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The story of the film so far...

@ We are discussing continuous-time Markov processes
known as birth and death processes, with state space
N=1{0,1,2,...}and two kinds of transitions:
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known as birth and death processes, with state space
N=1{0,1,2,...}and two kinds of transitions:

@ birth: n — n+1 with rate A,
@ death: n — n — 1 with rate p,

@ with transition probabilities: py; =1 and
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The story of the film so far...

@ We are discussing continuous-time Markov processes
known as birth and death processes, with state space
N=1{0,1,2,...}and two kinds of transitions:

@ birth: n — n+1 with rate A,
@ death: n — n — 1 with rate p,

@ with transition probabilities: py; =1 and

T )

Pnn+1 = by Pnn-1= A+ i

n + Un

@ and transition rates: vy = A\p and v;, = A, + u, forn > 1
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The story of the film so far...

@ We are discussing continuous-time Markov processes
known as birth and death processes, with state space
N=1{0,1,2,...}and two kinds of transitions:

@ birth: n — n+1 with rate A,
@ death: n — n — 1 with rate p,

@ with transition probabilities: py; =1 and

T )

Pnn+1 = by Pnn-1= A+ i

n + Un

@ and transition rates: vy = A\p and v;, = A, + u, forn > 1

@ “Nice” birth and death processes have steady states with
probabilities (7, ) satisfying the zero net flow condition
AnTn = MUy 1701 @nd the normalisation }”, 7, =1
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The story of the film so far...

@ We are discussing continuous-time Markov processes
known as birth and death processes, with state space
N=1{0,1,2,...}and two kinds of transitions:

@ birth: n — n+1 with rate A,
@ death: n — n — 1 with rate p,

@ with transition probabilities: py; =1 and

= n>1
Pn,n1 7\n+lln )

Prnt = 3

@ and transition rates: vy = A\p and v;, = A, + u, forn > 1
@ “Nice” birth and death processes have steady states with
probabilities (7, ) satisfying the zero net flow condition

AnTn = MUy 1701 @nd the normalisation }”, 7, =1
@ Typical examples are queues, of which we saw a simple
example.
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Steady state probabilities

@ Let{N(t) | t > 0} be a birth and death process with birth
rates A,, and death rates ..
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@ Let{N(t) | t > 0} be a birth and death process with birth
rates A,, and death rates ..

@ We will assume that forn > 1, u, #0.
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Steady state probabilities

@ Let{N(t) | t > 0} be a birth and death process with birth
rates A,, and death rates ..

@ We will assume that forn > 1, u, #0.

@ The probabilities in the steady state (should one exist) are

given by
AoAq ... A
Ty = 2t Inet
HiH2 .. - Hn

where
y

= oM A
1 +Z“>1 [TRTPRNT

7
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Steady state probabilities

@ Let{N(t) | t > 0} be a birth and death process with birth
rates A,, and death rates ..
@ We will assume that forn > 1, u, #0.

@ The probabilities in the steady state (should one exist) are

given by
AoAq ... A
Ty = 2t Inet
HiH2 .. - Hn

where

1
- AOA1'--AT1-71
T+ 2“21 [TRTPRNT

7

@ A necessary condition for the steady state to exist is for the
above infinite series to converge
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Steady state probabilities

@ Let{N(t) | t > 0} be a birth and death process with birth
rates A,, and death rates ..

@ We will assume that forn > 1, u, #0.

@ The probabilities in the steady state (should one exist) are

given by
AoAq ... A
Ty = 2t Inet
HiH2 .. - Hn

where
y

= oM A
1 +Z“>1 [TRTPRNT

7

@ A necessary condition for the steady state to exist is for the
above infinite series to converge

@ This often imposes conditions on the parameters of the
process
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Example (Telecom circuits)
@ Consider a telecom routing system with c circuits
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Example (Telecom circuits)
@ Consider a telecom routing system with c circuits
@ Calls arrive at a Poisson rate of A

@ If all c circuits are in use, the call is lost
@ The length of calls are exponentially distributed with rate p
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Example (Telecom circuits)
@ Consider a telecom routing system with c circuits
@ Calls arrive at a Poisson rate of A

@ If all c circuits are in use, the call is lost
@ The length of calls are exponentially distributed with rate p
@ If there are n calls in progress at time t,

P(some call ends in (t,t + 5t]) = nudt
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Example (Telecom circuits)
@ Consider a telecom routing system with c circuits
@ Calls arrive at a Poisson rate of A

@ If all c circuits are in use, the call is lost
@ The length of calls are exponentially distributed with rate p
@ If there are n calls in progress at time t,

P(some call ends in (t,t + 5t]) = nudt

@ This is described by a birth and death process with rates
A =Aand yp, =nuforn=0,1,...,c
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Example (Telecom circuits)
@ Consider a telecom routing system with c circuits
@ Calls arrive at a Poisson rate of A

@ If all c circuits are in use, the call is lost
@ The length of calls are exponentially distributed with rate p
@ If there are n calls in progress at time t,

P(some call ends in (t,t + 5t]) = nudt

@ This is described by a birth and death process with rates
A =Aand yp, =nuforn=0,1,...,c

@ It is convenient to introduce p = %
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Example (Telecom circuits — continued)
@ The steady state probabilities are

n n
A nozp—ﬂo m=1,2,...,¢)

T '
n!

a nlun
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Example (Telecom circuits — continued)
@ The steady state probabilities are

n n
A nozp—ﬂo m=1,2,...,¢)

T '
n!

a nlun
@ and n is determined by the normalisation condition

1 1
—1 _ —p2 L ...1 gt
T, _1+p+2p+ +C!p
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Example (Telecom circuits — continued)
@ The steady state probabilities are
}\n pn

Ty = —Tip m=1,2,...,¢)

T '
n!

a nlun
@ and n is determined by the normalisation condition

1 1
—1 _ —p2 L ...1 gt
T, _1+p+2p+ +C!p

@ sothatforn=0,1,...,c
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Example (Telecom circuits — continued)

@ Acallis lost if and only if all
circuits are busy
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Example (Telecom circuits — continued)

@ Acallis lost if and only if all
circuits are busy

@ In the steady state that happens
with probability
pC

e =
ol (1+p+302+-+ 4oc)
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Example (Telecom circuits — continued)

@ Acallis lost if and only if all
circuits are busy

@ In the steady state that happens
with probability
pC
c! (1 +p+%p2+~~+lpc)

c!

e =

@ The expression on the RHS is
called Erlang’s loss formula,
denoted

©

Y

E(c,p) =
c!<1+p+%p2+---+ép°)
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Example (Telecom circuits — continued)

@ In the limit ¢ — oo of an infinite number of circuits

(oe]

7_[71

n=0

1
_ A 5P — P
0 on!p =e® = my=e
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Example (Telecom circuits — continued)
@ In the limit ¢ — oo of an infinite number of circuits

o0
=il ln_p _ P
0 on!p =e® = my=e

n=0

Tt

@ and hence m,, = efp%l, a Poisson distribution with rate p!
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Example (Telecom circuits — continued)

@ In the limit ¢ — oo of an infinite number of circuits

(oe]

7_[71

n=0

@ and hence 7, = efp%l, a Poisson distribution with rate p!
@ Inthe ¢ — oo limit, the mean number of calls in the system

IS

1
_ A 5P — P
0 on!p =e® = my=e

E(N) = Znﬂn =p
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Example (Telecom circuits — continued)

@ In the limit ¢ — oo of an infinite number of circuits

o0
=il ln_ P — @
U *E P e’ = m=e
n=0

@ and hence 7, = efp%l, a Poisson distribution with rate p!

@ Inthe ¢ — oo limit, the mean number of calls in the system
is

E(N) = Znﬂn =p

@ For finite c,

(&

pT'L
2 m—1)°

n=1

E(N)=) nm, =
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Example (Telecom circuits — continued)

@ We can rewrite E(N) in terms of the Erlang loss formula

E(c,p)

~

P et _ e
=0 ¢l c!
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Example (Telecom circuits — continued)

@ We can rewrite E(N) in terms of the Erlang loss formula

E(c,p)

(o)
Yioh
=p(1—E(c,p))

=p

@ i.e, E(c,p) is the expected fraction of traffic lost
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Example (M/M/s queues)

@ This is a system where, unlike in the previous example,
calls are not rejected when all servers are busy, but they
are sent to a queue
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Example (M/M/s queues)

@ This is a system where, unlike in the previous example,
calls are not rejected when all servers are busy, but they
are sent to a queue

@ We model this as a birth and death process with
parameters:

@ s: the number of servers
@ A: the arrival rate of calls
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Example (M/M/s queues)

@ This is a system where, unlike in the previous example,
calls are not rejected when all servers are busy, but they
are sent to a queue

@ We model this as a birth and death process with
parameters:

@ s: the number of servers
@ A: the arrival rate of calls
o w: the service rate
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Example (M/M/s queues)

@ This is a system where, unlike in the previous example,
calls are not rejected when all servers are busy, but they
are sent to a queue

@ We model this as a birth and death process with
parameters:

@ s: the number of servers
@ A: the arrival rate of calls
o w: the service rate

@ The birth and death rates are then

nu, mn<s
An = A and un={ .

S, mn>s
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Example (M/M/s queues — continued)
@ If there is a steady state, its probabilities are

>\T1

w700, n=1,...,s
TTh = -

Senspr70s M >S
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Example (M/M/s queues — continued)
@ If there is a steady state, its probabilities are

>\T‘L
WT{O, n:1,...,S
T —
)\TL
78!511,5”“7'[0, n>s

@ and r is determined by the normalisation condition

s—1

1 7\k €9 AT
TEO = Z k!uk + Z S!Sn—sun
k=0 n=s
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Example (M/M/s queues — continued)
@ If there is a steady state, its probabilities are

>\T1

w700, n=1,...,s
TTh = -

Senspr70s M >S

@ and r is determined by the normalisation condition

1 s—1 7\k () AT
T[O = Z kl +ngs S!Sn—sun

k=0

@ The (geometric) series convergence if A < su, which is just
the condition that the total service rate of the system
exceeds the rate at which calls are entering
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Example (M/M/s queues — continued)

@ |t is convenient to introduce p = s"—u

José Figueroa-O mida (Probability) Lecture 21 11/20



Example (M/M/s queues — continued)

@ |t is convenient to introduce p = S"—u
@ Interms of p,

s—1 KoK s 00 s—1 % S
1§ Pt st n_ 1 K(s5 s
M=) Sttt e (k! s!>

k=0 n=s k=0
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Example (M/M/s queues — continued)

@ |t is convenient to introduce p = S"—u
@ Interms of p,

s—1 1 x s 00 s—1 % S
Ny Pt sy a1 K(s5 s
M=) gttt g
k=0 n=s k=0
@ Finally,
pnsln 1 _ - < A
. S b
™o tEk Bp"(%—%)
Tn = sSp™ 1
, = S n>s
s 1lp+zlscfl) pk(%_ﬁ),

José Figueroa-O mida (Probability) Lecture 21 11/20




Example (M/M/s queues — continued)

@ |t is convenient to introduce p = S"—u
@ Interms of p,

s=1 K.k s k s
1 p<s s n_ 1 (s s
=Y S+ Sy et Y e (5-5)

k=0 n=s k=0
@ Finally,
pnsn 1
n<s
| 1 K 3 X
Mo es (s -4)
T[n = SS n 1
n>s
| 1 = k s\
st e ()

@ Of course, infinitely long queues are an idealisation: in
practice, one has a finite buffer in which to store the calls in

the queue, with calls being lost if the buffer is full
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Example (A shoe-shine shop)

@ A shoe-shine shop has two
chairs: one (chair 1) where the
shoes are cleaned and the other
(chair 2) where they are polished.
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@ When a customer arrives, he
goes initially to chair 1 and after
his shoes are cleaned to chair 2.
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Example (A shoe-shine shop)

@ A shoe-shine shop has two
chairs: one (chair 1) where the
shoes are cleaned and the other
(chair 2) where they are polished.

@ When a customer arrives, he
goes initially to chair 1 and after
his shoes are cleaned to chair 2.

@ The service times at the two chairs are independent
exponential random variables with means %1 and uiz

@ Suppose that customers arrive according to a Poisson
process with rate A and that a customer will only enter the
system if both chairs are empty.
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Example (A shoe-shine shop)

@ A shoe-shine shop has two
chairs: one (chair 1) where the
shoes are cleaned and the other
(chair 2) where they are polished.

@ When a customer arrives, he
goes initially to chair 1 and after
his shoes are cleaned to chair 2.

@ The service times at the two chairs are independent
exponential random variables with means %1 and uiz

@ Suppose that customers arrive according to a Poisson
process with rate A and that a customer will only enter the
system if both chairs are empty.

How can we model this as a Markov chain?

José Figueroa-O’Farrill mida (Probability) Lecture 21 12/20



Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.

@ This means that there are three states in the system:

José Figueroa-O’Farrill mida (Probability) Lecture 21 13/20



Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.

@ This means that there are three states in the system:

(0) the system is empty
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.

@ This means that there are three states in the system:

(0) the system is empty
(1) a customer in chair 1
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.

@ This means that there are three states in the system:

(0) the system is empty
(1) a customer in chair 1
(2) a customer in chair 2
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.

@ This means that there are three states in the system:

(0) the system is empty
(1) a customer in chair 1
(2) a customer in chair 2

@ The transition probabilities are pg1 = p12 = pog = 1
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Example (A shoe-shine shop — continued)

@ Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

@ If there is 1 customer in the system, then we would need to
know which chair he’s in.
@ This means that there are three states in the system:
(0) the system is empty
(1) a customer in chair 1
(2) a customer in chair 2
@ The transition probabilities are pg1 = p12 = pog = 1

@ The times Ty, T and T, that the system spends on each
state before making the transition to the next state, are
exponentially distributed with rates Ag = A\, Ay = uy and
Ao = uo, respectively.
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:
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@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:

uy@\k‘
OO

4
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:

HZ/’@\}\ ATy = UoTlo

Hy7T1 = ATl

O O
\_/

4
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Example (A shoe-shine shop — continued)

@ Because we have a transition 2 — 0, this is not a birth and
death process

@ Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:

HZ/’@\}\ ATy = UoTlo

Hy7T1 = ATl

O O
\_/

H1
@ We can solve for 7ty » in terms of m,
A

A A A
mM=—"ny, Tp=—my =—m|(l+—+—|=1
H1 Ho
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Example (A shoe-shine shop — continued)

@ Finally,
HqH2
TN =
07 Wimp + Alpy + 1)
A
= Ho
ik + Ay + p2)
Ap

Tlo =
Hipo + A(pg + Hp)
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Example (A shoe-shine shop — continued)

@ Finally,
HqH2
TN =
07 Wimp + Alpy + 1)
A
= Ho
ik + Ay + p2)
Ap

Tlo =
Hipo + A(pg + Hp)

@ There are other Markov processes which are closely linked
to birth and death processes, for which many of the
techniques we have seen also apply
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Example (A shoe-shine shop — continued)

@ Finally,
HqH2
TN =
07 Wimp + Alpy + 1)
A
= Mp
ke + Al + 1)
Ap

Tlo =
Hipo + A(pg + Hp)

@ There are other Markov processes which are closely linked
to birth and death processes, for which many of the
techniques we have seen also apply

@ An interesting example is in the evolution of populations of
single-celled organisms
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Example (The sex life of the amoeba)

@ amoebas can be in one of two states: either A or B
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Example (The sex life of the amoeba)

@ amoebas can be in one of two states: either A or B
@ an amoeba in state A will change to state B at an
exponential rate «
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Example (The sex life of the amoeba)

@ amoebas can be in one of two states: either A or B

@ an amoeba in state A will change to state B at an
exponential rate «

@ an amoeba in state B will divide into two new amoebas of
type A at an exponential rate

José Figueroa-O’Farrill mida (Probability) Lecture 21 16/20



Example (The sex life of the amoeba)

@ amoebas can be in one of two states: either A or B

@ an amoeba in state A will change to state B at an
exponential rate «

@ an amoeba in state B will divide into two new amoebas of
type A at an exponential rate

@ we assume amoebas are independent
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Example (The sex life of the amoeba — continued)
@ (n,m) is the state with n A-amoebas and m B-amoebas
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Example (The sex life of the amoeba — continued)
@ (n,m) is the state with n A-amoebas and m B-amoebas

@ transitions: (n,m) > Mm—1,m+1),(m,m) - (n+2,m—1)

@ Pinm)—(n—1,m+1) iS the probability that one A-amoeba
changes to a B-amoeba, before any B-amoeba divides

@ Let T, denote the time to the next A — B transition and T
the time to the next B — 2A transition
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@ Pinm)—(n—1,m+1) iS the probability that one A-amoeba
changes to a B-amoeba, before any B-amoeba divides

@ Let T, denote the time to the next A — B transition and T
the time to the next B — 2A transition

@ T, is the minimum of the times for each of the A-amoebas
to make the transition, hence it is exponential with rate n«
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Example (The sex life of the amoeba — continued)
@ (n,m) is the state with n A-amoebas and m B-amoebas

@ transitions: (n,m) - n—1,m+1),(m,m) - (n+2,m—1)

@ Pinm)—(n—1,m+1) iS the probability that one A-amoeba
changes to a B-amoeba, before any B-amoeba divides

@ Let T, denote the time to the next A — B transition and T
the time to the next B — 2A transition

@ T, is the minimum of the times for each of the A-amoebas
to make the transition, hence it is exponential with rate n«

@ Similarly, T, is exponential with rate mf3
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Example (The sex life of the amoeba — continued)

(n, m) is the state with n A-amoebas and m B-amoebas

transitions: (n,m) - n—1,m+1), m,m) - (n+2,m—1)

@ Pinm)—(n—1,m+1) iS the probability that one A-amoeba
changes to a B-amoeba, before any B-amoeba divides

@ Let T, denote the time to the next A — B transition and T
the time to the next B — 2A transition

@ T, is the minimum of the times for each of the A-amoebas
to make the transition, hence it is exponential with rate n«

@ Similarly, T, is exponential with rate mf3

@ By the same argument, the time until the next transition (of
either type) is min(Ty, To) which is exponential with rate
no+ mfp
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Example (The sex life of the amoeba — continued)

@ Finally, p(; m)—(n—1,m+1) = P(Ty < Tp) and similarly,
Pn,m)—(n+2,m—1) ]P)(TZ < T1)

José Figueroa-O’Farrill mida (Probability) Lecture 21 18/20



Example (The sex life of the amoeba — continued)
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Example (The sex life of the amoeba — continued)

@ Finally, p(; m)—(n—1,m+1) = P(Ty < Tp) and similarly,
Pn,m)—(n+2,m—1) ]P)(TZ < T1)
@ Therefore as seen earlier,

(m—1,m+1) '\

(nym) \\1 (n+2,m—1)
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Example (The sex life of the amoeba — continued)

@ Finally, p(; m)—(n—1,m+1) = P(Ty < Tp) and similarly,
=P(Tx < T1)

@ Therefore as seen earlier,

Pn,m)—(n+2,m—1)

(m—1,m+1) '\

Pnm)—»(n—1,m+1) =

m) [N (m+2,m—1) Pnm)=n+2,m—1) =

n«
no+mp
mp
no+mp
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Example (The sex life of the amoeba — continued)
@ Finally, p(; m)—(n—1,m+1) = P(Ty < Tp) and similarly,

Pn,m)—(n+2,m—1) P(TZ < T1)
@ Therefore as seen earlier,

P(n,m)=(n—1,m+1) = narmp
(m—1,m+1) '\ B
(i) \\l (n+2m—1) Pnm)=n+2,m—1) = na+mp

@ the population never decreases, so there is no steady state

José Figueroa-O’Farrill mida (Probability) Lecture 21 18/20



Summary

@ We have looked at several types of continuous-time
Markov process in these lectures:
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Summary

@ We have looked at several types of continuous-time
Markov process in these lectures:

e counting processes, such as Poisson processes
e birth and death processes: including multiserver queues
and telecom circuits
e multi-species counting processes (e.g., amoeba)
@ We have learned how to model them in terms of Markov
chains with transition probabilities and with exponential
transition rates

@ Some of these Markov chains have steady states, whose
probabilities can be determined by imposing zero net
proability flow across the states
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