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The story of the film so far...

@ C.rv.s X and Y have a joint density f(x,y) with

P((X,Y) € C) = ﬂf(x,y)dx dy
C
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The story of the film so far...

@ C.rv.s X and Y have a joint density f(x,y) with

= Iff(x,y)dx dy
C

and a joint distribution

Xy
F(x,y)—P(ng,Yéy)—J J f(u,v)dudv

with f(x,y) = axay F(x,y)
@ X and Y independent iff f(x,y) = fx(x)fy(y)
@ Geometric probability is fun! (Buffon’s needle)
@ We can calculate the c.d.f. and p.d.f. of Z = g(X,Y)
@ X, Yindependent: fx.y = fx x fy (convolution)
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Convolution

Definition
Let f,g: R — R be two functions. Their convolution
fxg:R — Ris the function defined by

o0

(f*g)(z)=j f(x)g(z — x)dx

—0o0

(provided the integral exists)
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Convolution

Let f,g: R — R be two functions. Their convolution
fxg:R — Ris the function defined by

o0

(f*g)(z)=j f(x)g(z — x)dx

—0o0

(provided the integral exists)

Properties of the convolution
@ fxg=gxf
@ (fxg)*h="fx(gxh)(hence we can just write f x g x h)
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Convolution

Let f,g: R — R be two functions. Their convolution
fxg:R — Ris the function defined by

o0

(f*g)(z)=j f(x)g(z — x)dx

—0o0

(provided the integral exists)

v

Properties of the convolution

@ fxg=gxf
@ (fxg)*h="fx(gxh)(hence we can just write f x g x h)
@ fx g is “smoother” than f or g
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Example (Convolution of exponential variables)

@ Let X and Y be independent exponentially distributed with
parameter A:

fx(x) =Ae ™ fy(y) =Ae MY
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Example (Convolution of exponential variables)

@ Let X and Y be independent exponentially distributed with
parameter A:

fx(x) =Ae ™ fy(y) =Ae MY

@ The joint density is f(x,y) = A%e 2x*Y) for x,y > 0
@ Then Z = X +Y has p.d.f. given by a “gamma” distribution
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Example (Convolution of exponential variables)

@ Let X and Y be independent exponentially distributed with
parameter A:

fx(x) =Ae ™ fy(y) =Ae MY

@ The joint density is f(x,y) = A%e 2x*Y) for x,y > 0
@ Then Z = X +Y has p.d.f. given by a “gamma” distribution

fz(z) = J:o fx(x)fy(z —x)dx

_ JZ }\Zefhxefk(zfx) dx
0

= N2zeM®
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Example (Independent standard normal random variables)

@ X, Y: independent, standard normally distributed. Their
sum Z =X +Y has p.d.f.

A 2 (ix)2)2
fz(z) = ﬂe e dx
—00
—22/4 oo
—C J e_(x_z/z]zdx (complete the square)
2n  )_o
—z2/4
_e” JOO e “du (u=x—3z)
21 J_ o 2
- 1 6722/4
N
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Example (Independent standard normal random variables)

@ X, Y: independent, standard normally distributed. Their
sum Z =X +Y has p.d.f.

A 2 (ix)2)2
fz(z) = ﬂe e dx
—0Q
—22/4 (oo
—C J e_(x_z/z]zdx (complete the square)
2n  )_o
—7.2/4 00
_ ¢ J e “du (u=x— %z)
21 J_ o
_ 1 6722/4
N

so it is normally distributed with zero mean and variance 2.

José Figueroa-O’Farrill mida (Probability) Lecture 13

5/21



Example (Independent standard normal random variables)

@ X, Y: independent, standard normally distributed. Their
sum Z =X +Y has p.d.f.

o0

1
fz(z) —J ﬂefxz/zef(zfx)z/zdx
—0Q

e~ (x—2/2) 4y

6—22/4 o
27 J

(complete the square)
—0o0

2

e % /4 roo

= J e du (u=x—1z)
21 J_ o

1 722/4

N

so it is normally distributed with zero mean and variance 2.

@ More generally, if X has mean px and variance 0% and Y
has mean uy and variance c%, Z is normally distributed
with mean px + py and variance o% + 0%
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Expectations of functions of random variables
@ Let X and Y be c.r.v.s with joint density f(x,y)
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Expectations of functions of random variables

@ Let X and Y be c.r.v.s with joint density f(x,y)
@ Let Z=g(X,Y) forsome g:R? —» R
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Expectations of functions of random variables

@ Let X and Y be c.r.v.s with joint density f(x,y)
@ Let Z=g(X,Y) for some g : R> - R
@ The expectation value of Z is defined by

E(Z) = [] glxy)f(x,y)dxay

(provided the integral exists)
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Expectations of functions of random variables

@ Let X and Y be c.r.v.s with joint density f(x,y)
@ Let Z=g(X,Y) for some g : R> - R
@ The expectation value of Z is defined by

E(Z) = [] glxy)f(x,y)dxay

(provided the integral exists)

@ We already saw that
E(X+Y) =E(X) +E(Y)

even if X and Y are not independent

José Figueroa-O’Farrill mida (Probability) Lecture 13 6/21



Example (Normally distributed darts)

A dart hits a plane target at the point with coordinates (X, Y)
where X and Y have joint density

1
flx,y) = poe (492
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Example (Normally distributed darts)

A dart hits a plane target at the point with coordinates (X, Y)
where X and Y have joint density

1
flx,y) = poe (492

Let R = /X2 + Y2 be the distance from the bullseye. What is
E(R)?
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Example (Normally distributed darts)

A dart hits a plane target at the point with coordinates (X, Y)
where X and Y have joint density

1
flx,y) = poe (492

Let R = /X2 + Y2 be the distance from the bullseye. What is
E(R)?

—T2/2d

fj 2l *rz/zrdr do

N[—

Joo 2,-2/2 4.

—0Q0
(o]

= \/EJOO \/127(r2er2/2dr = \/g
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Example (Normally distributed darts — continued)
What is E(R?)?
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Example (Normally distributed darts — continued)
What is E(R?)?

E(R?) =E(X2+Y2) =E(X?)+E(Y2)=1+1=2
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Example (Normally distributed darts — continued)
What is E(R?)?

E(R?) =E(X2+Y2) =E(X?)+E(Y2)=1+1=2

where we used
@ linearity of E, and
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Example (Normally distributed darts — continued)
What is E(R?)?

E(R?) =E(X2+Y2) =E(X?)+E(Y2)=1+1=2

where we used
@ linearity of E, and
@ the fact that E(X?) = Var(X) = 1 and similarly for Y
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Example (Normally distributed darts — continued)
What is E(R?)?

E(R?) =E(X2+Y2) =E(X?)+E(Y2)=1+1=2

where we used
@ linearity of E, and
@ the fact that E(X?) = Var(X) = 1 and similarly for Y
@ This shows that

Var(R) =E(R?) —E(R)2=2-% .
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Independent random variables |

Let X, Y be independent continuous random variables. Then

E(XY) = E(X)E(Y)
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Independent random variables |

Let X, Y be independent continuous random variables. Then

E(XY) = E(X)E(Y)

jfxyf x,y)dx dy

= H xyfx (x)fy(y)dx dy (independence)
= < xfx(x > ( yfv(y)dy>
=E(X)E(Y)

[]
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Independent random variables Il

As with discrete random variables, we have the following

Let X, Y be independent continuous random variables. Then

Var(X +Y) = Var(X) + Var(Y)
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Independent random variables Il

As with discrete random variables, we have the following

Corollary

Let X, Y be independent continuous random variables. Then

Var(X +Y) = Var(X) + Var(Y)

The covariance and correlation of X and Y are

Cov(X,Y) = E(XY) — E(X)E(Y)
o(X,Y) = Cov(X,Y)

v/ Var(X) Var(Y)
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Example
Consider X, Y uniformly distributed on the unit disk D, so that

1
f(XaU) = ;
Then by symmetric integration,

E(XY)=E(X)=E(Y)=0 = Cov(X,Y)=0

Therefore X, Y are uncorrelated but not independent.
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Example (Continued)
On the other hand, U = |X| and V = |Y| are correlated.

1
E(U) = f\x\%dx dy

SN
2

_f[J Jrzcosedrde x
-3

3 1
:ir cosedSJ r2dr

And by symmetry, also E(V) = 5.
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Example (Continued)

Finally,
1 Yy
E(UV) = flxyl;dxdy
D
2 (2(" 5
:”J J T~ sin 6 cos 6dr do X
0 Jo
x 1
:;‘;J sinecosedGJ Bdr
0 0
4111
=nX2X%=2x

Hence
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Moment generating function of a sum

Let X, Y be independent continuous random variables and let
Z=X+Y. Then

Mz (t) = E(e'%)
_ et*fz(z)dz

r

= etZfo (x)fy(z—x)dx dz

= fj etF e ey (X)fy(z — x)dx dz

= e“‘fx(X)dXJet”fv(y)dy (y=z-x)

= Mx(t)My (t)
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Markov’s inequality
Theorem (Markov’s inequality)

Let X be ac.r.v.
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Markov’s inequality

Theorem (Markov’s inequality)
Let X be ac.r.v. Then forall ¢ >0

P(XI > ¢) <
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Markov’s inequality
Theorem (Markov’s inequality)
Let X be ac.r.v. Then forall ¢ >0

P(XI > ¢) <

E(X]) —jw bt

_ J i) - J bl Joo xlF(x) dx
> ¢ J'S f(x)dx + sJ'OO f(x)dx = eP(|X| > ¢)
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Chebyshev’s inequality

Theorem (Chebyshev’s inequality)
Let X be a c.r.v. with finite mean and variance. Then

E(X?)

> forall e >0
£

P(XI = ¢) <
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Chebyshev’s inequality
Theorem (Chebyshev’s inequality)
Let X be a c.r.v. with finite mean and variance. Then

E(X?)

> forall e >0
£

P(XI = ¢) <

(ee]

J_OO X2f(x)dx + J: X2f(x)dx + J 2f(x)dx

€

> ¢ f(x)dx + 52J f(x)dx = e2P(|X| = ¢)
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Two corollaries of Chebyshev’s inequality

Let X be a c.r.v. with mean u and variance o°. Then for any
e >0,

2

P(X—ul>e) <
€
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Two corollaries of Chebyshev’s inequality

Corollary

Let X be a c.r.v. with mean u and variance o°. Then for any
e >0,

2

P(X—ul>e) <
€

Corollary (The (weak) law of large numbers)

Let X4, Xo, ... be i.i.d. continuous random variables with mean
w and variance o2 and let Z,, = 1(Xy +--- + Xy). Then

Ve >0 P(|Z, —pul<e)—1 asn— oo
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The Chernoff bound

Let X be a c.r.v. with moment generating function Mx(t). Then
forany t > 0,

P(X > ) < e "*Mx(t)
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The Chernoff bound

Let X be a c.r.v. with moment generating function Mx(t). Then
forany t > 0,

P(X > a) < e " *Mx(t)

P(X > o) = P(2X > &) = P(etX/2 » et%/2)

and by Chebyshev’s inequality for etX/2,

]E(etX)

(<

= eit(XMx(t) .
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Waiting times and the exponential distribution

If “rare” and “isolated” events can occur at random in the time
interval [0, t], then the number of events N(t) in that time
interval can be approximated by a Poisson distribution

(AY™

P(N(t) =n) =e M '
nl

Let us start at t = 0 and let X be the time of the first event; that
is, the waiting time. Clearly, X > t if and only if N(t) = 0,
whence

P(X>t)=P(N(t)=0)=e ™ — P(X<t)=1—e

and differentiating,
x(t) = Ae Mt

whence X is exponentially distributed.

José Figueroa-O’Farrill mida (Probability) Lecture 13

19/21



Example (Radioactivity)

The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed.
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distributed. The time t4 ,» in which one half of the particles have
decayed is called the half-life.
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Example (Radioactivity)

The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed. The time t4 ,» in which one half of the particles have
decayed is called the half-life. It is a sensible concept because
of the “lack of memory” of the exponential distribution.
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Example (Radioactivity)

The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed. The time t4 ,» in which one half of the particles have
decayed is called the half-life. It is a sensible concept because
of the “lack of memory” of the exponential distribution.

How are the half-life and the parameter in the exponential
distribution related?
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Example (Radioactivity)

The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed. The time t4 ,» in which one half of the particles have
decayed is called the half-life. It is a sensible concept because
of the “lack of memory” of the exponential distribution.

How are the half-life and the parameter in the exponential
distribution related? By definition, P(X <ty ,p) = % whence

log 2
ty,2

e 5 = A=

N

The mean of the exponential distribution: % =ty,2/log2is

called the mean lifetime.
e.g.,t1,2(2°U) ~ 700 x 108 yrs; t1 »(1*C) = 5,730yrs;
t1/2(137CS) ~ 30yrs
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Summary

@ X,Y independent random variables and Z = X +Y:
fz = fx x fy, where x is the convolution
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@ X, Y with joint density f(x,y) and Z = g(X,Y):

E(Z) = [[ 9lxy)fix,y)dxdy
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Summary

@ X,Y independent random variables and Z = X +Y:
fz = fx x fy, where x is the convolution

@ X, Y with joint density f(x,y) and Z = g(X,Y):
E(Z) = [ 9(x,y)f(xy)dxdy
@ X,Y independent:
e E(XY) =E(X)E(Y)

e Var(X +Y) = Var(X) + Var(Y)
® Mx.v(t) = Mx(t)My(t), where Mx(t) = E(e'¥)
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Summary

@ X,Y independent random variables and Z = X +Y:
fz = fx x fy, where x is the convolution
@ X, Y with joint density f(x,y) and Z = g(X,Y):

E(Z) = [[ 9lxy)fix,y)dxdy

@ X,Y independent:
e E(XY) =E(X)E(Y)
e Var(X +Y) = Var(X) + Var(Y)
® Mx v(t) = Mx(t)My(t), where Mx(t) = E(e'X)

@ We defined covariance and correlation of two r.v.s
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José Figueroa-O’Farrill mida (Probability) Lecture 13 21/21



Summary

@ X,Y independent random variables and Z = X +Y:
fz = fx x fy, where x is the convolution

@ X, Y with joint density f(x,y) and Z = g(X,Y):

E(Z) = [[ 9lxy)fix,y)dxdy

@ X,Y independent:
e E(XY) =E(X)E(Y)
e Var(X +Y) = Var(X) + Var(Y)
® Mx v(t) = Mx(t)My(t), where Mx(t) = E(e'X)

@ We defined covariance and correlation of two r.v.s
@ Proved Markov’s and Chebyshev’s inequalities

@ Proved the (weak) law of large nhumbers and the
Chernoff bound
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Summary

@ X,Y independent random variables and Z = X +Y:
fz = fx x fy, where x is the convolution

@ X, Y with joint density f(x,y) and Z = g(X,Y):

E(Z) = [[ 9lxy)fix,y)dxdy

@ X,Y independent:
e E(XY) =E(X)E(Y)
e Var(X +Y) = Var(X) + Var(Y)
® Mx v(t) = Mx(t)My(t), where Mx(t) = E(e'X)

@ We defined covariance and correlation of two r.v.s
@ Proved Markov’s and Chebyshev’s inequalities

@ Proved the (weak) law of large nhumbers and the
Chernoff bound

@ Waiting times of Poisson processes are exponentially
distributed

José Figueroa-O’Farrill mida (Probability) Lecture 13

21/21



