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The story of the film so far...
C.r.v.s X and Y have a joint density f(x,y) with

P((X, Y) ∈ C) =
x

C

f(x,y)dxdy

and a joint distribution

F(x,y) = P(X 6 x, Y 6 y) =
∫x
−∞

∫y
−∞ f(u, v)dudv

with f(x,y) = ∂2
∂x∂yF(x,y)

X and Y independent iff f(x,y) = fX(x)fY(y)
Geometric probability is fun! (Buffon’s needle)
We can calculate the c.d.f. and p.d.f. of Z = g(X, Y)
X, Y independent: fX+Y = fX ? fY (convolution)
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Convolution

Definition
Let f,g : R→ R be two functions. Their convolution
f ? g : R→ R is the function defined by

(f ? g)(z) =

∫∞
−∞ f(x)g(z− x)dx

(provided the integral exists)

Properties of the convolution

f ? g = g ? f

(f ? g) ? h = f ? (g ? h) (hence we can just write f ? g ? h)
f ? g is “smoother” than f or g
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Example (Convolution of exponential variables)
Let X and Y be independent exponentially distributed with
parameter λ:

fX(x) = λe
−λx fY(y) = λe

−λy

The joint density is f(x,y) = λ2e−λ(x+y) for x,y > 0
Then Z = X+ Y has p.d.f. given by a “gamma” distribution

fZ(z) =

∫∞
0
fX(x)fY(z− x)dx

=

∫z
0
λ2e−λxe−λ(z−x)dx

= λ2ze−λz
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José Figueroa-O’Farrill mi4a (Probability) Lecture 13 4 / 21



Example (Independent standard normal random variables)
X, Y: independent, standard normally distributed. Their
sum Z = X+ Y has p.d.f.

fZ(z) =

∫∞
−∞

1
2πe

−x2/2e−(z−x)2/2dx

=
e−z

2/4

2π

∫∞
−∞ e−(x−z/2)2

dx (complete the square)

=
e−z

2/4

2π

∫∞
−∞ e−u

2
du (u = x− 1

2z)

=
1

2√πe
−z2/4

so it is normally distributed with zero mean and variance 2.
More generally, if X has mean µX and variance σ2

X and Y
has mean µY and variance σ2

Y , Z is normally distributed
with mean µX + µY and variance σ2

X + σ2
Y
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Expectations of functions of random variables
Let X and Y be c.r.v.s with joint density f(x,y)

Let Z = g(X, Y) for some g : R2 → R
The expectation value of Z is defined by

E(Z) =
x

g(x,y)f(x,y)dxdy

(provided the integral exists)

We already saw that

E(X+ Y) = E(X) + E(Y)

even if X and Y are not independent
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Example (Normally distributed darts)
A dart hits a plane target at the point with coordinates (X, Y)
where X and Y have joint density

f(x,y) = 1
2πe

−(x2+y2)/2

Let R =
√
X2 + Y2 be the distance from the bullseye. What is

E(R)?

E(R) =
x 1

2πre
−r2/2rdr dθ

=

∫∞
0
r2e−r

2/2dr

= 1
2

∫∞
−∞ r2e−r

2/2dr

=
√
π
2

∫∞
−∞

1√
2π
r2e−r

2/2dr =
√
π
2
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José Figueroa-O’Farrill mi4a (Probability) Lecture 13 7 / 21



Example (Normally distributed darts — continued)
What is E(R2)?

E(R2) = E(X2 + Y2) = E(X2) + E(Y2) = 1 + 1 = 2

where we used

linearity of E, and
the fact that E(X2) = Var(X) = 1 and similarly for Y
This shows that

Var(R) = E(R2) − E(R)2 = 2 − π
2 .
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Independent random variables I
Theorem
Let X, Y be independent continuous random variables. Then

E(XY) = E(X)E(Y)

Proof.

E(XY) =
x

xyf(x,y)dxdy

=
x

xyfX(x)fY(y)dxdy (independence)

=

(∫
xfX(x)dx

)(∫
yfY(y)dy

)
= E(X)E(Y)
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Independent random variables II
As with discrete random variables, we have the following

Corollary
Let X, Y be independent continuous random variables. Then

Var(X+ Y) = Var(X) + Var(Y)

Definition
The covariance and correlation of X and Y are

Cov(X, Y) = E(XY) − E(X)E(Y)

ρ(X, Y) = Cov(X, Y)√
Var(X)Var(Y)
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Example
Consider X, Y uniformly distributed on the unit disk D, so that

f(x,y) = 1
π

Then by symmetric integration,

E(XY) = E(X) = E(Y) = 0 =⇒ Cov(X, Y) = 0

Therefore X, Y are uncorrelated but not independent.
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Example (Continued)
On the other hand, U = |X| and V = |Y| are correlated.

E(U) =
x

D

|x|
1
π
dxdy

= 2
π

∫ π
2

−π
2

∫1

0
r2 cos θdrdθ

= 2
π

∫ π
2

−π
2

cos θdθ
∫1

0
r2dr

= 2
π × 2× 1

3
= 4

3π

x

y

And by symmetry, also E(V) = 4
3π .
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Example (Continued)
Finally,

E(UV) =
x

D

|xy|
1
π
dxdy

= 4
π

∫ π
2

0

∫1

0
r3 sin θ cos θdrdθ

= 4
π

∫ π
2

0
sin θ cos θdθ

∫1

0
r3dr

= 4
π ×

1
2 ×

1
4 = 1

2π

x

y

Hence

E(UV) − E(U)E(V) = 1
2π − 16

9π2 = 9π−32
18π2 < 0

José Figueroa-O’Farrill mi4a (Probability) Lecture 13 13 / 21



Moment generating function of a sum

Let X, Y be independent continuous random variables and let
Z = X+ Y. Then

MZ(t) = E(etZ)

=

∫
etzfZ(z)dz

=

∫
etz

∫
fX(x)fY(z− x)dxdz

=
x

et(z−x)etxfX(x)fY(z− x)dxdz

=

∫
etxfX(x)dx

∫
etyfY(y)dy (y = z− x)

=MX(t)MY(t)
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Markov’s inequality
Theorem (Markov’s inequality)
Let X be a c.r.v.

Then for all ε > 0

P(|X| > ε) 6
E(|X|)
ε

.

Proof.

E(|X|) =
∫∞
−∞ |x|f(x)dx

=

∫−ε
−∞ |x|f(x)dx+

∫ε
−ε

|x|f(x)dx+

∫∞
ε

|x|f(x)dx

> ε
∫−ε
−∞ f(x)dx+ ε

∫∞
ε

f(x)dx = εP(|X| > ε)
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Chebyshev’s inequality
Theorem (Chebyshev’s inequality)
Let X be a c.r.v. with finite mean and variance. Then

P(|X| > ε) 6
E(X2)

ε2 for all ε > 0

Proof.

E(X2) =
∫∞
−∞ x2f(x)dx

=

∫−ε
−∞ x2f(x)dx+

∫ε
−ε
x2f(x)dx+

∫∞
ε

x2f(x)dx

> ε2
∫−ε
−∞ f(x)dx+ ε2
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ε

f(x)dx = ε2P(|X| > ε)
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Two corollaries of Chebyshev’s inequality

Corollary
Let X be a c.r.v. with mean µ and variance σ2. Then for any
ε > 0,

P(|X− µ| > ε) 6
σ2

ε2

Corollary (The (weak) law of large numbers)
Let X1,X2, . . . be i.i.d. continuous random variables with mean
µ and variance σ2 and let Zn = 1

n(X1 + · · ·+ Xn). Then

∀ε > 0 P(|Zn − µ| < ε)→ 1 as n→∞
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The Chernoff bound

Corollary
Let X be a c.r.v. with moment generating function MX(t). Then
for any t > 0,

P(X > α) 6 e−tαMX(t)

Proof.

P(X > α) = P(tX2 > tα
2 ) = P(etX/2 > etα/2)

and by Chebyshev’s inequality for etX/2,

P(etX/2 > etα/2) 6
E(etX)
etα

= e−tαMX(t) .
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Waiting times and the exponential distribution
If “rare” and “isolated” events can occur at random in the time
interval [0, t], then the number of events N(t) in that time
interval can be approximated by a Poisson distribution

P(N(t) = n) = e−λt
(λt)n

n! .

Let us start at t = 0 and let X be the time of the first event; that
is, the waiting time. Clearly, X > t if and only if N(t) = 0,
whence

P(X > t) = P(N(t) = 0) = e−λt =⇒ P(X 6 t) = 1 − e−λt

and differentiating,
fX(t) = λe

−λt

whence X is exponentially distributed.
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Example (Radioactivity)
The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed.

The time t1/2 in which one half of the particles have
decayed is called the half-life. It is a sensible concept because
of the “lack of memory” of the exponential distribution.
How are the half-life and the parameter in the exponential
distribution related? By definition, P(X 6 t1/2) =

1
2 , whence

e−λt1/2 = 1
2 =⇒ λ =

log 2
t1/2

The mean of the exponential distribution: 1
λ = t1/2/ log 2 is

called the mean lifetime.
e.g.,t1/2(

235U) ≈ 700× 106 yrs; t1/2(
14C) = 5, 730 yrs;

t1/2(
137Cs) ≈ 30 yrs
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Summary
X, Y independent random variables and Z = X+ Y:
fZ = fX ? fY , where ? is the convolution

X, Y with joint density f(x,y) and Z = g(X, Y):

E(Z) =
x

g(x,y)f(x,y)dxdy

X, Y independent:

E(XY) = E(X)E(Y)
Var(X+ Y) = Var(X) + Var(Y)
MX+Y(t) =MX(t)MY(t), where MX(t) = E(etX)

We defined covariance and correlation of two r.v.s
Proved Markov’s and Chebyshev’s inequalities
Proved the (weak) law of large numbers and the
Chernoff bound
Waiting times of Poisson processes are exponentially
distributed
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