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The story of the film so far...
We are studying continuous-time Markov processes,
particularly those which are (temporally) homogeneous

Examples are the counting processes {N(t) | t > 0}, of
which an important special case are the Poisson
processes, where N(t) is Poisson distributed with mean λt
Inter-arrival times in a Poisson process are exponential,
waiting times are “gamma” distributed and time of
occurrence is uniformly distributed
Continuous-time Markov chains are characterised by

1 a transition matrix [pij], which for all i obeys

pii = 0∑
j pij = 1

2 the exponential transition rates νi

Poisson process: states {0, 1, 2, ...}, pij = 0 for j 6= i+ 1 and
pi,i+1 = 1, and all states have equal transition rates
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Further properties of exponential r.v.s (I)
Because of the important rôle played by exponential
random variables in continuous-time Markov process, we
record here some further properties

In the previous lecture we showed that if a continuous
random variable is memoryless, then it is exponential
In Lecture 13 we showed that the sum of two i.i.d.
exponential variables is a “gamma” distribution, and in
Lecture 14 we saw this held for any number of i.i.d.
exponential variables
The sum Z = X+ Y of two independent exponential
variables with different rates is hypoexponential:

fX(x) = λe
−λx fY(y) = µe

−µy

=⇒ fZ(z) =
λµ

µ− λ

(
e−λz − e−µz

)
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Further properties of exponential r.v.s (II)
The sum Z = X1 + · · ·+ Xn of independent exponential
variables with different rates is also hypoexponential, but
the expression gets increasingly complicated

However the minimum min(X1, . . . ,Xn) of independent
exponential variables is again exponential with rate equal
to the sum of the rates of the Xi
By induction, it is enough to show prove it for n = 2, so let
X, Y be independent exponential variables with rates λ,µ
With U = min(X, Y), P(U 6 u) = 1− P(U > u), but

P(U > u) = P(X > u, Y > u) =
∫∞
u

∫∞
u

f(x,y)dx dy

=

∫∞
u

∫∞
u

λµe−λxe−µydx dy

=

(∫∞
u

λe−λxdx

)(∫∞
u

µe−µydy

)
= e−(λ+µ)u
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Further properties of exponential r.v.s (III)
The final calculation we will need is P(X < Y) for X, Y
exponential with rates λ,µ

We calculate it by conditioning on X:

P(X < Y) =
∫∞
0

P(X < Y | X = x)fX(x)dx

=

∫∞
0

P(X < Y | X = x)λe−λxdx

=

∫∞
0

P(x < Y)λe−λxdx

=

∫∞
0
e−µxλe−λxdx

= λ

∫∞
0
e−(λ+µ)xdx

=
λ

λ+ µ
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Birth and death processes (I)
The only allowed transitions in a counting process are
those which increase the “population”: n→ n+ 1

They are thus said to be “pure birth” processes
In a “birth and death” process {N(t) | t > 0} we allow
transitions n→ n+ 1 (called births) and n→ n− 1 (called
deaths), but of course n > 0
Births and deaths are independent and exponentially
distributed with rates λn and µn, respectively, when the
population is n
The parameters {λn | n ∈ N} and {µn | n ∈ N} are called the
birth rates and death rates, respectively
A birth and death process is a continuous-time Markov
process with states N = {0, 1, 2, . . . } for which the allowed
transitions are n→ n+ 1 and n→ n− 1
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Birth and death processes (II)
The transition probabilities are given by p01 = 1 and

pn,n+1 =
λn

λn + µn
pn,n−1 =

µn

λn + µn
(n > 1)

We argue as follows: pn,n+1 is the probability that in a
population of n a birth occurs before a death, i.e.,
P(Bn < Dn), where Bn and Dn are the exponential
variables corresponding to a birth and death, respectively,
when the population is n.
Since Bn has rate λn and Dn has rate µn, the results
follows from the earlier discussion
The transition rates are

ν0 = λ0 and νn = λn + µn (n > 1)

since the time to any transition at population n is
min(Bn,Dn), which is exponential with rate λn + µn
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Birth and death processes (III)

0 1 2
1

µ1
λ1+µ1

λ1
λ1+µ1

µ2
λ2+µ2

λ2
λ2+µ2

Examples (Pure birth processes)

pure birth: µn = 0 for all n > 0
Poisson: µn = 0 and λn = λ for all n > 0
Yule: µn = 0 and λn = nλ for all n > 0, corresponding to a
Markov process {N(t) | t > 0} where N(t) is the size at time
t of a population whose members cannot die, and they give
birth to new members independently in an exponentially
distributed amount of time with rate λ
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Example (Linear growth with immigration)
This is a model in which µn = nµ and λn = nλ+θ, for n > 0

Each individual is assumed to give birth at an exponential
rate λ
In addition there is an exponential rate of increase θ of the
population due to immigration, so if there are n individuals
in the system the total birth rate is nλ+ θ
Deaths occur at an exponential rate µ for each member of
the population, hence the total death rate for a population
of size n is nµ.

A typical question in a birth and death process might be to
determine the expectation value E(N(t)) of the size of the
population at time t.
Usually one derives a differential equation that E(N(t)) obeys
and solves it to determine E(N(t)).
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Steady-state distribution
Recall that regular discrete-time Markov chains have a
unique steady-state distribution π = (πn), obeying π = πP,
where P is the transition matrix which evolves the system
one time step.

In other words, π is invariant under (discrete) time
translations.
Some continuous-time Markov chains also have a unique
steady-state distribution which is invariant under time
translation.
In other words, π = (πn), where πn(t+ s) = πn(t), so that is
constant in time.
We will not be concerned with the conditions which
guarantee the existence and uniqueness of the
steady-state distribution.
We will assume it exists and is unique and we will show
how to find it.
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Let {N(t) | t > 0} be a continuous-time Markov chain

Let n > 0 and consider a small time increment δt:
We compute πn(t+ δt) = P(N(t+ δt) = n) by conditioning
on N(t):

πn(t+ δt) = P(N(t+ δt) = n | N(t) = n)P(N(t) = n)

+ P(N(t+ δt) = n | N(t) = n+ 1)P(N(t) = n+ 1)
+ P(N(t+ δt) = n | N(t) = n− 1)P(N(t) = n− 1)

Let us focus on one of the conditional probabilities, say,
P(N(t+ δt) = n | N(t) = n+ 1)
This is the probability that a death occurred in (t, t+ δt]
when the population at time t is n+ 1
At that population, deaths are exponentially distributed with
rate µn+1, so we want the probability of a death in a time
interval of length δt at that rate
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For δt small, this is given by∫δt
0
µn+1e

−tµn+1dt = 1− e−µn+1δt ' µn+1δt

Similarly,
P(N(t+ δt) = n | N(t) = n− 1) ' λn−1δt

P(N(t+ δt) = n | N(t) = n) ' 1− (λn + µn)δt

Therefore,

πn(t+ δt) = (1− δt(λn + µn))πn(t) + µn+1δtπn+1(t)

+ λn−1δtπn−1(t)

or, said differently,
πn(t+ δt) − πn(t)

δt
' µn+1πn+1(t)+λn−1πn−1(t)−(λn+µn)πn(t)
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In the steady state, πn(t+ δt) = πn(t), whence

µn+1πn+1 + λn−1πn−1 = λnπn + µnπn (n > 1)

probability flow = probability × transition rate
the above equation is the condition for zero net flow

n

λn−1

µn

λn

µn+1

n− 1 n+ 1

the “inflow” into state n is µn+1πn+1 + λn−1πn−1, whereas
the “outflow” is λnπn + µnπn

therefore the steady state is characterised by zero net flow
across every state
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We need to pay particular attention to the the zeroth state:

0 1
λ0

µ1
λ0π0 = µ1π1

we rewrite the zero net flow condition for n > 1 as

λn−1πn−1 − µnπn = λnπn − µn+1πn+1

which says that the quantity λn−1πn−1 − µnπn is
independent of n
since it vanishes for n = 1, it vanishes for all n, hence the
steady state obeys

λnπn = µn+1πn+1 (n > 0)
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Assuming µn 6= 0, we can solve recursively for the πn in
terms of π0:

π1 =
λ0
µ1
π0, π2 =

λ1
µ2
π1 =

λ0λ1
µ1µ2

π0, . . .

=⇒ πn =
λ0 · · · λn−1
µ1 · · ·µn

π0

Finally, we solve for π0 from the normalisation condition∑
n πn = 1, namely

π0

1+
∑
n>1

λ0 · · · λn−1
µ1 · · ·µn

 = 1

For processes with an infinite number of states, the above
series is infinite and convergence is not guaranteed
Convergence imposes constraints on the birth and death
rates for the existence of a steady state
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series is infinite and convergence is not guaranteed

Convergence imposes constraints on the birth and death
rates for the existence of a steady state
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Example (Single server queue)
Customers arrive at a server according to a Poisson
process with rate λ

Customers are served in exponential time with rate µ
If the server is idle, customers get served upon arrival,
otherwise they join a queue
The states are labelled by the number n ∈ {0, 1, 2, . . . } of
customers in the queue (including anyone being served)
This is a birth and death process with λn = λ and µn = µ

If λ > µ customers arrive faster than they are served and
the queue keeps growing =⇒ there is no steady state
If λ < µ, there is a steady state with distribution

πn =
λn

µn
π0
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Example (Single server queue — continued)
The normalisation condition is

π0

∞∑
n=0

λn

µn
= 1

As expected, the geometric series converges precisely
when λ < µ, and

π0

(
1

1− λ
µ

)
= 1 =⇒ π0 = 1−

λ

µ

Finally, for all n > 1,

πn =

(
1−

λ

µ

)(
λ

µ

)n
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Example (Single server queue — continued)
The steady-state probability generating function is

G(s) =
∑
n

snπn =

∞∑
n=0

sn
λn

µn

(
1−

λ

µ

)
=

1− λ
µ

1− sλ
µ

=
µ− λ

µ− sλ

provided that s < µ
λ

The mean length of the queue is the expectation E(N),
given by

E(N) =
∑
n

nπn = G ′(1) = λ

µ− λ

which grows as λµ → 1
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Summary
We have discussed birth and death processes
{N(t) | t > 0}, with state space N = {0, 1, 2, . . . } and two
kinds of transitions:

1 birth: n→ n+ 1 with rate λn
2 death: n→ n− 1 with rate µn

transition probabilities: p01 = 1 and

pn,n+1 =
λn

λn + µn
pn,n−1 =

µn

λn + µn
(n > 1)

transition rates: ν0 = λ0 and νn = λn + µn for n > 1
“Nice” birth and death processes have steady states with
probabilities (πn) satisfying the zero net flow condition
λnπn = µn+1πn+1 and the normalisation condition∑
n πn = 1
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