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Stochastic processes

@ Let (Q,F,P) be a probability space.
@ Let S be a set called the state space of the system. The
set § can be countable or uncountable.

@ Let T be an index set, to be thought of as “time”. It can be
continuous or discrete.

@ A stochastic (or random) process with state space § is a
collection of random variables X; : O — S indexed by t € 7.

@ The interpretation is that X is the state of the system at
time t, which for a non-deterministic system is a random
variable with some probability distribition.

@ There are many kinds of stochastic processes, differing in
how the probability of X; being in a given state depends on
the history of the system; that is, in which state the system
was in times t’ < t.
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Determinism vs randomness

@ There are two main kinds of processes in Nature,
distinguished by their time evolution.
@ In a deterministic process, the future state of the system
is completely determined by the present state.
@ Physical systems whose time evolution is described by
differential equations are deterministic; e.g.,
e classical mechanics (Newton’s equation)
e quantum mechanics (Schrédinger’s equation)
e the weather (chaotic but deterministic!)
@ Stochastic (or random) processes are non-deterministic:
the time evolution is subject to a probability distribution.
@ Examples of stochastic processes are
e Random walks
e Markov chains
o Birth-death processes
e Queues

@ These are the subject of the last part of this course.
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Markov chains
@ We assume that S is countable so that the X, are discrete
random variables.

@ We will also assume that we have a discrete-time
process, so that 7 ={0,1,2,...}.

Definition
A stochastic process X = {Xq, X1, Xo, ...} is a Markov chain if it
satisfies the Markov property:

P(Xnp1 =5Xg=50,.--»Xn =8n) =P (X141 = s[Xn, =sn)

foralln > 0and sg,S1,...,Sn,s €.

“given the present, the future does not depend on the past”
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Random walks

Consider a particle moving on the integer lattice in R:

N

B

i-1 i i+

Therefore 8§ =Z and J; are independent random variables with

Let X;, denote the position of the particle at time n, so that

mn
Xn = Xp +Z]i
i=1
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The sequence {Xg, X4, Xo, . . . } exhibits temporal homogeneity:

P(Xn:j|X0:a):P(Xn+m:j|Xm:a)

whereas
m-+n
PXnim =i Xm=a)=P| ) Ji=j—a
i=m-+1
but the J; are i.i.d. |
v

Proposition
The sequence {Xy, X4, Xo, . . . } exhibits spatial homogeneity:

PXn=jlXg=a)=PXp=j+b|Xyg=a+Db)

Proof.

| \

P(anilxoza)=P<ZIi=i—a>
i—1

and also

P(Xn:j+b|XO:a+b):P<Z]i:j+b(a+b):ja)
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Proposition
The sequence {Xy, X4, Xo, ... } exhibits the Markov property:

P(Xm+n:j |X0:i0,---aXm:im):P(Xm+n:j|Xm:im)

Proof.
This follows because

| \

n
Xm+n :Xm+ Z Ii

i=m+1

S0 X1 +n does not depend explicitly on the X;j for j < m. O

A,
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Example (Gambler’s ruin)

A gambler starts with £k and plays a game in which a fair coin
is tossed repeatedly: winning £1 if heads and —£1 if tails. The
game stops when the gambler’s fortune is either £N (N > k) or
£0. What is the probability that the gambler is ultimately ruined?
This is an example of a random walk on a finite set
{0,1,2,...,N}. Let R denote the event that the gambler is
eventually ruined and let H and T denote the events that the
first toss is heads and tails, respectively. Let Py (R) denote the
probability that gambler is eventually ruined starting with £k.
Then

Pr(R) =Pk (R H)P(H) + Pk (R [ T)P(T)

but clearly Py (R |H) =P, 1(R) and Px(R | T) = P,_1(R), whence

Pic(R) = 3Py 1(R) + 3Py (R)

Example (Gambler’s ruin — continued)

What about if the coin is not fair?
LetP(H) =p and P(T) = q =1 —p, with p # q. Now

Pk =PPri1+dpr—1  1<k<N-1

with the same boundary conditions po =1 and pn =0. Try a
solution py, = 0% for some 6. Then

ok = po*t! 4 g0 ! — po2—0+q=0
with roots 6; =1 and 6, = %. The general solution is then
Pk = C4 6$ + 029]2<

for some ¢4, co which are determined by py = 1 and pn = 0.
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Example (Gambler’s ruin — continued)
Letting px = Px(R), we have the following difference equation:

=3Pt +P1) Po=1 pn=0
Let ax = Pk — Px_1- Then

ax — a1 =Pk —Pk—1 — (Px—1 — Px_2)
=Px —2Pk_1 +Pr_2
=px — (Pxk +Pr—2) +Pr2=0

Therefore ay = a4 for all k and hence
Pk =01 +Px1 =201 +px2="-=kay +po

Since pg =1 and pn =0, we find a4 = —%, whence py = 1— £.
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Example (Gambler’s ruin — continued)
Imposing the boundary conditions
1=pyg=cqy+co O:pN:c1+c2(%>N
whence N ’
= — gl -
1 €2 (p> C2 . (%>N
and hence
I L
Pk = ~ T+ N N
=@ -6 -6)

10/20

12/20



Transition matrix

Let’s go back to the case of a general Markov chain
Xo, X1, Xa,...}.
Since 8 is countable we will assume it is a subset of Z.
The evolution of a Markov chain is described by its transition
probabilities
PXn1 =71 Xn=1)

We will make the additional assumption of temporal
homogeneity:

PXni1 =i Xn=1)=PX; =j| Xy =1)

Therefore the transition probabilities are encoded in a
transition matrix P = (py), where

pij = P(Xn+1 :] | Xn = l)
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Example

Let X;, denote the state of a computer at the start of the nth
day. The computer can be in either of two states: X;, =0 ifitis
broken or X;, = 1 if in working order.

Let 1, (0) =P(X, =0) and t,, (1) =P(Xn = 1) =1 — 71, (0).

Let the transition probabilities be

P(X, .1 =1|Xn=0)=p
P(X,,1=0|Xn=1)=q

P(Xn+1:O|Xn:O):1_p
PXnp1=11Xn=1)=1—¢q

(Notice that p + q need not equal 1!)
Therefore the transition matrix is

SRS
g 1-q¢
A typical question is: What is P(X,, .4 =0)?
We will answer this naively at first.
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The transition matrix of a Markov chain is stochastic; that is,
Q>0
Q > ;py=1foralli(ie, rowssumto1)

@ This is obvious since the p;; are probabilities.
(2
D py=) PXpp1=jlXn=1)=1
j j

since X,, 1 must take some value.
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Example (Continued)
We often represent Markov chains graphically; e.g.,

1-pC 14

q
\_/
P
which allows us to read the transition probabilities at a glance

and write down the transition matrix:

P 0—-0 0—=1\ /M1—-p p
-~ \1-0 1=1) \ q 1—9¢
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Example (Continued)

P(X, 1 =0) =P(X, .1 =0|Xn = 0)P(Xy, = 0)
FPXpq =0 Xn = 1P(Xp = 1)
= (1 —=p)mn(0) + q7rn (1)
)

=(1=p)mn(0) + q(1 — mn(0))
T 41(0) = (1 —p — q)ma(0) + g
e.g. m(0)=(1—p—q)mp(0) +q
m(0) =(1—p—q) (1 —p—q)m(0) +q) +q
=(1—p—q)Pm(0)+q(1+(1—p—q))
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Example (Continued)

It turns out that we can arrive at the same result in a more
automatic way using the transition matrix.

Let 7t,, = (7, (0), (1)) be the row vector of probabilities.
Then

_ T-p p )
T‘LP_ ™ 0 3 ™ 1
n (n()n())(q n
(1 _p)ﬂn(o) + qﬂn(1):pﬂn(0) + (1 — q)ﬁn“))
=((1=p—q)m(0) +q,p+ (1 —p—q)mn(1))

:T[n+1(!)

Therefore (see next lecture for a general proof)

T, =myP...P =mP"

n
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Example (Continued)

Let us assume that p + q > 0, otherwise 7, (0) = 71y (0) for all n.
Then

mn(0) = (1 — p— q)"m(0) + g <1 = “p_fq_ 0”“)

(4 m . q q
—(—p—aq) <7To(0) p+q)+p+q

and similarly

P P
w1 = (1 =p=a" (mo(1) = =) +
P o) Tt
In other words, the probability of finding the machine in any
given state on the nth day, depends only on the initial
probabilities and the transition probabilities.

Summary

@ Non-deterministic processes are subject to probabilistic
analysis.

@ A stochastic process is a collection of random variables
indexed by “time” taking values in a state space,
interpreted as the state of the system at a given time.

@ Markov chains are discrete-time stochastic processes with
countable states satisfying the Markov property: “given
the present, the future does not depend on the past”.

@ (Temporally) homogeneous Markov chains are described
by transition matrices, whose entries are the transition
probabilities: non-negative and rows sum to 1.

@ Random walks are examples of Markov chains.

@ In a Markov chain, the probability of finding the system in a
given state at a given time is determined by the transition
probabilities and the initial probabilities.

@ Finite-state Markov chains can be represented graphically.

18/20

20/20



