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The story of the film so far...
(Temporally homogeneous) Markov chains {X0,X1, . . . }
are characterised by an stochastic transition matrix P,
with entries pij = P(Xn+1 = j | Xn = i) for all n

The probability distribution πm at time m obeys
πm+n = πmP

n for all m,n > 0
π is a steady-state distribution if πP = π

Finite-state Markov chains always have steady state
distributions.
A (finite-state) Markov chain is regular if it has a unique
steady state distribution to which all distributions converge
A (finite-state) Markov chain is regular iff for some n, Pn
has no zero entries.
Examples of Markov chains are given by random walks

’s PageRank is the steady-state distribution of a
random walk on the world wide web.
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Random walk revisited
Let us consider again the random walk on the integers:

pq

−1 0 1

The jumps Ji are independent random variables with

P(Ji = 1) = p P(Ji = −1) = q = 1− p

Starting at 0, Xn =
∑n
i=1 Ji is the position after n steps. Let

Tr =

{
number of steps until we visit r for the first time, r 6= 0
number of steps until we revisit 0, r = 0.

Question: How the Tr are distributed? i.e., P(Tr = n) =?
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Probability generating functions
To answer this question we introduce some more technology.

Definition
Let X be a d.r.v. taking values in {0, 1, 2, . . . }. The probability
generating function GX(s) of X is the power series

GX(s) =

∞∑
n=0

P(X = n)sn

which agrees with E(sX) =
∑
x p(x)s

x.

Basic properties:

GX(1) =
∑
x p(x) = 1

G ′X(1) =
∑
x xp(x) = E(X)

GX(e
t) =MX(t), the moment generating function
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Examples
1 Let X be binomial with parameters (n,p), so
p(r) =

(
n
r

)
prqn−r, for 0 6 r 6 n and with q = 1− p. Then

GX(s) =

n∑
r=0

p(r)sr =

n∑
r=0

(
n

r

)
prqn−rsr = (q+ ps)n

using the binomial theorem.

2 Let X be geometrically distributed with parameter p, so that
p(k) = qk−1p for k > 1 and again q = 1− p. Then

GX(s) =

∞∑
k=1

p(k)sk =

∞∑
k=1

qk−1psk = ps

∞∑
n=0

(qs)n =
ps

1− qs
,

for |s| < 1
q .

The P(X = n) are obtained by expanding GX(s) in powers of s.
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Behaviour under independence
Theorem
Let X, Y be independent d.r.v.s with probability generating
functions GX(s) and GY(s). Then

GX+Y(s) = GX(s)GY(s)

Proof is mutatis mutandis as for moment generating functions.
Example
Let X =

∑n
k=1 Ik, where Ik are independent Bernoulli trials with

success probability p. Then GIk(s) = q+ ps, with q = 1− p, and

GX(s) =

n∏
k=1

GIk(s) =

n∏
k=1

(q+ ps) = (q+ ps)n ,

whence X is binomial with parameters (n,p), as expected.
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Conditional expectation I
Definition
Let X, Y be random variables with joint distribution pX,Y(x,y).
Then the conditional distribution of X given Y is

p(x | y) = P(X = x | Y = y) =
P({X = x} ∩ {Y = y})

P({Y = y})
=
pX,Y(x,y)
pY(y)

It follows that the marginal distribution

pX(x) =
∑
y

pX,Y(x,y) =
∑
y

p(x | y)pY(y)

so that
E(X) =

∑
x

xpX(x) =
∑
x

∑
y

xp(x | y)pY(y)
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Conditional expectation II
Interchanging the order of the sums,

E(X) =
∑
y

∑
x

xp(x | y)pY(y) =
∑
y

E(X | Y = y)pY(y)

which defines the conditional expectation of X given Y:

E(X | Y = y) =
∑
x

xp(x | y)

This defines a random variable E(X | Y), which is a function of Y,
whose value at y is E(X | Y = y). Thus we have

E(X) = E (E(X|Y))

and similarly for any function Z = h(X),

E(Z) = E(E(Z|Y)) where E(Z|Y = y) =
∑
x

h(x)p(x | y)
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Example (Random sums)
Let X1,X2, . . . be i.i.d. and let N be an N-valued d.r.v.
independent from the Xi. Let T =

∑N
r=0 Xr. What is GT (s)?

We calculate this by conditioning on N:

E(sT ) =
∑
n

E(sT | N = n)P(N = n)

By independence,

E(sT | N = n) = E(sX1+···+Xn) = E(sX1) . . .E(sXn) = (GX(s))
n

where GX(s) is the p.g.f. of any of the Xi. Hence

GT (s) =
∑
n

GX(s)
nP(N = n) = E(GX(s)N) = GN(GX(s))

In particular, E(T) = G ′T (1) = G ′N(GX(1))G ′X(1) = E(N)E(X)
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Example (Gambler’s ruin – revisited)
A gambler starts with £k and makes a number of independent
£1 bets with even odds. The gambler stops when she has either
£0 or £N. Let Tk be the length of the game. What is E(Tk)?

Conditioning on the result of the first bet, and letting τk = E(Tk),

τk = E(Tk|win)P(win) + E(Tk|lose)P(lose)
= 1

2(1+ τk+1) +
1
2(1+ τk−1)

= 1+ 1
2(τk+1 + τk−1) for 0 < k < n

whereas τ0 = τN = 0. τk is quadratic in k with zeroes at 0 and
N, so τk = ck(N− k) for some constant c. Plugging it into the
equation for k = 1, we see that c = 1 and hence

E(Tk) = k(N− k)
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The Galton–Watson problem I
In 1873, Francis Galton posed a problem
out of his concern in the decay of families
of “men of note”.

In more modern
language, a similar problem is the
following.
A population of individuals reproduces
itself in generations. Let Xn denote the
size of the population in the nth
generation. There are two rules:

1 each member of a generation produces a family (maybe of
size 0) in the next generation

2 family sizes of all individuals are i.i.d. random variables
If we assume that X0 = 1, what is the probability that Xn = 0 for
some n? i.e., will the family become extinct?
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The Galton–Watson problem II
The problem was (partially) solved by the
Reverend Henry Watson, a
mathematician, who together with Galton
wrote On the probability of extinction of
families in 1874.

It gave rise to a class of
problems known as branching
processes.

•

•

•

•

•

•

•

•

••
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The Galton–Watson problem III
The population at the nth generation is a random sum of
random variables:

Xn =

Xn−1∑
j=1

ξ
(n−1)
j

where ξ(n−1)
j is the size of the family of the jth individual of the

(n− 1)st generation.

They are i.i.d. with p.g.f. G(s). Let us write
Gn(s) for the p.g.f. of Xn. Then by the random sums example ,

Gn(s) = Gn−1(G(s)) = Gn−2(G(G(s))) = · · · = Gn(s)

i.e., the nth iterate of G.
Gn is the p.g.f. of Xn, whence

Gn(s) =

∞∑
j=0

P(Xn = j)sj =⇒ P(Xn = 0) = Gn(0) = Gn(0)
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The Galton–Watson problem IV
We are interested in the large n limit, call it z.

If z exists, it obeys
G(z) = z. Formally, if Gn(0)→ z as n→∞, applying G again to
both sides, we have Gn+1(0)→ G(z), but Gn+1(0)→ z, hence
G(z) = z. We can also see this graphically:

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

There is always one solution: z = 1, namely extinction!
Watson concluded (incorrectly) that extinction was
inevitable.
Luckily (?) that’s not always the case.
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Example (Extinction and survival for Poisson branching)
Suppose that the family sizes are Poisson distributed, so that

G(s) =

∞∑
k=0

e−λ λ
k

k! s
k = e−λeλs = eλ(s−1)

We must solve the equation eλ(z−1) = z for 0 6 z 6 1. For λ 6 1
the only solution is z = 1, so the family will be extinct with
probability 1, but for λ > 1 there is a nonzero probability of
survival:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Example (Extinction and survival for “geometric” branching)
Suppose that the family sizes are distributed by a geometric
distribution p(k) = qkp for k > 0 and q = 1− p.

Then

G(s) =

∞∑
k=0

qkpsk =
p

1− qs

We must solve the equation p
1−qz = z for 0 6 z 6 1. It has two

roots (for q 6= 0, otherwise z = 1)

z =
1±

√
1− 4pq
2q =

1±
√

(2p− 1)2
2(1− p)

so one root is always 1 (extinction) and the other is p
1−p , which

is < 1 only for p < 1
2 . So if p > 1

2 , extinction is inevitable, but if
p < 1

2 there is a chance of survival.
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1−qz = z for 0 6 z 6 1. It has two

roots (for q 6= 0, otherwise z = 1)

z =
1±

√
1− 4pq
2q =

1±
√

(2p− 1)2
2(1− p)

so one root is always 1 (extinction) and the other is p
1−p , which

is < 1 only for p < 1
2 .

So if p > 1
2 , extinction is inevitable, but if

p < 1
2 there is a chance of survival.
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Hitting times for random walks I
Recall our motivating example: the one-dimensional random walk

Let r > 0 and let Tr be the number of steps until we visit r
for the first time, starting at 0.
Let Tk,k+1 be the number of steps needed to reach k+ 1
having reached k. Then T0,1 = T1 and the Tk,k+1 are i.i.d.
Tr = T0,1 + T1,2 + · · ·+ Tr−1,r and by independence

E(sTr) = E(sT1)r

Conditioning on the first jump,

E(sT1) = E(sT1 | J1 = 1)P(J1 = 1) + E(sT1 | J1 = −1)P(J1 = −1)
= sp+ sE(sT−1,0+T0,1)q

= sp+ sqE(sT1)2

which we solve for E(sT1)
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Hitting times for random walks II
Let E(sT1) = x and we must solve x = sp+ sqx2

Assuming that q 6= 0, there are two solutions:

x =
1±

√
1− 4pqs2
2sq

but only one has a power series expansion around s = 0:

E(sT1) =
1−

√
1− 4pqs2
2sq

Hence for r > 0,

E(sTr) =

(
1−

√
1− 4pqs2
2sq

)r
and for r < 0 we simply replace p↔ q
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Hitting times for random walks III
How about E(sT0)?

We condition on the first jump:

E(sT0) = E(sT0 | J1 = 1)P(J1 = 1) + E(sT0 | J1 = −1)P(J1 = −1)
= sE(sT1,0)p+ sE(sT−1,0)q

= spE(sT−1) + sqE(sT1)

= sp

(
1−

√
1− 4pqs2
2sp

)
+ sq

(
1−

√
1− 4pqs2
2sq

)

= 1−

√
1− 4pqs2

∴ E(T0) =
4pq√
1− 4pq

−→∞ if p = q
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Summary
We introduced the probability generating function
GX(s) = E(sX) of an N-valued d.r.v.

If X, Y are independent, then GX+Y(s) = GX(s)GY(s)
We defined the conditional distribution of X given Y:
p(x | y) = P(X = x | Y = y)

and the conditional expectation of X given Y, E(X | Y), a
d.r.v. and a function of Y: E(X | Y = y) =

∑
x xp(x | y)

E(X) = E(E(X | Y))

We looked at random sums of random variables
We introduced branching processes and looked at the
Galton–Watson problem of extinction of family names
We revisited the one-dimensional random walk and
calculated the p.g.f.s for the hitting times
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