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Determinism vs randomness
There are two main kinds of processes in Nature,
distinguished by their time evolution.

In a deterministic process, the future state of the system
is completely determined by the present state.
Physical systems whose time evolution is described by
differential equations are deterministic; e.g.,

classical mechanics (Newton’s equation)
quantum mechanics (Schrödinger’s equation)
the weather (chaotic but deterministic!)

Stochastic (or random) processes are non-deterministic:
the time evolution is subject to a probability distribution.
Examples of stochastic processes are

Random walks
Markov chains
Birth-death processes
Queues

These are the subject of the last part of this course.
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Stochastic processes
Let (Ω,F,P) be a probability space.

Let S be a set called the state space of the system. The
set S can be countable or uncountable.
Let T be an index set, to be thought of as “time”. It can be
continuous or discrete.
A stochastic (or random) process with state space S is a
collection of random variables Xt : Ω→ S indexed by t ∈ T.
The interpretation is that Xt is the state of the system at
time t, which for a non-deterministic system is a random
variable with some probability distribition.
There are many kinds of stochastic processes, differing in
how the probability of Xt being in a given state depends on
the history of the system; that is, in which state the system
was in times t ′ < t.
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Markov chains
We assume that S is countable so that the Xt are discrete
random variables.

We will also assume that we have a discrete-time
process, so that T = {0, 1, 2, . . . }.

Definition
A stochastic process X = {X0,X1,X2, . . . } is a Markov chain if it
satisfies the Markov property:

P (Xn+1 = s|X0 = s0, . . . ,Xn = sn) = P (Xn+1 = s|Xn = sn)

for all n > 0 and s0, s1, . . . , sn, s ∈ S.

“given the present, the future does not depend on the past”
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Random walks
Consider a particle moving on the integer lattice in R:

pq

i− 1 i i+ 1

Therefore S = Z and Ji are independent random variables with

P(Ji = 1) = p P(Ji = −1) = q = 1− p

Let Xn denote the position of the particle at time n, so that

Xn = X0 +
n∑

i=1
Ji
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Proposition
The sequence {X0,X1,X2, . . . } exhibits spatial homogeneity:

P(Xn = j | X0 = a) = P(Xn = j+ b | X0 = a+ b)

Proof.

P(Xn = j | X0 = a) = P

(
n∑

i=1
Ji = j− a

)

and also

P(Xn = j+ b | X0 = a+ b) = P

(
n∑

i=1
Ji = j+ b− (a+ b) = j− a

)
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Proposition
The sequence {X0,X1,X2, . . . } exhibits temporal homogeneity:

P(Xn = j | X0 = a) = P(Xn+m = j | Xm = a)

Proof.

P(Xn = j | X0 = a) = P

(
n∑

i=1
Ji = j− a

)

whereas

P(Xn+m = j | Xm = a) = P

 m+n∑
i=m+1

Ji = j− a


but the Ji are i.i.d.
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Proposition
The sequence {X0,X1,X2, . . . } exhibits the Markov property:

P(Xm+n = j | X0 = i0, . . . ,Xm = im) = P(Xm+n = j | Xm = im)

Proof.
This follows because

Xm+n = Xm +

n∑
i=m+1

Ji

so Xm+n does not depend explicitly on the Xj for j < m.
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Example (Gambler’s ruin)
A gambler starts with £k and plays a game in which a fair coin
is tossed repeatedly: winning £1 if heads and −£1 if tails.

The
game stops when the gambler’s fortune is either £N (N > k) or
£0. What is the probability that the gambler is ultimately ruined?
This is an example of a random walk on a finite set
{0, 1, 2, . . . ,N}. Let R denote the event that the gambler is
eventually ruined and let H and T denote the events that the
first toss is heads and tails, respectively. Let Pk(R) denote the
probability that gambler is eventually ruined starting with £k.
Then

Pk(R) = Pk(R | H)P(H) + Pk(R | T)P(T)

but clearly Pk(R | H) = Pk+1(R) and Pk(R | T) = Pk−1(R), whence

Pk(R) =
1
2Pk+1(R) +

1
2Pk−1(R)
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Example (Gambler’s ruin – continued)
Letting pk = Pk(R), we have the following difference equation:

pk = 1
2(pk+1 + pk−1) p0 = 1 pN = 0

Let ak = pk − pk−1. Then

ak − ak−1 = pk − pk−1 − (pk−1 − pk−2)

= pk − 2pk−1 + pk−2
= pk − (pk + pk−2) + pk−2 = 0

Therefore ak = a1 for all k and hence

pk = a1 + pk−1 = 2a1 + pk−2 = · · · = ka1 + p0

Since p0 = 1 and pN = 0, we find a1 = − 1
N , whence pk = 1− k

N .
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Example (Gambler’s ruin – continued)
What about if the coin is not fair?

Let P(H) = p and P(T) = q = 1− p, with p 6= q. Now

pk = ppk+1 + qpk−1 1 6 k 6 N− 1

with the same boundary conditions p0 = 1 and pN = 0. Try a
solution pk = θk for some θ. Then

θk = pθk+1 + qθk−1 =⇒ pθ2 − θ+ q = 0

with roots θ1 = 1 and θ2 = q
p . The general solution is then

pk = c1θ
k
1 + c2θ

k
2

for some c1, c2 which are determined by p0 = 1 and pN = 0.
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Example (Gambler’s ruin – continued)
Imposing the boundary conditions

1 = p0 = c1 + c2 0 = pN = c1 + c2
(
q
p

)N

whence
c1 = −c2

(
q
p

)N
c2 =

1

1−
(
q
p

)N
and hence

pk = −

(
q
p

)N
1−

(
q
p

)N +

(
q
p

)k
1−

(
q
p

)N =

(
q
p

)k
−
(
q
p

)N
1−

(
q
p

)N
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Transition matrix
Let’s go back to the case of a general Markov chain
{X0,X1,X2, . . . }.

Since S is countable we will assume it is a subset of Z.
The evolution of a Markov chain is described by its transition
probabilities

P(Xn+1 = j | Xn = i)

We will make the additional assumption of temporal
homogeneity:

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i)

Therefore the transition probabilities are encoded in a
transition matrix P = (pij), where

pij = P(Xn+1 = j | Xn = i)
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Theorem
The transition matrix of a Markov chain is stochastic; that is,

1 pij > 0
2

∑
j pij = 1 for all i (i.e., rows sum to 1)

Proof.

1 This is obvious since the pij are probabilities.
2 ∑

j

pij =
∑
j

P(Xn+1 = j | Xn = i) = 1

since Xn+1 must take some value.
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Example
Let Xn denote the state of a computer at the start of the nth
day.

The computer can be in either of two states: Xn = 0 if it is
broken or Xn = 1 if in working order.
Let πn(0) = P(Xn = 0) and πn(1) = P(Xn = 1) = 1− πn(0).
Let the transition probabilities be

P(Xn+1 = 1 | Xn = 0) = p
P(Xn+1 = 0 | Xn = 1) = q

P(Xn+1 = 0 | Xn = 0) = 1− p

P(Xn+1 = 1 | Xn = 1) = 1− q

(Notice that p+ q need not equal 1!)
Therefore the transition matrix is

P =

(
1− p p

q 1− q

)
A typical question is: What is P(Xn+1 = 0)?
We will answer this naively at first.
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Example (Continued)
We often represent Markov chains graphically; e.g.,

0 1
p

1− p

q

1− q

which allows us to read the transition probabilities at a glance
and write down the transition matrix:

P =

(
0→ 0 0→ 1
1→ 0 1→ 1

)
=

(
1− p p

q 1− q

)
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Example (Continued)

P(Xn+1 = 0) = P(Xn+1 = 0 | Xn = 0)P(Xn = 0)
+ P(Xn+1 = 0 | Xn = 1)P(Xn = 1)

= (1− p)πn(0) + qπn(1)
= (1− p)πn(0) + q(1− πn(0))

∴ πn+1(0) = (1− p− q)πn(0) + q
e.g. π1(0) = (1− p− q)π0(0) + q

π2(0) = (1− p− q) ((1− p− q)π0(0) + q) + q
= (1− p− q)2π0(0) + q(1+ (1− p− q))

=⇒ πn(0) = (1− p− q)nπ0(0) + q
n−1∑
j=0

(1− p− q)j
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Example (Continued)
Let us assume that p+ q > 0, otherwise πn(0) = π0(0) for all n.

Then

πn(0) = (1− p− q)nπ0(0) + q
(1− (1− p− q)n

p+ q

)

= (1− p− q)n
(
π0(0) −

q

p+ q

)
+

q

p+ q

and similarly

πn(1) = (1− p− q)n
(
π0(1) −

p

p+ q

)
+

p

p+ q

In other words, the probability of finding the machine in any
given state on the nth day, depends only on the initial
probabilities and the transition probabilities.
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Example (Continued)
It turns out that we can arrive at the same result in a more
automatic way using the transition matrix.

Let πn = (πn(0),πn(1)) be the row vector of probabilities.
Then

πnP = (πn(0),πn(1))
(
1− p p

q 1− q

)
= ((1− p)πn(0) + qπn(1),pπn(0) + (1− q)πn(1))
= ((1− p− q)πn(0) + q,p+ (1− p− q)πn(1))
= πn+1(!)

Therefore (see next lecture for a general proof)

πn = π0 P . . .P︸ ︷︷ ︸
n

= π0P
n
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Summary
Non-deterministic processes are subject to probabilistic
analysis.

A stochastic process is a collection of random variables
indexed by “time” taking values in a state space,
interpreted as the state of the system at a given time.
Markov chains are discrete-time stochastic processes with
countable states satisfying the Markov property: “given
the present, the future does not depend on the past”.
(Temporally) homogeneous Markov chains are described
by transition matrices, whose entries are the transition
probabilities: non-negative and rows sum to 1.
Random walks are examples of Markov chains.
In a Markov chain, the probability of finding the system in a
given state at a given time is determined by the transition
probabilities and the initial probabilities.
Finite-state Markov chains can be represented graphically.
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