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Two random variables
@ It may happen that one is interested in two (or more)
different numerical outcomes of the same experiment.

@ This leads to the simultaneous study of two (or more)
random variables.

@ Suppose that X and Y are discrete random variables on the
same probability space (Q, F, P).

@ The values of X and Y are distributed according to fx and
fy, respectively.

@ But whereas fx(x) is the probability of X = x and fy(y) that
of Y =y, they generally do not tell us the probability of
X=xandY =vy.

@ That is given by their joint distribution.
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The story of the film so far...

Let X be a discrete random variable with mean E(X) = p.
@ For any function h, Y = h(X) is a discrete random variable
with mean E(Y) = ) | h(x)fx(x).

@ X has a moment generating function Mx(t) = E(e'X)
from where we can compute the mean u and standard
deviation o by

o p=E(X)=M\(0)
o 02 =E(X?) — u2 = M{(0) — M4(0)2
@ For binomial (n,p): u=mnp and ¢® = np(1 —p)
@ For Poisson A: =02 =A
@ The Poisson distribution with mean A approximates the
binomial distribution with parameters n and p in the limit
n—oo,p—0,butnp — A

@ “Rare” events occurring at a constant rate are distributed
according to a Poisson distribution
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Joint probability mass function

Let X and Y be two discrete random variables in the same
probability space (Q, F,P). Then the subsets {X = x} and
{Y =y} are events and hence so is their intersection.

Definition
The joint probability mass function of the two discrete
random variables X and Y is given by

fx,y(x,y) =P{X=x}n{Y =y}

Notation: often written just f(x,y) if no ambiguity results.

Being a probability, 0 < f(x,y) < 1.

But also Zw f(x,y) =1, since every outcome w € Q belongs
to precisely one of the sets {X = x} n{Y = y}. In other words,
those sets define a partition of Q, which is moreover countable.

José Figueroa-O’Farrill mid4a (Probability) Lecture 8 4/25



Examples (Fair dice: scores, max and min) Marginals

We roll two fair dice. The joint probability mass function f(x,y) of two discrete
@ Let X and Y denote their scores. The joint probability mass random variables X and Y contains the information of the
function is given by probability mass functions of the individual discrete random
variables. These are called the marginals:
1
fx v(x,y) =< 36’ Tsxy<6 fx(x)=) flxy) and  fy(y) =) f(xy).
’ 0, otherwise y X
This holds because the sets {Y = y}, where y runs through all
© Let U and V denote the minimum and maximum of the two the possible values of Y, are a countable partition of Q.
scores, respectively. The joint probability mass function is Therefore,
given by X=x=JX=xn{y=y}.
a3 1<u=v<6 Y
fuvv) ={ &, 1<u<v<6 and computing P of both sides:
0, otherwise fx(x) =P(X=x}) =) PX=x}n{Y=y}) =) fxy(xy).
Yy

A similar story holds for {Y = y}.
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More than two random variables

@ Toss a fair coin. Let X be the number of heads and Y the

There is no reason to stop at two discrete random variables: we
number of tails:

can consider a finite number Xy, ..., X;, of discrete random
variables on the same probability space. They have a joint

_ _ _ 1
fx(0) = fx(1) = fv(0) = fv(1) = probability mass function fx, . x,. : R™ — [0, 1], defined by

2
fx,v(0,0) =fxy(1,1) =0  fx,v(1,0) =fx,v(0,1) =

2

1:X1 ..... Xn(x1,...,xn):P({X1:X1}ﬂ---ﬁ{Xn:xn})
@ Toss two fair coins. Let X be the number of heads shown and obeying
by the first coin and Y the number of heads shown by the
second: D X (X4 xn) =1

fx(0) = fx(1) = fy(0) = fy(1) =
fx,v(0,0) =fxy(1,1) =fxy(1,0) =fxy(0,1) =

N

1 It has a number of marginals by summing over the possible
4 values of any k of the X;.

Moral: the marginals do not determine the joint distribution!
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Independence Example (Bernoulli trials with a random parameter)

In the , we saw that fx y(x,y) = fx(x)fy(y). Consider a Bernoulli trial with probability p of success. Let X
This is explained by the fact that for all x, y the events {X = x} and Y denote the number of successes and failures. Clearly
and {Y = y} are independent: they are not generally independent because X +Y = 1: so
fx,y(1,1) =0, yet fx(1)fy(1) =p(1 —p).
fx,v(x,y) =P{X=x}N{Y =y} Now suppose that we repeat the Bernoulli trial a random
=P{X =x})P{Y =y} (independent events) number N of times, where N has a Poisson probability mass

function with mean A. | claim that X and Y are now independent!
We first determine the probability mass functions of X and Y.
Conditioning on the value of N,

= fx(x)fy(y) .

—_ — _ X  N—X ,—
Two discrete random variables X and Y are said to be Z P(X=xIN=n)P(N =n) = Z (X)p ° e T
independent if for all x, y, =L n=x
7\P —A - qm )\P) A (Ap)* _»
fxv(x,y) = fx(x)fy(y) Z m! x! x!

m=0

So X has a Poisson probability mass function with mean Ap.
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Example (Bernoulli trials with a random parameter — continued) Independent multiple random variables
One person’s success is another person’s failure, so Y also has Again there is no reason to stop at two discrete random
a Poisson probability mass function but with mean Aq. variables and we can consider a finite number Xy, ..., X, of
Therefore discrete random variables.
N " They are said to be independent when all the events {X; = x;}
(Ap)* _ap AQ)Y ANTY :
fx(x)fy(y) = —e p —e 9= — qY are independent.
s v e This is the same as saying that for any 2 < k < n variables
Xijs ..., X, Of the Xq,..., Xy,
On the other hand, conditioning on N again,
XXy, (Rigr oo X ) = T (xag) oo (xa)
fx,y(x,y) =P{X=x}n{Y =y})
=P({X =x}N{Y =y}N = x +y)P(N = x +y) forall xi,,....x.
Ax+y
= <X+U>qu”e}\ |
X (x +y)!
B AXtY N
=g TP q¥ = fx(x)fy(y)
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Making new random variables out of old

Let X and Y be two discrete random variables and let h(x,y) be
any function of two variables. Then let Z = h(X,Y) be defined
by Z(w) = h(X(w), Y(w)) for all outcomes w.

Theorem
Z = h(X,Y) is a discrete random variable with probability mass
function

fz(z)= )  fxy(xy)

X,y
h(x,y)=z

and mean

E(Z) =) h{xy)fxy(xy)
XY

The proof is mutatis mutandis the same as in the one-variable
case.
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Proof — continued

The expectation value is

fz(z) =) zfz(z)
=Yz Y fxy(xy)

X,y
h(x,y)=z

— Z h(x,y)fx,v(x,y)

X,y
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Proof
The cardinality of the set Z(Q) of all possible values of Z is at
most that of X(Q) x Y(Q), consisting of pairs (x,y) where x is a
possible value of X and y is a possible value of Y. Since the
Cartesian product of two countable sets is countable, Z(Q) is
countable.
Now,

Z=2= ] X=xn{v=y}

X,y

h(x,’y )=z

is a countable disjoint union. Therefore,

fz(z)= )  fxy(xy).

X,y

h(x,y)=z
José Figueroa-O’Farrill mida (Probability) Lecture 8 14/25

Functions of more than two random variables

Again we can consider functions h(Xy, ..., X;,) of more than two
discrete random variables.

This is again a discrete random variable and its expectation is
given by the usual formula

E(h(X1,.., Xn)) = D> h(XqseosXn)fxy X (X150 000 %n)

The proof is basically the same as the one for two variables and
shall be left as an exercise.
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Linearity of expectation |

Let X and Y be two discrete random variables. Then

E(X +Y) = E(X) + E(Y)

EX+Y) =) (x+y)f(xy)

XY
=Y x) fxy+) y) flxy)
x y y x

= xfx(x)+>_yfy(y) =E(X) + E(Y)
X y
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Linearity of expectation Il

Again we can extend this result to any finite number of discrete

random variables X4, ..., X,, defined on the same probability
space.
If o¢q,..., 00 € R, then

E(o4Xq 4+ -+ oenXn) = qE(Xq) + - - + oenE(X5)

(We omit the routine proof.)

It is important to remember that this is valid for arbitrary discrete
random variables without the assumption of independence.
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Linearity of expectation Il

Together with E(aX) = «E(X),... this implies the linearity of the
expectation value:

E(aX + BY) = aE(X) + BE(Y)

NB: This holds even if X and Y are not independent!

Trivial example

Consider rolling two fair dice. What is the expected value of
their sum?
Let X;, i = 1,2, denote the score of the ith die.

We saw earlier that E(X;) = % hence

E(Xy+Xo) =EX{) +EXp) =5+ 5=7.
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Example (Randomised hats)

A number n of men check their hats at a dinner party. During
the dinner the hats get mixed up so that when they leave, the
probability of getting their own hat is 1/n. What is the expected
number of men who get their own hat? Let us try counting.

@ If n =2 thenit’s clear: either both men get their own hats
(X = 2) or else neither does (X = 0). Since both situations
are equally likely, the expected number is %(2 +0)=1.

@ Now let n = 3. There are 3! = 6 possible permutations of
the hats: the identity permutation has X = 3, three
transpositions have X = 1 and two cyclic permutations
have X = 0. Now we get £(3+3 x 1+2 x 0) = 1... again!

@ How about n = 47? Now there are 4! = 24 possible
permutations of the hats...

There has to be an easier way.
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Example (Randomised hats — continued)
@ Let X denote the number of men who get their own hats.

@ We let X; denote the indicator variable corresponding to the

event that the ith man gets his own hat: X; = 1 if he does,
X; = 0 if he doesn't.

("] ThenX:X1 +Xo+ -+ Xp.
@ (The X; are not independent! Why?)
@ Notice that E(X;) = 1, so that

ot E(Xn)

On average one (lucky) man gets his own hat!
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Example (The coupon collector problem — continued)

k=1
oP(Xi:k):<ﬂ) eilfork=1,2,...

(@

[e'e) . k—1 . .
- e [(1—1 c—i+1 (c—i+1)et
Mxi(t)_zet< c ) ¢ c—(i-Te
k=1

e E(X;) =M} (0)

_ C
i — c—it+1?

whence finally

where H. =1 + % Jpooodk % is the cth harmonic number
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Example (The coupon collector problem)

A given brand of cereal contains a small plastic toy in every
box. The toys come in c different colours, which are uniformly
distributed, so that a given box has a 1/c chance of containing
any one colour. You are trying to collect all ¢ colours. How
many cereal boxes do you expect to have to buy?

@ X; is the number of boxes necessary to collect the ith
colour, having collected already i — 1 colours

@ X=X +---+ X, is the number of boxes necessary to
collect all ¢ colours

@ we want to compute E(X) = E(Xy) +...E(X.), by linearity

@ having collected already i — 1 colours, there are ¢ — i+ 1
colours | have yet to collect

@ the probability of getting a new colour is %
@ the probability of getting a colour | already have is %
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Example (The coupon collector problem — continued)

c | cHc ¢ | cHc 10of o
1] 1] 2] 3 of

3| 61 4| 8 o

5| 11| 6| 15

7| 18| 8| 22 “

9| 25| 10| 29

@ How many expected tosses of a fair coin until both heads
and tails appear? 3

@ How many expected rolls of a fair die until we get all

C),...,69?2 15

@ et cetera

22/25

José Figueroa-O’Farrill mida (Probability) Lecture 8

24/25



Summary

@ Discrete random variables X, Y on the same probability
space have a joint probability mass function:

fx,y(x,y) =P{X=x}N{Y =y}

@ f:R?2 —[0,1] and Zx,y f(x,y) =1
@ X,Y independent: fx y(x,y) = fx(x)fy(y) for all x, y
@ h(X,Y) is a discrete random variable and

E(h(X,Y)) = ) h{xy)fxy(x,y)
x,Y

@ Expectation is linear: E(aX + BY) = o«E(X) + BE(Y)

@ All the above generalises straightforwardly to n random
variables Xi,..., Xy
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