

The story of the film so far...

Let X be a discrete random variable with mean $\mathbb{E}(X) = \mu$.

- For any function h, Y = h(X) is a discrete random variable with mean $\mathbb{E}(Y) = \sum_{x} h(x) f_X(x)$.
- X has a moment generating function $M_X(t) = \mathbb{E}(e^{tX})$ from where we can compute the mean μ and standard deviation σ by
 - $\bullet \ \mu = \mathbb{E}(X) = M_X'(\mathbf{0})$
 - $\bullet \ \sigma^2 = \mathbb{E}(X^2) \hat{\mu^2} = M_X''(0) M_X'(0)^2$
- For binomial (n, p): $\mu = np$ and $\sigma^2 = np(1-p)$
- For Poisson λ : $\mu = \sigma^2 = \lambda$
- The Poisson distribution with mean λ approximates the binomial distribution with parameters n and p in the limit $n \to \infty$, $p \to 0$, but $np \to \lambda$
- "Rare" events occurring at a constant rate are distributed according to a Poisson distribution

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

2 / 25

Two random variables

- It may happen that one is interested in two (or more) different numerical outcomes of the same experiment.
- This leads to the simultaneous study of two (or more) random variables.
- Suppose that X and Y are discrete random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- The values of X and Y are distributed according to f_X and f_Y, respectively.
- But whereas f_X(x) is the probability of X = x and f_Y(y) that
 of Y = y, they generally do *not* tell us the probability of
 X = x and Y = y.
- That is given by their joint distribution.

Joint probability mass function

Let X and Y be two discrete random variables in the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the subsets $\{X = x\}$ and $\{Y = y\}$ are events and hence so is their intersection.

Definition

The **joint probability mass function** of the two discrete random variables X and Y is given by

$$f_{X,Y}(x,y) = \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

Notation: often written just f(x, y) if no ambiguity results.

Being a probability, $0 \le f(x, y) \le 1$.

But also $\sum_{x,y} f(x,y) = 1$, since every outcome $\omega \in \Omega$ belongs to precisely one of the sets $\{X = x\} \cap \{Y = y\}$. In other words, those sets define a partition of Ω , which is moreover countable.

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 3 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8 4 / 2

Examples (Fair dice: scores, max and min)

We roll two fair dice.

 Let X and Y denote their scores. The joint probability mass function is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{36}, & 1 \leqslant x,y \leqslant 6 \\ 0, & \text{otherwise} \end{cases}$$

Let U and V denote the minimum and maximum of the two scores, respectively. The joint probability mass function is given by

$$f_{U,V}(u,\nu) = \begin{cases} \frac{1}{36}, & 1 \leqslant u = \nu \leqslant 6 \\ \frac{1}{18}, & 1 \leqslant u < \nu \leqslant 6 \\ 0, & \text{otherwise} \end{cases}$$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

5 / 25

Marginals

The joint probability mass function f(x, y) of two discrete random variables X and Y contains the information of the probability mass functions of the individual discrete random variables. These are called the **marginals**:

$$f_X(x) = \sum_y f(x, y)$$
 and $f_Y(y) = \sum_x f(x, y)$.

This holds because the sets $\{Y=y\}$, where y runs through all the possible values of Y, are a countable partition of Ω . Therefore,

$${X = x} = \bigcup_{y} {X = x} \cap {Y = y}.$$

and computing \mathbb{P} of both sides:

$$f_X(x) = \mathbb{P}(\{X = x\}) = \sum_y \mathbb{P}(\{X = x\} \cap \{Y = y\}) = \sum_y f_{X,Y}(x,y) \ .$$

A similar story holds for $\{Y = y\}$.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

6 / 25

8 / 25

Examples

Toss a fair coin. Let X be the number of heads and Y the number of tails:

$$\begin{split} f_X(0) = f_X(1) = f_Y(0) = f_Y(1) = \frac{1}{2} \\ f_{X,Y}(0,0) = f_{X,Y}(1,1) = 0 \qquad f_{X,Y}(1,0) = f_{X,Y}(0,1) = \frac{1}{2} \end{split}$$

2 Toss two fair coins. Let X be the number of heads shown by the first coin and Y the number of heads shown by the second:

$$\begin{split} f_X(0) = f_X(1) = f_Y(0) = f_Y(1) = \frac{1}{2} \\ f_{X,Y}(0,0) = f_{X,Y}(1,1) = f_{X,Y}(1,0) = f_{X,Y}(0,1) = \frac{1}{4} \end{split}$$

Moral: the marginals do not determine the joint distribution!

More than two random variables

There is no reason to stop at two discrete random variables: we can consider a finite number X_1, \ldots, X_n of discrete random variables on the same probability space. They have a joint probability mass function $f_{X_1,\ldots,X_n}: \mathbb{R}^n \to [0,1]$, defined by

$$f_{X_1,...,X_n}(x_1,...,x_n) = \mathbb{P}(\{X_1 = x_1\} \cap \cdots \cap \{X_n = x_n\})$$

and obeying

$$\sum_{x_1, \dots, x_n} f_{X_1, \dots, X_n}(x_1, \dots, x_n) = 1 \ .$$

It has a number of marginals by summing over the possible values of any k of the X_i .

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 7 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8

Independence

In the \(\) second of the above examples \(\), we saw that $f_{X,Y}(x,y) = f_X(x) f_Y(y)$. This is explained by the fact that for all x,y the events $\{X=x\}$ and $\{Y=y\}$ are independent:

$$\begin{split} f_{X,Y}(x,y) &= \mathbb{P}(\{X=x\} \cap \{Y=y\}) \\ &= \mathbb{P}(\{X=x\}) \mathbb{P}(\{Y=y\}) \\ &= f_X(x) f_Y(y) \;. \end{split} \tag{independent events)}$$

Definition

Two discrete random variables X and Y are said to be **independent** if for all x, y,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

9 / 25

Example (Bernoulli trials with a random parameter)

Consider a Bernoulli trial with probability p of success. Let X and Y denote the number of successes and failures. Clearly they are not generally independent because X + Y = 1: so $f_{X,Y}(1,1) = 0$, yet $f_X(1)f_Y(1) = p(1-p)$.

Now suppose that we repeat the Bernoulli trial a random number N of times, where N has a Poisson probability mass function with mean λ . I claim that X and Y are now independent! We first determine the probability mass functions of X and Y. Conditioning on the value of N,

$$\begin{split} f_X(x) &= \sum_{n=1}^{\infty} \mathbb{P}(X = x | N = n) \mathbb{P}(N = n) = \sum_{n=x}^{\infty} \binom{n}{x} p^x q^{n-x} e^{-\lambda} \frac{\lambda^n}{n!} \\ &= \frac{(\lambda p)^x}{x!} e^{-\lambda} \sum_{m=0}^{\infty} \frac{q^m}{m!} \lambda^m = \frac{(\lambda p)^x}{x!} e^{-\lambda} e^{\lambda q} = \frac{(\lambda p)^x}{x!} e^{-\lambda p} \end{split}$$

So X has a Poisson probability mass function with mean λp .

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

10 / 25

12 / 25

Example (Bernoulli trials with a random parameter – continued)

One person's success is another person's failure, so Y also has a Poisson probability mass function but with mean λq . Therefore

$$f_X(x)f_Y(y) = \frac{(\lambda p)^x}{x!} e^{-\lambda p} \frac{(\lambda q)^y}{y!} e^{-\lambda q} = e^{-\lambda} \frac{\lambda^{x+y}}{x!y!} p^x q^y$$

On the other hand, conditioning on N again,

$$\begin{split} f_{X,Y}(x,y) &= \mathbb{P}(\{X=x\} \cap \{Y=y\}) \\ &= \mathbb{P}(\{X=x\} \cap \{Y=y\} | N=x+y) \mathbb{P}(N=x+y) \\ &= \binom{x+y}{x} p^x q^y e^{-\lambda} \frac{\lambda^{x+y}}{(x+y)!} \\ &= e^{-\lambda} \frac{\lambda^{x+y}}{x!y!} p^x q^y = f_X(x) f_Y(y) \end{split}$$

Independent multiple random variables

Again there is no reason to stop at two discrete random variables and we can consider a finite number X_1, \ldots, X_n of discrete random variables.

They are said to be **independent** when all the events $\{X_i = x_i\}$ are independent.

This is the same as saying that for any $2 \le k \le n$ variables X_{i_1}, \dots, X_{i_k} of the X_1, \dots, X_n ,

$$f_{X_{i_1},...,X_{i_k}}(x_{i_1},...,x_{i_k}) = f_{X_{i_1}}(x_{i_1})...f_{X_{i_k}}(x_{i_k})$$

for all x_{i_1}, \ldots, x_{i_k} .

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 11 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8

Making new random variables out of old

Let X and Y be two discrete random variables and let h(x,y) be any function of two variables. Then let Z = h(X,Y) be defined by $Z(\omega) = h(X(\omega), Y(\omega))$ for all outcomes ω .

Theorem

Z = h(X,Y) is a discrete random variable with probability mass function

$$f_{Z}(z) = \sum_{\substack{x,y \\ h(x,y)=z}} f_{X,Y}(x,y)$$

and mean

$$\mathbb{E}(\mathsf{Z}) = \sum_{\mathsf{x},\mathsf{y}} \mathsf{h}(\mathsf{x},\mathsf{y}) \mathsf{f}_{\mathsf{X},\mathsf{Y}}(\mathsf{x},\mathsf{y})$$

The proof is *mutatis mutandis* the same as in the one-variable case.

• Let's skip it

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

13 / 25

Proof

The cardinality of the set $Z(\Omega)$ of all possible values of Z is at most that of $X(\Omega) \times Y(\Omega)$, consisting of pairs (x,y) where x is a possible value of X and y is a possible value of Y. Since the Cartesian product of two countable sets is countable, $Z(\Omega)$ is countable.

Now,

$$\{Z = z\} = \bigcup_{\substack{x,y \\ h(x,y) = z}} \{X = x\} \cap \{Y = y\}$$

is a countable disjoint union. Therefore,

$$f_{Z}(z) = \sum_{\substack{x,y \\ h(x,y)=z}} f_{X,Y}(x,y) .$$

José Figueroa-O'Farrill

Functions of more than two random variables

mi4a (Probability) Lecture 8

14 / 25

16 / 25

Proof - continued

The expectation value is

$$f_{Z}(z) = \sum_{z} z f_{Z}(z)$$

$$= \sum_{z} z \sum_{\substack{x,y \\ h(x,y)=z}} f_{X,Y}(x,y)$$

$$= \sum_{x,y} h(x,y) f_{X,Y}(x,y)$$

Again we can consider functions $h(X_1, ..., X_n)$ of more than two discrete random variables.

This is again a discrete random variable and its expectation is given by the usual formula

$$\mathbb{E}(h(X_1,...,X_n)) = \sum_{x_1,...,x_n} h(x_1,...,x_n) f_{X_1,...,X_n}(x_1,...,x_n)$$

The proof is basically the same as the one for two variables and shall be left as an exercise.

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 15 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8

Linearity of expectation I

Theorem

Let X and Y be two discrete random variables. Then

$$\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Proof.

$$\mathbb{E}(X+Y) = \sum_{x,y} (x+y)f(x,y)$$

$$= \sum_{x} x \sum_{y} f(x,y) + \sum_{y} y \sum_{x} f(x,y)$$

$$= \sum_{x} x f_{X}(x) + \sum_{y} y f_{Y}(y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

17 / 25

Linearity of expectation II

Together with $\mathbb{E}(\alpha X) = \alpha \mathbb{E}(X),...$ this implies the linearity of the expectation value:

$$\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y)$$

NB: This holds even if X and Y are not independent!

Trivial example

Consider rolling two fair dice. What is the expected value of their sum?

Let X_i , i = 1, 2, denote the score of the ith die.

We saw earlier that $\mathbb{E}(X_i) = \frac{7}{2}$, hence

$$\mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2) = \frac{7}{2} + \frac{7}{2} = 7$$
.

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

18 / 25

Linearity of expectation III

Again we can extend this result to any finite number of discrete random variables X_1, \ldots, X_n defined on the same probability space.

If $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, then

$$\mathbb{E}(\alpha_1 X_1 + \dots + \alpha_n X_n) = \alpha_1 \mathbb{E}(X_1) + \dots + \alpha_n \mathbb{E}(X_n)$$

(We omit the routine proof.)

Important!

It is important to remember that this is valid for arbitrary discrete random variables **without** the assumption of independence.

Example (Randomised hats)

A number n of men check their hats at a dinner party. During the dinner the hats get mixed up so that when they leave, the probability of getting their own hat is 1/n. What is the expected number of men who get their own hat? Let us try counting.

- If n=2 then it's clear: either both men get their own hats (X=2) or else neither does (X=0). Since both situations are equally likely, the expected number is $\frac{1}{2}(2+0)=1$.
- Now let n = 3. There are 3! = 6 possible permutations of the hats: the identity permutation has X = 3, three transpositions have X = 1 and two cyclic permutations have X = 0. Now we get $\frac{1}{6}(3 + 3 \times 1 + 2 \times 0) = 1$... again!
- How about n = 4? Now there are 4! = 24 possible permutations of the hats...

There has to be an easier way.

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 19 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8 20 / 25

Example (Randomised hats - continued)

- Let X denote the number of men who get their own hats.
- We let X_i denote the *indicator variable* corresponding to the event that the ith man gets his own hat: X_i = 1 if he does, X_i = 0 if he doesn't.
- Then $X = X_1 + X_2 + \cdots + X_n$.
- (The X_i are *not* independent! Why?)
- Notice that $\mathbb{E}(X_i) = \frac{1}{n}$, so that

$$\mathbb{E}(X) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n)$$
$$= \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}$$
$$= 1$$

On average one (lucky) man gets his own hat!

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

21 / 25

Example (The coupon collector problem)

A given brand of cereal contains a small plastic toy in every box. The toys come in c different colours, which are uniformly distributed, so that a given box has a 1/c chance of containing any one colour. You are trying to collect all c colours. How many cereal boxes do you expect to have to buy?

- ullet X_i is the number of boxes necessary to collect the ith colour, having collected already i-1 colours
- $X = X_1 + \cdots + X_c$ is the number of boxes necessary to collect all c colours
- we want to compute $\mathbb{E}(X) = \mathbb{E}(X_1) + \dots \mathbb{E}(X_c)$, by linearity
- \bullet having collected already i-1 colours, there are c-i+1 colours I have yet to collect
- ullet the probability of getting a new colour is $\frac{c-i+1}{c}$
- the probability of getting a colour I already have is $\frac{i-1}{c}$

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

22 / 25

24 / 25

Example (The coupon collector problem – continued)

•
$$\mathbb{P}(X_i = k) = \left(\frac{i-1}{c}\right)^{k-1} \frac{c-i+1}{c}$$
 for $k = 1, 2, \dots$

$$M_{X_i}(t) = \sum_{k=1}^{\infty} e^{kt} \left(\frac{i-1}{c} \right)^{k-1} \frac{c-i+1}{c} = \frac{(c-i+1)e^t}{c-(i-1)e^t}$$

$$ullet$$
 $\mathbb{E}(X_i) = M'_{X_i}(0) = \frac{c}{c-i+1}$, whence finally

$$\mathbb{E}(X) = \sum_{i=1}^{c} \frac{c}{c - i + 1}$$

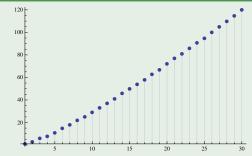
$$= c \left(\frac{1}{c} + \frac{1}{c - 1} + \dots + \frac{1}{2} + 1 \right)$$

$$= cH_{c}$$

where $H_c = 1 + \frac{1}{2} + \cdots + \frac{1}{c}$ is the cth harmonic number

Example (The coupon collector problem – continued)

2	сН _с	c	cHc
	1	2	3
3	6	4	8
5	11	6	15
7	18	8	22
)	25	10	29
	 	1 3 6 5 11 7 18	1 2 3 6 4 5 11 6 7 18 8



- How many expected tosses of a fair coin until both heads and tails appear?
- How many expected rolls of a fair die until we get all
 ..., ■? 15
- et cetera

José Figueroa-O'Farrill mi4a (Probability) Lecture 8 23 / 25 José Figueroa-O'Farrill mi4a (Probability) Lecture 8

Summary

• Discrete random variables X, Y on the same probability space have a joint probability mass function:

$$f_{X,Y}(x,y) = \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- h(X, Y) is a discrete random variable and

$$\mathbb{E}(h(X,Y)) = \sum_{x,y} h(x,y) f_{X,Y}(x,y)$$

- Expectation is linear: $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y)$
- All the above generalises straightforwardly to n random variables X_1, \dots, X_n

José Figueroa-O'Farrill

mi4a (Probability) Lecture 8

