

The story of the film so far...

- Experiments with integer outcomes give rise to probability distributions $p : \mathbb{Z} \to [0, 1]$, satisfying $\sum_{x \in \mathbb{Z}} p(x) = 1$.
- We met several famous discrete probability distributions:

• uniform on $E = \{1, 2, ..., n\}$: $p(x) = \begin{cases} \frac{1}{n}, & x \in E \\ 0, & x \notin E \end{cases}$

- 2-digit Benford: $p(x) = \begin{cases} \log_{10}(1 + x^{-1}), & 10 \leqslant x \leqslant 99\\ 0, & \text{otherwise} \end{cases}$
- **binomial** with parameters n, p: $p(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x}, & 0 \leq x \leq n \\ 0, & \text{otherwise} \end{cases}$

the probability of exactly x successes in n independent Bernoulli trials with success probability p

• We also introduced the distribution function $F:\mathbb{Z}\to[0,1]$ associated to p, defined by $F(x)=\sum_{t\leqslant x}p(t)$: monotonically increasing from 0 to 1.

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

2/19

The mathematics of waiting

Example (Alice and Bob's favourite game)

We toss a fair coin until it comes up H. *How long must we wait for the game to end?*

Let $p(\mathbf{k})$ be the probability of stopping at the kth toss. Clearly,

$$p(k) = \begin{cases} 0, & k = 0, -1, -2, \dots \\ (\frac{1}{2})^k, & k = 1, 2, 3, \dots \end{cases}$$

This is called the **geometric distribution** with parameter $\frac{1}{2}$. Of course,

$$\sum_{k \in \mathbb{Z}} p(k) = \sum_{k=1}^{\infty} (\frac{1}{2})^k = \sum_{k=0}^{\infty} (\frac{1}{2})^k - 1 = \frac{1}{1 - \frac{1}{2}} - 1 = 1.$$

Example

- Suppose we decide to toss the coin at most N times, whether or not a head appears.
- Stopping at the Nth toss is equiprobable to getting tails in the first N 1 tosses: $p(N) = (\frac{1}{2})^{N-1}$.
- The resulting probability distribution is now

$$p(k) = \begin{cases} 0, & k \leqslant 0 \text{ or } k > N \\ (\frac{1}{2})^k, & k = 1, 2, \dots, N-1 \\ (\frac{1}{2})^{N-1}, & k = N \end{cases}$$

and is called the **truncated geometric distribution** with parameters N and $\frac{1}{2}$.

• Again one has $\sum_{k} p(k) = \sum_{k=1}^{N-1} (\frac{1}{2})^k + (\frac{1}{2})^{N-1} = 1.$

Example (Dice instead of coins)

Suppose that now Alice and Bob roll a fair die instead and the game ends when one of them rolls a II. What is the probability p(k) that the game ends with the kth roll?

Let S denote the event of rolling a II. Then $\mathbb{P}(S) = \frac{1}{6}$ and hence $\mathbb{P}(S^c) = \frac{5}{6}$. The game ends with the kth roll if the first k - 1 rolls do not show II and the kth roll does. The probability of such a sequence of rolls is then

$$p(k) = \begin{cases} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}, & k \geqslant 1\\ 0, & \text{otherwise.} \end{cases}$$

This is called the **geometric distribution** with parameter $\frac{1}{6}$.

José Figueroa-O'Farrill m

mi4a (Probability) Lecture 6

5 / 19

Geometric distribution

Definition

The **geometric distribution** with parameter p is given by

 $p(k) = \begin{cases} (1-p)^{k-1}p, & k \ge 1\\ 0, & \text{otherwise.} \end{cases}$

The number p(k) is the probability that in independent Bernoulli trials with success probability p, the first success occurs at the kth trial. Notice that

$$\sum_{k \in \mathbb{Z}} p(k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{\ell=0}^{\infty} (1-p)^{\ell}$$
$$= p \frac{1}{1-(1-p)} = 1.$$

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

Example (Weekly lottery)

Let p be the probability that a given number d is drawn in any given week. After n successive draws, let p(k) be the probability that d last appeared k weeks ago. What is p(k)? The number d appears with probability p and does not appear with probability 1 - p. Then since d appeared k weeks ago and has not appeared since, we have

$$\mathbf{p}(\mathbf{k}) = \begin{cases} \mathbf{p}(1-\mathbf{p})^{\mathbf{k}}, & \mathbf{0} \leqslant \mathbf{k} \leqslant \mathbf{n} - \mathbf{1} \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

Notice that

$$\sum_{k=0}^{n-1} p(k) = 1 - (1-p)^n$$

where $(1 - p)^n$ is the probability that d does not appear in all n weeks.

Negative binomial distribution

The binomial distribution answers the question:

Given n trials, what is the chance of k successes?

Suppose, instead, that we ask:

What is the chance we need n trials to obtain k successes?

A Bernoulli trial is repeated until we attain k successes and let us call $p_k(n)$ the probability that the total number of trials is n. If we need n trials, it is because there are k - 1 successes in the first n - 1 trials and the nth trial was a success. By independence,

$$p_k(n) = \binom{n-1}{k-1} p^{k-1} q^{n-k} \times p = \binom{n-1}{k-1} p^k q^{n-k}$$

for $n \ge k$. This is the **negative binomial distribution**.

Discrete random variables

- We have seen how to assign a probability distribution to experiments with numerical (particularly, integer) outcomes. However not all interesting experiments are of this type.
- Even if the outcomes are numerical, we may be interested in some other numerical measure of the outcome; e.g., gamblers might be more interested in the monetary values of their winnings/losses than in the actual number of times that they win or lose. Such numerical measures are called *random variables*.

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A function $X : \Omega \to \mathbb{R}$ is a **discrete random variable** on $(\Omega, \mathcal{F}, \mathbb{P})$ if

- **1** it takes countably many values $D = \{x_1, x_2, ...\} \subset \mathbb{R}$, and
- 2 for every $x_i \in D$, the set $\{\omega \in \Omega | X(\omega) = x_i\} \in \mathcal{F}$.

```
José Figueroa-O'Farrill mi4a (Probab
```

mi4a (Probability) Lecture 6

Probability mass function

- Let X be a discrete random variable on a probability space (Ω, 𝔅, 𝔅) taking integer values. (There is no loss of generality in doing this, since any countable set can be labelled by integers.)
- By definition of a discrete random variable, the subset
 A_x = {ω ∈ Ω|X(ω) = x} of Ω is an event and therefore it has a well-defined probability P(A_x) = P(X = x).
- This allows us to define a function f_X by $f_X(x) = \mathbb{P}(X = x)$, called the **probability mass function** of X.
- Being a probability, $0 \leq f_X(x) \leq 1$ for all $x \in \mathbb{R}$.
- Since the A_x for x ∈ Z are a countable partition of Ω, the countable additivity of ℙ implies that

$$\sum_{x\in\mathbb{Z}}f_X(x)=\sum_{x\in\mathbb{Z}}\mathbb{P}(A_x)=\mathbb{P}\left(\bigcup_{x\in\mathbb{Z}}A_x\right)=\mathbb{P}(\Omega)=1\ .$$

Examples

- If Ω is finite then any function $X : \Omega \to \mathbb{R}$ is a discrete random variable.
- In many practical situations, if Ω is a countable subset of ℝ (e.g., Ω = ℤ) then the identity function X(ω) = ω is a discrete random variable.
- In the game of darts, Ω is uncountable since it contains all the points in the dartboard on which the dart can land, but the score X : Ω → {0, 1, ..., 60} is a discrete random variable.

Notation

We will denote random variables by capital letters T, V, X, Y, Z, ... and their values by lowercase letters t, v, x, y, z,

Please observe this convention very carefully!!!

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

10 / 19

Remarks

- In the case of $\Omega = \mathbb{Z}$ and X being the identity function $X(\omega) = \omega$, $f_X(x)$ is what we called the probability distribution p(x).
- Provided that we are only interested in X (and other random variables we may build out of X), we can essentially forget about (Ω, 𝔅, ℙ) and work with only the probability mass function f_X. We often speak about "a discrete random variable X with probability mass function f_X" without bothering to mention the probability space on which X is defined.
- The probability distributions we have been discussing can play the rôle of probability mass functions.
- One can talk about discrete random variables with uniform, binomial, geometric, Benford,... probability mass functions.

9/19

Example (Poisson distribution)

Let $\lambda > 0$ be a positive real number. The **Poisson distribution** with parameter λ is defined by

$$f(x) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!}, & x = 0, 1, 2, . \\ 0, & \text{otherwise} \end{cases}$$

It is clear that $f(x) \ge 0$ for all x and that it is nonzero only for a countable subset of \mathbb{R} ; namely, the natural numbers. Finally

$$\sum_{x=0}^{\infty} f(x) = \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} e^{\lambda} = 1$$

We can therefore talk about discrete random variables whose probability mass function is Poisson with parameter λ .

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

13 / 19

Expectation value as a weighted average

Let X be a discrete random variable with probability mass function f_X . The **expectation value** $\mathbb{E}(X)$ of X is defined by

$$\mathbb{E}(X) = \sum_x x f_X(x) \; .$$

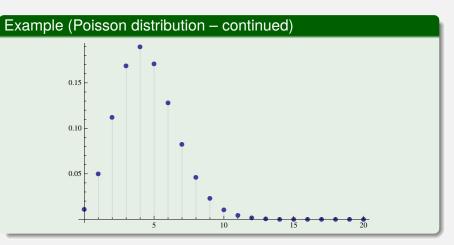
(provided that $\sum_{x} |x| f_{X}(x) < \infty$.)

The expectation value agrees with our notion of *mean* or *average* in the case of a uniform distribution.

Example (Dice)

Consider rolling a dice and let X denote the random variable $X(\bigcirc) = 1, X(\bigcirc) = 2$, et cetera. Then $\mathbb{E}(X)$ is the average score:

$$\mathbb{E}(X) = \sum_{x=1}^{6} x f_X(x) = \sum_{x=1}^{6} x \frac{1}{6} = \frac{1}{6}(1 + 2 + \dots + 6) = \frac{7}{2}.$$



We will see later that the Poisson distribution is a limit of the binomial distribution for large n and small p keeping np fixed. This means that we can use it to approximate the binomial distribution in that limit.

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

14/19

Example (Betting)

Consider a betting game based on a Bernoulli trial with success probability p. Every bet costs £1: if you win you get your £1 back and an additional £2, if you lose you get nothing. *How much do you expect to win/lose on average?* Introduce the random variable X with values X(S) = 2 and X(F) = -1 which measures the amount (in £) you win: in the case of success you win £2 and in the case of failure you lose £1, which is the same as winning -£1. We are after the expectation value of X:

$$\mathbb{E}(X) = X(S)\mathbb{P}(S) + X(F)\mathbb{P}(F) = 2p + (-1)(1-p) = 3p - 1 .$$

So if $p < \frac{1}{3}$ you shouldn't play!

Notice that

 $X(S)\mathbb{P}(S) + X(F)\mathbb{P}(F) = 2f_X(2) + (-1)f_X(-1) \ .$

Example (Expectation value of Poisson distribution)

Let X be a discrete random variable with probability mass function f_X given by a Poisson distribution with parameter $\lambda > 0$. What is its expectation value? By definition

$$\mathbb{E}(X) = \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!}$$
$$= e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^x}{(x-1)!} = e^{-\lambda} \sum_{z=0}^{\infty} \frac{\lambda^{z+1}}{z!}$$
$$= \lambda e^{-\lambda} \sum_{z=0}^{\infty} \frac{\lambda^z}{z!} = \lambda$$

Example (Expectation value of binomial distribution)

Let X be a discrete random variable with probability mass function f_X given by a binomial distribution with parameters n and p. What is $\mathbb{E}(X)$? By definition,

$$\mathbb{E}(X) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} q^{n-x} = \sum_{x=1}^{n} x \binom{n}{x} p^{x} q^{n-x} .$$

But now for $0 < x \leq n$,

$$x\binom{n}{x} = x\frac{n!}{(n-x)!x!} = \frac{n!}{(n-x)!(x-1)!} = n\binom{n-1}{x-1}$$

whence

$$\mathbb{E}(X) = \sum_{x=1}^{n} n\binom{n-1}{x-1} p^{x} q^{n-x} = \sum_{z=0}^{n-1} n\binom{n-1}{z} p^{z+1} q^{n-1-z} = np.$$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 6

José Figueroa-O'Farrill mi4a (Probability) Lecture 6

18/19

Summary

- A discrete random variable X in a probability space

 (Ω, 𝔅, ℙ) is a function X : Ω → ℝ which can take only countably many values and such that the subsets {X = x} are events.
- Since they are events, they have a probability P(X = x), which defines a probability mass function
 f_X(x) = P(X = x) obeying 0 ≤ f_X(x) ≤ 1 and ∑_x f_X(x) = 1.
- Given a discrete random variable X with probability mass function f_X, its expectation value is E(X) = ∑_x xf_X(x).
- We met the **Poisson distribution** with parameter $\lambda > 0$

$$f(\mathbf{x}) = e^{-\lambda} \frac{\lambda^{\mathbf{x}}}{\mathbf{x}!}$$

for $x \in \mathbb{N}$ and f(x) = 0 otherwise. It has expectation value λ .

17/19