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The story of the film so far...

@ We are studying continuous-time Markov processes,
particularly those which are (temporally) homogeneous

@ Examples are the counting processes {N(t) | t > 0}, of
which an important special case are the Poisson
processes, where N(t) is Poisson distributed with mean At

@ Inter-arrival times in a Poisson process are exponential,
waiting times are “gamma” distributed and time of
occurrence is uniformly distributed

@ Continuous-time Markov chains are characterised by

@ a transition matrix [py;], which for all i obeys
@ pi; =0
® ) py=1

@ the exponential transition rates v;

@ Poisson process: states {0,1,2,...}, p;; =0 forj #i+1and
Piirt1 = 1, and all states have equal transition rates
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Further properties of exponential r.v.s (I)

@ Because of the important réle played by exponential
random variables in continuous-time Markov process, we
record here some further properties
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Further properties of exponential r.v.s (I)

@ Because of the important réle played by exponential
random variables in continuous-time Markov process, we
record here some further properties

@ In the previous lecture we showed that if a continuous
random variable is memoryless, then it is exponential

@ In Lecture 13 we showed that the sum of two i.i.d.
exponential variables is a “gamma” distribution, and in
Lecture 14 we saw this held for any number of i.i.d.
exponential variables

@ The sum Z = X + Y of two independent exponential
variables with different rates is hypoexponential:

fx(x) =Ae ™ fy(y) = pe MY

}\H (ef)\z o e*HZ)

= fz(z) = LA
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Further properties of exponential r.v.s (ll)

@ The sum Z = X4 + - -- + X, of independent exponential
variables with different rates is also hypoexponential, but
the expression gets increasingly complicated
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to the sum of the rates of the X;
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Further properties of exponential r.v.s (ll)

@ The sum Z = X4 + - -- + X, of independent exponential
variables with different rates is also hypoexponential, but
the expression gets increasingly complicated

@ However the minimum min(Xy, ..., X;,) of independent
exponential variables is again exponential with rate equal
to the sum of the rates of the X;

@ By induction, it is enough to show prove it for n = 2, so let
X,Y be independent exponential variables with rates A, u

@ With U=min(X,Y), P(U<u) =1—P(U > u), but

PU>u=PX>u,Y>u) = Joo J'Oo f(x,y)dx dy
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Further properties of exponential r.v.s (lll)

@ The final calculation we will need is P(X < Y) for X, Y
exponential with rates A, 1
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Further properties of exponential r.v.s (lll)

@ The final calculation we will need is P(X < Y) for X, Y
exponential with rates A, 1

@ We calculate it by conditioning on X:

e

PX<Y)=| PX<Y|X=x)fx(x)dx
0

o]

=| P(X<Y|X=x)Ae Mdx
0
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Birth and death processes (l)

@ The only allowed transitions in a counting process are
those which increase the “population” n — n + 1
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Birth and death processes (l)

@ The only allowed transitions in a counting process are
those which increase the “population” n — n + 1

@ They are thus said to be “pure birth” processes

@ In a “birth and death” process {N(t) | t > 0} we allow
transitions n — n + 1 (called births) and n — n — 1 (called
deaths), but of coursen > 0

@ Births and deaths are independent and exponentially
distributed with rates A,, and n,,, respectively, when the
population is n

@ The parameters {A,, | n € N} and {u,, | n € N} are called the
birth rates and death rates, respectively

@ A birth and death process is a continuous-time Markov
process with states N ={0,1, 2, ...} for which the allowed
transitionsaren - n+1andn —-n—1
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Birth and death processes (ll)
@ The transition probabilities are given by pgs = 1 and

An P _ Hn (
n,n—1 A+ Hn

Pnn+t = A n=1)

n + Htn
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Birth and death processes (ll)
@ The transition probabilities are given by pgs = 1 and

An P _ Hn
nn—1 An + Un

Pnn+1 7\n + Hn ( )

@ We argue as follows: p,, ,, . 1 is the probability that in a
population of n a birth occurs before a death, i.e.,
P(Bn < Dy ), where B,, and D,, are the exponential
variables corresponding to a birth and death, respectively,
when the population is n.
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Birth and death processes (ll)
@ The transition probabilities are given by pgs = 1 and

An P _ Hn
nn—1 An + Un

Pnn+t1 = by (TL P 1)

n + Htn

@ We argue as follows: p,, ,, . 1 is the probability that in a
population of n a birth occurs before a death, i.e.,
P(Bn < Dy ), where B,, and D,, are the exponential
variables corresponding to a birth and death, respectively,
when the population is n.

@ Since B, has rate A, and D, has rate u,., the results
follows from the earlier discussion

@ The transition rates are

vo=Ap and vqp=An+tun (m=1)

since the time to any transition at population n is
min(B,,, Dy ), which is exponential with rate A, + 1
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Birth and death processes (lll)

Hq M2

A1+ A2+u2
OEROWO
1 Ay A2
Aty Aot+u2
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OO0 ®
1 A Ag
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Examples (Pure birth processes)
@ pure birth: u, =0foralln>0
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Birth and death processes (lll)

Hq M2

A1ty Ao+Ha
OO0 ®
1 A Ag
Ay Ao+p2

Examples (Pure birth processes)
@ pure birth: u, =0foralln>0
@ Poisson: pu, =0and A, =Aforalln>0
@ Yule: i, =0and A,, = nA for all n > 0, corresponding to a
Markov process {N(t) | t > 0} where N(t) is the size at time
t of a population whose members cannot die, and they give

birth to new members independently in an exponentially
distributed amount of time with rate A )
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Example (Linear growth with immigration)
@ This is a model in which p,, = nuand A, =nA+0, forn >0
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@ This is a model in which p,, = nuand A, =nA+0, forn >0

@ Each individual is assumed to give birth at an exponential
rate A

@ In addition there is an exponential rate of increase 0 of the
population due to immigration, so if there are n individuals
in the system the total birth rate is nA + 6
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Example (Linear growth with immigration)
@ This is a model in which w,, =npand A, =nA+0, forn > 0
@ Each individual is assumed to give birth at an exponential
rate A

@ In addition there is an exponential rate of increase 0 of the
population due to immigration, so if there are n individuals
in the system the total birth rate is nA + 6

@ Deaths occur at an exponential rate u for each member of
the population, hence the total death rate for a population
of size n is np.

A typical question in a birth and death process might be to
determine the expectation value E(N(t)) of the size of the
population at time t.

Usually one derives a differential equation that E(N(t)) obeys
and solves it to determine E(N(t)).
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Steady-state distribution

@ Recall that regular discrete-time Markov chains have a
unique steady-state distribution 7 = (7, ), obeying @ = P,
where P is the transition matrix which evolves the system
one time step.
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guarantee the existence and uniqueness of the
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Steady-state distribution

@ Recall that regular discrete-time Markov chains have a
unique steady-state distribution 7 = (7, ), obeying @ = P,
where P is the transition matrix which evolves the system
one time step.

@ In other words, 7t is invariant under (discrete) time
translations.

@ Some continuous-time Markov chains also have a unique
steady-state distribution which is invariant under time
translation.

@ In other words, @ = (7,,), where 7, (t +s) = m,.(t), so that is
constant in time.

@ We will not be concerned with the conditions which
guarantee the existence and uniqueness of the
steady-state distribution.

@ We will assume it exists and is unique and we will show
how to find it.
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@ Let{N(t) |t > 0} be a continuous-time Markov chain
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@ Let{N(t) |t > 0} be a continuous-time Markov chain
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@ Let{N(t) |t > 0} be a continuous-time Markov chain

@ Let n > 0 and consider a small time increment 5t:

@ We compute 7, (t + 8t) = P(N(t + 5t) = n) by conditioning
on N(t):

T (t 4+ 6t) = P(N(t + 8t) = n | N(t) = n)P(N(t) = )
FP(N(t+8t) =n|N(t) =n+ 1)P(N({t) =n +1)
—l—IP’(N(t—i—ét):nlN(t):n—1)P(N() n—1)
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on N(t):
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@ Let{N(t) |t > 0} be a continuous-time Markov chain

@ Let n > 0 and consider a small time increment 5t:

@ We compute 7, (t + 8t) = P(N(t + 5t) = n) by conditioning
on N(t):

T (t 4+ 6t) = P(N(t + 8t) = n | N(t) = n)P(N(t) = )
FP(N(t+8t) =n|N(t) =n+ 1)P(N(t) =n + 1)
—l—]P’(N(t—i—ét):nlN(t):n—1)P(N() n—1)

@ Let us focus on one of the conditional probabilities, say,
P(N(t+dt)=n|N(t)=n+1)

@ This is the probability that a death occurred in (t, t + 5t
when the population at time tisn + 1

@ At that population, deaths are exponentially distributed with
rate 1,1, SO we want the probability of a death in a time
interval of length 6t at that rate
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@ For 6t small, this is given by

ot
L Hppqe nerdt =1 — e Hen® o St
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@ For 6t small, this is given by

ot
L Hppqe nerdt =1 — e Hen® o St

@ Similarly,
P(N(t+8t)=n|N(t)=n—1) =\, 45t
P(N(t+8t) =n|N(t)=n)~1— Ay + un)dt
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@ For 6t small, this is given by

ot
L Mppre Moetdt =1 —e Mnet® 5t

@ Similarly,
P(N(t+58t)=n|N(t)=n—-1)
P(N(t+8t) =n|N(t)=n)~1— Ay + un)dt

@ Therefore,

T (t 4 0t) = (1 — 8t(An + pn))7tn (t) + My 1070, 4 q (t)
+ A1 0t7r, 4 (t)
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@ For 6t small, this is given by

ot
L Mppre Moetdt =1 —e Mnet® 5t

@ Similarly,
P(N(t+58t)=n|N(t)=n—-1)
P(N(t+8t) =n|N(t)=n)~1— Ay + un)dt

@ Therefore,

T (t 4 0t) = (1 — 8t(An + pn))7tn (t) + My 1070, 4 q (t)
+ A1 0t7r, 4 (t)

@ or, said differently,

T (t 4 0t) — 7 (t)
ot

>~ Mg Tt (V)AL 1701 () —(Antpn ) (1)
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@ In the steady state, m,, (t + 6t) = 7, (t), whence

Hn 171+ An 1704 = AnTin + Un T (n>1)
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@ In the steady state, m,, (t + 6t) = 7, (t), whence

U171 T AL 1T 1 = AnTn + UnTn m>1)

@ probability flow = probability x transition rate
@ the above equation is the condition for zero net flow
M1

O@O

1
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@ In the steady state, m,, (t + 6t) = 7, (t), whence

M1t + An—ATtn—1 = AnTin + UnTn n>1)

@ probability flow = probability x transition rate
@ the above equation is the condition for zero net flow

M1

O@O

1

@ the “inflow” into state nis w, 47,1 +A,,_17,_1, Whereas
the “outflow” is A7t + pn7in
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@ In the steady state, m,, (t + 6t) = 7, (t), whence

M1t + An—ATtn—1 = AnTin + UnTn n>1)

@ probability flow = probability x transition rate
@ the above equation is the condition for zero net flow

M1

O@O

1

@ the “inflow” into state nis w, 47,1 +A,,_17,_1, Whereas
the “outflow” is A7t + pn7in

@ therefore the steady state is characterised by zero net flow
across every state
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@ We need to pay particular attention to the the zeroth state:
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@ We need to pay particular attention to the the zeroth state:

b1
OO,
D 4
Ao
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@ We need to pay particular attention to the the zeroth state:

K
@‘/_\® AoTlo = M4 774
D 4
Ao
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@ We need to pay particular attention to the the zeroth state:

b1
OWRO oo
V
Ao

@ we rewrite the zero net flow condition forn > 1 as

A 1Tl 1 = HnTn = AnTln — Ky 1700 44

José Figueroa-O’Farrill mida (Probability) Lecture 20 14/19



@ We need to pay particular attention to the the zeroth state:

b1
OWRO oo
V
Ao

@ we rewrite the zero net flow condition forn > 1 as

A 1Tl 1 = HnTn = AnTln — Ky 1700 44

@ which says that the quantity A, _17,,_1 — un7n is
independent of n
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@ We need to pay particular attention to the the zeroth state:

b1
OWRO oo
V
Ao

@ we rewrite the zero net flow condition forn > 1 as
ATt — BUnTin = ATl — 17044

@ which says that the quantity A, _17,,_1 — un7n is
independent of n

@ since it vanishes for n = 1, it vanishes for all n, hence the
steady state obeys

AnTin = Ky 1T 41 (n=>0)
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@ Assuming p,, # 0, we can solve recursively for the 7, in

terms of m:
A A AgA
T = iﬂo, Tlo = 47'(1 = L7'[0,
Hq Ho HiH2
An - A
— TETL — Mﬂo
Hq - Hn
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@ Assuming p,, # 0, we can solve recursively for the 7, in

terms of m:
A A AgA
T = iﬂo, Tlo = 47'(1 = L7'[0,
Hq Ho HiH2
An - A
— TTh = Mﬂo
Hq - Hn

@ Finally, we solve for iy from the normalisation condition
Y o7 =1, namely

Ao Ang
m (14 ) =1 | =1
heel CRRNT

José Figueroa-O’Farrill mida (Probability) Lecture 20 15/19



@ Assuming p,, # 0, we can solve recursively for the 7, in

terms of m:
A A AgA
T = iﬂo, Tlo = 47'(1 = L7'[0,
Hq Ho HiH2
An - A
— TTh = Mﬂo
Hq - Hn

@ Finally, we solve for iy from the normalisation condition
Y o7 =1, namely

Ao Ang
m (14 ) =1 | =1
heel CRRNT

@ For processes with an infinite number of states, the above
series is infinite and convergence is not guaranteed
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@ Assuming p,, # 0, we can solve recursively for the 7, in

terms of m:
A A AgA
T = iﬂo, Tlo = 47'(1 = L7'[0,
Hq Ho HiH2
An - A
— TTh = Mﬂo
Hq - Hn

@ Finally, we solve for iy from the normalisation condition
Y o7 =1, namely

Ao Ang
m (14 ) =1 | =1
heel CRRNT

@ For processes with an infinite number of states, the above
series is infinite and convergence is not guaranteed

@ Convergence imposes constraints on the birth and death
rates for the existence of a steady state
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Example (Single server queue)

@ Customers arrive at a server according to a Poisson
process with rate A
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otherwise they join a queue
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Example (Single server queue)

@ Customers arrive at a server according to a Poisson
process with rate A

@ Customers are served in exponential time with rate u

@ If the server is idle, customers get served upon arrival,
otherwise they join a queue

@ The states are labelled by the number n € {0,1,2, ...} of
customers in the queue (including anyone being served)
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Example (Single server queue)

@ Customers arrive at a server according to a Poisson
process with rate A

@ Customers are served in exponential time with rate u

@ If the server is idle, customers get served upon arrival,
otherwise they join a queue

@ The states are labelled by the number n € {0,1,2, ...} of
customers in the queue (including anyone being served)

@ This is a birth and death process with A,, =A and u, = pn

@ If A > u customers arrive faster than they are served and
the queue keeps growing —> there is no steady state
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Example (Single server queue)

@ Customers arrive at a server according to a Poisson
process with rate A

@ Customers are served in exponential time with rate u

@ If the server is idle, customers get served upon arrival,
otherwise they join a queue

@ The states are labelled by the number n € {0,1,2, ...} of
customers in the queue (including anyone being served)

@ This is a birth and death process with A,, =A and u, = pn

@ If A > u customers arrive faster than they are served and
the queue keeps growing —> there is no steady state

@ If A <y, there is a steady state with distribution

7\1’1

Th = —T
un
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Example (Single server queue — continued)
@ The normalisation condition is

o0 AT ;
n=0
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Example (Single server queue — continued)
@ The normalisation condition is

o0 AT 1
n=0

@ As expected, the geometric series converges precisely
when A < u, and

1 A
7T 1_A :1:>7T0:1_ﬁ

T
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Example (Single server queue — continued)
@ The normalisation condition is

o0 AT 1
n=0

@ As expected, the geometric series converges precisely
when A < u, and

1 A
7T 1_A :1:>7T0:1_ﬁ
I

@ Finally, foralln > 1,

)
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Example (Single server queue — continued)
@ The steady-state probability generating function is

X An A 1-2 L2
G(s)—anﬂn—Zs”(1—)— 'L;\:
n O ) =5 Rl

provided that s < &
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Example (Single server queue — continued)
@ The steady-state probability generating function is

> An A T2 A
(s) ;s n nZOS u“( ) =5 b

o

provided that s < &

@ The mean length of the queue is the expectation E(N),
given by
A

E(N) :;mn =G'(1) = =

which grows as % — 1
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Summary

@ We have discussed birth and death processes
{N(t) | t > 0}, with state space N={0,1,2,...} and two
kinds of transitions:
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Summary

@ We have discussed birth and death processes
{N(t) | t > 0}, with state space N={0,1,2,...} and two
kinds of transitions:
@ birth: n — n + 1 with rate A,
@ death: n — n — 1 with rate p,

@ transition probabilities: py; =1 and

An _ HUn
Pn,nf1 A

1= -
pn,n+ A n+ i

n + Un
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Summary

@ We have discussed birth and death processes
{N(t) | t > 0}, with state space N={0,1,2,...} and two
kinds of transitions:
@ birth: n — n + 1 with rate A,
@ death: n — n — 1 with rate p,

@ transition probabilities: py; =1 and

T )

Pnn+1 = by Pnn-1= A+ i

n + Un

@ transition rates: vo =\gand v, = Ay +p, forn > 1
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Summary

@ We have discussed birth and death processes
{N(t) | t > 0}, with state space N={0,1,2,...} and two
kinds of transitions:
@ birth: n — n + 1 with rate A,
@ death: n — n — 1 with rate p,

@ transition probabilities: py; =1 and

An p _ HUn
n,n—1 7\n + Hn

Pnn+t = A (m=>1)

n + Un

@ transition rates: vo =\gand v, = Ay +p, forn > 1

@ “Nice” birth and death processes have steady states with
probabilities (7, ) satisfying the zero net flow condition
AnTn = M 170, ¢ @and the normalisation condition

> T =1

José Figueroa-O’Farrill mida (Probability) Lecture 20 19/19



