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Convolution

Let f, g : R — R be two functions. Their convolution
fxg:R — Ris the function defined by

(0¢]

(f*g)(z)zj gl —x)dx

—00

(provided the integral exists)

Properties of the convolution
@ fxg=gxf
@ (fxg)xh="fx*(gxh) (hence we can just write f x g x h)
@ fx g is “smoother” than f or g
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The story of the film so far...

@ C.rv.s X and Y have a joint density f(x,y) with

P((X,Y) € C) = Hf(x,y)dx dy
C

and a joint distribution

X ry
F(X,U):P(X<X,Y<y)=J J f(u,v)dudv

with f(x,y) = 525 F(x,y)
@ X and Y independent iff f(x,y) = fx(x)fy(y)
@ Geometric probability is fun! (Buffon’s needle)
@ We can calculate the c.d.f. and p.d.f. of Z = g(X,Y)
@ X, Yindependent: fx,y = fx x fy (convolution)
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Example (Convolution of exponential variables)

@ Let X and Y be independent exponentially distributed with
parameter A:

fx(x) =Ae ™ fy(y) =Are M

@ The joint density is f(x,y) = A%e Ax+Y) for x,y > 0
@ Then Z = X +Y has p.d.f. given by a “gamma” distribution

fz(z) = Jo fx(x)fy(z —x)dx

_ JZ 7\2e7)\xe77\(27x) dx
0

= N2ze M2
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Example (Independent standard normal random variables)

@ X, Y: independent, standard normally distributed. Their
sum Z = X +Y has p.d.f.

e 1 2 2
fz(2) :J o P B B,
oo 2T
2
e % /4 roo
= J e~ (x=2/2) gy (complete the square)
2
e % /4 roo
— J e du (u=x— %Z)
2n  J_o

—00

—z2/4

1
T 2ym

so it is normally distributed with zero mean and variance 2.

@ More generally, if X has mean px and variance c§< and Y
has mean py and variance ¢, Z is normally distributed
with mean ux + py and variance c§< 4 o%

Example (Normally distributed darts)

A dart hits a plane target at the point with coordinates (X, Y)
where X and Y have joint density
f(x,y) = 1 e tx2y?)/2
’ 2
Let R = v/X2 + Y2 be the distance from the bullseye. What is
E(R)?
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Expectations of functions of random variables

@ Let X and Y be c.r.v.s with joint density f(x,y)
@ LetZ =g(X,Y) forsome g:R? - R
@ The expectation value of Z is defined by

E(Z) = [[ 9xy)fix y)dxdy

(provided the integral exists)

@ We already saw that
E(X+Y) =E(X) +E(Y)

even if X and Y are not independent
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Example (Normally distributed darts — continued)
What is E(R?)?

E(R?) =E(X?+Y?) =E(X?)+E(Y3)=1+1=2

where we used
@ linearity of E, and
@ the fact that E(X2) = Var(X) = 1 and similarly for Y
@ This shows that

Var(R) =E(R?) ~E(R)2=2-%F .




Independent random variables | Independent random variables |l
As with discrete random variables, we have the following

Let X, Y be independent continuous random variables. Then
Corollary
E(XY) = E(X)E(Y) Let X, Y be independent continuous random variables. Then

Var(X +Y) = Var(X) + Var(Y)

vi= [
xyf(x,y)dx dy
The covariance and correlation of X and Y are
= ﬂ xyfx (x)fy(y)dx dy (independence)
Cov(X,Y) = E(XY) —E(X)E(Y)

= | xfx(x > ( yfy(y)dy> Cov(X,Y

( o(X,Y) = )
=E(X)E(Y) Var(X) Var(Y)

D V
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Exarmple (Continued)
Consider X, Y uniformly distributed on the unit disk D, so that On the other hand, U = |X| and V = |Y| are correlated.
f(x,y) L
) = 1
(e E(U) = flxl;tdx dy Y
Then by symmetric integration, D
T
_2
EXXY)=EXX)=E(Y)=0 = Cov(X,Y)=0 == . L < Cc0os0drdo X
2
. z 1
Therefore X, Y are uncorrelated but not independent. ) _ irn cos 0d0 JO 2dr
2
2 1
_ 4
— 3n

And by symmetry, also E(V) = 4-.
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Example (Continued)

Finally,
L Yy
E = _
(uv) = [f byl axdy
D
;‘(J J 13 sin 6 cos Bdr do X
0
2 1
=4 J sin 0 cos 0d0 J dr
0 0
N V5 J
Hence
E(UV) —E(WE(V) = 5~ — % - 91”8722 <0
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Markov’s inequality
Theorem (Markov’s inequality)
Let X be ac.r.v. Then forall ¢ >0

E(X)

P(IX] > €) <

£

E(IX)) J xIf(x

J . Ix|f(x)dx + J: Ix|f(x)dx + J [x|f(x)dx

&

> J f(x )dx—i—srof(x)dx:eIP’(IXl > ¢€)

&€
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Moment generating function of a sum

Let X, Y be independent continuous random variables and let
Z=X+Y. Then

Mz(t) = E(e*4)
= hetzfz(z)dz
= “etZfo(X)fy(Z—X)dXdZ

= ff etFX) ety (x)fy(z — x)dx dz

= etXfX(X)dXJQtny(y)dy (y=2z—x)
= Mx(t)My(t)

Chebyshev’s inequality
Theorem (Chebyshev’s inequality)

Let X be a c.r.v. with finite mean and variance. Then

E(X?)
52

P(X| > ¢) < forall e >0

> ¢ f(x)dx + szj f(x)dx = e2P(IX| > ¢)
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Two corollaries of Chebyshev’s inequality

Corollary

Let X be a c.r.v. with mean  and variance o°. Then for any
e >0,
2

PIX -l > ¢) < =
£

¢

Corollary (The (weak) law of large numbers)

Let X4, X5, ... be iid. continuous random variables with mean
w and variance o and let Z, = L(Xy + -+ Xn). Then

Ve >0 P(|Zn —u<e)—1 asn— oo
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Waiting times and the exponential distribution

If “rare” and “isolated” events can occur at random in the time
interval [0, t], then the number of events N(t) in that time
interval can be approximated by a Poisson distribution

(At)™

P(N(t) =n) = e |
n!

Let us start at t = 0 and let X be the time of the first event; that
is, the waiting time. Clearly, X > t if and only if N(t) =0,
whence

P(X>1t)=P(N(t)=0)=e M — PX<t)=1—e?

and differentiating,
fx(t) = Ae Mt

whence X is exponentially distributed.
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The Chernoff bound

Corollary

Let X be a c.r.v. with moment generating function Mx (t). Then
forany t > 0,
P(X > ) < e *Mx(t)

Proof.
P(X > &) = P > 1) = P(e*/2 > et*/2)

and by Chebyshev’s inequality for e'X/2,

E(etX) B
P(etX/Z > etoc/2) < eT —e tocMX(t) )
[]

Example (Radioactivity)

The number of radioactive decays in [0, t] is approximated by a
Poisson distribution, so decay times are exponentially
distributed. The time t4 ,» in which one half of the particles have
decayed is called the half-life. It is a sensible concept because
of the “lack of memory” of the exponential distribution.

How are the half-life and the parameter in the exponential
distribution related? By definition, P(X < t4 o) = % whence
__log2

e*}\t‘]/z = 1 = }\ =
2 t1,2

The mean of the exponential distribution: % =tq,2/log2is
called the mean lifetime.

e.g.,t1,2(2%U) ~ 700 x 108 yrs; ty »(4C) = 5,730 yrs;
t1,2(137Cs) ~ 30yrs

\
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Summary

@ X,Y independent random variables and Z = X + Y-
fz = fx = fy, where « is the convolution
X, Y with joint density f(x,y) and Z = g(X,Y):

E(Z) = [] g(x, y)f(x, y)ax ay

X, Y independent:
e E(XY) =E(X)E(Y)
o Var(X+Y) = Var(X) + Var(Y)
® Mx.v(t) = Mx(t)My(t), where Mx(t) = E(e*™)

We defined covariance and correlation of two r.v.s
Proved Markov’s and Chebyshev’s inequalities

Proved the (weak) law of large numbers and the
Chernoff bound

@ Waiting times of Poisson processes are exponentially
distributed
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