The story of the film so far...

@ (Temporally homogeneous) Markov chains {Xy, X1, ...}

Mathematics for Informatics 4a are characterised by an stochastic transition matrix P,
with entries py; = P(X,, 1 =j | Xn =1) foralln

@ The probability distribution 7., at time m obeys
José Figueroa-O’Farrill Tmin = T P™ forall m,n >0

@ 7tis a steady-state distribution if TP = 7

@ Finite-state Markov chains always have steady state
distributions.

@ A (finite-state) Markov chain is regular if it has a unique
steady state distribution to which all distributions converge

@ A (finite-state) Markov chain is regular iff for some n, P™
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21 March 2012 as no zero entries.

@ Examples of Markov chains are given by random walks

e Go g[e’s PageRank is the steady-state distribution of a
random walk on the world wide web.
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Random walk revisited Probability generating functions
Let us consider again the random walk on the integers: To answer this question we introduce some more technology.

q P
< . Let X be a d.r.v. taking values in {0, 1,2, ...}. The probability
—1 0 1 generating function Gx(s) of X is the power series
The jumps J; are independent random variables with Gx(s) = i P(X = n)s™

n=0

P(Ji=1)=p PJi=—1)=q=1-p

which agrees with E(sX) = 5 p(x)s*.

Starting at 0, X, = Y ' J; is the position after n steps. Let
Basic properties:

_ {number of steps unt!l we VISI.t r for the first time, r+#0 ® Gx(1) =Y p(x) =1
number of steps until we revisit 0, r=0. ® GL(1) =Y . xp(x) = E(X)
Question: How the T, are distributed? i.e., P(T, =n) =? ® Gx(e') = Mx(t), the moment generating function




Examples

@ Let X be binomial with parameters (n,p), SO
p(r) = (Mp"q™T, for 0 < r <mnand with g =1 —p. Then

n n

Gx(s) :mesrzz< )pfq“ "s"=(q+ps)"

r=0 r=0

using the binomial theorem.

©Q Let X be geometrically distributed with parameter p, so that
p(k) = q* 'pfork > 1 andagain q=1—p. Then

_ = k _ = k—1_ .k _ = n_ _PS
Gx(s) =) plks* =) a*"'ps"=ps ) (as)" =3
k=1 k=1 n=0
for |s| < %

The P(X = n) are obtained by expanding Gx(s) in powers of s.
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Conditional expectation |

Let X, Y be random variables with joint distribution px v (x,y).
Then the conditional distribution of X given Y is

PX=x}n{Y=y}) pxy(xy)

Pl =PX=xIY=vl=——Fm 95" =~ o

It follows that the marginal distribution

x) =) pxy(uy) =) pxlypy(y)
Yy Yy

so that
E(X) =) xpx(x) ZZXPX|U pv(y
X
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Behaviour under independence

Let X,Y be independent d.r.v.s with probability generating
functions Gx(s) and Gy(s). Then

Gx+v(s) = Gx(s)Gy(s)

\

Proof is mutatis mutandis as for moment generating functions.

Example

Let X = Y ¢_; I, where I, are independent Bernoulli trials with
success probability p. Then Gy, (s) = q + ps, withq=1—p, and

ZI_IGIk Hq+ps (q+ps)™
=1 k=1

whence X is binomial with parameters (n, p), as expected.
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Conditional expectation |l

Interchanging the order of the sums,
EX)=) Y xp(x|ylpv(y) =D EX|Y=y)py(y)
Yy x Yy

which defines the conditional expectation of X given Y:
Z xp(x | y)

This defines a random variable E(X | Y), which is a function of Y,
whose value aty is E(X | Y =y). Thus we have

EXX|Y=vy)

E(X) =E (E(X]Y))
and similarly for any function Z = h(X),
E(Z]Y =y) Z h(x)p(x | y)

E(Z) =E(E(Z]Y)) where

José Figueroa-O’Farrill mida (Probability) Lecture 17 8/1



Example (Random sums)

Let X4, X5,... bei.i.d. and let N be an N-valued d.r.v.
independent from the X;. Let T = Zlo X;. What is G1(s)?
We calculate this by conditioning on N:

E(sT) =) E(s" IN=n)P(N=n)

By independence,
E(s" N =n) =E(s¥1T X)) = E(s*1)...E(s™) = (Gx(s))"
where Gx(s) is the p.g.f. of any of the X;. Hence

Gr(s) =) Gx(s)"P(N=n)=E(Gx(s)") = Gn(Gx(s))

In particular, E(T) = G4 (1) = G (Gx(1))G% (1) = E(N)E(X)
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The Galton—Watson problem |

In 1873, Francis Galton posed a problem
out of his concern in the decay of families
of “men of note”. In more modern
language, a similar problem is the
following.

A population of individuals reproduces
itself in generations. Let X,, denote the
size of the population in the nth
generation. There are two rules:

@ each member of a generation produces a family (maybe of
size 0) in the next generation

@ family sizes of all individuals are i.i.d. random variables

If we assume that Xy, = 1, what is the probability that X,, = 0 for
some n? i.e., will the family become extinct?
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Example (Gambler’s ruin — revisited)

A gambler starts with £k and makes a number of independent
£1 bets with even odds. The gambler stops when she has either
£0 or £N. Let Ty be the length of the game. What is E(T)?
Conditioning on the result of the first bet, and letting t, = E(Ty),

T = E(Ty|win)P(win) + E(Ty|lose)P(lose)
= 30+ 1) + 31+ 1eq)
=1

+ 3T +Ty)  forO<k<n

whereas 15 = v = 0. Ty is quadratic in k with zeroes at 0 and
N, so 1 = ck(N — k) for some constant c. Plugging it into the
equation for k = 1, we see that c = 1 and hence

E(Ty) = k(N — k)

The Galton—Watson problem |l

The problem was (partially) solved by the
Reverend Henry Watson, a
mathematician, who together with Galton
wrote On the probability of extinction of
families in 1874. It gave rise to a class of
problems known as branching
processes.

.{{i'
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The Galton—Watson problem |l

The population at the nth generation is a random sum of
random variables:

where £\ is the size of the family of the jth individual of the
(n — 1)st generation. They are i.i.d. with p.g.f. G(s). Let us write
Gn (s) for the p.g.f. of X;;. Then by the 1

Gn(s) = Gn1(G(s)) = G_2(G(G(s))) =--- = G"(s)

i.e., the nth iterate of G.
Gn is the p.g.f. of X;;, whence

o0
Gn(s) =) P(Xn=j)s = P(Xn=0)=Gn(0)=G"(0)
j=0
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Example (Extinction and survival for Poisson branching)
Suppose that the family sizes are Poisson distributed, so that

00
G(S) _ Z e—)\}\?'!‘sk _ e—)\e)\s _ e?\(3—1)

k=0

We must solve the equation e*#=1) =z for 0 <z < 1. For A < 1
the only solution is z = 1, so the family will be extinct with
probability 1, but for A > 1 there is a nonzero probability of
survival:

L L L L L L L L L L
02 04 06 08 10 02 04 06 08 10
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The Galton—Watson problem IV

We are interested in the large n limit, call it z. If z exists, it obeys
G(z) = z. Formally, if G™(0) — z as n — oo, applying G again to
both sides, we have G™*1(0) — G(z), but G™*'(0) — z, hence
G(z) = z. We can also see this graphically:

@ There is always one solution: z = 1, namely extinction!

@ Watson concluded (incorrectly) that extinction was
inevitable.

@ Luckily (?) that’'s not always the case.
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Example (Extinction and survival for “geometric” branching)

Suppose that the family sizes are distributed by a geometric
distribution p(k) = g*p fork > 0and q = 1 —p. Then

We must solve the equation 7— =z for 0 <z < 1. It has two
roots (for q # 0, otherwise z = 13

,_1£V1—dpq _1:£/(2p 1)

1
24 21 —p)

so one root is always 1 (extinction) and the other is %, which
is < 1onlyforp < 1. Soif p > J, extinction is inevitable, but if
p < & there is a chance of survival.
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Hitting times for random walks |

@ Recall our motivating example: the

@ Letr > 0 and let T, be the number of steps until we visit r
for the first time, starting at 0.

@ Let T, ¢ be the number of steps needed to reach k + 1
having reached k. Then Ty 1 = Ty and the Ty , 4 are i.i.d.

@ T, =Tp1+ T2+ --+T._4, and by independence

E(s™) =E(s")"

@ Conditioning on the first jump,
E(s")=E(s" | Jy = )P(Jy = ) +E(s"" | Jy = =1)P(Jy = —1)
= sp + sE(s 1ot Tot)gq
= sp+sqE(s")?

which we solve for E(s™)
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Hitting times for random walks Il

@ How about E(s'0)?
@ We condition on the first jump:

E(s) =E(s™ | J; = 1)P(J; = 1) +E(s™ | J; = —1)P(J; = —1)
= sE(s"0)p + sE(s™19)q
= spE(s"™1) + sqE(s™)

e (1 — /1 —4pq52> + g (1 — /1 —4pq52>

2sp 2sq
=1—14/1—4pgs?
4pq

- E(Tp) = —ro00  ifp=q

Vv 1—4pq
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Hitting times for random walks Il

@ Let E(s") = x and we must solve x = sp + sqx?
@ Assuming that q # 0, there are two solutions:

1= V/1—4pgs?

2sq

but only one has a power series expansion around s = 0:

1—/1—4pgs2

2sq

E(s™) =

@ Hence forr > 0,

E(STr) — (1 — m)r

2sq

and for r < 0 we simply replace p < q
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Summary

@ We introduced the probability generating function
Gx(s) = E(s*) of an N-valued d.r.v.

@ If X, Y are independent, then Gx_y(s) = Gx(s)Gy(s)

@ We defined the conditional distribution of X given Y:
pxly) =P(X=x|Y=y)

@ and the conditional expectation of X given Y, E(X | Y), a
d.rv. and a functionof Y: E(X | Y =y) =Y, xp(x |y)

@ E(X)=E(E(X]|Y))
@ We looked at random sums of random variables

@ We introduced branching processes and looked at the
Galton—Watson problem of extinction of family names

@ We revisited the one-dimensional random walk and
calculated the p.g.f.s for the hitting times

José Figueroa-O’Farrill mid4a (Probability) Lecture 17 20/1




