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The story of the film so far...
We have been studying stochastic processes; i.e.,
systems whose time evolution has an element of chance
In particular, Markov processes, whose future only
depends on the present and not on how we got there
Particularly tractable examples are the Markov chains,
which are discrete both in “time” and “space”:

random walks
branching processes

We can answer basic questions: steady-state
distributions, hitting times, extinction probabilities,...
One example of Markov chains are random walks on
graphs: e.g., ’s PageRank is the steady-state
distribution of a random walk on the world wide web
In today’s lecture we will look at random walks on simpler
graphs and will focus on a different sort of questions
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Random walk revisited
Let us consider again the random walk on the integers:

pq

−1 0 1

The jumps Ji are independent random variables with

P(Ji = 1) = p P(Ji = −1) = q = 1− p

Starting at 0, Xn =
∑n
i=1 Ji is the position after n steps. Define

the hitting times

Tr =

{
number of steps until we visit r for the first time, r 6= 0
number of steps until we revisit 0, r = 0.

Question: How the Tr are distributed? i.e., P(Tr = n) =?
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Hitting times for random walks I
Let r > 0 and let Tr be the number of steps until we visit r
for the first time, starting at 0.
Let Tk,k+1 be the number of steps needed to reach k+ 1
having reached k. Then T0,1 = T1 and the Tk,k+1 are i.i.d.
Tr = T0,1 + T1,2 + · · ·+ Tr−1,r and by independence

E(sTr) = E(sT1)r

Conditioning on the first jump,

E(sT1) = E(sT1 | J1 = 1)P(J1 = 1) + E(sT1 | J1 = −1)P(J1 = −1)
= sp+ sE(sT−1,0+T0,1)q

= sp+ sqE(sT1)2

which we solve for E(sT1)
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Hitting times for random walks II
Let E(sT1) = x and we must solve x = sp+ sqx2
Assuming that q 6= 0, there are two solutions:

x =
1±

√
1− 4pqs2
2sq

but only one has a power series expansion around s = 0:

E(sT1) =
1−

√
1− 4pqs2
2sq

Hence for r > 0,

E(sTr) =

(
1−

√
1− 4pqs2
2sq

)r
and for r < 0 we simply replace p↔ q
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Hitting times for random walks III
How about E(sT0)?
We condition on the first jump:

E(sT0) = E(sT0 | J1 = 1)P(J1 = 1) + E(sT0 | J1 = −1)P(J1 = −1)
= sE(sT1,0)p+ sE(sT−1,0)q

= spE(sT−1) + sqE(sT1)

= sp

(
1−

√
1− 4pqs2
2sp

)
+ sq

(
1−

√
1− 4pqs2
2sq

)

= 1−

√
1− 4pqs2

∴ E(T0) =
4pq√
1− 4pq

−→∞ if p = q
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Random walk on a triangle
Let us consider again the random walk on the integers, but this
time we only keep track of the position modulo 3:

pq

0 1 2 0 1 2 0

This is equivalent to the following 3-state Markov chain
describing a random walk on a triangle:

0

1 2

p

q

p

q

p

q

P =

0 p q

q 0 p

p q 0


π =

(
1
3 ,

1
3 ,

1
3

)
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Mean return times I
A typical quantity of interest is the mean return time: say we
start at the vertex 0 of the triangle. Let T0 denote the number of
steps until we first revisit 0. What is E(T0)?
Let T1 (resp. T2) be the number of steps until we visit 0 starting
from 1 (resp. 2). And let τi = E(Ti) for i = 0, 1, 2.
We fill find τi by conditioning on the first move: 	 with
probability p and � with probability q = 1− p. Therefore

τ0 = E(T0| 	)P(	) + E(T0| �)P(�)
= (1+ E(T1))p+ (1+ E(T2))q
= 1+ pτ1 + qτ2

Similarly,

τ1 = E(T1| 	)p+ E(T1| �)q
= (1+ τ2)p+ q

= 1+ pτ2

and
τ2 = E(T2| 	)p+ E(T2| �)q

= p+ (1+ τ1)q

= 1+ qτ1
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Mean return times II
Solving the system

τ0 = 1+ pτ1 + qτ2
τ1 = 1+ pτ2
τ2 = 1+ qτ1

=⇒ (τ0, τ1, τ2) =
(
3, 1+ p

1− pq
, 1+ q

1− pq

)

Notice that τ0 = 3 = 1
π0
, where (π0,π1,π2) is the steady-state

distribution of the Markov chain!
This is not a coincidence:
Theorem
The steady-state distribution (πi) of a regular Markov chain is
such that πi = 1

τi
, where τi is the mean return time to state i.

(We will not prove it; although it is not hard.)
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Hitting times distribution I
It is not just the mean return time that can be calculated, but in
fact the whole probability distribution of the Ti: namely, E(sTi).
We do this again by conditioning on the first move:

E(sT0) = E(sT0 | 	)p+ E(sT0 | �)q

= E(s1+T1)p+ E(s1+T2)q

= spE(sT1) + sqE(sT2)

and similarly

E(sT1) = E(s1+T2)p+ sq

= spE(sT2) + sq
and

E(sT2) = p+ E(s1+T1)q

= sp+ sqE(sT1)

In terms of γi = E(sTi), we have

γ0 = s(pγ1 + qγ2) γ1 = s(q+ pγ2) γ2 = s(p+ qγ1)
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Hitting times distribution II
The unique solution is

E(sT0) = s2(2pq+p3s+q3s)
1−pqs2 = 2pqs2 +

(
p3 + q3

)
s3 + 2p2q2s4 + · · ·

E(sT1) = s(q+p2s)
1−pqs2 = qs+ p2s2 + pq2s3 + · · ·

E(sT2) = s(p+q2s)
1−pqs2 = ps+ q2s2 + p2qs3 + · · ·

0

1 2

p

q

p

q

p

q
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Independent random walks I
Now suppose that we have two independent random walks on
the triangle. Assume that both particles start in the same vertex
and let T denote the number of steps until they again share a
vertex. What is E(T)?
We can turn this into a Markov chain with two states:
(A) the two particles share the same vertex
(B) the two particles are in different vertices
with transitions

initial 		 	� �	 ��
A A B B A

B B B A B

and probabilities

A Bp2 + q2

2pq

pq

p2 + q2 + pq
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Independent random walks II
In terms of θ = pq, the transition matrix is

P =

(
1− 2θ 2θ
θ 1− θ

)
=⇒ π =

(
1
3 ,

2
3

)
=⇒ E(T) =

1
πA

= 3

We can also derive this directly by conditioning. Let U denote
the number of steps until the particles first share a vertex,
starting from different vertices. Then
E(T) = E(T |		)p2 + E(T |	�)pq+ E(T |�	)pq+ E(T |��)q2

= p2 + 2(1+ E(U))pq+ q2 = 1+ 2pqE(U)

E(U) = E(U |		)p2 + E(U |	�)pq+ E(U |�	)pq+ E(U |��)q2

= (1+ E(U))p2 + (1+ E(U))pq+ pq+ (1+ E(U))q2

= 1+ (p2 + q2 + pq)E(U) = 1+ (1− pq)E(U)

=⇒ E(U) =
1
pq

=⇒ E(T) = 3
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Three independent random walks I
Now consider three particles moving in a triangle, but let us
assume for simplicity that the random walk is symmetric, so that
p = q = 1

2 . Assuming that the particles start at the same vertex,
let T denote the number of steps until they once again share a
vertex. What is E(T)?
We can turn this into a Markov chain with 3 states:
(A) all particles share a vertex
(B) precisely two particles share a vertex
(C) all particles in different vertices

0 0

3

A

1 0

2

B

1 1

1

C
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Three independent random walks II

0 0

3

A

1 0

2

B

1 1

1

C

The resulting Markov chain is

A B C

1
4

3
4

1
8

5
8

1
4

1
43

4
P =


1
4

3
4 0

1
8

5
8

1
4

0 3
4

1
4



The steady-state has distribution π =
(
1
9 ,

2
3 ,

2
9

)
.

Therefore E(T) = 9.
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Three independent random walks III
We can also solve this directly by conditioning. Let U (resp. V)
denote the number of steps needed to reach a configuration of
type A starting from a configuration of type B (resp. C).The
conditioning on the first step,

E(T) = E(T | A→ A)P(A→ A) + E(T | A→ B)P(A→ B)

+ E(T | A→ C)P(A→ C)

= 1
4 + (1+ E(U))34 = 1+ 3

4E(U)

and similarly

E(U) = 1
8 + (1+ E(U))58 + (1+ E(V))14

= 1+ 5
8E(U) +

1
4E(V)

E(V) = (1+ E(U))34 + (1+ E(V))14
= 1+ 3

4E(U) +
1
4E(V)

=⇒
E(T) = 9
E(U) = 32

3
E(V) = 12
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Three independent random walks III
Let Z be the number of steps until the particles meet again at
the starting vertex. What is E(Z)?
We now have four types of configurations, labelled by how
many of the particles are at the starting vertex: 0, 1, 2 or 3.

0 0

3

1 0

2

1 1

1

2 0

1

2 1

0

3 0

0
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Three independent random walks IV
The corresponding 4-state Markov chain is:

0 31

2

1
8

1
8

3
8

3
8

1
2

1
4

1
4

1
2

1
2

1
P =


1
8

3
8

3
8

1
8

1
4

1
2

1
4 0

1
2

1
2 0 0

1 0 0 0



π =
(

8
27 ,

4
9 ,

2
9 ,

1
27

)
=⇒ E(Z) = 27
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Summary
We have looked at random walks on the integers and
answered questions about return times and hitting times
We did the same for finite graphs, e.g., triangle
We considered independent random walks on a graph and
computed a variety of mean return times
The main techniques are:

1 Map the problem to a finite-state Markov chain, compute
the steady-state distribution and the mean return time

2 Directly by conditioning on the first move to obtain recursion
relations and/or linear equations

Pick your favourite graphs and work out a couple of
examples: the last assignment in this course will ask you to
do this for K4
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