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New random variables out of old

Suppose that X is a discrete random variable with probability
mass function f, and let h : R — R be a function; e.g., h(x) = x°.
Let Y: Q — Z be defined by Y(w) = h(X(w)), written Y = h(X).

Y = h(X) is a discrete random variable with probability mass
function

fyy)= Y fx(x).

{xIh(x)=y}

e.g., if h(x) = x2, then fy(4) = fx(2) + fx(—2).

By definition fv(y) is the probability of the event
{w e QlY(w) =y} ={w € Qh(X(w)) =y}, but this is the disjoint

union of {w € QX (w) = x} for all x such that h(x) =y. O

The story of the film so far...

@ A discrete random variable X in a probability space
(Q,F,P) is a function X : Q — R which can take only
countably many values and such that the subsets {X = x}
are events.

@ Since they are events, they have a probability P(X = x),
which defines a probability mass function
fx(x) =P(X =x) obeying 0 < fx(x) < 1and )} fx(x)=1.
@ Given a discrete random variable X with probability mass
function f, its expectation value is E(X) = > xfx(x).

@ For fx a uniform distribution, E(X) is simply the average.
@ For fx the Poisson distribution with parameter A, E(X) = A.

@ For fx the binomial distribution with parameters n and p,
E(X) =np.
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What is the expectation value of Y = h(X)?
Luckily we don’t have to determine fy in order to compute it.

E(Y) =E(h(X)) = ) h(x)fx(x)

By definition and the previous lemma,

EY)=) yfvly)=) y Y fx(x)
y X

Y h(x)=y

=Y ) yfx(x)=) h(x)fx(x)
Y X_ x

h(x)=y
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Examples
Let a be a constant.
Q LetY=X+a. Then

E(Y) =) (x+a)fx(x) =) xfx(x)+ ) afx(x) =E(X)+a

X

Q LetY =aX. Then

E(Y) =) axfx(x) =a) xfx(x) = aE(X)

© LetY=a. Then

E(Y) =) afx(x)=a
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Example

Let X be a discrete random variable whose probability mass
function is given by a binomial distribution with parameters n

x=0
=(e'p+

and p. Then
= n X n—x ,tx
Mx(t) =) ( Jp*(1—p)" e
x=0
_ = n t..\Xx _ n—x
—; e —p)
1—

p)".
Differentiating with respect to t,
M (t) =n(etp+1—p)™ Tpet

whence setting t = 0, M (0) = np, as we obtained before.
(This way seems simpler, though.)
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Moment generating function

A special example of this construction is when h(x) = e*,
where t € R is a real number.

Definition

The moment generating function Mx(t) is the expectation
value

Mx(t) :=E(e™) = ) e™fx(x)

(provided the sum converges)

Lemma
Q Mx(0) =1
Q E(X) =M(0), where ' denotes derivative with respect to t.
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Let X be a discrete random variable whose probability mass
function is a Poisson distribution with parameter A. Then

0

X

2 ¢’
=0

¢
AA
(et—1)

eX
et)x
x!

X

>

S x
Mx(t) =) e ot
!

o

Differentiating with respect to t,
M4 (1) = ere=Taet |

whence setting t = 0, M4 (0) = A, as we had obtained before.
(But again this way is simpler.)
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Variance and standard deviation |

The expectation value E(X) (also called the mean) of a discrete
random variable is a rather coarse measure of how X is
distributed. For example, consider the following three
situations:

@ | give you £1000
@ | toss a fair coin and if it is head | give you .£2000

© | choose a number from 1 to 1000 and if can guess it, | give
you £1 million

Let X be the discrete random variable corresponding to your
winnings. In all three cases, E(X) = £1000, but you will agree
that your chances of actually getting any money are quite
different in all three cases.

One way in which these three cases differ is by the “spread” of
the probability mass function. This is measured by the variance.
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Variance and standard deviation Il

Let us calculate the variances and standard deviations of the
above three situations:

@ | give you £1000. There is only one outcome and it is the
mean, hence the variance is 0.

@ | toss a fair coin and if it is head | give you £2000.
Var(X) = 1(2000 — 1000)2 + 1(0 — 1000)2 = 10°

whence ¢(X) = £1,000.

© | choose a number from 1 to 1000 and if can guess it in
one attempt, | give you £1 million.

Var(X) =1073(10% — 10%)2 + 999 x 1073(0 — 10%)% ~ 10°

whence o(X) ~ £31,607.
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Variance and standard deviation I

Let X be a discrete random variable with mean u. The variance
is a weighted average of the (squared) distance from the mean.
More precisely,

Definition
The variance Var(X) of X is defined by
Var(X) =E((X— p)?) = ) (x— w?x(x)

(provided the sum converges.)
Its (positive) square root is called the standard deviation and
is usually denoted o, whence

o(X) = \/Z(x — )2fx(x)

X

One virtue of o(X) is that it has the same units as X.
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Another expression for the variance

If X is a discrete random variable with mean v, then

Var(X) = E(X?) — 2

Var(X) = 3 (x — w2x(x) = Y (% — 2px + p2)x (x)

= x®fx(x) 2 ) xfx(x) +u2 Y fx(x)

= E(X?) — 2uE(X) + p? = E(X?) — 2
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Properties of the variance Variance from the moment generating function

Let X be a discrete random variable with moment generating

Var(aX) = «®Var(X) and  Var(X+ «) = Var(X)
Var(X) = M¥(0) — M4 (0)?

i E(xX) = «E(X E(X =E(X
Since E(aX) = o (X) and E(X + o) (%) + e, Notice that the second derivative with respect to t of Mx (t) is

Var(aX) = E(a®?X?) — o?p® = o Var(X) given by )
d tx 2t
and dtzge fX(X):gx e “fx(x),
Var(X + ) = E(X + o« — (p+ «))?) = E((X — n)?) = Var(X) whence M¥(0) = E(X?). The result follows from the expression
Var(X) = E(X?) — u? and the fact that 1 = M4 (0). O
D)
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Example

Let X be a discrete random variable whose probability mass Let X be a discrete random variable with probability mass
function is a binomial distribution with parameters n and p. It function given by a Poisson distribution with mean A. lts
has mean p = np and moment generating function moment generating function is

Mx(t) = (e'p+1—p)" Mx(t) = ee=1)
Differentiating twice Differentiating twice
ML) =nn—1)(etp+1—p)"2p2e® +np(efp+1—p)" et ML) = eMe =Tet 4 eAle'=1)(et)2
Evaluating at 0, M{(0) =n(n — 1)p? + np and thus Evaluating at 0, M{(0) =A + A2 and thus

Var(X) =n(n — 1)p2 +np — (np)2 =np(1—p) Var(X) = A+ A% —A% = A




Approximations @ Now we let np = A and write p = 2 in the expression

° The .Poi.sson distribution is a limiting case of the binomial pn(pn—p)--- (pn —px+p) e
distribution. = -5
@ Suppose that X is a discrete random variable whose
L o . g . to get
probability mass function is a binomial distribution with AA=2) o (A= (x—1)2)
parameters n and p. 1L = no(]— Ao
@ Thenforx=0,1,...,n, fx(x) is given by or equivalently
M\ xiq n,X_n(n_‘I)"'(n_x""‘I) X({ _ 4 \N—X AX 1 —1 A
<X>P (1—p)" > = < p*(1—p) 7'(1_%...(1_7‘ (1 — Byn—x
X: n n n
) ) which, in the limit n — oo, and using
@ We rewrite this as
. k. . A A
pn(pn—p)...(pn—px+p)(1 _npynx Jlnooﬁ _E)_1 and nlinooﬁ _n) =e

x!
becomes 2:e~*, which is the Poisson distribution.

xI
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Example (Overbooking) Example (Overbooking — continued)

A flight can carry 400 passengers. Any given passenger has a Or in fact, exactly
1% probability of not showing up for the flight, so the airline
sells 404 tickets. What is the probability that the flight is actually

0.424683631192536528200013549116793673026524259040461049452495072968650914837300206
709158040615150407329585535240015120608219272553117981017641384828705922878440370

overbooked? 321524207546996027284835313308829697975143168227319629816601917560644850756341881
Overbooklng results |f |eSS than 4 passengers fall to Show up. 742709406993813613377277271057343766544478075676178340690648658612923475894822832
. . 297859172633112693660439822342275313531378295457268742238146456308290233599014111
With P = 0.01andn = 404, the prObablllty of exaCtly k of them 615480034300074542370402850563940255882870886364953875049514476615747889802955241
failing to show up is 921909126317479754644289655961895552129584437472783180772859838984638908099511670
786738177347568229057659219954622594116676934630413343951161190275195407185240714
Ak 940186311498218519219119968253677856140792902214787570204845499188084336275774032

( k>pk(1 = p)n ko~ Fe*}‘ 5308776995642818675652301492781568473913485123520777596849334453681459063892599

(808 decimal places)

with A = np = 4.04. The probability of overbooking is then

3

k
Z (4'%4) e 404 ~ 0.426.
k=0 '

(Using the binomial distribution the result would be ~ 0.425.)
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Poisson distribution and the law of rare events |

There is a more “physical” derivation of the Poisson distribution,
which has the virtue of illustrating where it is that we might
expect it to arise.

Consider a random process, such as radioactive decay, buses
arriving at the bus stop, cars passing through a given
intersection, calls arriving at an exchange, requests arriving at a
server,...

All these processes have in common that whatever it is that we
are interested in measuring: decays, buses, cars, calls,
requests,... can happen at any time.

We are interested in the question:

how many events take place in a given time interval?

José Figueroa-O’Farrill mida (Probability) Lecture 7 21/25

Example

Requests arrive at a server at a rate of 3 per second. Compute
the probabilities of the following events:

@ exactly one request arrives in a one-second period
© exactly ten arrive in a two-second period

We model the number of requests as a discrete random
variable X with a Poisson distribution with rate A = 3:

o3t (3t)k

P(X=%kin [0,t]) = W

Q@ P(X=1in[0,1]) =3e3~0.15
Q@ P(X=10in[0,2]) = 85 e 6 ~ 0.04

Poisson processes do not only model temporal distributions,
but also spatial and spatio-temporal distributions!
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Poisson distribution and the law of rare events Il

Let us model a randomly occurring event: requests arriving at a
server, say. We wish to know how many requests will arrive in a
given time interval [0, t].

We will assume that requests arrive at a constant rate A; that is,
the probability of a request arriving in a small interval of time 5t
is proportional to dt: p = Abt.

To find out how many requests arrive in the interval [0, t], we
subdivide [0, t] into n subintervals of size 5t = t/n. We assume
that 5t is so small that the probability of two or more requests
arriving during the same subinterval is negligible.

Therefore the number X of requests arriving in [0, t] has a
binomial distribution with parameters n and p = At/n:

K
PX=k) = (E)Pk“ —p)~ e_)‘t(t]}(\!)
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Prussian cavalry fatalities of “death by horse”

In the 20 years from 1875 until 1894, the Prussian army kept
detailed yearly records of horse-kick-induced fatalities among
14 cavalry regiments. In total there were 196 recorded fatalities
distributed among 20 x 14 = 280 regiment-years. Ladislaus
Bortkiewicz analysed this data using a Poisson distribution:
The number of regiment-years with precisely k fatalities should

be approximately N(k) = 280e~* 1, , Where A = 138 = 7.

140[ °
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Summary
Let X be a discrete random variable with mean E(X) = p.
@ If h be any function, then Y = h(X) is again a discrete
random variable with
e probability mass function fy(y) = 3,1 (x)—y
e mean E(Y) =) _ h(x)fx(x)
@ moment generating function Mx(t) = E(etX) and
E(X) = M4/(0).
@ variance Var(X) = E(X?) — u? = M¥(0) — M (0)? and
standard deviation ¢ = \/Var(X) measure the “spread”:
e For binomial (n,p): u=np and ¢® =np(1 —p)
o For Poisson A: u =02 =A
@ Inthe limitn — co and p — 0, but np — A,

fx(x), and

Binomial(n, p) — Poisson(A)

@ Rare events occurring at a constant rate are distributed
according to a Poisson distribution.
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