Mathematics for Informatics 4a

José Figueroa-O'Farrill

Lecture 17 21 March 2012

 (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = ℙ(X_{n+1} = j | X_n = i) for all n

ヘロン 不通 とくほ とくほ とうほう

- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = ℙ(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$

- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = ℙ(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$

- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = ℙ(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$
- Finite-state Markov chains always have steady state distributions.

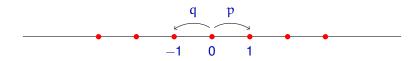
- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = P(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$
- Finite-state Markov chains always have steady state distributions.
- A (finite-state) Markov chain is regular if it has a unique steady state distribution to which all distributions converge

- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = P(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$
- Finite-state Markov chains always have steady state distributions.
- A (finite-state) Markov chain is regular if it has a unique steady state distribution to which all distributions converge
- A (finite-state) Markov chain is regular iff for some n, Pⁿ has no zero entries.

- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = P(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$
- Finite-state Markov chains always have steady state distributions.
- A (finite-state) Markov chain is regular if it has a unique steady state distribution to which all distributions converge
- A (finite-state) Markov chain is regular iff for some n, Pⁿ has no zero entries.
- Examples of Markov chains are given by random walks

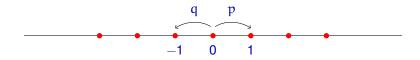
- (Temporally homogeneous) Markov chains {X₀, X₁,...} are characterised by an stochastic transition matrix P, with entries p_{ij} = P(X_{n+1} = j | X_n = i) for all n
- The probability distribution π_m at time m obeys $\pi_{m+n} = \pi_m P^n$ for all $m, n \ge 0$
- π is a steady-state distribution if $\pi P = \pi$
- Finite-state Markov chains always have steady state distributions.
- A (finite-state) Markov chain is regular if it has a unique steady state distribution to which all distributions converge
- A (finite-state) Markov chain is regular iff for some n, Pⁿ has no zero entries.
- Examples of Markov chains are given by random walks
- Google's PageRank is the steady-state distribution of a random walk on the world wide web.

Let us consider again the random walk on the integers:



く 戸 と く ヨ と く ヨ と

Let us consider again the random walk on the integers:

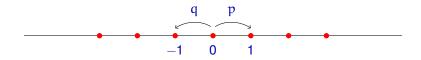


The jumps J_i are independent random variables with

$$\mathbb{P}(J_i=1)=p \qquad \mathbb{P}(J_i=-1)=q=1-p$$

く 戸 と く ヨ と く ヨ と

Let us consider again the random walk on the integers:



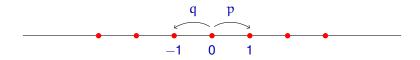
The jumps J_i are independent random variables with

 $\mathbb{P}(J_i=1)=p \qquad \mathbb{P}(J_i=-1)=q=1-p$

Starting at 0, $X_n = \sum_{i=1}^n J_i$ is the position after n steps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let us consider again the random walk on the integers:



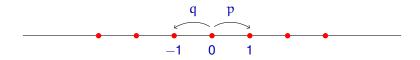
The jumps J_i are independent random variables with

$$\mathbb{P}(J_i = 1) = p \qquad \mathbb{P}(J_i = -1) = q = 1 - p$$

Starting at 0, $X_n = \sum_{i=1}^n J_i$ is the position after n steps. Let

 $T_r = \begin{cases} \text{number of steps until we visit } r \text{ for the first time}, & r \neq 0 \\ \text{number of steps until we revisit } 0, & r = 0. \end{cases}$

Let us consider again the random walk on the integers:



The jumps J_i are independent random variables with

 $\mathbb{P}(J_{\mathfrak{i}}=1)=p \qquad \mathbb{P}(J_{\mathfrak{i}}=-1)=q=1-p$

Starting at 0, $X_n = \sum_{i=1}^n J_i$ is the position after n steps. Let

 $T_r = \begin{cases} \text{number of steps until we visit } r \text{ for the first time}, & r \neq 0 \\ \text{number of steps until we revisit 0}, & r = 0. \end{cases}$

Question: How the T_r are distributed? i.e., $\mathbb{P}(T_r = n) =$?

To answer this question we introduce some more technology.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

To answer this question we introduce some more technology.

Definition

Let X be a d.r.v. taking values in $\{0, 1, 2, ...\}$. The **probability** generating function $G_X(s)$ of X is the power series

$$G_X(s) = \sum_{n=0}^{\infty} \mathbb{P}(X=n)s^n$$

which agrees with $\mathbb{E}(s^{\chi}) = \sum_{\chi} p(\chi) s^{\chi}$.

イロト 不得 トイヨト イヨト

To answer this question we introduce some more technology.

Definition

Let X be a d.r.v. taking values in $\{0, 1, 2, ...\}$. The **probability** generating function $G_X(s)$ of X is the power series

$$G_X(s) = \sum_{n=0}^{\infty} \mathbb{P}(X=n)s^n$$

which agrees with $\mathbb{E}(s^{\chi}) = \sum_{x} p(x)s^{\chi}$.

Basic properties:

•
$$G_X(1) = \sum_x p(x) = 1$$

・ロン ・雪 と ・ ヨ と ・

To answer this question we introduce some more technology.

Definition

Let X be a d.r.v. taking values in $\{0, 1, 2, ...\}$. The **probability** generating function $G_X(s)$ of X is the power series

$$G_X(s) = \sum_{n=0}^{\infty} \mathbb{P}(X=n)s^n$$

which agrees with $\mathbb{E}(s^{\chi}) = \sum_{\chi} p(\chi) s^{\chi}$.

Basic properties:

•
$$G_X(1) = \sum_x p(x) = 1$$

•
$$G'_X(1) = \sum_x xp(x) = \mathbb{E}(X)$$

・ロン ・雪 と ・ ヨ と ・

3

4/20

To answer this question we introduce some more technology.

Definition

Let X be a d.r.v. taking values in $\{0, 1, 2, ...\}$. The **probability** generating function $G_X(s)$ of X is the power series

$$G_{X}(s) = \sum_{n=0}^{\infty} \mathbb{P}(X=n)s^{n}$$

which agrees with $\mathbb{E}(s^{\chi}) = \sum_{\chi} p(\chi) s^{\chi}$.

Basic properties:

- $G_X(1) = \sum_x p(x) = 1$
- $G'_X(1) = \sum_x xp(x) = \mathbb{E}(X)$
- $G_X(e^t) = M_X(t)$, the moment generating function

Examples

• Let X be binomial with parameters (n, p), so $p(r) = {n \choose r} p^r q^{n-r}$, for $0 \le r \le n$ and with q = 1 - p. Then

$$G_{X}(s) = \sum_{r=0}^{n} p(r)s^{r} = \sum_{r=0}^{n} {n \choose r} p^{r} q^{n-r} s^{r} = (q+ps)^{n}$$

using the binomial theorem.

э.

・ロン ・日 ・ ・ ヨン ・ ヨン

Examples

• Let X be binomial with parameters (n, p), so $p(r) = {n \choose r} p^r q^{n-r}$, for $0 \le r \le n$ and with q = 1 - p. Then

$$G_{X}(s) = \sum_{r=0}^{n} p(r)s^{r} = \sum_{r=0}^{n} {n \choose r} p^{r} q^{n-r} s^{r} = (q+ps)^{n}$$

using the binomial theorem.

2 Let X be geometrically distributed with parameter p, so that $p(k) = q^{k-1}p$ for $k \ge 1$ and again q = 1 - p. Then

$$\label{eq:GX} \begin{split} G_X(s) &= \sum_{k=1}^\infty p(k) s^k = \sum_{k=1}^\infty q^{k-1} p s^k = p s \sum_{n=0}^\infty (qs)^n = \frac{ps}{1-qs} \;, \\ \text{for } |s| &< \frac{1}{q}. \end{split}$$

イロト 不得 トイヨト イヨト

Examples

• Let X be binomial with parameters (n, p), so $p(r) = {n \choose r} p^r q^{n-r}$, for $0 \le r \le n$ and with q = 1 - p. Then

$$G_X(s) = \sum_{r=0}^n p(r)s^r = \sum_{r=0}^n \binom{n}{r} p^r q^{n-r} s^r = (q+ps)^n$$

using the binomial theorem.

2 Let X be geometrically distributed with parameter p, so that $p(k) = q^{k-1}p$ for $k \ge 1$ and again q = 1 - p. Then

$$G_X(s) = \sum_{k=1}^{\infty} p(k)s^k = \sum_{k=1}^{\infty} q^{k-1}ps^k = ps \sum_{n=0}^{\infty} (qs)^n = \frac{ps}{1-qs} ,$$
 for $|s| < \frac{1}{q}$.

The $\mathbb{P}(X = n)$ are obtained by expanding $G_X(s)$ in powers of s.

Behaviour under independence

Theorem

Let X, Y be independent d.r.v.s with probability generating functions $G_X(s)$ and $G_Y(s)$. Then

 $G_{X+Y}(s) = G_X(s)G_Y(s)$

6/20

Behaviour under independence

Theorem

Let X, Y be independent d.r.v.s with probability generating functions $G_X(s)$ and $G_Y(s)$. Then

 $G_{X+Y}(s) = G_X(s)G_Y(s)$

Proof is *mutatis mutandis* as for moment generating functions.

3

A (10) A (10)

Behaviour under independence

Theorem

Let X, Y be independent d.r.v.s with probability generating functions $G_X(s)$ and $G_Y(s)$. Then

 $G_{X+Y}(s) = G_X(s)G_Y(s)$

Proof is *mutatis mutandis* as for moment generating functions.

Example

Let $X = \sum_{k=1}^{n} I_k$, where I_k are independent Bernoulli trials with success probability p. Then $G_{I_k}(s) = q + ps$, with q = 1 - p, and

$$G_X(s) = \prod_{k=1}^n G_{I_k}(s) = \prod_{k=1}^n (q+ps) = (q+ps)^n$$
,

whence X is binomial with parameters (n, p), as expected.

Definition

Let X, Y be random variables with joint distribution $p_{X,Y}(x, y)$. Then the **conditional distribution of** X **given** Y is

$$p(x \mid y) = \mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(\{X = x\} \cap \{Y = y\})}{\mathbb{P}(\{Y = y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Definition

Let X, Y be random variables with joint distribution $p_{X,Y}(x, y)$. Then the **conditional distribution of** X **given** Y is

$$p(x \mid y) = \mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(\{X = x\} \cap \{Y = y\})}{\mathbb{P}(\{Y = y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

It follows that the marginal distribution

$$p_X(x) = \sum_y p_{X,Y}(x,y) = \sum_y p(x \mid y)p_Y(y)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Definition

Let X, Y be random variables with joint distribution $p_{X,Y}(x, y)$. Then the **conditional distribution of** X **given** Y is

$$p(x \mid y) = \mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(\{X = x\} \cap \{Y = y\})}{\mathbb{P}(\{Y = y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

It follows that the marginal distribution

$$p_X(x) = \sum_y p_{X,Y}(x,y) = \sum_y p(x \mid y)p_Y(y)$$

so that

$$\mathbb{E}(X) = \sum_x x p_X(x) = \sum_x \sum_y x p(x \mid y) p_Y(y)$$

Interchanging the order of the sums,

$$\mathbb{E}(X) = \sum_{y} \sum_{x} xp(x \mid y)p_{Y}(y) = \sum_{y} \mathbb{E}(X \mid Y = y)p_{Y}(y)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Interchanging the order of the sums,

$$\mathbb{E}(X) = \sum_{y} \sum_{x} xp(x \mid y)p_{Y}(y) = \sum_{y} \mathbb{E}(X \mid Y = y)p_{Y}(y)$$

which defines the conditional expectation of X given Y:

$$\mathbb{E}(X \mid Y = y) = \sum_{x} xp(x \mid y)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Interchanging the order of the sums,

$$\mathbb{E}(X) = \sum_{y} \sum_{x} xp(x \mid y)p_{Y}(y) = \sum_{y} \mathbb{E}(X \mid Y = y)p_{Y}(y)$$

which defines the conditional expectation of X given Y:

$$\mathbb{E}(X \mid Y = y) = \sum_{x} xp(x \mid y)$$

This defines a random variable $\mathbb{E}(X | Y)$, which is a function of Y, whose value at y is $\mathbb{E}(X | Y = y)$. Thus we have

 $\mathbb{E}(X) = \mathbb{E}\left(\mathbb{E}(X|Y)\right)$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Interchanging the order of the sums,

$$\mathbb{E}(X) = \sum_{y} \sum_{x} xp(x \mid y)p_{Y}(y) = \sum_{y} \mathbb{E}(X \mid Y = y)p_{Y}(y)$$

which defines the conditional expectation of X given Y:

$$\mathbb{E}(X \mid Y = y) = \sum_{x} xp(x \mid y)$$

This defines a random variable $\mathbb{E}(X | Y)$, which is a function of Y, whose value at y is $\mathbb{E}(X | Y = y)$. Thus we have

 $\mathbb{E}(X) = \mathbb{E}\left(\mathbb{E}(X|Y)\right)$

and similarly for any function Z = h(X),

 $\mathbb{E}(Z) = \mathbb{E}(\mathbb{E}(Z|Y))$ where $\mathbb{E}(Z|Y = y) = \sum_{x} h(x)p(x \mid y)$

Let $X_1, X_2, ...$ be i.i.d. and let N be an N-valued d.r.v. independent from the X_i . Let $T = \sum_{r=0}^{N} X_r$. What is $G_T(s)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $X_1, X_2, ...$ be i.i.d. and let N be an N-valued d.r.v. independent from the X_i . Let $T = \sum_{r=0}^{N} X_r$. What is $G_T(s)$? We calculate this by conditioning on N:

$$\mathbb{E}(s^{\mathsf{T}}) = \sum_{n} \mathbb{E}(s^{\mathsf{T}} \mid N = n) \mathbb{P}(N = n)$$

9/20

Let $X_1, X_2, ...$ be i.i.d. and let N be an N-valued d.r.v. independent from the X_i . Let $T = \sum_{r=0}^{N} X_r$. What is $G_T(s)$? We calculate this by conditioning on N:

$$\mathbb{E}(s^{\mathsf{T}}) = \sum_{n} \mathbb{E}(s^{\mathsf{T}} \mid N = n) \mathbb{P}(N = n)$$

By independence,

 $\mathbb{E}(s^{\mathsf{T}} \mid \mathsf{N} = \mathfrak{n}) = \mathbb{E}(s^{\mathsf{X}_1 + \dots + \mathsf{X}_n}) = \mathbb{E}(s^{\mathsf{X}_1}) \dots \mathbb{E}(s^{\mathsf{X}_n}) = (\mathsf{G}_{\mathsf{X}}(s))^n$

where $G_X(s)$ is the p.g.f. of any of the X_i .

< 口 > < 同 > < 三 > < 三 > .

Let $X_1, X_2, ...$ be i.i.d. and let N be an N-valued d.r.v. independent from the X_i . Let $T = \sum_{r=0}^{N} X_r$. What is $G_T(s)$? We calculate this by conditioning on N:

$$\mathbb{E}(s^{\mathsf{T}}) = \sum_{n} \mathbb{E}(s^{\mathsf{T}} \mid N = n) \mathbb{P}(N = n)$$

By independence,

 $\mathbb{E}(s^{\mathsf{T}} \mid \mathsf{N} = \mathfrak{n}) = \mathbb{E}(s^{X_1 + \dots + X_n}) = \mathbb{E}(s^{X_1}) \dots \mathbb{E}(s^{X_n}) = (\mathsf{G}_{\mathsf{X}}(s))^n$

where $G_{\chi}(s)$ is the p.g.f. of any of the X_i . Hence

$$G_{\mathsf{T}}(s) = \sum_{\mathfrak{n}} G_{\mathsf{X}}(s)^{\mathfrak{n}} \mathbb{P}(\mathsf{N} = \mathfrak{n}) = \mathbb{E}(G_{\mathsf{X}}(s)^{\mathsf{N}}) = G_{\mathsf{N}}(G_{\mathsf{X}}(s))$$

ヘロア 人間 アメヨア ヘヨア

Example (Random sums)

Let $X_1, X_2, ...$ be i.i.d. and let N be an N-valued d.r.v. independent from the X_i . Let $T = \sum_{r=0}^{N} X_r$. What is $G_T(s)$? We calculate this by conditioning on N:

$$\mathbb{E}(s^{\mathsf{T}}) = \sum_{n} \mathbb{E}(s^{\mathsf{T}} \mid N = n) \mathbb{P}(N = n)$$

By independence,

 $\mathbb{E}(s^{\mathsf{T}} \mid \mathsf{N} = \mathfrak{n}) = \mathbb{E}(s^{X_1 + \dots + X_n}) = \mathbb{E}(s^{X_1}) \dots \mathbb{E}(s^{X_n}) = (\mathsf{G}_{\mathsf{X}}(s))^n$

where $G_{\chi}(s)$ is the p.g.f. of any of the X_i . Hence

$$G_{\mathsf{T}}(s) = \sum_{n} G_{\mathsf{X}}(s)^{n} \mathbb{P}(\mathsf{N} = n) = \mathbb{E}(G_{\mathsf{X}}(s)^{\mathsf{N}}) = G_{\mathsf{N}}(G_{\mathsf{X}}(s))$$

In particular, $\mathbb{E}(T) = G'_T(1) = G'_N(G_X(1))G'_X(1) = \mathbb{E}(N)\mathbb{E}(X)$

・ロト ・四ト ・ヨト ・ ヨト

A gambler starts with $\pounds k$ and makes a number of independent $\pounds 1$ bets with even odds. The gambler stops when she has either $\pounds 0$ or $\pounds N$. Let T_k be the length of the game. *What is* $\mathbb{E}(T_k)$?

э

A gambler starts with $\pounds k$ and makes a number of independent $\pounds 1$ bets with even odds. The gambler stops when she has either $\pounds 0$ or $\pounds N$. Let T_k be the length of the game. *What is* $\mathbb{E}(T_k)$? Conditioning on the result of the first bet, and letting $\tau_k = \mathbb{E}(T_k)$,

$$\begin{split} \tau_k &= \mathbb{E}(T_k | \text{win}) \mathbb{P}(\text{win}) + \mathbb{E}(T_k | \text{lose}) \mathbb{P}(\text{lose}) \\ &= \frac{1}{2}(1 + \tau_{k+1}) + \frac{1}{2}(1 + \tau_{k-1}) \\ &= 1 + \frac{1}{2}(\tau_{k+1} + \tau_{k-1}) \quad \text{ for } 0 < k < n \end{split}$$

whereas $\tau_0 = \tau_N = 0$.

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A gambler starts with $\pounds k$ and makes a number of independent $\pounds 1$ bets with even odds. The gambler stops when she has either $\pounds 0$ or $\pounds N$. Let T_k be the length of the game. *What is* $\mathbb{E}(T_k)$? Conditioning on the result of the first bet, and letting $\tau_k = \mathbb{E}(T_k)$,

$$\begin{split} \tau_k &= \mathbb{E}(T_k | \text{win}) \mathbb{P}(\text{win}) + \mathbb{E}(T_k | \text{lose}) \mathbb{P}(\text{lose}) \\ &= \frac{1}{2}(1 + \tau_{k+1}) + \frac{1}{2}(1 + \tau_{k-1}) \\ &= 1 + \frac{1}{2}(\tau_{k+1} + \tau_{k-1}) \quad \text{ for } 0 < k < n \end{split}$$

whereas $\tau_0 = \tau_N = 0$. τ_k is quadratic in k with zeroes at 0 and N, so $\tau_k = ck(N-k)$ for some constant c.

3

A gambler starts with $\pounds k$ and makes a number of independent $\pounds 1$ bets with even odds. The gambler stops when she has either $\pounds 0$ or $\pounds N$. Let T_k be the length of the game. *What is* $\mathbb{E}(T_k)$? Conditioning on the result of the first bet, and letting $\tau_k = \mathbb{E}(T_k)$,

$$\begin{split} \tau_k &= \mathbb{E}(T_k | \text{win}) \mathbb{P}(\text{win}) + \mathbb{E}(T_k | \text{lose}) \mathbb{P}(\text{lose}) \\ &= \frac{1}{2}(1 + \tau_{k+1}) + \frac{1}{2}(1 + \tau_{k-1}) \\ &= 1 + \frac{1}{2}(\tau_{k+1} + \tau_{k-1}) \quad \text{ for } 0 < k < n \end{split}$$

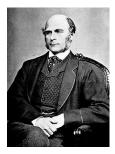
whereas $\tau_0 = \tau_N = 0$. τ_k is quadratic in k with zeroes at 0 and N, so $\tau_k = ck(N-k)$ for some constant c. Plugging it into the equation for k = 1, we see that c = 1 and hence

 $\mathbb{E}(\mathsf{T}_k) = k(\mathsf{N} - k)$

3

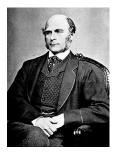
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note".



A D A D A D A

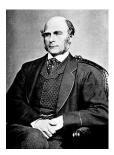
In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note". In more modern language, a similar problem is the following.



A (1) > A (2) > A (2) >

In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note". In more modern language, a similar problem is the following.

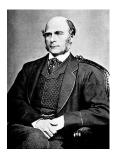
A population of individuals reproduces itself in generations. Let X_n denote the size of the population in the nth generation. There are two rules:



伺 ト イヨ ト イヨ ト

In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note". In more modern language, a similar problem is the following.

A population of individuals reproduces itself in generations. Let X_n denote the size of the population in the nth generation. There are two rules:

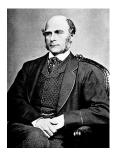


< 回 > < 三 > < 三 >

 each member of a generation produces a family (maybe of size 0) in the next generation

In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note". In more modern language, a similar problem is the following.

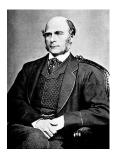
A population of individuals reproduces itself in generations. Let X_n denote the size of the population in the nth generation. There are two rules:



- each member of a generation produces a family (maybe of size 0) in the next generation
- I family sizes of all individuals are i.i.d. random variables

In 1873, Francis Galton posed a problem out of his concern in the decay of families of "men of note". In more modern language, a similar problem is the following.

A population of individuals reproduces itself in generations. Let X_n denote the size of the population in the nth generation. There are two rules:



・ロット (日) (日) (日)

- each member of a generation produces a family (maybe of size 0) in the next generation
- I family sizes of all individuals are i.i.d. random variables

If we assume that $X_0 = 1$, what is the probability that $X_n = 0$ for some n? i.e., will the family become extinct?

э.

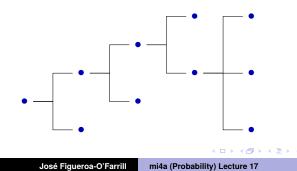
The problem was (partially) solved by the Reverend Henry Watson, a mathematician, who together with Galton wrote *On the probability of extinction of families* in 1874.

伺 ト イヨ ト イヨ ト

The problem was (partially) solved by the Reverend Henry Watson, a mathematician, who together with Galton wrote *On the probability of extinction of families* in 1874. It gave rise to a class of problems known as **branching processes**.

伺 ト イヨ ト イヨ ト

The problem was (partially) solved by the Reverend Henry Watson, a mathematician, who together with Galton wrote *On the probability of extinction of families* in 1874. It gave rise to a class of problems known as **branching processes**.



The population at the nth generation is a random sum of random variables:

$$X_{n} = \sum_{j=1}^{X_{n-1}} \xi_{j}^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation.

The population at the nth generation is a random sum of random variables:

$$X_{n} = \sum_{j=1}^{X_{n-1}} \xi_{j}^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation. They are i.i.d. with p.g.f. G(s).

• (1) • (

The population at the nth generation is a random sum of random variables:

$$X_n = \sum_{j=1}^{X_{n-1}} \xi_j^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation. They are i.i.d. with p.g.f. G(s). Let us write $G_n(s)$ for the p.g.f. of X_n .

э.

The population at the nth generation is a random sum of random variables:

$$X_{n} = \sum_{j=1}^{X_{n-1}} \xi_{j}^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation. They are i.i.d. with p.g.f. G(s). Let us write $G_n(s)$ for the p.g.f. of X_n . Then by the random sums example,

 $G_n(s) = G_{n-1}(G(s)) = G_{n-2}(G(G(s))) = \cdots = G^n(s)$

i.e., the nth iterate of G.

The population at the nth generation is a random sum of random variables:

$$X_{n} = \sum_{j=1}^{X_{n-1}} \xi_{j}^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation. They are i.i.d. with p.g.f. G(s). Let us write $G_n(s)$ for the p.g.f. of X_n . Then by the random sums example,

 $G_n(s) = G_{n-1}(G(s)) = G_{n-2}(G(G(s))) = \cdots = G^n(s)$

i.e., the nth **iterate** of G. G_n is the p.g.f. of X_n , whence

$$G_n(s) = \sum_{j=0}^{\infty} \mathbb{P}(X_n = j)s^j$$

The population at the nth generation is a random sum of random variables:

$$X_n = \sum_{j=1}^{X_{n-1}} \xi_j^{(n-1)}$$

where $\xi_j^{(n-1)}$ is the size of the family of the jth individual of the (n-1)st generation. They are i.i.d. with p.g.f. G(s). Let us write $G_n(s)$ for the p.g.f. of X_n . Then by the random sums example,

 $G_n(s) = G_{n-1}(G(s)) = G_{n-2}(G(G(s))) = \cdots = G^n(s)$

i.e., the nth **iterate** of G. G_n is the p.g.f. of X_n , whence

$$G_n(s) = \sum_{j=0}^{\infty} \mathbb{P}(X_n = j)s^j \implies \mathbb{P}(X_n = 0) = G_n(0) = G^n(0)$$

We are interested in the large n limit, call it z.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

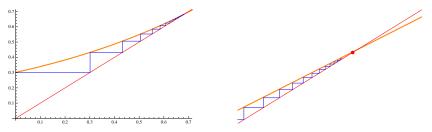
We are interested in the large n limit, call it z. If z exists, it obeys G(z) = z.

We are interested in the large n limit, call it z. If z exists, it obeys G(z) = z. Formally, if $G^n(0) \to z$ as $n \to \infty$, applying G again to both sides, we have $G^{n+1}(0) \to G(z)$, but $G^{n+1}(0) \to z$, hence G(z) = z.

くぼう くほう くほう

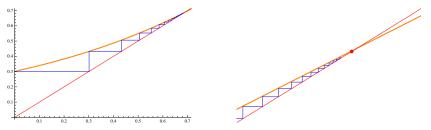
э.

We are interested in the large n limit, call it z. If z exists, it obeys G(z) = z. Formally, if $G^n(0) \to z$ as $n \to \infty$, applying G again to both sides, we have $G^{n+1}(0) \to G(z)$, but $G^{n+1}(0) \to z$, hence G(z) = z. We can also see this graphically:



- There is always one solution: z = 1, namely *extinction*!
- Watson concluded (incorrectly) that extinction was inevitable.

We are interested in the large n limit, call it z. If z exists, it obeys G(z) = z. Formally, if $G^n(0) \to z$ as $n \to \infty$, applying G again to both sides, we have $G^{n+1}(0) \to G(z)$, but $G^{n+1}(0) \to z$, hence G(z) = z. We can also see this graphically:



- There is always one solution: z = 1, namely *extinction*!
- Watson concluded (incorrectly) that extinction was inevitable.
- Luckily (?) that's not always the case.

Suppose that the family sizes are Poisson distributed, so that

$$G(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

Suppose that the family sizes are Poisson distributed, so that

$$G(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

We must solve the equation $e^{\lambda(z-1)} = z$ for $0 \le z \le 1$.

Suppose that the family sizes are Poisson distributed, so that

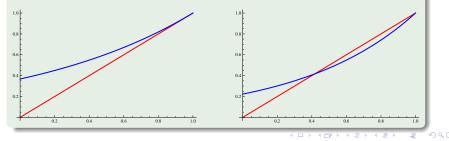
$$G(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

We must solve the equation $e^{\lambda(z-1)} = z$ for $0 \le z \le 1$. For $\lambda \le 1$ the only solution is z = 1, so the family will be extinct with probability 1

Suppose that the family sizes are Poisson distributed, so that

$$G(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

We must solve the equation $e^{\lambda(z-1)} = z$ for $0 \le z \le 1$. For $\lambda \le 1$ the only solution is z = 1, so the family will be extinct with probability 1, but for $\lambda > 1$ there is a nonzero probability of survival:



José Figueroa-O'Farrill mi4a (Probability) Lecture 17

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p.

伺い イヨン イヨン

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p. Then

$$G(s) = \sum_{k=0}^{\infty} q^k p s^k = \frac{p}{1-qs}$$

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p. Then

$$G(s) = \sum_{k=0}^{\infty} q^k p s^k = \frac{p}{1-qs}$$

We must solve the equation $\frac{p}{1-qz} = z$ for $0 \le z \le 1$.

くぼう くほう くほう

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p. Then

$$G(s) = \sum_{k=0}^{\infty} q^k p s^k = \frac{p}{1-qs}$$

We must solve the equation $\frac{p}{1-qz} = z$ for $0 \le z \le 1$. It has two roots (for $q \ne 0$, otherwise z = 1)

$$z = \frac{1 \pm \sqrt{1 - 4pq}}{2q} = \frac{1 \pm \sqrt{(2p - 1)^2}}{2(1 - p)}$$

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p. Then

$$G(s) = \sum_{k=0}^{\infty} q^k p s^k = \frac{p}{1-qs}$$

We must solve the equation $\frac{p}{1-qz} = z$ for $0 \le z \le 1$. It has two roots (for $q \ne 0$, otherwise z = 1)

$$z = \frac{1 \pm \sqrt{1 - 4pq}}{2q} = \frac{1 \pm \sqrt{(2p - 1)^2}}{2(1 - p)}$$

so one root is always 1 (extinction) and the other is $\frac{p}{1-p},$ which is <1 only for $p<\frac{1}{2}.$

く 同 ト く ヨ ト く ヨ ト

Suppose that the family sizes are distributed by a geometric distribution $p(k) = q^k p$ for $k \ge 0$ and q = 1 - p. Then

$$G(s) = \sum_{k=0}^{\infty} q^k p s^k = \frac{p}{1-qs}$$

We must solve the equation $\frac{p}{1-qz} = z$ for $0 \le z \le 1$. It has two roots (for $q \ne 0$, otherwise z = 1)

$$z = \frac{1 \pm \sqrt{1 - 4pq}}{2q} = \frac{1 \pm \sqrt{(2p - 1)^2}}{2(1 - p)}$$

so one root is always 1 (extinction) and the other is $\frac{p}{1-p}$, which is < 1 only for $p < \frac{1}{2}$. So if $p \ge \frac{1}{2}$, extinction is inevitable, but if $p < \frac{1}{2}$ there is a chance of survival.

く 伺 とう きょう く き とう

Hitting times for random walks I

Recall our motivating example: the one-dimensional random walk

- Recall our motivating example: the one-dimensional random walk
- Let r > 0 and let T_r be the number of steps until we visit r for the first time, starting at 0.

▲□ → ▲ □ → ▲ □ → □

- Recall our motivating example: the one-dimensional random walk
- Let r > 0 and let T_r be the number of steps until we visit r for the first time, starting at 0.
- Let $T_{k,k+1}$ be the number of steps needed to reach k + 1 having reached k. Then $T_{0,1} = T_1$ and the $T_{k,k+1}$ are i.i.d.

・ロン ・雪 と ・ ヨ と ・

- Recall our motivating example: the one-dimensional random walk
- Let r > 0 and let T_r be the number of steps until we visit r for the first time, starting at 0.
- Let $T_{k,k+1}$ be the number of steps needed to reach k + 1 having reached k. Then $T_{0,1} = T_1$ and the $T_{k,k+1}$ are i.i.d.
- $\bullet\ T_{\rm r} = T_{0,1} + T_{1,2} + \cdots + T_{{\rm r}-1,{\rm r}}$ and by independence

 $\mathbb{E}(s^{T_r}) = \mathbb{E}(s^{T_1})^r$

- Recall our motivating example: the one-dimensional random walk
- Let r > 0 and let T_r be the number of steps until we visit r for the first time, starting at 0.
- Let $T_{k,k+1}$ be the number of steps needed to reach k + 1 having reached k. Then $T_{0,1} = T_1$ and the $T_{k,k+1}$ are i.i.d.
- $T_r = T_{0,1} + T_{1,2} + \cdots + T_{r-1,r}$ and by independence

 $\mathbb{E}(s^{T_r}) = \mathbb{E}(s^{T_1})^r$

Conditioning on the first jump,

$$\begin{split} \mathbb{E}(s^{T_1}) &= \mathbb{E}(s^{T_1} \mid J_1 = 1) \mathbb{P}(J_1 = 1) + \mathbb{E}(s^{T_1} \mid J_1 = -1) \mathbb{P}(J_1 = -1) \\ &= sp + s \mathbb{E}(s^{T_{-1,0} + T_{0,1}}) q \\ &= sp + sq \mathbb{E}(s^{T_1})^2 \end{split}$$

which we solve for $\mathbb{E}(s^{T_1})$

• Let $\mathbb{E}(s^{T_1}) = x$ and we must solve $x = sp + sqx^2$

イロト 不得 トイヨト イヨト

- Let $\mathbb{E}(s^{T_1}) = x$ and we must solve $x = sp + sqx^2$
- Assuming that $q \neq 0$, there are two solutions:

$$x = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2sq}$$

▲□ → ▲ □ → ▲ □ → …

- Let $\mathbb{E}(s^{T_1}) = x$ and we must solve $x = sp + sqx^2$
- Assuming that $q \neq 0$, there are two solutions:

$$x = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2sq}$$

but only one has a power series expansion around s = 0:

$$\mathbb{E}(s^{\mathsf{T}_1}) = \frac{1 - \sqrt{1 - 4pqs^2}}{2sq}$$

- Let $\mathbb{E}(s^{T_1}) = x$ and we must solve $x = sp + sqx^2$
- Assuming that $q \neq 0$, there are two solutions:

$$x = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2sq}$$

but only one has a power series expansion around s = 0:

$$\mathbb{E}(s^{\mathsf{T}_1}) = \frac{1 - \sqrt{1 - 4pqs^2}}{2sq}$$

• Hence for r > 0,

$$\mathbb{E}(s^{T_r}) = \left(\frac{1 - \sqrt{1 - 4pqs^2}}{2sq}\right)^{t}$$

and for r < 0 we simply replace $p \leftrightarrow q$

• How about $\mathbb{E}(s^{T_0})$?

<ロ> <問> <問> < 回> < 回> 、

- How about $\mathbb{E}(s^{T_0})$?
- We condition on the first jump:

$$\begin{split} \mathbb{E}(s^{T_0}) &= \mathbb{E}(s^{T_0} \mid J_1 = 1) \mathbb{P}(J_1 = 1) + \mathbb{E}(s^{T_0} \mid J_1 = -1) \mathbb{P}(J_1 = -1) \\ &= s \mathbb{E}(s^{T_{1,0}}) p + s \mathbb{E}(s^{T_{-1,0}}) q \\ &= s p \mathbb{E}(s^{T_{-1}}) + s q \mathbb{E}(s^{T_1}) \end{split}$$

$$\begin{split} &= sp\left(\frac{1-\sqrt{1-4pqs^2}}{2sp}\right) + sq\left(\frac{1-\sqrt{1-4pqs^2}}{2sq}\right) \\ &= 1-\sqrt{1-4pqs^2} \\ &\therefore \mathbb{E}(T_0) = \frac{4pq}{\sqrt{1-4pq}} \longrightarrow \infty \qquad \text{if } p = q \end{split}$$

• We introduced the probability generating function

 $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.

イロン イ理 とくほう イヨン

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$

くロン (雪) (ヨ) (ヨ)

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)

イロト 不得 トイヨト イヨト

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)
- and the conditional expectation of X given Y, E(X | Y), a d.r.v. and a function of Y: E(X | Y = y) = ∑_x xp(x | y)

= nar

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)
- and the conditional expectation of X given Y, E(X | Y), a d.r.v. and a function of Y: E(X | Y = y) = ∑_x xp(x | y)
- $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid Y))$

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)
- and the conditional expectation of X given Y, E(X | Y), a d.r.v. and a function of Y: E(X | Y = y) = ∑_x xp(x | y)
- $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid Y))$
- We looked at random sums of random variables

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)
- and the conditional expectation of X given Y, E(X | Y), a d.r.v. and a function of Y: E(X | Y = y) = ∑_x xp(x | y)
- $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid Y))$
- We looked at random sums of random variables
- We introduced **branching processes** and looked at the Galton–Watson problem of extinction of family names

- We introduced the **probability generating function** $G_X(s) = \mathbb{E}(s^X)$ of an N-valued d.r.v.
- If X, Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$
- We defined the conditional distribution of X given Y:
 p(x | y) = P(X = x | Y = y)
- and the conditional expectation of X given Y, E(X | Y), a d.r.v. and a function of Y: E(X | Y = y) = ∑_x xp(x | y)
- $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid Y))$
- We looked at random sums of random variables
- We introduced **branching processes** and looked at the Galton–Watson problem of extinction of family names
- We revisited the one-dimensional random walk and calculated the p.g.f.s for the hitting times