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The story of the film so far...
We are developing a language to study systems with a
non-deterministic time evolution.

More precisely, a stochastic process is a collection of
random variables {Xt} indexed by “time” taking values in a
state space S: Xt is the state of the system at time t.
A Markov chain {X0,X1,X2, . . . } is a discrete-time
stochastic process with countable S satisfying the Markov
property:

P(Xn+1 = sn+1 | X0 = s0, . . . ,Xn = sn)

= P(Xn+1 = sn+1 | Xn = sn)

Markov chains are described by stochastic matrices P
with pij = P(Xn+1 = j | Xn = i) for all n, such that

pij > 0 and
∑
j

pij = 1
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n-step transition matrix
Consider a (temporally) homogeneneous Markov chain and let
P(m,m+ n) be the n-step transition matrix with entries

pij(m,m+ n) = P(Xm+n = j | Xm = i)

It is again an stochastic matrix, P(m,m+ 1) = P for all m, and
we will show that P(m,m+ n) = Pn for all m.
This will follow from the Chapman–Kolmogorov formula

P(m,m+ n+ r) = P(m,m+ n)P(m+ n,m+ n+ r)

or in terms of probabilities

pij(m,m+ n+ r) =
∑
k

pik(m,m+ n)pkj(m+ n,m+ n+ r)

The proof is not hard and uses the Markov property and some
basic facts about probability.
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Proof of the Chapman–Kolmogorov formula
By the partition rule,

P(Xm+n+r = j | Xm = i) =
∑
k

P(Xm+n+r = j, Xm+n = k | Xm = i)

Since P(A ∩ B | C) = P(A | B ∩ C)P(B | C),

P(Xm+n+r = j | Xm = i) =
∑
k

P(Xm+n+r = j | Xm+n = k, Xm = i)

× P(Xm+n = k | Xm = i)

and by the Markov property

P(Xm+n+r = j | Xm = i) =
∑
k

P(Xm+n+r = j | Xm+n = k)

× P(Xm+n = k | Xm = i)
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Corollary (of Chapman–Kolmogorov formula)
For all m, P(m,m+ n) = Pn.

Proof.
By induction on n. For n = 1, we have that P(m,m+ 1) = P for
all m (temporal homogeneity). Now for the induction step,
suppose that P(m,m+ k) = Pk for all m and for all k < n. Then
by the Chapman–Kolmogorov formula for (m,n− 1, 1),

P(m,m+ n) = P(m,m+ n− 1)P(m+ n− 1,m+ n)

but P(m,m+ n− 1) = Pn−1 by the induction hypothesis, and
P(m+ n− 1,m+ n) = P, whence P(m,m+ n) = Pn.

Notation
We will let pij(n) denote the matrix entries of Pn.
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This allows us to express the probabilities at time n in terms of
the initial probabilities.

Let πn(i) = P(Xn = i) and consider the
probability vector πn whose ith entry is πn(i).

Theorem
For every n,m > 0, πn+m = πmP

n.

Proof.
By the partition rule,

P(Xm+n = j) =
∑
i

P(Xm+n = j | Xm = i)P(Xm = i)

=
∑
i

pij(m,m+ n)πm(i)

which in terms of matrices is the product

πn+m = πmP(m,m+ n) = πmP
n
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So in particular, πn = π0P
n, so that the probabilities πn at time

n are the initial probabilities π0 multiplied with the nth power of
the transition matrix.

The transition matrices carry most of the
information in the Markov chain.
Example
Consider the general 2-state Markov chain

0 1
p

1− p

q

1− q

with transition matrix

P =

(
p00 p01
p10 p11

)
=

(
1− p p

q 1− q

)
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Example (Continued)
We proved earlier that

πn(0) = (1− p− q)n
(
π0(0) −

q

p+ q

)
+

q

p+ q

πn(1) = (1− p− q)n
(
π0(1) −

p

p+ q

)
+

p

p+ q

and we can use this to calculate the n-step transition matrix Pn.
Notice that for any 2× 2 matrix A:

(1, 0)
(
a00 a01
a10 a11

)
= (a00,a01) (0, 1)

(
a00 a01
a10 a11

)
= (a10,a11)

whence setting π0(0) = 1 and π0(0) = 0 in turn we read off

Pn =
1

p+ q

(
q p

q p

)
+

(1− p− q)n

p+ q

(
p −p

−q q

)
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whence setting π0(0) = 1 and π0(0) = 0 in turn we read off

Pn =
1

p+ q

(
q p

q p

)
+

(1− p− q)n

p+ q

(
p −p

−q q

)
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Stationary probability distributions
In the previous example, notice that if 2 > p+ q > 0, then
|1− p− q| < 1 and hence (1− p− q)n → 0 as n→∞.

Therefore
as n→∞,

Pn → P∞ =
1

p+ q

(
q p

q p

)
This matrix P∞ has the property that for any choice of initial
probabilities π0 = (π0(0),π0(1)),

π0P
∞ =

(
q

p+ q
, p

p+ q

)
The probability vector π =

(
q
p+q ,

p
p+q

)
is stationary: π = πP.

Indeed,(
q

p+ q
, p

p+ q

)(
1− p p

q 1− q

)
=

(
q

p+ q
, p

p+ q

)
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Definition
Let P be the transition matrix of a finite-state Markov chain. A
probability vector π is a steady state distribution if πP = π.

Questions
1 Do all (finite-state) Markov chains have steady state

distributions?
2 If so, is there a unique steady state distribution?
3 If so, will any initial distribution converge to the steady state

distribution?

Answers
1 Yes! (but we will not prove it in this course)
2 Not necessarily.
3 Not necessarily.
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Example
Consider the following 2-state Markov chain

0 11 1

P =

(
1 0
0 1

)
Then clearly every π obeys π = πP.

Post-mortem
The problem here is that the Markov chain decomposes: not
every state is “accessible” from every other state.

Definition
A state j is accessible from a state i, if for some n > 0,
pij(n) > 0. A Markov chain is irreducible if any state is
accessible from any other state; i.e., given any two states i, j,
there is some n > 0 with pij(n) > 0.
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Uniqueness of steady state distribution
Theorem
An irreducible finite-state Markov chain has a unique steady
state distribution.

Warning
If the Markov chain has an infinite (but still countable) number
of states, then this is not true; although there are theorems
guaranteeing the uniqueness of a steady state distribution in
those cases as well.

This still leaves the question of whether in a Markov chain with
a unique steady state distribution, any initial distribution
eventually tends to it.
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Example
Consider the following 2-state Markov chain

0 1

1

1

P =

(
0 1
1 0

)

Then there is a unique steady state distribution π =
(
1
2 ,

1
2

)
, but

no other distribution converges to it.

Post-mortem
The problem here is that P2 is the identity matrix, so every
distribution (except the steady state distribution) has “period” 2.
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Periods
Definition
A state i is said to be periodic with period k if any return visit to
i occurs in multiples of k time steps.

More precisely, let

ki = gcd{n | P(Xn = i | X0 = i) > 0}

Then if ki > 1, the state i is periodic with period ki and if ki = 1,
the state i is aperiodic. A Markov chain is said to be aperiodic
if all states are aperiodic.

Theorem
An irreducible, aperiodic, finite-state Markov chain has a unique
steady state distribution π to which any initial distribution will
eventually converge: for all π0, π0Pn → π as n→∞.
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Example
Consider the following 3-state Markov chain

0

1 2

1
2

1
4 1

4

1
8

3
4

1
8 1

2

1
2

P =


1
2

1
4

1
4

1
8

3
4

1
8

0 1
2

1
2



Solving the equation πP = π for π = (π0,π1,π2) with
π0 + π1 + π2 = 1, we find π =

(
2
13 ,

8
13 ,

3
13

)
. Moreover, any initial

distribution converges to it.
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Example (Continued)
The reason is the limit n→∞ of Pn exists:

Pn →


2
13

8
13

3
13

2
13

8
13

3
13

2
13

8
13

3
13



And hence for any (α,β,γ) with α+ β+ γ = 1,

(α,β,γ)


2
13

8
13

3
13

2
13

8
13

3
13

2
13

8
13

3
13

 = (α+ β+ γ)( 2
13 ,

8
13 ,

3
13) = ( 2

13 ,
8
13 ,

3
13)

It is actually enough to show that for some n > 1, Pn has no
zero entries!
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Example (Gambler’s ruin – revisited)
Consider again the example of a random walk on {0, 1, . . . ,N}:

0 1 2 N-1 N

1

q

p

q
p

1

States 0 and N are absorbing; i.e., p00 = pNN = 1.

P =



1 0 0 0 . . . 0
q 0 p 0 . . . 0
0 q 0 p 0
... . . . . . . . . . ...
0 0 q 0 p

0 0 . . . 0 0 1


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Example (Google’s PageRank)
’s PageRank algorithm is a Markov chain!

A random “surf” on the set S of all (public) web pages.
N = |S| & 8.42× 109 as of Friday 16 March 2012.
Let us write i→ j if web page i has a link to web page j.
Set bi = |{j | i→ j}|: the number of outlinks from i.
The transition matrix P has entries (for δ ' 0.85)

pij =

{
1−δ
N + δ

bi
, i→ j

1−δ
N , i 6→ j

∑
j

pij =
∑
j←i

(
δ
bi

+ 1−δ
N

)
+
∑
j6←i

1−δ
N

= bi

(
δ
bi

+ 1−δ
N

)
+ (N− bi)

1−δ
N

= 1
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Example (Google’s PageRank – continued)
Since pij > 0, the Markov chain is irreducible and
aperiodic.

Therefore there is a unique steady state distribution to
which every initial distribution converges to.
This steady state distribution is the PageRank!
The PageRank π = (πj) obeys the equation

πj =
1−δ
N + δ

∑
i→j

πi
bi

It can be solved by iteration, which for large N converges
relatively quickly.
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Example
Alice, Bob and Sergei each have a webpage in their home
network.

Alice’s page points to both Bob’s and Sergei’s,
whereas Bob’s page only points back to Alice’s and Sergei’s
only points to Bob’s. What are their PageRanks?

A

B C

N = 3 bA = 2 bB = bC = 1

P =

 1−δ
3

1−δ
3 + δ

2
1−δ
3 + δ

2
1−δ
3 + δ 1−δ

3
1−δ
3

1−δ
3

1−δ
3 + δ 1−δ

3



(δ = 0.85) P =

0.05 0.475 0.475
0.9 0.05 0.05
0.05 0.9 0.05

 =⇒ πT '

0.39
0.40
0.21


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Summary
Temporally homogeneous Markov chains are characterised
by an stochastic transition matrix P and the n-step
transition matrix is Pn

The probability distribution πm at time m obeys
πm+n = πmP

n for all m,n > 0
A probability distribution π is a steady state distribution if
πP = π

Finite-state Markov chains always have steady state
distributions.
A necessary and sufficient condition for a finite-state
Markov chain to have a unique steady state distribution to
which all distributions converge is that for some n, Pn has
no zero entries.

’s PageRank algorithm is a Markov chain!
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