

The story of the film so far...

Our first goal in this course is to formalise assertions such as

"the chance of A is p",

where

- the event A is a subset of the set of outcomes of some experiment, and
- p is some measure of the likelihood of event A occuring, by which we mean that the outcome of the experiment belongs to A.

The set of outcomes is denoted Ω and the possible events define a σ -field $\mathcal F$ of subsets of Ω ; that is, a family of subsets which contains \varnothing and Ω and is closed under complementation, countable union and countable intersection.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

2 / 23

Probability as relative frequency

Imagine repeating an experiment N times.

We let N(A) denote the number of times that the event A occurs. Clearly, $0 \le N(A) \le N$. If the following limit exists

$$\lim_{N\to\infty}\frac{N(A)}{N}=\mathbb{P}(A)\;,$$

the number $\mathbb{P}(A)$ obeys $0 \leq \mathbb{P}(A) \leq 1$ and is called the **probability** of A occurring.

Since $N(\Omega) = N$, we have $\mathbb{P}(\Omega) = 1$.

If $A \cap B = \emptyset$, $N(A \cup B) = N(A) + N(B)$, whence $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$. By induction, if A_i is a finite family of pairwise disjoint events,

$$\mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_n) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \dots + \mathbb{P}(A_n)$$
 .

As usual, it is (theoretically) convenient to extend this to countable families.

Probability measures

Definition

A probability measure on (Ω, \mathcal{F}) is a function $\mathbb{P}: \mathcal{F} \to [0, 1]$ satisfying

- $\mathbb{P}(\Omega) = 1$
- if $A_i \in \mathcal{F}, i=1,2,\ldots$ are such that $A_i \cap A_j = \varnothing$ for all $i \neq j,$ then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) .$$

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space**.

Remark

Since $\Omega = A \cup A^c$ is a disjoint union, $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$. In particular, $\mathbb{P}(\emptyset) = 0$.

José Figueroa-O'Farrill mi4a (Probability) Lecture 2 3 / 23 José Figueroa-O'Farrill mi4a (Probability) Lecture 2

Bernoulli trials

Definition

A Bernoulli trial is any trial with only two outcomes.

Example

Tossing a coin is a Bernoulli trial: $\Omega = \{H, T\}$.

Let us call the two outcomes generically "success" (S) and "failure" (F), so that $\Omega = \{S, F\}$. Then we have

$$\mathbb{P}(\{S\}) = p$$
 and $\mathbb{P}(\{F\}) = q$.

Since $\Omega = \{S\} \cup \{F\}$ is a disjoint union, it follows that q = 1 - p.

Notation

We will often drop the $\{\ \}$ when talking about events consisting of a single outcome and will write $\mathbb{P}(S) = p$ and $\mathbb{P}(F) = 1 - p$.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

5 / 23

Fair coins and fair dice

Tossing a coin has $\Omega=\{H,T\}$. Let $\mathbb{P}(H)=p$ and $\mathbb{P}(T)=1-p$. The coin is **fair** if $p=\frac{1}{2}$, so that both H and T are equally probable.

Similarly, a **fair** die is one where every outcome has the same probability. Since there are six outcomes, each one has probability $\frac{1}{6}$:

$$\mathbb{P}(\mathbf{O}) = \mathbb{P}(\mathbf{O}) = \mathbb{P$$

Fair coins and fair dice are examples of "uniform probability spaces": those whose outcomes are all equally likely.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

6 / 23

Uniform probability measures

Suppose that Ω is a finite set of cardinality $|\Omega|$, and suppose that every outcome is equally likely: $\mathbb{P}(\omega) = p$ for all $\omega \in \Omega$. Since $\Omega = \bigcup_{\omega \in \Omega} \omega$ is a disjoint union, we have

$$1 = \mathbb{P}\left(\bigcup_{\omega \in \Omega} \omega\right) = \sum_{\omega \in \Omega} \mathbb{P}(\omega) = \sum_{\omega \in \Omega} \mathfrak{p} = \mathfrak{p}|\Omega|,$$

whence $p = 1/|\Omega|$.

Now let $A \subseteq \Omega$ be an event:

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{\omega \in A} \omega\right) = \sum_{\omega \in A} \mathbb{P}(\omega) = \sum_{\omega \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}$$

Example

You draw a number at random from $\{1, 2, ..., 30\}$. What is the probability of the following events:

 \bullet A = the number drawn is even

2 B =the number drawn is divisible by 3

3 C =the number drawn is less than 12

There are 30 possible outcomes, all equally likely ("at random").

1 $A = \{2, 4, 6, ..., 30\}$, so |A| = 15 and hence $\mathbb{P}(A) = \frac{15}{30} = \frac{1}{2}$.

2 $B = \{3, 6, 9, \dots, 30\}$, so |B| = 10 and hence $\mathbb{P}(B) = \frac{10}{30} = \frac{1}{3}$.

3 $C = \{1, 2, 3, ..., 11\}$, so |C| = 11 and hence $\mathbb{P}(C) = \frac{11}{30}$.

José Figueroa-O'Farrill mi4a (Probability) Lecture 2 7 / 23 José Figueroa-O'Farrill mi4a (Probability) Lecture 2 8 / 23

Example

Three fair dice are rolled and their scores added.

Which is more likely: a 9 or a 10?

There are 6³ possible outcomes, all equally likely.

- 6 × **:**:
- 3 × •::::
- 6 × •••••
- 1 × ••••

 $\mathbb{P}(9) = 25/6^3$

Therefore $\mathbb{P}(10) > \mathbb{P}(9)$.

- 6 × •∷∷
- 3 × •••••

$$\mathbb{P}(10) = 27/6^3$$

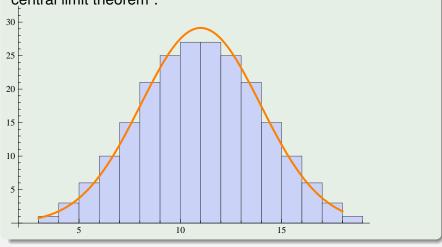
José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

9 / 23

Example (Continued)

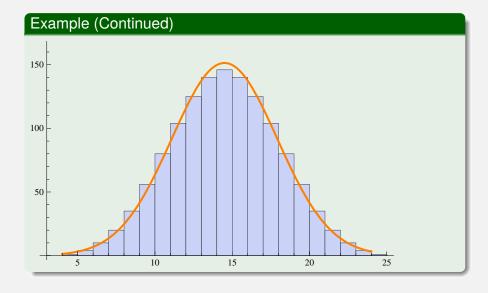
We could have answered this without enumeration. The average score of rolling three dice is $10\frac{1}{2}$. Since 10 is closer than 9 to the average, $\mathbb{P}(10) \geqslant \mathbb{P}(9)$ as a consequence of the "central limit theorem".

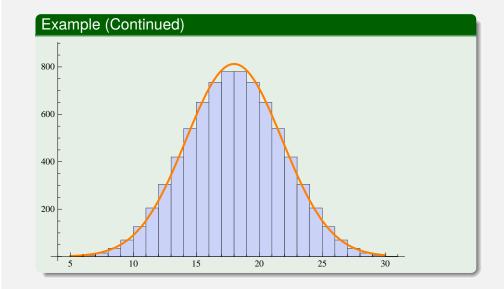


José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

10 / 23





José Figueroa-O'Farrill mi4a (Probability) Lecture 2 11 / 23 José Figueroa-O'Farrill mi4a (Probability) Lecture 2 12 / 23

Example (Alice and Bob's game)

Alice and Bob toss a fair coin in turn and the winner is the first one to get H. Suppose that Alice goes first and consider the three events:

- A = Alice wins
- B = Bob wins
- C = nobody wins

Let ω_i be the outcome $\underbrace{TT\cdots T}_{i-1}H$. Then $A=\{\omega_1,\omega_3,\omega_5,\dots\}$

and $B=\{\omega_2,\omega_4,\omega_6,\ldots\}$. There is a further possible outcome ω_∞ , corresponding to the unending game TTT \cdots in which nobody wins. Hence $C=\{\omega_\infty\}$. The (countably infinite) sample space is $\Omega=\{\omega_1,\omega_2,\ldots,\omega_\infty\}$, which is the disjoint union $\Omega=A\cup B\cup C$. Therefore $\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)=1$.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

13 / 23

Example (continued)

There are 2^n possible outcomes of tossing the coin n times, all equally likely. Hence $\mathbb{P}(\omega_n)=1/2^n$. Therefore since $A=\bigcup_{n=0}^{\infty}\{\omega_{2n+1}\}$ is a disjoint union,

$$\mathbb{P}(A) = \sum_{n=0}^{\infty} \mathbb{P}(\omega_{2n+1}) = \sum_{n=0}^{\infty} 2^{-2n-1} = \tfrac{1}{2} \sum_{n=0}^{\infty} \frac{1}{4^n} = \tfrac{\frac{1}{2}}{1-\frac{1}{4}} = \tfrac{2}{3} \; .$$

Similarly, since $B = \bigcup_{n=1}^{\infty} \{\omega_{2n}\}$ is also a disjoint union,

$$\mathbb{P}(B) = \sum_{n=1}^{\infty} \mathbb{P}(\omega_{2n}) = \sum_{n=1}^{\infty} 2^{-2n} = \tfrac{1}{4} \sum_{n=0}^{\infty} \tfrac{1}{4^n} = \tfrac{\frac{1}{4}}{1-\frac{1}{4}} = \tfrac{1}{3} \; .$$

Finally, since $\mathbb{P}(A) + \mathbb{P}(B) = 1$, we see that $\mathbb{P}(C) = 0$.

Warning

Although $\mathbb{P}(\mathbb{C}) = 0$, the event \mathbb{C} is **not** impossible.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

14 / 23

Basic properties of probability measures

Theorem

- 2 if $B \supseteq A$ then $\mathbb{P}(B) \geqslant \mathbb{P}(A)$

Proof.

 $\Omega = A \cup A^c$ is a disjoint union, whence

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A) + \mathbb{P}(A^c) .$$

2 Write B as the disjoint union $B = (B \setminus A) \cup A$, whence

$$\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A) \geqslant \mathbb{P}(A) .$$

Example (The Birthday problem)

What is the probability that among $\mathfrak n$ people chosen at random, there are at least 2 people sharing the same birthday?

Let A_n be the event where at least two people in n share the same birthday. Then A_n^c is the event that no two people in n share the same birthday and $\mathbb{P}(A_n) = 1 - \mathbb{P}(A_n^c)$.

There are 365^n possible outcomes to the birthdays of n people and $365 \times 364 \times \cdots \times (365 - n + 1)$ possible outcomes consisting of n different birthdays, hence

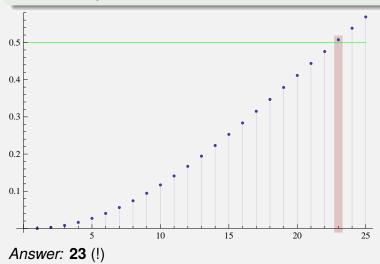
$$\mathbb{P}(A_n^c) = \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n} = \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

and

$$\mathbb{P}(A_n) = 1 - \prod_{i=1}^{n-1} \left(1 - \tfrac{i}{365}\right) \; .$$

Example (continued)

For which value of $\mathfrak n$ is the chance of two people sharing the same birthday better than evens?



José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

17 / 23

Inclusion-exclusion rule

Theorem

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

Proof.

- $A = (A \setminus B) \cup (A \cap B)$ whence $\mathbb{P}(A) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B)$
- $B = (B \setminus A) \cup (A \cap B)$ whence $\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$
- $A \cup B = (A \triangle B) \cup (A \cap B)$ whence

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \triangle B) + \mathbb{P}(A \cap B)$$

$$= \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$$

$$= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B)$$

$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

18 / 23

Example

Historical meteorological records for a certain seaside location show that on New Year's day there is a 30% chance of rain, 40% chance of being windy and 20% chance of both rain and wind. What is the chance of it being dry? dry and windy? wet or windy?

•
$$\mathbb{P}(dry) = 1 - \mathbb{P}(wet) = 1 - \frac{3}{10} = \frac{7}{10}$$

- $\mathbb{P}(\text{dry and windy}) = \mathbb{P}(\text{windy but not wet}) = \mathbb{P}(\text{windy}) \mathbb{P}(\text{wet and windy}) = \frac{4}{10} \frac{2}{10} = \frac{2}{10}$
- $\mathbb{P}(\text{wet or windy}) = \mathbb{P}(\text{wet}) + \mathbb{P}(\text{windy}) \mathbb{P}(\text{wet and windy}) = \frac{3}{10} + \frac{4}{10} \frac{2}{10} = \frac{1}{2}$

Boole's inequality

Theorem

 $\mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_n) \leqslant \mathbb{P}(A_1) + \mathbb{P}(A_2) + \dots + \mathbb{P}(A_n)$

Proof.

 $A_1 \cup A_2 \cup \cdots \cup A_n = (A_1 \cup A_2 \cup \cdots \cup A_{n-1}) \cup A_n$, and by the inclusion-exclusion rule,

$$\mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_n) \leqslant \mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_{n-1}) + \mathbb{P}(A_n)$$

But now $A_1 \cup A_2 \cup \cdots \cup A_{n-1} = (A_1 \cup A_2 \cup \cdots \cup A_{n-2}) \cup A_{n-1}$, so that

$$\mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_n) \leqslant \mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_{n-2}) + \mathbb{P}(A_{n-1}) + \mathbb{P}(A_n)$$

et cetera.

José Figueroa-O'Farrill mi4a (Probability) Lecture 2 19 / 23 José Figueroa-O'Farrill mi4a (Probability) Lecture 2 20 / 23

General inclusion-exclusion rule

Theorem

$$\begin{split} \mathbb{P}\left(\bigcup_{i=1}^{n}A_{i}\right) &= \sum_{i=1}^{n}\mathbb{P}(A_{i}) - \sum_{1\leqslant i < j \geqslant n}\mathbb{P}(A_{i} \cap A_{j}) \\ &+ \sum_{1\leqslant i < j < k \leqslant n}\mathbb{P}(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n}\mathbb{P}\left(\bigcap_{i=1}^{n}A_{i}\right) \end{split}$$

Proof.

Use induction from the simple inclusion-exclusion rule.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

21 / 23

Summary

Every experiment has an associated **probability space** $(\Omega, \mathcal{F}, \mathbb{P})$, where

- \bullet Ω is the sample space (set of all outcomes),
- \mathfrak{F} is the σ -field of events, and
- $\mathbb{P}: \mathcal{F} \to [0, 1]$ is a probability measure:
 - normalised so that $\mathbb{P}(\Omega) = 1$
 - countably additive over disjoint unions

Probability spaces with Ω finite and \mathbb{P} uniformly distributed ("all outcomes equally likely") are particularly amenable to counting techniques from combinatorial analysis.

Continuity

Theorem

- Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ and let $A = \bigcup_{i=1}^{\infty} A_i = \lim_{i \to \infty} A_i$. Then $P(A) = \lim_{i \to \infty} \mathbb{P}(A_i)$.
- 2 Let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$ and let $B = \bigcap_{i=1}^{\infty} B_i = \lim_{i \to \infty} B_i$. Then $P(B) = \lim_{i \to \infty} \mathbb{P}(B_i)$.

Proof.

$$\begin{split} \mathbb{P}(A) &= \mathbb{P}(A_1) + \mathbb{P}(A_2 \setminus A_1) + \mathbb{P}(A_3 \setminus A_2) + \cdots \\ &= \mathbb{P}(A_1) + (\mathbb{P}(A_2) - \mathbb{P}(A_1)) + (\mathbb{P}(A_3) - \mathbb{P}(A_2)) + \cdots \\ &= \lim_{n \to \infty} \mathbb{P}(A_n). \end{split}$$

Take complements of the previous proof.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 2

22 / 23