words,

—

and

There is no closed formula for @, but there are standard tables:
one such table has been uploaded to WebCT.
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Functions of a random variable

@ Let X be a continuous random variable with probability
density function f
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Functions of a random variable

@ Let X be a continuous random variable with probability
density function f

@ Let g: R — R be a function; e.g., g(x) = x?
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Functions of a random variable

@ Let X be a continuous random variable with probability
density function f

@ Let g: R — R be a function; e.g., g(x) = x?

@ Let Y = g(X) be defined by Y(w) = g(X(w))
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Functions of a random variable
@ Let X be a continuous random variable with probability
density function f
@ Let g: R — R be a function; e.g., g(x) = x?
@ Let Y = g(X) be defined by Y(w) = g(X(w))

@ Then for many functions g, Y is again a continuous random
variable
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Functions of a random variable
@ Let X be a continuous random variable with probability
density function f
@ Let g: R — R be a function; e.g., g(x) = x?
@ Let Y = g(X) be defined by Y(w) = g(X(w))
@ Then for many functions g, Y is again a continuous random
variable

@ ltis possible to determine the probability density function of
Y, by first computing the (cumulative) distribution function
P(Y <y)
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Functions of a random variable
@ Let X be a continuous random variable with probability
density function f
@ Let g: R — R be a function; e.g., g(x) = x?
@ Let Y = g(X) be defined by Y(w) = g(X(w))
@ Then for many functions g, Y is again a continuous random
variable

@ ltis possible to determine the probability density function of
Y, by first computing the (cumulative) distribution function
P(Y <y)

@ Although one can derive some general formulae for certain
kinds of functions g, it is perhaps better to do a couple of
examples
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Example (A gamma distribution)

Let X be normally distributed with parameters p = 0 and o°.
What is the probability density function of Y = X2?

José Figueroa-O’Farrill mida (Probability) Lecture 11 5/24



Example (A gamma distribution)

Let X be normally distributed with parameters p = 0 and o°.
What is the probability density function of Y = X2?

We start by calculating the cumulative distribution function
Fy(y) = P(Y < y), which is only nonzero for y > 0.
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Example (A gamma distribution)

Let X be normally distributed with parameters p = 0 and o°.
What is the probability density function of Y = X2?

We start by calculating the cumulative distribution function
Fy(y) = P(Y < y), which is only nonzero for y > 0.

P(Y <y) =P(X% <y) =P(—vy < X < VA)
)

—P(X < vJ) —PX <~y
_ J\/g 1 7"2/2“2d vy o1 efx2/262dx
—o0 OV 2T —x O0V2Tm
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Example (A gamma distribution)

Let X be normally distributed with parameters p = 0 and o°.
What is the probability density function of Y = X2?

We start by calculating the cumulative distribution function
Fy(y) = P(Y < y), which is only nonzero for y > 0.

P(Y <y) =P(X®2 <y) =P(—J < X < V)
=P(X f) P(X < —1)

— 2/20‘ d _J 7X2/20‘2d
J 0 UV x —c0 O 27'[6 *
The probability density function fy(y) = F{ (y), whence by the
chain rule,
1 2 1
fy(y) = ——e Y2 —  fory>0
Y(U) O'\/Z \/g Yy

This is a special case of the “gamma” distribution.
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Example (The log-normal distribution)

Let X be normally distributed with parameters p and 2. What is
the probability density function of Y = eX?
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Example (The log-normal distribution)

Let X be normally distributed with parameters p and 2. What is
the probability density function of Y = eX?
Let us calculate P(Y < y), which is only nonzero for y > 0.

P(Y <y) =P(e* <y)
=P(X <logy)

lo
ng 1 —(—w2/20% g,

—x O0V2T
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Example (The log-normal distribution)

Let X be normally distributed with parameters p and 2. What is
the probability density function of Y = eX?
Let us calculate P(Y < y), which is only nonzero for y > 0.

P(Y <y) =P(e* <y)

=P(X <logy)
|
— Jogy L e (x—w)?/20% 4y
—0 OV2T
whence
1 7“0 _ )2/20.2 1
fy(y) = —==e 1O9Y~H — fory >0
oVen y

José Figueroa-O’Farrill mida (Probability) Lecture 11 6/24



Expectation of a function of a random variable
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Expectation of a function of a random variable

@ As before, X is a continuous random variable with
probability density function fx
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Expectation of a function of a random variable

@ As before, X is a continuous random variable with
probability density function fx

@ Then the expectation value E(Y) of Y = g(X) is given by

(assuming the integral exists)
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Expectation of a function of a random variable

@ As before, X is a continuous random variable with
probability density function fx

@ Then the expectation value E(Y) of Y = g(X) is given by

(assuming the integral exists)

@ For example,
E(X?) :J X2 f(x)dx

and

(provided the integrals exist)
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Variance of a continuous random variable
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Variance of a continuous random variable
Let X be a continuous random variables with mean u = E(X).
We define the variance of X by

Var(X) = E(X?) — u? = E((X — n)?)
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Variance of a continuous random variable
Let X be a continuous random variables with mean u = E(X).
We define the variance of X by

Var(X) = E(X?) — u? = E((X — n)?)

The standard deviation is the (+ve) square-root of the
variance.
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Variance of a continuous random variable

Let X be a continuous random variables with mean u = E(X).
We define the variance of X by

Var(X) = E(X?) — u? = E((X — n)?)

The standard deviation is the (+ve) square-root of the
variance.

Example (Variance of uniform distribution)

Let X be uniformly distributed in [a, b], so E(X) = %(a +b).
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Variance of a continuous random variable

Let X be a continuous random variables with mean u = E(X).
We define the variance of X by

Var(X) = E(X?) — u? = E((X — n)?)

The standard deviation is the (+ve) square-root of the
variance.

Example (Variance of uniform distribution)

Let X be uniformly distributed in [a, b], so E(X) = %(a +b). Then

b 2 1.3
X aX
]E(Xz):J dx = -2
ab—a b—a

1b3—a3
S b—a

(a® + ab + b?)

|
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Variance of a continuous random variable

Let X be a continuous random variables with mean u = E(X).
We define the variance of X by

Var(X) = E(X?) — u? = E((X — n)?)

The standard deviation is the (+ve) square-root of the
variance.

Example (Variance of uniform distribution)

Let X be uniformly distributed in [a, b], so E(X) = %(a +b). Then

b 2 1.3
3

X
E(X?) :J x
ab—a b—a

whence




Example (Variance of exponential distribution)

Let X be exponentially distributed with parameter A, so
E(X) = 1.
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Example (Variance of exponential distribution)

Let X be exponentially distributed with parameter A, so
E(X) = 1. Then

E(X?) :J x2he M dx

0
2 oo
=7\dzj e Mdx
dA= Jo
a4 2
T UdA2N A2
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Example (Variance of exponential distribution)

Let X be exponentially distributed with parameter A, so
E(X) = 1. Then

E(X?) :J x2he M dx
0

d2 00
=7\J e Mdx

da2 Jo
2
whence
Var(X) = E(X?) — u2 = }\27 — }\lz = %2
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Example (Variance of normal distribution)
Let X be normally distributed with parameters © = E(X) and o.
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Example (Variance of normal distribution)

Let X be normally distributed with parameters © = E(X) and o.
° 1 2 2
(X) =E((X—p)*) 700( u)m/?ﬂ
_ 1 [00 yze_y2/26 dy (y o ll)
oV2n )«
= 762 - uZe /24y (u=1y/0)
V21 ) - Y
2 %)
— _GJ uie—u /2 du
2n ) du
2 %)
__ 9 A w2\ w22
T Von LX, [du (“e ) cu
0.2 )
== e W /2qu = o
27 )
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Example (Variance of normal distribution)
Let X be normally distributed with parameters © = E(X) and o.

*© 1 2 2
(X) (X—=p)9) 700( 1) o
1 L, 2
= e y /20— d = x—
0‘\/27’[[009 Y (y K
—762 ” uZe /24y (u=1y/0)
Vo) Yy

Thus o is the standard deviation.
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Moment generating functions
Let X be a continuous random variable with probability density
function f.
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Moment generating functions
Let X be a continuous random variable with probability density
function f. The moment generating function (m.g.f.) Mx(t)
is defined by

Mx(t) = E(e*X) = JOO e™f(x)dx

(for those values of t for which the integral converges)
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Moment generating functions
Let X be a continuous random variable with probability density

function f. The moment generating function (m.g.f.) Mx(t)
is defined by

Mx(t) = E(e*X) = J e™f(x)dx
(for those values of t for which the integral converges)

Example (M.g.f. for uniform distribution)
Let X be uniformly distributed in [a, b].
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Moment generating functions

Let X be a continuous random variable with probability density
function f. The moment generating function (m.g.f.) Mx(t)
is defined by

Mx(t) = E(e*X) = J e™f(x)dx
(for those values of t for which the integral converges)
Example (M.g.f. for uniform distribution)
Let X be uniformly distributed in [a,b]. Then

b _tx tx b tb ta
@ @ e — (&
x(t) Lbax t(b— a) t(b— a)

=1+3(a+b)t+i(a®+ab+b?)t2+.

a
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Moment generating functions

Let X be a continuous random variable with probability density
function f. The moment generating function (m.g.f.) M

is defined by
Mx(t) = E(e*X) = J e™f(x)dx
(for those values of t for which the integral converges)
Example (M.g.f. for uniform distribution)
Let X be uniformly distributed in [a,b]. Then

b etb_eta
dx =
ab—a tb—a)|, tb—a)

=1+ 3(a+b)t+L(a®+ab+b?)t?+

Mx (t) =

J'b etx etx

whence E(X) = 1(a+b) and E(X?) = 1(a® + ab + b?), a
computed earlier.
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Example (M.g.f. for exponential distribution)

Let X be exponentially distributed with mean %
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Example (M.g.f. for exponential distribution)

Let X be exponentially distributed with mean %

o
Mx (1) —J e Ae M dx
0

= AJOO e M xax
0
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Example (M.g.f. for exponential distribution)

Let X be exponentially distributed with mean %

o
Mx (1) —J e Ae M dx
0

= AJOO e M xax
0

—1+7t+1—t +
- A A2

whence E(X) = 1 and E(X?) = 5 as computed earlier.
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Example (M.g.f. for exponential distribution)

Let X be exponentially distributed with mean %

o
Mx (1) —J e Ae M dx
0

= Aro e M xax
0

—1+7t+1—t +
- A A2

whence E(X) = 1 and E(X?) = 5 as computed earlier.

Notice that Mx (t) = 1+ pt + 3 (u? + 0?)t2 + - --

José Figueroa-O’Farrill mida (Probability) Lecture 11 12/24



Example (M.g.f. for normal distribution)

Let X be normally distributed with mean p and variance o?.
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Example (M.g.f. for normal distribution)

Let X be normally distributed with mean p and variance o?.
& 1 2 /542
Mx (t) :J —etxe (x—1)*/20% g5
—c0 OV 27T
tu 00
€ ty o—y?/20%
=——| eVe dy (y=x—n
U\/Zf Joo
i Jm o~ (VP—20%ty)/20% g
oV 27 J—co
1 2n2
_ ethtzot J»oo e—(y—czt)2/202dy
ovV2n J-wo
tu+10'2t2 00
e 2
= J e v/20% gy (u=y — c°t)
ovV2n J-wo
— etutio?t?
=1+pt+ (o2 +p2)t2+- .



Some properties of mean and variance
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Some properties of mean and variance

Let X be a continuous random variable. Then provided that
E(X) and E(X?) exist, we have for all a,b € R,
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Some properties of mean and variance

Let X be a continuous random variable. Then provided that
E(X) and E(X?) exist, we have for all a,b € R,

Q@ E(aX+b)=aE(X)+Db
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Some properties of mean and variance

Let X be a continuous random variable. Then provided that
E(X) and E(X?) exist, we have for all a,b € R,

Q@ E(aX+b)=aE(X)+Db
© Var(aX+b) = a? Var(X)
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Some properties of mean and variance

Let X be a continuous random variable. Then provided that
E(X) and E(X?) exist, we have for all a,b € R,

Q@ E(aX+b)=aE(X)+Db
© Var(aX+b) = a? Var(X)

@ follows by linearity of integration:

(o0} (0.9} (0.9}

xf(x)dx + b J f(x)dx

—0Q

E(aX+b) :J

—0o0

(ax + b)f(x)dx = aJ

—0Q0

=aE(X)+Db
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Some properties of mean and variance

Let X be a continuous random variable. Then provided that
E(X) and E(X?) exist, we have for all a,b € R,

Q@ E(aX+b)=aE(X)+Db
© Var(aX+b) = a? Var(X)

@ follows by linearity of integration:

(o0} (0.9} (0.9}

xf(x)dx + b J f(x)dx

—0Q

E(aX+b) :J

—0o0

(ax + b)f(x)dx = aJ

—0Q0

=aE(X)+Db

Q follows from Var(Y) = E((Y — uy)?) with Y = aX + b
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Standardising the normal distribution
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Standardising the normal distribution

Let X be normally distributed with parameters u and o. Then
Y= %(X — u) has as p.d.f. a standard normal distribution.
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Standardising the normal distribution

Let X be normally distributed with parameters u and o. Then
Y= %(X — u) has as p.d.f. a standard normal distribution.

It follows from the previous theorem that Y has mean
E(Y) = L(E(X) — u) = 0 and variance Var(Y) = J; Var(X) = 1,
just like the standard normal distribution.
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Standardising the normal distribution

Let X be normally distributed with parameters u and o. Then
Y= %(X — u) has as p.d.f. a standard normal distribution.

It follows from the previous theorem that Y has mean

E(Y) = L(E(X) — u) = 0 and variance Var(Y) = J; Var(X) = 1,
just like the standard normal distribution. Moreover the
moment generating function

My(t) = E(e0XW/7) = emW/Tp (£) = e3

which is the moment generating function of the standard normal
distribution.
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Standardising the normal distribution

Let X be normally distributed with parameters u and o. Then
Y= %(X — u) has as p.d.f. a standard normal distribution.

It follows from the previous theorem that Y has mean

E(Y) = L(E(X) — u) = 0 and variance Var(Y) = J; Var(X) = 1,
just like the standard normal distribution. Moreover the
moment generating function

My(t) = E(e0XW/7) = emW/Tp (£) = e3

which is the moment generating function of the standard normal
distribution. This makes the theorem plausible, but we wish to
prove it.
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We will instead show directly that Y has the cumulative
distribution function of a standard normal distribution:
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We will instead show directly that Y has the cumulative
distribution function of a standard normal distribution:

P(Y<y)=P(I(X—n<y)
=P(X<oy+u
Jm‘”” 1T ——m2/20% g,

—00 oV 2mn
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We will instead show directly that Y has the cumulative
distribution function of a standard normal distribution:
P(Y <y) =P(Z(X—p) <y)
=P(X<oy+u
= J'UIJJ’»LL 41 ef(xfu)z/zo-zdx
—o00 oV 27'[
Y 1
:J e v /2qu (u=1(x—p)
—00 27'[
whence P(Y < y) = @ (y). O
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We will instead show directly that Y has the cumulative
distribution function of a standard normal distribution:
P(Y <y) =P(Z(X—p) <y)
=P(X<oy+u
= J'UIJJ’»LL 41 ef(xfu)z/zo-zdx
—o00 oV 27'[
Y 1
:J e v /2qu (u=1(x—p)
—00 27'[
whence P(Y < y) = @ (y). O

The usefulness of this result is that if X is normally distributed,
P(IX—ul <co) =P(]Y] < c)

where ¢ > 0 is some constantand Y = %(X — ).
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Example (The standard error)

Let X be normally distributed with mean p and variance o2. For
which value of ¢ > 0is P(X — | < co) =0.5?
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Example (The standard error)

Let X be normally distributed with mean p and variance o2. For
which value of ¢ > 0is P(X — | < co) =0.5?

This is the same c for which P(|Y| < ¢) = 0.5, where

Y = (X — ) has a standard normal distribution:
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Example (The standard error)

Let X be normally distributed with mean p and variance o2. For
which value of ¢ > 0is P(X — | < co) =0.5?

This is the same c for which P(|Y| < ¢) = 0.5, where

Y = (X — ) has a standard normal distribution:

©
P(mst:jzfj /24y
T J—c
1 (¢ e
:2J v7/2q
Ven Oe Y
T 2
2| L
Tt —00 —o00
=2D(c) —1
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Example (The standard error)

Let X be normally distributed with mean p and variance o2. For
which value of ¢ > 0is P(X — | < co) =0.5?

This is the same c for which P(|Y| < ¢) = 0.5, where

Y = (X — ) has a standard normal distribution:

1 ¢ _ 2/2
PV <c)=—— | e v/2dy
—©

Van

1 (¢ 2
:2J v7/2q

Van Oe )

T 2
2| L

7T —00 —00
=2D(c) —1

Therefore P(]Y| < ¢) = 0.5 if and only if ®(c) = 0.75.
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Example (The standard error — continued)

N

sNlafarwio=b

.5000
.5398
5793
6179
.6554
6915
7257
7580

man

.5040
.5438
5832
6217
6591
.6950
.7291
7611

mnen

.5080
.5478
.5871
.6255
.6628
.6985
1324
7642

ET.E7N

5120
5517
.5910
.6293
.6664
.7019
.7357
7673

PP

5160
5557
.5948
6331
6700
7054
7389
7703

PPV

.5199
.5596
.5987
.6368
6736
.7088
7422
1734

Aasa

.5239
.5363
.6026
.6406
6772
7123
7454
7764

Ans

.7

.5279
5675
.6064
.6443
.6808

Anmn

5359
5753
6141
6517
.6879
7224
7549
.7852

P,
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Example (The standard error — continued)

N
(=]

.5000
.5398
5793
6179
.6554
6915
7257
7580

man

sNlafarwio=b

From the tables, ®(0.67) = 0.7486

.5040
.5438
5832
6217
6591
.6950
.7291
7611

mnen

.5080
.5478
.5871
.6255
.6628
.6985
1324
7642

ET.E7N

and ©(0.68) = 0.7517

5120
5517
.5910
.6293
.6664
.7019
.7357
7673

PP

5160
5557
.5948
6331
6700
7054
7389
7703

PPV

.5199
.5596
.5987
.6368
6736
.7088
7422
1734

Aasa

.5239
.5363
.6026
.6406
6772
7123
7454
7764

Ans

.7

.5279
5675
.6064
.6443
.6808

Anmn

5359
5753
6141
6517
.6879
7224
7549
.7852

P,
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Example (The standard error — continued)

z 0 1 2 3 4 5 6 7 3 9
0 | .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
.1 5398 5438 .5478 .5517 .5557 .5596 .5363 .5675 .5714 .5753
2 | .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
3 6179 6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
4 6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
5 6915 .6950 .6985 .7019 .7054 .7088 .7123 7224
.6 7257 .7291 7324 (7357 .7389 7422 .7454 (.7 .7549
q 7580 .7611 .7642 .7673 .7703 .7734 .7764 7852
) mona ;A ELC Y -~ LYY nAasa fAAm. A e EYE L)

From the tables, ®(0.67) = 0.7486 AT

and ©(0.68) =0.7517, and by

linear interpolation

®(0.6745) ~ 0.75. AT

0.7486

0.67
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Example (The standard error — continued)

N
(=]
—
8]
w
-
w
[
~
-]

.5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319
5398 .5438 .5478 .5517 .5557 .5596 .5363 .5675 .5714
5793 5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103
6179 6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480
.6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844
6915 .6950 .6985 .7019 .7054 .7088 .7123
7257 7291 7324 7357 (7389 7422 .7454
7580 .7611 .7642 .7673 .7703 .7734 .7764

man mAsA  mAYn  mAcm  mAne Aasa Ans Anma  Aaa-

.7

sNlafarwio=b

From the tables, ®(0.67) = 0.7486 AT
and ©(0.68) =0.7517, and by

linear interpolation

®(0.6745) ~ 0.75. The number 07
0.67450¢ is called the standard

error: 50% of outcomes lie within

a standard error of the mean. 07486

5359
5753
6141
6517
.6879
7224
7549
.7852

P,

0.67 0.6745
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10, 20 and 3o
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10, 20 and 3o

P(X—ul <o) =20(1) -1
~ 0.6826
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10, 20 and 3o

P(X—ul <o) =20(1) -1
~ 0.6826

P(X —pl <20) =20(2) -1
~ 0.9544
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10, 20 and 3o

P(X—ul <o) =20(1) -1
~ 0.6826

P(X —pl <20) =20(2) -1
~ 0.9544

P(IX — | < 30) =20(3) — 1
~ 0.9974
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Maximum entropy and the normal distribution

The normal distribution is perhaps the single most important
probability density function. This is due to two key results:

@ the central limit theorem (see later!), and

José Figueroa-O’Farrill mida (Probability) Lecture 11 20/24



Maximum entropy and the normal distribution

The normal distribution is perhaps the single most important
probability density function. This is due to two key results:
@ the central limit theorem (see later!), and
© the maximum entropy principle.
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Maximum entropy and the normal distribution

The normal distribution is perhaps the single most important
probability density function. This is due to two key results:
@ the central limit theorem (see later!), and
© the maximum entropy principle.

@ Suppose that all you know about a continuous random
variable is its mean (i) and variance (o?).
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Maximum entropy and the normal distribution
The normal distribution is perhaps the single most important
probability density function. This is due to two key results:

@ the central limit theorem (see later!), and
© the maximum entropy principle.

@ Suppose that all you know about a continuous random
variable is its mean (i) and variance (o?).

@ In the absence of any more information, how are we to
model this random variable?
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Maximum entropy and the normal distribution
The normal distribution is perhaps the single most important
probability density function. This is due to two key results:

@ the central limit theorem (see later!), and
© the maximum entropy principle.

@ Suppose that all you know about a continuous random
variable is its mean (i) and variance (o?).

@ In the absence of any more information, how are we to
model this random variable?

@ |s there a criterion to choose among all the probability
density functions with those same mean and variance?
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Maximum entropy and the normal distribution
The normal distribution is perhaps the single most important
probability density function. This is due to two key results:

@ the central limit theorem (see later!), and
© the maximum entropy principle.

@ Suppose that all you know about a continuous random
variable is its mean (i) and variance (o?).

@ In the absence of any more information, how are we to
model this random variable?

@ |s there a criterion to choose among all the probability
density functions with those same mean and variance?

@ There is indeed: Shannon’s maximum entropy principle.
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Shannon’s maximum entropy principle
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Shannon’s maximum entropy principle

Shannon argued that the “least biased”
or “most generic” p.d.f. is the one with
maximum entropy

H(f) = — Joo f(x) log f(x)dx

—00
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Shannon’s maximum entropy principle

Shannon argued that the “least biased”
or “most generic” p.d.f. is the one with
maximum entropy

H(f) = J f(x) log f(x)dx
It can be proved (using the variational
calculus) that among all the p.d.f.s with
mean p, the one with maximum entropy
is the exponential distribution, whereas

among those which in addition have
variance o2, it is the normal distribution.
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Shannon’s maximum entropy principle

Shannon argued that the “least biased”
or “most generic” p.d.f. is the one with
maximum entropy

H(f) = J f(x) log f(x)dx
It can be proved (using the variational
calculus) that among all the p.d.f.s with
mean p, the one with maximum entropy
is the exponential distribution, whereas

among those which in addition have

variance o2, it is the normal distribution.
Their entropies are given by

—_

Hexp = 1+logu Hpormal = 5 (1 +10g(27)) + log o

2

José Figueroa-O’Farrill mida (Probability) Lecture 11 21/24



Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard
deviation is 15.
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Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard
deviation is 15. One of the many short-lived high-1Q societies
was the Four Sigma Society, active for a few years in the late

1970s and early 1980s.
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Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard
deviation is 15. One of the many short-lived high-1Q societies
was the Four Sigma Society, active for a few years in the late
1970s and early 1980s. As the name suggests, the entrance
requirement was an IQ of at least 160.

José Figueroa-O’Farrill mida (Probability) Lecture 11 22/24



Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard
deviation is 15. One of the many short-lived high-1Q societies
was the Four Sigma Society, active for a few years in the late
1970s and early 1980s. As the name suggests, the entrance
requirement was an IQ of at least 160. What percentage of the
population could apply for membership?
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Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard
deviation is 15. One of the many short-lived high-1Q societies
was the Four Sigma Society, active for a few years in the late
1970s and early 1980s. As the name suggests, the entrance
requirement was an IQ of at least 160. What percentage of the

population could apply for membership?

IQ—-100
15
—JOO1 e /24y
4 V2m
=1-Dd(4)

=1 Terf(2v2) ~ 5l

P(1Q > 160) = P( >4)
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Example (The Four Sigma Society)

IQ tests are designed so that the mean is 100 and the standard

deviation is 15. One of the many short-lived high-1Q societies
was the Four Sigma Society, active for a few years in the late
1970s and early 1980s. As the name suggests, the entrance
requirement was an IQ of at least 160. What percentage of the
population could apply for membership?

IQ—-100
15
—JOO1 e /24y
4 V2m
=1-Dd(4)

=1 Terf(2v2) ~ 5l

P(1Q > 160) = P( >4)

So about 1 in every 30,000 people. (cf. Mensa’s 1 in 50.)
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
Let X denote the length (in days) of gestation.
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
Let X denote the length (in days) of gestation. Then we are
after the probability that 260 < X < 2883.
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
Let X denote the length (in days) of gestation. Then we are
after the probability that 260 < X < 283. Let us standardise X to
Y = (X —270)
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
Let X denote the length (in days) of gestation. Then we are
after the probability that 260 < X < 283. Let us standardise X to
Y= 11—0(X —270) and compute the probability that —1 <Y < 1.3
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Example (Alice and Bob’s first child)

Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?
Let X denote the length (in days) of gestation. Then we are
after the probability that 260 < X < 283. Let us standardise X to
Y= 11—0(X —270) and compute the probability that —1 <Y < 1.3:

P(—1 <Y <1.3) =P(Y < 1.3) —P(Y < —1)

=0(1.3) —d(—-1)
~ 0.9032 — 0.1587
~ 0.7445
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?
@ We calculated the variances of the uniform, exponential
and normal distributions
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?

@ We calculated the variances of the uniform, exponential
and normal distributions

@ introduced the moment generating function and saw the
usual examples: uniform, exponential and normal
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?

@ We calculated the variances of the uniform, exponential
and normal distributions

@ introduced the moment generating function and saw the
usual examples: uniform, exponential and normal

@ if X normally distributed with mean p and variance o2,
Y = 1(X — ) has standard normal distribution
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?

@ We calculated the variances of the uniform, exponential
and normal distributions

@ introduced the moment generating function and saw the
usual examples: uniform, exponential and normal

@ if X normally distributed with mean p and variance o2,
Y = 1(X — ) has standard normal distribution

@ introduced the standard error and gained some intuition
for 10, 20 and 3o in a normal distribution
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Summary

@ If X is a continuous random variable with probability density
function f, then for any function g: R — R

@ The variance is Var(X) = E(X2) — E(X)?

@ We calculated the variances of the uniform, exponential
and normal distributions

@ introduced the moment generating function and saw the
usual examples: uniform, exponential and normal

@ if X normally distributed with mean p and variance o2,
Y = 1(X — ) has standard normal distribution

@ introduced the standard error and gained some intuition
for 10, 20 and 3o in a normal distribution

@ motivated exponential and normal distributions from
Shannon’s maximum entropy principle
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