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The story of the film so far...
X, Y independent random variables and Z = X+ Y:
fZ = fX ? fY , where ? is the convolution

X, Y with joint density f(x,y) and Z = g(X, Y):

E(Z) =
x

g(x,y)f(x,y)dxdy

X, Y independent:

E(XY) = E(X)E(Y)
Var(X+ Y) = Var(X) + Var(Y)
MX+Y(t) =MX(t)MY(t), where MX(t) = E(etX)

We defined covariance and correlation of two r.v.s
Proved Markov’s and Chebyshev’s inequalities
Proved the (weak) law of large numbers and the
Chernoff bound
Waiting times of Poisson processes are exponentially
distributed
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 2 / 23



The story of the film so far...
X, Y independent random variables and Z = X+ Y:
fZ = fX ? fY , where ? is the convolution
X, Y with joint density f(x,y) and Z = g(X, Y):

E(Z) =
x

g(x,y)f(x,y)dxdy

X, Y independent:

E(XY) = E(X)E(Y)
Var(X+ Y) = Var(X) + Var(Y)
MX+Y(t) =MX(t)MY(t), where MX(t) = E(etX)

We defined covariance and correlation of two r.v.s
Proved Markov’s and Chebyshev’s inequalities
Proved the (weak) law of large numbers and the
Chernoff bound
Waiting times of Poisson processes are exponentially
distributed

José Figueroa-O’Farrill mi4a (Probability) Lecture 14 2 / 23



The story of the film so far...
X, Y independent random variables and Z = X+ Y:
fZ = fX ? fY , where ? is the convolution
X, Y with joint density f(x,y) and Z = g(X, Y):

E(Z) =
x

g(x,y)f(x,y)dxdy

X, Y independent:
E(XY) = E(X)E(Y)

Var(X+ Y) = Var(X) + Var(Y)
MX+Y(t) =MX(t)MY(t), where MX(t) = E(etX)

We defined covariance and correlation of two r.v.s
Proved Markov’s and Chebyshev’s inequalities
Proved the (weak) law of large numbers and the
Chernoff bound
Waiting times of Poisson processes are exponentially
distributed
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More approximations

In Lecture 7 we saw that the binomial distribution with
parameters n,p can be approximated by a Poisson distribution
with parameter λ in the limit as n→∞, p→ 0 but np→ λ

:(
n

k

)
pk(1 − p)n−k ∼ e−λ

λk

k!

But what about if n→∞ but p 6→ 0?
For example, consider flipping a fair coin n times and let X
denote the discrete random variable which counts the number
of heads. Then

P(X = k) =

(
n

k

) 1
2n

Lectures 6 and 7: this distribution has µ = n/2 and σ2 = n/4.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 4 / 23



0.05

0.10

0.15

0.20

0.25

0.30

0.35

n = 5

0.05

0.10

0.15

0.20

0.25

n = 10

0.05

0.10

0.15

n = 20

0.02

0.04

0.06

0.08

0.10

n = 50
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Normal limit of (symmetric) binomial distribution
Theorem
Let X be binomial with parameter n and p = 1

2 .

Then for n large
and k− n/2 not too large,(

n

k

) 1
2n '

1√
2πσ

e−(k−µ)2/2σ2
=

√
2
nπ
e−2(k−n/2)2/n

for µ = n/2 and σ2 = n/4.

The proof rests on the de Moivre/Stirling formula for the factorial
of a large number:

n! '
√

2πnn
√
ne−n

which implies that(
n

n/2

)
=

n!
(n/2)!(n/2)! ' 2n

√
2
πn
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Proof
Let k = n

2 + x. Then(
n

k

)
2−n =

(
n

n
2 + x

)
2−n =

n!2−n(
n
2 + x

)
!
(
n
2 − x

)
!

=
n!2−n(
n
2
)
!
(
n
2
)
! ×

n
2
(
n
2 − 1

)
· · ·
(
n
2 − (x− 1)

)(
n
2 + 1

) (
n
2 + 2

)
· · ·
(
n
2 + x

)
'
√

2
nπ
×

1
(

1 − 2
n

)
· · ·
(

1 − (x− 1) 2
n

) (
n
2
)x(

1 + 2
n

)(
1 + 2 2

n

)
· · ·
(

1 + x 2
n

) (
n
2
)x

Now we use the exponential approximation

1 − z ' e−z and 1
1 + z

' e−z

(valid for z small) to rewrite the big fraction in the RHS.
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Proof – continued.

(
n

k

)
2−n '

√
2
nπ

exp
[
−

4
n

−
8
n

− · · ·− 2(x− 1)
n

−
2x
n

]
=

√
2
nπ

exp
[
−

4
n
(1 + 2 + · · ·+ (x− 1)) − 2x

n

]
=

√
2
nπ

exp
[
−

4
n

x(x− 1)
2 −

2x
n

]
=

√
2
nπ
e−2x2/n

which is indeed a normal distribution with σ2 = n
4 .

A similar proof shows that the general binomial distribution with
µ = np and σ2 = np(1 − p) is also approximated by a normal
distribution with the same µ and σ2.
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Example (Rolling a die ad nauseam)

It’s raining outside, you are bored and you roll a fair die 12000
times. Let X be the number of sixes. What is
P(1900 < X < 2200)?
The variable X is the sum X1 + · · ·+ X12000, where Xi is the
number of sixes on the ith roll. This means that X is binomially
distributed with parameter n = 12000 and p = 1

6 , so
µ = pn = 2000 and σ2 = np(1 − p) = 5000

3 .
X ∈ (1900, 2200) iff X−2000

σ ∈ (−
√

6, 2
√

6), whence

P(1900 < X < 2200) ' Φ(2
√

6) −Φ(−
√

6) ' 0.992847

The exact result is
2199∑
k=1901

(12000
k

)(
1
6

)k (5
6

)12000−k
' 0.992877
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 8 / 23



Example (Rolling a die ad nauseam)
It’s raining outside, you are bored and you roll a fair die 12000
times. Let X be the number of sixes. What is
P(1900 < X < 2200)?
The variable X is the sum X1 + · · ·+ X12000, where Xi is the
number of sixes on the ith roll. This means that X is binomially
distributed with parameter n = 12000 and p = 1

6 , so
µ = pn = 2000 and σ2 = np(1 − p) = 5000

3 .
X ∈ (1900, 2200) iff X−2000

σ ∈ (−
√

6, 2
√

6)

, whence

P(1900 < X < 2200) ' Φ(2
√

6) −Φ(−
√

6) ' 0.992847

The exact result is
2199∑
k=1901

(12000
k

)(
1
6

)k (5
6

)12000−k
' 0.992877
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Normal limit of Poisson distribution
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We have just shown that in certain limits of the defining
parameters, two discrete probability distributions tend to
normal distributions:

the binomial distribution in the limit n→∞,
the Poisson distribution in the limit λ→∞

What about continuous probability distributions?
We could try with the uniform or exponential distributions:
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No amount of rescaling is going to work. Why?
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The binomial and Poisson distributions have the following
property:

if X, Y are binomially distributed with parameters (n,p) and
(m,p), X+ Y is binomially distributed with parameter
(n+m,p)
if X, Y are Poisson distributed with parameters λ and µ,
X+ Y is Poisson distributed with parameter λ+ µ

It follows that if X1,X2, . . . are i.i.d. with binomial
distribution with parameters (m,p), X1 + · · ·+ Xn is
binomial with parameter (nm,p). Therefore m large is
equivalent to adding many of the Xi.
It also follows that if X1,X2, . . . are i.i.d. with Poisson
distribution with parameter λ, X1 + · · ·+ Xn is Poisson
distributed with parameter nλ and again λ large is
equivalent to adding a large number of the Xi.
The situation with the uniform and exponential distributions
is different.
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Sum of uniformly distributed variables
Xi i.i.d. uniformly distributed on [0, 1]: then X1 + · · ·+ Xn is
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Sum of exponentially distributed variables
If Xi are i.i.d. exponentially distributed with parameter λ, we
already saw that Z2 = X1 + X2 has a “gamma” probability
density function:

fZ2(z) = λ
2ze−λz

It is not hard to show that Zn = X1 + · · ·+Xn has probability
density function

fZn(z) = λ
n zn−1

(n− 1)!e
−λz

What happens when we take n large?
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The Central Limit Theorem
Let X1,X2, . . . be i.i.d. random variables with mean µ and
variance σ2.

Let Zn = X1 + · · ·+ Xn.
Then Zn has mean nµ and variance nσ2, but in addition we
have

Theorem (Central Limit Theorem)
In the limit as n→∞,

P
(
Zn − nµ√

nσ
6 x

)
→ Φ(x)

with Φ the c.d.f. of the standard normal distribution.

In other words, for n large, Zn is normally distributed.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 15 / 23



The Central Limit Theorem
Let X1,X2, . . . be i.i.d. random variables with mean µ and
variance σ2.
Let Zn = X1 + · · ·+ Xn.
Then Zn has mean nµ and variance nσ2, but in addition we
have

Theorem (Central Limit Theorem)
In the limit as n→∞,

P
(
Zn − nµ√

nσ
6 x

)
→ Φ(x)

with Φ the c.d.f. of the standard normal distribution.

In other words, for n large, Zn is normally distributed.
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Our 4-line proof of the CLT rests on Lévy’s continuity law,
which we will not prove.

Paraphrasing: “the m.g.f. determines the c.d.f.”
It is then enough to show that the limit n→∞ of the m.g.f.
of Zn−nµ√

nσ
is the m.g.f. of the standard normal distribution.

Proof of CLT.

We shift the mean: the variables Yi = Xi − µ are i.i.d. with
mean 0 and variance σ2, and Zn − nµ = Y1 + · · ·+ Yn.
MZn−nµ(t) =MY1(t) · · ·MYn(t) =MY1(t)

n, by i.i.d.

MZn−nµ√
nσ

(t) =MZn−nµ

(
t√
nσ

)
=MY1

(
t√
nσ

)n
MZn−nµ√

nσ

(t) =
(

1 + σ2t2

2nσ2 + · · ·
)n
→ et

2/2, which is the m.g.f.
of a standard normal variable.
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Crucial observation
The CLT holds regardless of how the Xi are distributed!

The sum of any large number of i.i.d. normal variables always
tends to a normal distribution.

This also explains why normal distributions are so popular in
probabilistic modelling.
Let us look at a few examples.
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Example (Rounding errors)
Suppose that you round off 108 numbers to the nearest integer,
and then add them to get the total S. Assume that the rounding
errors are independent and uniform on [−1

2 , 1
2 ]. What is the

probability that S is wrong by more than 3? more than 6?

Let Z = X1 + · · ·+ X108. We may approximate it by a normal
distribution with µ = 0 and σ2 = 108

12 = 9, whence σ = 3.
S is wrong by more than 3 iff |Z| > 3 or |Z−µ|

σ > 1 and hence

P(|Z− µ| > σ) = 1 − P(|Z− µ| 6 σ)

= 1 − (2Φ(1) − 1) = 2(1 −Φ(1)) ' 0.3174

S is wrong by more than 6 iff |Z−µ|
σ > 2 and hence

P(|Z− µ| > 2σ) = 1 − P(|Z− µ| 6 2σ)
= 1 − (2Φ(2) − 1) = 2(1 −Φ(2)) ' 0.0456
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 18 / 23



Place your bets!
Example (Roulette)
A roulette wheel has 38 slots: the numbers 1 to 36 (18 black,
18 red) and the numbers 0 and 00 in green.

You place a £1 bet on
whether the ball will land on
a red or black slot and win
£1 if it does. Otherwise you
lose the bet. Therefore you
win £1 with probability
18
38 = 9

19 and you “win” −£1
with probability 20

38 = 10
19 .

After 361 spins of the wheel, what is the probability that you are
ahead? (Notice that 361 = 192.)
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Example (Roulette – continued)
Let Xi denote your winnings on the ith spin of the wheel.

Then
P(Xi = 1) = 9

19 and P(Xi = −1) = 10
19 . The mean is therefore

µ = P(Xi = 1) − P(Xi = −1) = − 1
19

and the variance is

σ2 = P(Xi = 1) + P(Xi = −1) − µ2 = 1 − 1
361 = 360

361

Then Z = X1 + · · ·+ X361 has mean −19 and variance 360. This
means that after 361 spins you are down £19 on average. We
are after the probability P(Z > 0):

P(Z > 0) = P
(
Z+19√

360 > 19√
360

)
= 1 − P

(
Z+19√

360 6 19√
360

)
' 1 −Φ(1) ' 0.1587

So there is about a 16% chance that you are ahead.
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Example (Measurements in astronomy)
Astronomical measurements are subject to the vagaries of
weather conditions and other sources of errors.

Hence in order
to estimate, say, the distance to a star one takes the average of
many measurements. Let us assume that different
measurements are i.i.d. with mean d (the distance to the star)
and variance 4 (light-years2). How many measurements should
we take to be “reasonably sure” that the estimated distance is
accurate to within half a light-year?
Let Xi denote the measurements and Zn = X1 + · · ·+ Xn. Let’s
say that “reasonably sure” means 95%, which is 2σ in the
standard normal distribution. (In Particle Physics, “reasonably
sure” means 5σ, but this is Astronomy.) Then we are after n
such that

P
(
|Znn − d| 6 0.5

)
' 0.95
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Example (Measurements in astronomy – continued)
By the CLT we can assume that Zn−nd2√n is standard normal, so
we are after

P
(
|Zn−nd2√n | 6

√
n

4

)
' 0.95

or, equivalently,
√
n

4 = 2, so that n = 64.

A question remains: is n = 64 large enough for the CLT? To
answer it, we need to know more about the distribution of the
Xi. However Chebyshev’s inequality can be used to provide a
safe n. Since E

(
Zn
n

)
= d and Var

(
Zn
n

)
= 4
n , Chebyshev’s

inequality says

P
(
|Znn − d| > 0.5

)
6 4
n(0.5)2 = 16

n

so choosing n = 320 gives P
(
|Znn − d| > 0.5

)
6 0.05 or

P
(
|Znn − d| 6 0.5

)
> 0.95 as desired.
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José Figueroa-O’Farrill mi4a (Probability) Lecture 14 22 / 23



Example (Measurements in astronomy – continued)
By the CLT we can assume that Zn−nd2√n is standard normal, so
we are after

P
(
|Zn−nd2√n | 6

√
n

4

)
' 0.95

or, equivalently,
√
n

4 = 2, so that n = 64.

A question remains: is n = 64 large enough for the CLT? To
answer it, we need to know more about the distribution of the
Xi.

However Chebyshev’s inequality can be used to provide a
safe n. Since E

(
Zn
n

)
= d and Var

(
Zn
n

)
= 4
n , Chebyshev’s

inequality says

P
(
|Znn − d| > 0.5

)
6 4
n(0.5)2 = 16

n

so choosing n = 320 gives P
(
|Znn − d| > 0.5

)
6 0.05 or

P
(
|Znn − d| 6 0.5

)
> 0.95 as desired.
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Summary
The binomial distribution with parameters n,p can be
approximated by a normal distribution (with same mean
and variance) for n large.

Similarly for the Poisson distribution with parameter λ as
λ→∞
These are special cases of the Central Limit Theorem: if
Xi are i.i.d. with mean µ and (nonzero) variance σ2, the
sum Zn = X1 + · · ·+ Xn for n large is normally distributed.
We saw some examples on the use of the CLT: rounding
errors, roulette game, astronomical measurements.
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