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The real story of the film so far...

X a continuous random variable: for all x, {X 6 x} is an
event and P(X = x) = 0

(Some) continuous random variables have probability
density functions f such that

P(X 6 x) =
∫x
−∞ f(y)dy f(x) > 0

∫∞
−∞ f(x)dx = 1

F(x) = P(X 6 x) is the cumulative distribution function
We have met several probability density functions:

uniform: f(x) = 1
b−a for x ∈ [a,b]

normal: f(x) = 1
σ
√

2πe
−(x−µ)2/2σ2

exponential: f(x) = λe−λx for x > 0

(has no memory!)

The mean µ =
∫∞
−∞ xf(x)dx, and equals a+b

2 , µ and 1
λ for

the above p.d.f.s, respectively.
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Notation
We will usually let f and F denote the probability density and
cumulative distribution functions, respectively, of a continuous
random variable.

However in the case of the standard normal distribution, we
will use the notation ϕ and Φ instead. In other words,

ϕ(x) =
1√
2π
e−

1
2x

2

and
Φ(x) =

∫x
−∞ϕ(u)du .

There is no closed formula for Φ, but there are standard tables:
one such table has been uploaded to WebCT.
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Functions of a random variable
Let X be a continuous random variable with probability
density function f

Let g : R→ R be a function; e.g., g(x) = x2

Let Y = g(X) be defined by Y(ω) = g(X(ω))

Then for many functions g, Y is again a continuous random
variable
It is possible to determine the probability density function of
Y, by first computing the (cumulative) distribution function
P(Y 6 y)

Although one can derive some general formulae for certain
kinds of functions g, it is perhaps better to do a couple of
examples
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Example (A gamma distribution)
Let X be normally distributed with parameters µ = 0 and σ2.
What is the probability density function of Y = X2?

We start by calculating the cumulative distribution function
FY(y) = P(Y 6 y), which is only nonzero for y > 0.

P(Y 6 y) = P(X2 6 y) = P(−
√
y 6 X 6

√
y)

= P(X 6
√
y) − P(X 6 −

√
y)

=

∫√y
−∞

1
σ
√

2π
e−x

2/2σ2
dx−

∫−√
y

−∞
1

σ
√

2π
e−x

2/2σ2
dx

The probability density function fY(y) = F ′Y(y), whence by the
chain rule,

fY(y) =
1

σ
√

2π
e−y/2σ2 1

√
y

for y > 0

This is a special case of the “gamma” distribution.

José Figueroa-O’Farrill mi4a (Probability) Lecture 11 5 / 24



Example (A gamma distribution)
Let X be normally distributed with parameters µ = 0 and σ2.
What is the probability density function of Y = X2?
We start by calculating the cumulative distribution function
FY(y) = P(Y 6 y), which is only nonzero for y > 0.

P(Y 6 y) = P(X2 6 y) = P(−
√
y 6 X 6

√
y)

= P(X 6
√
y) − P(X 6 −

√
y)

=

∫√y
−∞

1
σ
√

2π
e−x

2/2σ2
dx−

∫−√
y

−∞
1

σ
√

2π
e−x

2/2σ2
dx

The probability density function fY(y) = F ′Y(y), whence by the
chain rule,

fY(y) =
1

σ
√

2π
e−y/2σ2 1

√
y

for y > 0

This is a special case of the “gamma” distribution.
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Example (The log-normal distribution)
Let X be normally distributed with parameters µ and σ2. What is
the probability density function of Y = eX?

Let us calculate P(Y 6 y), which is only nonzero for y > 0.

P(Y 6 y) = P(eX 6 y)

= P(X 6 logy)

=

∫ logy

−∞
1

σ
√

2π
e−(x−µ)2/2σ2

dx

whence

fY(y) =
1

σ
√

2π
e−(logy−µ)2/2σ2 1

y
for y > 0
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Expectation of a function of a random variable

As before, X is a continuous random variable with
probability density function fX
Then the expectation value E(Y) of Y = g(X) is given by

E(Y) = E(g(X)) =
∫∞
−∞ g(x)f(x)dx ,

(assuming the integral exists)

For example,
E(X2) =

∫∞
−∞ x2f(x)dx

and
E(etX) =

∫∞
−∞ etxf(x)dx

(provided the integrals exist)
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Variance of a continuous random variable

Let X be a continuous random variables with mean µ = E(X).
We define the variance of X by

Var(X) = E(X2) − µ2 = E((X− µ)2)

The standard deviation is the (+ve) square-root of the
variance.
Example (Variance of uniform distribution)
Let X be uniformly distributed in [a,b], so E(X) = 1

2(a+ b). Then

E(X2) =
∫b
a

x2

b− a
dx =

1
3x

3

b− a

∣∣∣∣∣
b

a

= 1
3
b3 − a3

b− a
= 1

3(a
2 + ab+ b2)

whence

Var(X) = E(X2) − µ2 = 1
3(a

2 + ab+ b2) − 1
4(a+ b)2 = 1

12(a− b)2
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Variance of a continuous random variable
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Example (Variance of exponential distribution)
Let X be exponentially distributed with parameter λ, so
E(X) = 1

λ .

Then

E(X2) =
∫∞

0
x2λe−λxdx

= λ
d2

dλ2

∫∞
0
e−λxdx

= λ
d2

dλ2
1
λ
=

2
λ2

whence
Var(X) = E(X2) − µ2 =

2
λ2 −

1
λ2 =

1
λ2
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Example (Variance of normal distribution)
Let X be normally distributed with parameters µ = E(X) and σ.

Var(X) = E((X− µ)2) =
∫∞
−∞(x− µ)2 1

σ
√

2π
e−(x−µ)2/2σ2

dx

=
1

σ
√

2π

∫∞
−∞ y2e−y

2/2σ2
dy (y = x− µ)

=
σ2
√

2π

∫∞
−∞ u2e−u

2/2du (u = y/σ)

= −
σ2
√

2π

∫∞
−∞ u

d

du
e−u

2/2du

= −
σ2
√

2π

∫∞
−∞

[
d

du

(
ue−u

2/2
)
− e−u

2/2
]
du

=
σ2
√

2π

∫∞
−∞ e−u

2/2du = σ2

Thus σ is the standard deviation.
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Moment generating functions
Let X be a continuous random variable with probability density
function f.

The moment generating function (m.g.f.) MX(t)

is defined by

MX(t) = E(etX) =
∫∞
−∞ etxf(x)dx

(for those values of t for which the integral converges)

Example (M.g.f. for uniform distribution)
Let X be uniformly distributed in [a,b]. Then

MX(t) =

∫b
a

etx

b− a
dx =

etx

t(b− a)

∣∣∣∣b
a

=
etb − eta

t(b− a)

= 1 + 1
2(a+ b)t+ 1

6(a
2 + ab+ b2)t2 + · · ·

whence E(X) = 1
2(a+ b) and E(X2) = 1

3(a
2 + ab+ b2), as

computed earlier.
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Example (M.g.f. for exponential distribution)
Let X be exponentially distributed with mean 1

λ .

MX(t) =

∫∞
0
etxλe−λxdx

= λ

∫∞
0
e−(λ−t)xdx

=
λ

λ− t

=
1

1 − t
λ

= 1 +
1
λ
t+

1
λ2 t

2 + · · ·

whence E(X) = 1
λ and E(X2) = 2

λ2 as computed earlier.

Notice that MX(t) = 1 + µt+ 1
2(µ

2 + σ2)t2 + · · ·
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Example (M.g.f. for normal distribution)
Let X be normally distributed with mean µ and variance σ2.

MX(t) =

∫∞
−∞

1
σ
√

2π
etxe−(x−µ)2/2σ2

dx

=
etµ

σ
√

2π

∫∞
−∞ etye−y

2/2σ2
dy (y = x− µ)

=
etµ

σ
√

2π

∫∞
−∞ e−(y2−2σ2ty)/2σ2

dy

=
etµ+

1
2σ

2t2

σ
√

2π

∫∞
−∞ e−(y−σ2t)2/2σ2

dy

=
etµ+

1
2σ

2t2

σ
√

2π

∫∞
−∞ e−u

2/2σ2
du (u = y− σ2t)

= etµ+
1
2σ

2t2

= 1 + µt+ 1
2(σ

2 + µ2)t2 + · · ·
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Some properties of mean and variance

Theorem
Let X be a continuous random variable. Then provided that
E(X) and E(X2) exist, we have for all a,b ∈ R,

1 E(aX+ b) = aE(X) + b
2 Var(aX+ b) = a2 Var(X)

Proof.

1 follows by linearity of integration:

E(aX+ b) =

∫∞
−∞(ax+ b)f(x)dx = a

∫∞
−∞ xf(x)dx+ b

∫∞
−∞ f(x)dx

= aE(X) + b

2 follows from Var(Y) = E((Y − µY)
2) with Y = aX+ b
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Standardising the normal distribution

Theorem
Let X be normally distributed with parameters µ and σ. Then
Y = 1

σ(X− µ) has as p.d.f. a standard normal distribution.

Remark
It follows from the previous theorem that Y has mean
E(Y) = 1

σ(E(X) − µ) = 0 and variance Var(Y) = 1
σ2 Var(X) = 1,

just like the standard normal distribution.

Moreover the
moment generating function

MY(t) = E(et(X−µ)/σ) = e−µt/σMX(
t
σ) = e

1
2t

2 ,

which is the moment generating function of the standard normal
distribution. This makes the theorem plausible, but we wish to
prove it.
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Proof.
We will instead show directly that Y has the cumulative
distribution function of a standard normal distribution:

P(Y 6 y) = P( 1
σ(X− µ) 6 y)

= P(X 6 σy+ µ)

=

∫σy+µ
−∞

1
σ
√

2π
e−(x−µ)2/2σ2

dx

=

∫y
−∞

1√
2π
e−u

2/2du (u = 1
σ(x− µ))

whence P(Y 6 y) = Φ(y).

The usefulness of this result is that if X is normally distributed,

P(|X− µ| 6 cσ) = P(|Y| 6 c)

where c > 0 is some constant and Y = 1
σ(X− µ).
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Example (The standard error)
Let X be normally distributed with mean µ and variance σ2. For
which value of c > 0 is P(|X− µ| 6 cσ) = 0.5?

This is the same c for which P(|Y| 6 c) = 0.5, where
Y = 1

σ(X− µ) has a standard normal distribution:

P(|Y| 6 c) =
1√
2π

∫c
−c
e−y

2/2dy

= 2 1√
2π

∫c
0
e−y

2/2dy

= 2 1√
2π

[∫c
−∞−

∫0

−∞
]
e−y

2/2dy

= 2Φ(c) − 1

Therefore P(|Y| 6 c) = 0.5 if and only if Φ(c) = 0.75.
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Example (The standard error – continued)

From the tables, Φ(0.67) = 0.7486
and Φ(0.68) = 0.7517

, and by
linear interpolation
Φ(0.6745) ' 0.75. The number
0.6745σ is called the standard
error: 50% of outcomes lie within
a standard error of the mean.

0.7486

0.7517

0.67 0.68

0.75

0.6745
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José Figueroa-O’Farrill mi4a (Probability) Lecture 11 18 / 24



1σ, 2σ and 3σ

P(|X− µ| 6 σ) = 2Φ(1) − 1
' 0.6826

P(|X− µ| 6 2σ) = 2Φ(2) − 1
' 0.9544

P(|X− µ| 6 3σ) = 2Φ(3) − 1
' 0.9974
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Maximum entropy and the normal distribution
The normal distribution is perhaps the single most important
probability density function. This is due to two key results:

1 the central limit theorem (see later!), and

2 the maximum entropy principle.

Suppose that all you know about a continuous random
variable is its mean (µ) and variance (σ2).
In the absence of any more information, how are we to
model this random variable?
Is there a criterion to choose among all the probability
density functions with those same mean and variance?
There is indeed: Shannon’s maximum entropy principle.
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Shannon’s maximum entropy principle

Shannon argued that the “least biased”
or “most generic” p.d.f. is the one with
maximum entropy

H(f) = −

∫∞
−∞ f(x) log f(x)dx

It can be proved (using the variational
calculus) that among all the p.d.f.s with
mean µ, the one with maximum entropy
is the exponential distribution, whereas
among those which in addition have
variance σ2, it is the normal distribution.

Their entropies are given by

Hexp = 1 + logµ Hnormal =
1
2(1 + log(2π)) + logσ

José Figueroa-O’Farrill mi4a (Probability) Lecture 11 21 / 24



Shannon’s maximum entropy principle
Shannon argued that the “least biased”
or “most generic” p.d.f. is the one with
maximum entropy

H(f) = −

∫∞
−∞ f(x) log f(x)dx

It can be proved (using the variational
calculus) that among all the p.d.f.s with
mean µ, the one with maximum entropy
is the exponential distribution, whereas
among those which in addition have
variance σ2, it is the normal distribution.

Their entropies are given by

Hexp = 1 + logµ Hnormal =
1
2(1 + log(2π)) + logσ
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Example (The Four Sigma Society)
IQ tests are designed so that the mean is 100 and the standard
deviation is 15.

One of the many short-lived high-IQ societies
was the Four Sigma Society, active for a few years in the late
1970s and early 1980s. As the name suggests, the entrance
requirement was an IQ of at least 160. What percentage of the
population could apply for membership?

P(IQ > 160) = P(
IQ − 100

15 > 4)

=

∫∞
4

1√
2π
e−u

2/2du

= 1 −Φ(4)
= 1

2 − 1
2 erf(2

√
2) ' 1

31574

So about 1 in every 30,000 people. (cf. Mensa’s 1 in 50.)
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Example (Alice and Bob’s first child)
Alice gives birth to her first child. Bob’s joy knows no bounds,
until he looks at his iCal and realises that he was away on a
long trip from 283 days before the birth until 260 days before the
birth. Assuming that gestation periods are normally distributed
with a mean of 270 days and a standard deviation of 10 days,
what is the probability that Bob was away during conception?

Let X denote the length (in days) of gestation. Then we are
after the probability that 260 6 X 6 283. Let us standardise X to
Y = 1

10(X− 270) and compute the probability that −1 6 Y 6 1.3:

P(−1 6 Y 6 1.3) = P(Y 6 1.3) − P(Y 6 −1)
= Φ(1.3) −Φ(−1)
' 0.9032 − 0.1587
' 0.7445
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Summary
If X is a continuous random variable with probability density
function f, then for any function g : R→ R

E(g(X)) =
∫∞
−∞ g(x)f(x)dx

The variance is Var(X) = E(X2) − E(X)2

We calculated the variances of the uniform, exponential
and normal distributions
introduced the moment generating function and saw the
usual examples: uniform, exponential and normal
if X normally distributed with mean µ and variance σ2,
Y = 1

σ(X− µ) has standard normal distribution
introduced the standard error and gained some intuition
for 1σ, 2σ and 3σ in a normal distribution
motivated exponential and normal distributions from
Shannon’s maximum entropy principle
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José Figueroa-O’Farrill mi4a (Probability) Lecture 11 24 / 24



Summary
If X is a continuous random variable with probability density
function f, then for any function g : R→ R

E(g(X)) =
∫∞
−∞ g(x)f(x)dx

The variance is Var(X) = E(X2) − E(X)2

We calculated the variances of the uniform, exponential
and normal distributions
introduced the moment generating function and saw the
usual examples: uniform, exponential and normal
if X normally distributed with mean µ and variance σ2,
Y = 1

σ(X− µ) has standard normal distribution
introduced the standard error and gained some intuition
for 1σ, 2σ and 3σ in a normal distribution
motivated exponential and normal distributions from
Shannon’s maximum entropy principle
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