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The story of the film so far...
We are discussing continuous-time Markov processes
known as birth and death processes, with state space
N = {0, 1, 2, . . . } and two kinds of transitions:

1 birth: n→ n+ 1 with rate λn
2 death: n→ n− 1 with rate µn

with transition probabilities: p01 = 1 and

pn,n+1 =
λn

λn + µn
pn,n−1 =

µn

λn + µn
(n > 1)

and transition rates: ν0 = λ0 and νn = λn + µn for n > 1
“Nice” birth and death processes have steady states with
probabilities (πn) satisfying the zero net flow condition
λnπn = µn+1πn+1 and the normalisation

∑
n πn = 1

Typical examples are queues, of which we saw a simple
example.
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Steady state probabilities
Let {N(t) | t > 0} be a birth and death process with birth
rates λn and death rates µn.

We will assume that for n > 1, µn 6= 0.
The probabilities in the steady state (should one exist) are
given by

πn =
λ0λ1 . . . λn−1
µ1µ2 . . .µn

π0

where
π0 =

1
1+
∑
n>1

λ0λ1...λn−1
µ1µ2...µn

A necessary condition for the steady state to exist is for the
above infinite series to converge
This often imposes conditions on the parameters of the
process
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Example (Telecom circuits)
Consider a telecom routing system with c circuits

Calls arrive at a Poisson rate of λ
If all c circuits are in use, the call is lost
The length of calls are exponentially distributed with rate µ
If there are n calls in progress at time t,

P(some call ends in (t, t+ δt]) = nµδt

This is described by a birth and death process with rates
λn = λ and µn = nµ for n = 0, 1, . . . , c
It is convenient to introduce ρ = λ

µ
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Example (Telecom circuits – continued)
The steady state probabilities are

πn =
λn

n!µnπ0 =
ρn

n! π0 (n = 1, 2, . . . , c)

and π0 is determined by the normalisation condition

π−1
0 = 1+ ρ+

1
2ρ

2 + · · ·+ 1
c!ρ

c

so that for n = 0, 1, . . . , c

πn =
ρn

n!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)
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Example (Telecom circuits – continued)

A call is lost if and only if all
circuits are busy

In the steady state that happens
with probability

πc =
ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

The expression on the RHS is
called Erlang’s loss formula,
denoted

E(c, ρ) = ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 6 / 20



Example (Telecom circuits – continued)

A call is lost if and only if all
circuits are busy
In the steady state that happens
with probability

πc =
ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

The expression on the RHS is
called Erlang’s loss formula,
denoted

E(c, ρ) = ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 6 / 20



Example (Telecom circuits – continued)

A call is lost if and only if all
circuits are busy
In the steady state that happens
with probability

πc =
ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

The expression on the RHS is
called Erlang’s loss formula,
denoted

E(c, ρ) = ρc

c!
(
1+ ρ+ 1

2ρ
2 + · · ·+ 1

c!ρ
c
)

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 6 / 20



Example (Telecom circuits – continued)
In the limit c→∞ of an infinite number of circuits

π−1
0 =

∞∑
n=0

1
n!ρ

n = eρ =⇒ π0 = e−ρ

and hence πn = e−ρ ρ
n

n! , a Poisson distribution with rate ρ!
In the c→∞ limit, the mean number of calls in the system
is

E(N) =
∑
n

nπn = ρ

For finite c,

E(N) =
∑
n

nπn =

c∑
n=1

ρn

(n− 1)!π0
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Example (Telecom circuits – continued)
We can rewrite E(N) in terms of the Erlang loss formula
E(c, ρ)

E(N) =

c∑
n=1

ρn

(n− 1)!π0

=

c−1∑
`=0

ρ`+1

`! π0

= ρ

(∑c
`=0

ρ`

`! −
ρc

c!

)
∑c
`=0

ρ`

`!
= ρ (1− E(c, ρ))

i.e., E(c, ρ) is the expected fraction of traffic lost
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Example (M/M/s queues)
This is a system where, unlike in the previous example,
calls are not rejected when all servers are busy, but they
are sent to a queue

We model this as a birth and death process with
parameters:

s: the number of servers
λ: the arrival rate of calls
µ: the service rate

The birth and death rates are then

λn = λ and µn =

{
nµ, n 6 s

sµ, n > s
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Example (M/M/s queues — continued)
If there is a steady state, its probabilities are

πn =


λn

n!µnπ0, n = 1, . . . , s
λn

s!sn−sµnπ0, n > s

and π0 is determined by the normalisation condition

π−1
0 =

s−1∑
k=0

λk

k!µk +

∞∑
n=s

λn

s!sn−sµn

The (geometric) series convergence if λ < sµ, which is just
the condition that the total service rate of the system
exceeds the rate at which calls are entering
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Example (M/M/s queues — continued)
It is convenient to introduce ρ = λ

sµ

In terms of ρ,

π−1
0 =

s−1∑
k=0

ρksk

k! +
ss

s!

∞∑
n=s

ρn =
1

1− ρ
+

s−1∑
k=0

ρk
(
sk

k! −
ss

s!

)

Finally,

πn =


ρnsn

n!
1

1
1−ρ+

∑s−1
k=0 ρ

k
(
sk

k! −
ss

s!

) , n 6 s

ssρn

s!
1

1
1−ρ+

∑s−1
k=0 ρ

k
(
sk

k! −
ss

s!

) , n > s

Of course, infinitely long queues are an idealisation: in
practice, one has a finite buffer in which to store the calls in
the queue, with calls being lost if the buffer is full
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Example (A shoe-shine shop)

A shoe-shine shop has two
chairs: one (chair 1) where the
shoes are cleaned and the other
(chair 2) where they are polished.

When a customer arrives, he
goes initially to chair 1 and after
his shoes are cleaned to chair 2.

The service times at the two chairs are independent
exponential random variables with means 1

µ1
and 1

µ2
.

Suppose that customers arrive according to a Poisson
process with rate λ and that a customer will only enter the
system if both chairs are empty.
How can we model this as a Markov chain?
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Example (A shoe-shine shop — continued)
Because the customer will not enter the system unless
both chairs are empty, there are at any given time either 0
or 1 customers in the system.

If there is 1 customer in the system, then we would need to
know which chair he’s in.
This means that there are three states in the system:

(0) the system is empty
(1) a customer in chair 1
(2) a customer in chair 2

The transition probabilities are p01 = p12 = p20 = 1
The times T0, T1 and T2 that the system spends on each
state before making the transition to the next state, are
exponentially distributed with rates λ0 = λ, λ1 = µ1 and
λ2 = µ2, respectively.
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Example (A shoe-shine shop — continued)
Because we have a transition 2→ 0, this is not a birth and
death process

Nevertheless we can use the zero net flow condition in
order to derive the steady-state probabilities:

0

12

λ

µ1

µ2 λπ0 = µ2π2
µ1π1 = λπ0
µ2π2 = µ1π1

We can solve for π1,2 in terms of π0,

π1 =
λ

µ1
π0, π2 =

λ

µ2
π0 =⇒ π0

(
1+

λ

µ1
+
λ

µ2

)
= 1
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Example (A shoe-shine shop — continued)
Finally,

π0 =
µ1µ2

µ1µ2 + λ(µ1 + µ2)

π1 =
λµ2

µ1µ2 + λ(µ1 + µ2)

π2 =
λµ1

µ1µ2 + λ(µ1 + µ2)

There are other Markov processes which are closely linked
to birth and death processes, for which many of the
techniques we have seen also apply
An interesting example is in the evolution of populations of
single-celled organisms

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 15 / 20



Example (A shoe-shine shop — continued)
Finally,

π0 =
µ1µ2

µ1µ2 + λ(µ1 + µ2)

π1 =
λµ2

µ1µ2 + λ(µ1 + µ2)

π2 =
λµ1

µ1µ2 + λ(µ1 + µ2)

There are other Markov processes which are closely linked
to birth and death processes, for which many of the
techniques we have seen also apply

An interesting example is in the evolution of populations of
single-celled organisms

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 15 / 20



Example (A shoe-shine shop — continued)
Finally,

π0 =
µ1µ2

µ1µ2 + λ(µ1 + µ2)

π1 =
λµ2

µ1µ2 + λ(µ1 + µ2)

π2 =
λµ1

µ1µ2 + λ(µ1 + µ2)

There are other Markov processes which are closely linked
to birth and death processes, for which many of the
techniques we have seen also apply
An interesting example is in the evolution of populations of
single-celled organisms

José Figueroa-O’Farrill mi4a (Probability) Lecture 21 15 / 20



Example (The sex life of the amoeba)

amoebas can be in one of two states: either A or B

an amoeba in state A will change to state B at an
exponential rate α
an amoeba in state B will divide into two new amoebas of
type A at an exponential rate β
we assume amoebas are independent
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Example (The sex life of the amoeba — continued)
(n,m) is the state with n A-amoebas and m B-amoebas

transitions: (n,m)→ (n− 1,m+ 1), (n,m)→ (n+ 2,m− 1)
p(n,m)→(n−1,m+1) is the probability that one A-amoeba
changes to a B-amoeba, before any B-amoeba divides
Let T1 denote the time to the next A→ B transition and T2
the time to the next B→ 2A transition
T1 is the minimum of the times for each of the A-amoebas
to make the transition, hence it is exponential with rate nα
Similarly, T2 is exponential with rate mβ
By the same argument, the time until the next transition (of
either type) is min(T1, T2) which is exponential with rate
nα+mβ
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Example (The sex life of the amoeba — continued)
Finally, p(n,m)→(n−1,m+1) = P(T1 < T2) and similarly,
p(n,m)→(n+2,m−1) = P(T2 < T1)

Therefore as seen earlier,

(n,m)

(n− 1,m+ 1)

(n+ 2,m− 1)

p(n,m)→(n−1,m+1) =
nα

nα+mβ

p(n,m)→(n+2,m−1) =
mβ

nα+mβ

the population never decreases, so there is no steady state
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Summary

We have looked at several types of continuous-time
Markov process in these lectures:

counting processes, such as Poisson processes
birth and death processes: including multiserver queues
and telecom circuits
multi-species counting processes (e.g., amoeba)

We have learned how to model them in terms of Markov
chains with transition probabilities and with exponential
transition rates
Some of these Markov chains have steady states, whose
probabilities can be determined by imposing zero net
proability flow across the states
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